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Accelerated discovery of perovskite solid
solutions through automated materials
synthesis and characterization
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Accelerating perovskite solid solution discovery and sustainable synthesis is
crucial for addressing challenges in wireless communication and biosensors.
However, the vast array of chemical compositions and their dependence on
factors such as crystal structure, and sintering temperature require time-
consumingmanual processes. Toovercome these constraints, we introduce an
automated materials discovery approach encompassing machine learning
(ML) assisted material screening, robotic synthesis, and high-throughput
characterization. Our proposed platform for rapid sintering and dielectric
analysis streamlines the characterization of perovskites and the discovery of
disordered materials. The setup has been successfully validated, demonstrat-
ing processing materials within minutes, in stark contrast to conventional
procedures that can take hours or days. Following setup validation with
established samples, we showcase synthesizing single-phase solid solutions
within the barium family, such as (BaxSr1-x)CeO3, identified throughML-guided
chemistry.

The emergence of laboratory automation has brought to light various
ways to accelerate each stage of the materials discovery process1.
Advancements in machine learning (ML), for example, encompass a
wide range of activities and have been applied in various areas of the
electromagnetics community, including discovering novel composi-
tion perovskite materials for photovoltaics2, optimizing the electronic
properties of thin films3, optimizing copolymers4, generating
databases5 and so forth6–10. In our previous study11, neural network-
derived embeddings effectively identified potential and known per-
ovskites and ferroelectrics. Perovskite structured materials are among
the widely researched due to their broad functional properties, which
can be utilized in wireless communications, phase shifters, tunable
antennas, oscillators and biosensors12–15. However, traditional dis-
covery and optimization of perovskite solid solutions are hindered by
the extensive chemical diversity and complex processes, that influence
their crystal structure and properties. Supplementary Fig. 1 shows the

average time scale for the manual workflow (days-weeks). Given the
challenge of obtaining substantial quantities of experimental data,
most current ML models rely on computational samples, which limits
their accuracy to the quality of the data they are built upon16. It has
become evident that there is a scarcity of studies that experimentally
synthesize and validate materials predicted by ML, highlighting a sig-
nificant research gap and emphasizing the need for alternative stra-
tegies to bridge the gap in experimental materials discovery.

With thematuration of artificial intelligence (AI) and collaborative
robots, more “self-driving laboratories” (SDLs) for material discovery
are being developed3,17–23. Nonetheless, SDLs are predominantly in
their early stages of development, and their utilizationwithin the realm
of solid solutions remains in its initial phases due to the intricate nature
of workflows, difficulties in orchestrating lab devices, the need for
multi-objective optimization, and the complexities involved in
dielectric measurements for 3D materials. Figure 1 presents a
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comprehensive customizable SDL loop for the synthesis and char-
acterization of perovskites, highlighting the process through a com-
bination of both AI and expert scientific input24,25. Solid State Reaction
(SSR) steps include (Fig. 1b): (1) ball milling, (2) calcining, (3) second
ball milling, (4) dry pressing, and (5) sintering24,25. Subsequently,
material dielectric characterization involves sample preparation such
as cutting, grinding and coating conductive electrodes or coplanar
waveguide (CPW) transmission lines using sputtering, painting or
photolithography26. Practical properties for such materials include
high tunability (τ) and low loss tangent (tanδ) at high frequencies.
Currently, sample preparation and characterization, even for high-
throughput methods, are a predominantly manual process16,27. The
brittleness of ceramics complicates their handling by robotic arms,
often resulting in defects and surface cracks. In addition, high-
frequency measurements often require intricate setups and precise
calibration for signal integrity and noise reduction. Without effective
property characterization, the main benefits of SDLs, such as auton-
omy and the capacity to independently correlate synthesis with
properties, are not fully realized28.

Previously, exemplar high-throughput experimentation (HTE)
and/or laboratory robotic tools have been demonstrated for auto-
mating the individual stages in SSR workflows, such as powder dis-
pensing and mixing29, sintering30, mechanical testing, and evaluation
of structural properties16. These individual automated tasks have been
reviewed in depth as documented in the referenced literature16,27.
Vecchio et al. suggested additive manufacturing alloy development
followed by structure screening29. Sintering conditions in SSR sig-
nificantly affect phase stability, reaction rates, grain size and density,
impacting the dielectric performance of solid solutions31. However,
conventional sintering has several drawbacks, including long proces-
sing time (2–6 h), high energy consumption (at 1200–1800 °C) and
CO2 emissions, making it unsuitable for high-throughput
experiments32.

Although alternative sintering techniques like spark plasma sin-
tering (SPS)30, microwave synthesis30, flash sintering (FS)33, and

photonic sintering34, have been explored to reduce processing time
and cost, they come with their own challenges, such as the need for
specific equipment or difficulties in experiment reproducibility.
Alternatively, CALPHAD computational methods29, and density func-
tional theory (DFT) calculations35, have been used for assessing phase
stability under various conditions. Theseapproaches oftenpresumean
equilibrium thermodynamic state andmay not capture the complexity
of perovskite oxide, requiring thorough analysis. Furthermore, incor-
porating temperature effects into ab initio simulations is complex and
computationally intensive, often requiring specialized techniques like
quasi-random structures or molecular dynamics36, which are challen-
ging for ML-predicted materials due to data limitations. In addition to
synthesis, none of the high-throughput approaches can be directly
applied to characterize the dielectric characteristics of bulk ferro-
electricmaterials athigh frequencies. Typically, dielectricproperties at
microwave frequencies are retrieved through s-parameter measure-
ments on transmission lines37, resonant cavities, and/or free-space
techniques, where the propagation characteristics of the Radio Fre-
quency (RF) wave are directly dependent on the properties of the
material under test. In this study, we develop an automatic platform
designed for rapid sintering processes and high-throughput micro-
wave property measurements, facilitating fast materials screening and
characterization in a matter of minutes (Fig. 2). This advancement
significantly reduces the time and labor traditionally required for
generating validation datasets, streamlining the characterization pro-
cess. A free-space sensor allows the robot to screen the thermal tun-
ability with no sample surface modification required. Immediate post-
sintering measurements eliminate the need for reheating samples and
improve ML models by rapidly revealing correlations between pro-
cesses and structures. Here, we design a central hub with a graphical
user interface (GUI) on MATLAB for orchestrating our lab instruments
and data management, offering the capability to incorporate addi-
tional devices for expanding the workflow in the future. Communica-
tion between the process management module and the devices are
achieved using various communication protocols (TCP/IP over WIFI/
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Fig. 1 | Theworkflowconcept. a Starting from the top right andmoving clockwise,
the sequence initiates withmachine learningmodels recommending sample library
compositions, followed by automated pellet creation via the solid-state reaction
(SSR)method, synthesizability validation (e.g., XRD), temperature tuning, real-time
dielectric property measurements, and analysis linking dielectric attributes to the

synthesis process. The cycle concludes with the updating of archives and the
generation of AI-driven predictions for comprehensive cycle management and
decision-making.bThe SSRworkflowencompasses five key steps, expedited by the
integration of scientific expertise and AI-enhanced decision-making. c The experi-
mental loop validates the initial machine learning predictions.
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LAN, etc.). This enhances the flexibility and modularity of the setup,
enabling rapid collection and analysis of data. SupplementaryMovie. 1
showcases the experimental setup in action, providing a visual
demonstration of the process. Through continuous learning from
experimental outcomes, we can downsize datasets, and ML models
can propose modifications in composition or processing factors to
attain particular desired dielectric properties.

Results and discussion
In a single cycle that supports the integration ofMLmodeling, the final
step in the SSR synthesis workflow for 3D ferroelectrics (sintering) was
linked to high-frequency dielectric characterization in an automated
approach (Fig. 3). Each iteration of the automated workflow involved
the following: (i) a robotic arm transferred green pellets from the
sample tray to the furnace, (ii) samples were subjected to rapid sin-
tering (different times and rates) and (iii) 20-min dielectric analysis
during sample cooldown and sample classification by robot (see the
methods section for details). We focused on perovskite structured
oxides with well-documented data, such as Ba0.6Sr0.4TiO3 (BST)38–41,
and BaTi1-xSnxO3 (BTS)42, providing substantial information on their
synthesis and ferroelectric properties for comparison. Additionally,
samples from the barium-based perovskite family, such as
BaxSr1-xCeO3, were selected from ML prediction for comparative ana-
lysis. Currently, our research is drivenby curiosity, aswe systematically
filter and categorize ML-screened materials, taking into account their
feasibility for synthesis and their potential to unveil optimized prop-
erties or uncharted applications. As a first step in validating the
methodology, a solid-state reaction method was used to prepare
multiple compositions from 3 family groups (Fig. 3.7b): B site (Ta/Nb/
Zr/Pure/Hf) doped in BST (Ba0.6Sr0.4Ti0.02O3), 3 BTS ratios
(BaTi1-xSnxO3) (referred to as BTS12, 14 and 16), and several ML-
predicted perovskites. The physical form of all the samples before
automated rapid sintering consisted of uniform dielectric discs with a
consistent thickness of 1.5mm and radius of 15mm.

The results section is structured as follows: (1) Evaluation of the
automated rapid sintering process, (2) Observing the influence of
rapid sintering on the BTS family group, (3) Evaluation of automated
free-space dielectric screening and comparison with four commonly
used techniques at both low and high frequencies, (4) Exploring

synthesizability of ML-predicted compositions, and (5) Elaboration on
the unique dielectric characteristics of the Pure-BST sample after rapid
sintering.

Evaluation of automated rapid sintering
The doped-BST samples are used for evaluation of the automated
rapid sintering setup. Doping is an effective strategy to modify the
perovskite structure and improve dielectric tuning performance43.
Density measurements for all 4 BST compositions (Ta/Nb/Zr/Hf) show
dense structures (over 90%) when sintered at 1400 °C for 10min. The
values of R-factors obtained from Rietveld refinements for all 4 com-
positions are small, which indicates a good fit to the experimental XRD
(X-Ray diffraction) data (Supplementary Fig. 2). This is consistent with
the system, possessing structure as previously reported for BST25. No
secondary phase indicating impurities or contamination was detected
in the diffraction peaks of the doped ceramic samples. From the SEM
(Scanning electron microscopy) data, it is noted that the rapid sin-
tering method resulted in a noticeably different grain structure with
the presence of both large and very small grains but an average grain
size of 10–15 µm, which is close to that observed for the slow rate
conventionally sintered sample (10 ± 2 µm)25, and the 1–5% porosity
should only have aminor effect. Thus,material performance shouldbe
dominated by the effect of the dopant additive. All four BST compo-
sitions were sintered in just 60min, saving time and energy compared
toother sinteringprocedures that can takehours per sample25. For BST
a fixed sintering time and temperature was chosen based on literature
as a starting point. However, annealing optimization can be achieved
by adjusting sintering variables.

To illustrate this feature, optimal sintering conditions for the BTS
family were investigated via automated rapid sintering with tempera-
tures ranging from 1100 °C to 1400 °C (with 50 °C intervals). As shown
in the priority matrix in Fig. 3.5b, the optimal sintering condition is
assessed based on sample density, crystal structure, grainmorphology
and dielectric properties, comparing these factors against those sin-
tered by conventional methods. A total of 7 identical BTS12 pellets
were fabricated for testing. BTS is a relatively newmaterial and has the
potential for integration into tunable devices due to its nonlinear
dielectric permittivity and low loss-tangent at low frequencies44. By
changing the Sn-doping ratio, the dielectric constant and loss may be
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Fig. 2 | Robotic laboratory for high-throughput synthesis and characterization.
a Digital representation of the automated platform for rapid sintering and free-
space dielectric screening at GHz frequencies for solid-state ferroelectrics. The
setup explores the relationship between sintering conditions and functional

properties. b The robotic arm interacts with disc-shaped samples using a vacuum
modulemounted on the smart end effector, achieving amaximum transfer velocity
of 1.5m/s. c The robot used here is a 7-axis collaborative robotic arm-type (ABB
single-arm YuMi), programmed based on C language.
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adjusted to the desired levels. However,finding the optimum sintering
conditions for the BTS family is still an active area of research. The
rapid sintering of all 7 samples took a total of 70min, followed by an
additional 20min per sample for dielectric screening via the auto-
mated setup. Supplementary Fig. 3 shows the density of BTS12 cera-
mics increases with increasing sintering temperature, reaching its
maximum values at 1350 °C and 1400 °C. Supplementary Fig. 4a shows
SEM data of BTS12 samples sintered at 1300 °C (porous), 1350 °C
(dense), and 1400 °C (grain growth), illustrating average grain sizes of
200nm, 1 µm, and 20 µm, respectively. An average grain size of 1–5 µm
is reported in the literature for a dense sample42. In Supplementary
Fig. 2f, g, the XRD results show that BTS12 sintered at 1350 °C pro-
ducedwell-crystallized samples that closelymatched the BTS PDF card
and had smaller secondary phase peaks. Current-electric field (I-E) and
polarization-electric field (P-E) loops were measured with a ferro-
electric hysteresis measurement tester for BTS12-1350 °C and BTS12-
1400 °C, as they had the highest densities. Although paraelectric
phases are usually considered nonpolar, they may still contain polar
nanoclusters45. Thesepolar entities can give rise to the presenceof two
current peaks near 0 V in the I−E loop and to a narrow, nonlinear P−E
hysteresis loop (Supplementary Fig. 4b). BTS12-1400 °C showed shar-
per current peaks and more S-shaped P-E curves, which suggests that
this sample would likely exhibit the highest dielectric tunability under
an applied electric field. The narrow P−E loops indicate that the polar
nanoclusters switch rapidly in anACfield, suggesting that they are very
small in size. When characterized by the automated sensor from 25 °C
to 65 °C, the dielectric permittivity increases as the sintering tem-
perature increases, which can be attributed to the larger grain size and
higher crystallinity when increasing the sintering temperature on the
basis of the XRD and SEM results. The dielectric performance of these

samples are discussed in later sections. The highest figure of merit
(FOM) was obtained from BTS12-1350 °C. Overall, a sintering tem-
perature of 1350 °C for 10min was chosen for rapid sintering of the
BTS family samples.

Evaluation of automated dielectric characterization
Following sintering, the robotmonitored thedielectric performanceof
all BST and BTS rapidly sintered samples over the frequency range of
0.2 to 3GHz with no sample surface modification recorded. These
discs function as resonators capable of displaying various TMmodes,
with resonant frequencies calculated directly using Bessel functions.
Given the dependency of resonant frequencies on permittivity, the
designated automated sensor ensured consistent positioning of sam-
ples, resonant-frequencies measurement through the transmission
spectrum and temperature monitoring (refer to the methods section
for details). As an example, Fig. 4a shows the shift in the transmission
response of ZrBST during 20min of temperature change from 120 to
20 °C, from which the resonant frequency and permittivity were
extracted. The dielectric permittivity of ferroelectrics rises as the
temperature approaches the Curie point (Tc)

46. Since Tc, which, for the
BST and BTS families, is below or at room temperature, here, 25 °C is
chosen as the base reference point for tunability calculations for
simplicity. Five samples are selected for evaluating the characteriza-
tion method, including three from the BST family (ZrBST, Pure-BST,
and HfBST) and two from the BTS family (BTS12-1350 °C and BTS16-
1350 °C). The selected samples were confirmed to be at full densities,
ensuring accurate dielectric performance representation without dis-
tortion from porosity or secondary phases. Figure 4c shows the gra-
dual decrease in dielectricpermittivitywith increasing temperature for
all five samples. The error bars depict the variation in permittivity for

Fig. 3 | The experimental setup for automated sintering and dielectric char-
acterization of dielectrics. (1) Tube furnace, (2a) automated dielectric sensor
connected to VNA (vector network analyser) andMATLAB graphical user interface,
(2b) the four characterizationmethods used for evaluation of automated dielectric
measurements, (3) sample holder and sample under test (SUT), (4) infrared tem-
perature sensor, (5a) automated high-temperature tube furnace, (5b) priority
matrix for sintering conditions andvariables used for synthesizing single phaseBTS

andML-predicted samples (refer to Supplementary Fig. 4a for detailed SEM images
The red region indicates long duration and high energy consumption, yellow
indicates resulting porous structures and secondary phases, and green indicates
conditions that are both energy-efficient and sufficiently fast, (6) vortex tube, (7a)
sample tray, (7b) introducing sample groups and green pellets fed into the
experimental setup by scientist, and (8) collaborative robotic arm.
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each data point across the frequency spectrum where shifts in reso-
nant frequencies are observed due to temperature changes. These
values include the frequency-dependent nature of permittivity
observed at room temperature using CPW method, as detailed in the
methodology and illustrated in Supplementary Fig. 5. The observed
reduction in permittivity from 0.6 to 3GHz frequencies suggests a
relaxation process commonly seen in ferroelectric ceramics47. As a
result, a correction factor for dispersion has been applied to the tun-
ability calculations. This entailed computing the corresponding per-
mittivity value at ambient for the resonant-frequencies observed at
high temperatures. The effect of thermally excited charge carriers on
tunability is shown in Fig. 4d. Furthermore, Supplementary Fig. 6
illustrates a close agreement between automated sensor measure-
ments during the cooling and heating of the sample achieving a system
error (SD) of only 0.89%. The repeatability of these measurements
introduces an error of less than 1.5%. For a detailed uncertainty ana-
lysis, please refer to the methodology section. The automated mea-
surements are compared with four commonly used low- and high-
frequency techniques. These techniques include impedance analysis
and Curie temperature analysis at low frequencies, as well as electrical
and temperature tuning via CPW techniques at Microwave fre-
quencies. Here, the term high frequency refers to the range of 0.5 GHz
to 5GHz, while low frequency pertains to the range of 1 kHz to
500 kHz. All electric and temperature tunability measurements are
summarized in Table 1.

Low- and high-frequency measurements
For low-frequency measurements, the variations in the dielectric per-
mittivity and dielectric loss in the frequency range from 1 kHz to
500 kHz were measured under a direct current (DC) bias electric field
ranging from 0 to 2 kVmm−1 using an impedance analyzer. The
dielectric response results from the short-range rotation of dipoles
under the influence of an externally applied electric field25. The
dielectric permittivity and loss of all five samples gradually decreases
when the DC bias field is increasing (Supplementary Fig. 7), illustrating
the dielectric tunability shown in Fig. 5a at 100 kHz (the error bars
represent the SD calculations for linear fits related to each data point).
It is observed that the tunability increases linearly with increased field
for all samples. The reason is that the activity of the polar nanoclusters
is reduced by applying the DC bias field, resulting in a decrease in their
contribution to the dielectric permittivity. Under an electric field of
2 kVmm−1, BTS12 and BTS16 exhibit 58.4% and 38.1% electrical tuning,
respectively. For the BST family, ZrBST exhibits the highest electrical
tuning (42.3%), which is very close to Pure-BST. Pure-BST shows var-
iations in electrical tuning (13% and 41.1%) and loss responses. To
explain this behavior, capacitance-voltage (C–V) measurements are
obtained to evaluate the frequency dispersion of this structure. Later
in this paper, we elaborate on this particular sample with its distinctive
behavior, which we refer to as Pure-BST” (same sample but in its dis-
tinct mode). To obtain the real frequency-independent capacitance of
this sample, an equivalent circuit model has been proposed.

Fig. 4 | Automateddielectric characterization. a Automatedmeasurement of the
shift in transmission response S21 during temperature change (120–20 °C) for a
representative sample (Sample 14 - ZrBST). b Thermal variation of dielectric per-
mittivity for selected samples (Error bars represent the permittivity dispersion
within the frequency rangeof0.6–1.6 GHz). cThermal variationof tunability forfive

selected samples (Error bars represent the standard deviation associated with lin-
ear fittings). d Tunability values between 25–65 °C for selected samples (Error bars
represent the standard deviation of the system after repeated measurement, refer
to Supplementary Fig. 6).
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Calculation via Eq. 2 gives dielectric losses at 100 kHz for the ZrBST,
HfBST, BST12 and BTS16 ceramics of 0.013, 0.014, 0.017, and 0.013,
respectively. For tunablemicrowavedevices, the FOM is always chosen
to represent the tunable performance48. For the BST family, when the

dopant content is switched from Hf to Zr, FOM values increase from
4.31 to 5.37, yet both are lower than that of Pure-BST”, which gives a
value of 5.57 (with 41.1% tuning). For the BTS family, the highest tun-
ability and FOM are both obtained for BTS12 due to its high dP/dE

Table 1 | All electric and temperature tunability measurements

Machine (a) Impedance spectroscopy (%) (b) Curie temperature setup (%) (c) Micro Probe
CPW (%)

(d) Micro Probe
CPW (%)

(e) Automated
Setup (%)

Frequency 100 [kHz] 50 [kHz] 1.3 [GHz] 1.3 [GHz] 0.2–3 [GHz]

Field 2 [kV mm�1] 0 4 [kV mm�1] 0 0

Temperature Ambient 25–65 [°C] Ambient 25–65 [°C] 25–65 [°C]

ZrBST 42.3 (±0.94) 60.8 (± 1:74) 30.73 (± 1:76) 61.66 (± 7.29) 68.03 (± 1.07)

PureBST 13 (±0.79) 59.9 (± 1.65) 18.92 (± 2.06) 60.38 (± 7.53) 63.85 (±0.57)

PureBST” 41.1 (±0.79) - - - -

HfBST 39 (±0.89) 54.2 (±0:8) 17.34 (± 2.1) 51.84 (±9.16) 62.25 (±0.74)

BTS12-1350 °C 60.44 (±3.04) 58.4 (± 2.25) 36.28 (± 1.62) 41.43 (± 11.14) 77.43 (±0:44)

BTS16-1350 °C 39.4 (±0.94) 38.1 (± 1.25) 16.14 (± 2.13) 42.3 (± 10.97) 55.82 (±0.53)

Error calculations associated with: (a) SD linear fittings, (b) SD polynomial fittings, (c) system SD error, (d) system SD error, (e) SD dispersion linear fittings.

Fig. 5 | Low- and high-frequency measurements. a DC-field variation in the
dielectric tunability at room temperature for selected samples at 100 kHz (Error
bars represent the standard deviation associated with linear fittings), b thermal
variation in the dielectric tunability (25–65 °C) for five selected samples at 50 kHz
(Error bars represent the standard deviation of system after repeated measure-
ment, refer to Fig. S8); cMicroProbe CPW(coplanar-wave-guide): DC-field variation

in the dielectric tunability at room temperature for five selected samples at 1.3 GHz,
(Error bars represent the standard deviation of system after repeated measure-
ment, refer to Fig. S13. b, d MicroProbe CPW: thermal variation in the dielectric
tunability (25–65 °C) for five selected samples at 1.3 GHz (Error bars represent the
standard deviation of the system after repeated measurement, refer to Supple-
mentary Fig. 13. a). Refer to Table 1 for more details.
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(Supplementary Fig. 3), which results from the active polar nanoclus-
ters inside. Plotted in Fig. 5b are thermal variations of tunability
(Tmin = 25 °C and Tmax = 80 °C) measured at 50 kHz. Supplementary
Fig. 8 illustrateswell agreement betweenmeasurements during sample
cooling and heating. Measurements at lower frequencies are generally
considered more reliable due to the technique’s simplicity, consistent
dielectric response, and higher impedance, minimize loading effects
and enhance measurement accuracy, however, they cannot truly
reflect material properties at microwave frequencies49. For BST family
tunability demonstrates a polynomial increase with temperature rise
and then stabilizes. While temperature tuning dominates electrical
tuning, a 2 kVmm−1 bias is comparable to temperature tuning at
47 ± 2 °C. For BTS12, however, a more linear temperature tunability
trend is observed, which can be attributed to a shift in the resulting
from a change in the doping ratio when compared to BTS16 (as con-
firmed in Supplementary Fig. 9). The ε of the BTS samples shows a
gradual increase with increasing temperature up to Tc and then starts
decreasing. A broadened dielectric anomaly appears for BTS16 against
temperature, whichmeans that the phase transition from ferroelectric
to paraelectric occurs over a wide temperature range. Above Tc, the
ferroelectric is in its paraelectric phase and does not possess a domain
structure but reveals dielectric nonlinearity due to the existence of
polar nanoclusters near Tc

45. It can be observed that there is almost
50%more voltage tuning in BTS12 than in BTS16, with only a negligible
increase in loss. Tailoring Tc of ferroelectrics is a promising method to
enhance tunable performance, as the dipoles inside the polar
nanoclusters are easy to rotate under an applied electric field.

For high-frequency measurements (1 to 6GHz), Coplanar Wave-
guide transmission line-based measurements under DC bias is used.
The CPW pattern in Supplementary Fig. 10 was chosen for this case.
Plotted in Fig. 5c, d are the fitted curves of thermal and electrical
tunability for the five selected samples at 1.3 GHz. This selection was
guided by two key considerations: firstly, it provided a comparable
frequency range for analyzing alongside the robot study, particularly
as most observed shifts in resonance frequency occurred within the
0.6–1.6GHz range; and secondly, beyond 2GHz, complexities such as
dispersion anddielectric relaxation becomemore evident, introducing
greater uncertainties. The accuracy of the obtained values depends
significantly on the accuracyof themeasured S-parameters. Therefore,
three different line lengths (0.5mm, 0.8mm, and 1mm) were used. In
this way, the calculated characteristic impedance inside was also
checked to verify the correctness of the measured values. The tun-
ability data shown in Fig. 5c were obtained by applying DC bias up to
4 kVmm−1 through the probe, which resulted in the highest tunability
of 30.73% (±1.76) being achieved by ZrBST, among BSTs. Of all BTS
samples, BTS12 has the highest tuning percentage of 36.28% (±1.62)
with a 4 kVmm−1 bias. Compared in Fig. 5d, for all of the BST family
samples, when the temperature increases from 25 to 65 °C, tunability
follows a polynomial trend. Measurements at both GHz and kHz fre-
quencies in the BTS family indicate that the tunability is less dependent
on temperature and highly influenced by the electric field. However,
this requires the application of high voltages, which increases the
susceptibility to breakdown during operation. It is noted that while
both BTS12 and BTS16 exhibit similar temperature tunings at 1.3GHz,
BTS12 demonstrates double the voltage tuning. This discrepancy can
be attributed to the modified crystal structure, which shifted its Tc

closer to room temperature (Supplementary Fig. 9).
Dielectric properties measurement at such high frequency faces

challenges such as increased propagation losses, signal integrity and
inevitable noise50. In particular, significant uncertainties and errors
(referenced in Table 1) arise from probe displacement due to thermal
expansion during heating (illustrated in Supplementary Fig. 13). As a
result, some research opts to only conduct dielectric property mea-
surements at lower frequencies, using extrapolation methods to pre-
dict high-frequency dielectric properties which is used for real

applications51. This technique, while more practical and cost-efficient,
needs further accuracy improvement. The results in Table 1, illustrate
the drawbacks of relying only on low-frequency data, as the field
tunability of ZrBST at low frequency is comparable to that of Pure-BST,
but at high frequency, Zr-BST exhibits higher tuning.

To compare the dielectric performance of robotic versus con-
ventional sintering methods, another batch of BTS12 (BTS12-Con) was
preparedby sintering at 1350 °C for 2 h42. At 100 kHz frequency, BTS12-
1350 and BTS12-Con exhibit dielectric tunability of 60.4% and 79.2%
under an electric field of 2 kVmm−1, respectively. At 1.3GHz frequency,
the dielectric tunability of BTS12-1350 and BTS12-Con was 36.28%
(±1.62) and 30% under an electric field of 4 kVmm−1, respectively. Low
frequency dielectric tunability, often associated with the coexistence
of large ferroelectric domains and small polar nanoclusters, suggests
that a higher dielectric tunability indicates a greater concentration of
the polar nanoclusters within the system25. However, large domains
exhibit less activity at microwave frequencies, due to slow dipole
response. Hence, at high frequencies, dielectric tunability is primarily
determined by the polar nanoclusters42. As mentioned in previous
sections, these polar nanoclusters are impacted by the sintering con-
dition. BTS12-1350 °C exhibit a higher tunability at high frequencies
compared to BTS12-Con. In addition, the dielectric tunability of 36% at
GHz frequency is higher than other reported values for BST-based
materials, such as 10.5% for BST/Mg2SiO4/MgO52, and 27% for Mn-
BST/MgO53.

From Table 1, it is crucial to acknowledge that no single method
can adequately characterize samples over the entire frequency band;
thus comparisons are not intended to yield identical outcomes. Typi-
cally, the selection of characterization processes can vary based on the
desired frequency, required accuracy, temperature, sample size, con-
tacting/non-contacting methods, and cost. Uncertainty in dielectric
measurements is inevitable when characterizing differentmaterials, as
noted in previous studies49,50. The measurements executed by the
robotic platform demonstrate efficiency by reducing analysis time to
just 20min, outperforming traditional, labor-intensive procedures like
polishing, applying silver paste, and sputtering CPW pattern, which
can extend for hours considering the vast number of ML samples. It
also eliminates the need for reheating for dielectric measurements
immediately following sintering, thereby minimizing environmental
impacts and costs. Furthermore, having a free space technique
increases the accuracy of measurements compared to CPW thermal
measurements which are highly susceptible to thermal expansion of
probes. While the trade-off between speed and accuracy remains a
topic of research for high-throughput dielectric screening, results
demonstrate a good correlation with both voltage and temperature
tuning observed at lower frequencies. It is important to note that rapid
data acquisition supports the refinement of our computational mod-
els, improving the efficiency of guiding experiments and facilitating an
iterative discovery process by correlating synthesis variables with
high-frequency functional properties, a step missing in previous high-
throughput platforms.

Exploring single-phase synthesisability of ML-predicted
compositions via the automated sintering approach
The automated platform was tested with some selected ML-predicted
perovskites. Here, we experimentally validated some compositions
from our previous study that introduced an ML-based screening
strategy for discovering perovskite solid solutions from a pool of
nearly 0.6 million candidates11. Two representative samples belonging
to the barium family, namely, (Ba0.8Sr0.2)CeO3 and (Ba0.4Sr0.6)CeO3 are
successfully synthesized in this paper. Briefly, a comprehensive set of
potential candidates in the form of (A1-xA’x)BO3 and A(B1-xB’x)O3

compositions was compiled by exploring various combinations of
elements from the periodic table that could occupy the crystal-
lographic A-site and B-site of the perovskite structure. This process
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adhered to fundamental chemistry guidelines such asPauling’s valency
principle. The ML models were trained on a comprehensive experi-
mental dataset acquired by exhaustively querying the inorganic crystal
structure database (ICSD). This dataset consisted of 1758 perovskites
and 227 non-perovskites, including their crystal structure information.
Due to the dataset imbalance, ML classifiers in our prior work under-
went 100 iterations, randomly sampling positive examples (per-
ovskites) tomatch the number of negative examples (non-perovskites)
for training and evaluation. The gradient boosting classifier which
produced the best performancewith a 94% classification accuracy was
used to screen the 0.6 million candidates pool. Materials with a high
predicted perovskite likelihood (>0.98) are identified as promising or
potentially synthesizable perovskites. This resulted in a list of nearly
5000 compositions, which is still too large for a materials scientist to
manually go through and select a fewmaterials for synthesis. Here, we
apply data mining and human expert knowledge to further down-
select highly promising materials for synthesis. Our data mining
strategy involves capturing uncharted materials that are closer to
existing experimentally realized materials, retrieved by deriving com-
position embeddings. We use two embedding methods; (1) embed-
dings extracted from the latent space of a variational autoencoder
(VAE) trained on experimental data, as described in our previous
work11, and (2) composition embeddings constructed by taking the
weighted average of element embeddings adopted from Mat2vec54,
and Skipatom55, approaches. The average Euclidean distance from
each uncharted composition to its five experimental neighbors is cal-
culated as reported in our earlier work11. To calculate these distances
systematically, we obtain ABO3 perovskites with energy above the
convex hull below 10meV-atom from the Materials Project database
using the Pymatgen package, resulting in 487 compositions. Such
materials are generally considered stable or meta-stable. The average
cosine distance from each uncharted disordered composition to its
parent ABO3perovskites is thenobtainedusingMat2vec and Skipatom
composition embeddings. Likewise, these distances are used to iden-
tify and rank disordered materials that are closer to existing materials

in latent (or embedding) space. Additionally, we performed further
data mining with human feedback, (Fig. 1, human operators guide
research objectives, and recommend adjustments to the ML opera-
tion) considering the potential synthesis routes, with the availability of
resources in the lab and chemical toxicity, specifically to remove
potentially hazardous or unstable compositions based on existing lit-
erature. TheML-predictedmaterials that rank highest at the end of this
data mining strategy are considered most likely to be synthesized
successfully. Likewise, the named components from the barium family
were identified as having a high likelihood of being synthesized in a
single phase. Moreover, additional samples from the likely and the
least likely ML-predicted materials were fabricated and tested. How-
ever, XRD results revealed multiple phases in these samples (Supple-
mentary Fig. 14). It’s worth noting that while there are numerous
studies on ML applied to perovskite-type materials56,57, very few vali-
date ML predictions with experiments. Two major reasons for this are
(1)MLmodels are usually not trained on failed synthesis attempts (lack
of such published data), and (2) ML models are not typically informed
about the subsequent complex synthesis process. In additionmostML-
material studies focus on “local search,” limiting exploration to specific
compositions or constrained cation/anion choices. While this method
may have a higher success rate within existing composition spaces, it
often leads to limited discovery of perovskites with desired properties.
In contrast, “global search” explores all possible combinations of
periodic table elements for perovskite structures. Our prior study11,
utilized a global search approach, screening promising disordered
perovskite oxides from diverse element combinations. The present
study demonstrates the limitations of relying solely on ML for
experimental discoveries and highlights the importance of data
mining, human expertise, and guidance from literature to successfully
synthesize unexplored perovskites.

The contour plot in Fig. 6a illustrates the screened sintering
condition range and their impact on theXRD secondaryphase peak for
(Ba0.4Sr0.6)CeO3. This encompassed the examination of sintering
temperatures ranging from 1250 °C up to 1400 °C and sintering

Fig. 6 | Process-Structure analysis forMLpredicted composition. a The contour
plot of automated rapid sintering conditions displays the investigated range of
variables and their impact on the XRD secondary phase peak of ML-predicted
composition (BanSr1-n)CeO3. (The abbreviation “a.u.” denotes arbitrary units).
b XRD profile of single phase (Ba0.8Sr0.2)CeO3, c XRD profile of single phase

(Ba0.4Sr0.6)CeO3, d crystal structure of (Ba0.8Sr0.2)CeO3 (orthorhombic, Pnma), and
e crystal structure of (Ba0.4Sr0.6)CeO3 (orthorhombic, Pnma). (The atom colors
represent specific elements: green is Cerium (Ce), red is Oxygen (O), and purple/
orange is Barium/Strontium.).
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holding times of 10, 15, 25, and 35min. The contour plot also demon-
strates that attaining a single-phase BSC familyML-predicted sample is
achievable through two distinct strategies: employing elevated tem-
peratures (>1350 °C) for shorter durations (<20min) or employing
lower temperatures for extendeddurations. TheXRD analysis revealed
that (Ba0.8Sr0.2)CeO3, which was sintered at 1400 °C for 10min and
(Ba0.6Sr0.4)CeO3 sintered at 1250 °C for 25min, successfully achieved a
single phase structure. Figure 6 also shows the crystal structure for
both successfully synthesized ML-predicted compositions (Fig. 6d, e).
Further details on their cell parameters and density information canbe
found in Table 2. In an ideal scenario, providing ML models with

experimental recipes would enhance the precision of material synth-
esis predictions58. Fig. 1b illustrates the prospect of incorporating AI
decisions, literature data, and scientific expertise in this context. For
example, Kirman et al. utilized a deep learningmethod to characterize
perovskite single crystal growth in anHTE cycle, refining experimental
conditions based on ML predictions. Unfortunately, generating
synthesis predictions for ML-predicted materials remains challenging.
With this setup, we generate the initial set of training data, including
synthesis and structure data to explore more sophisticated machine
learning algorithms that could be integrated into our system to further
push the boundaries of innovation.

Investigation of the particular dielectric behavior of the
Pure-BST” sample
Figure 7a, the SEM image for the Pure-BST sample appears to be cov-
ered with irregularly shaped grains of various sizes ranging from very
large to very small after rapid sintering. The large grains, which are
approximately 10–20 µm in diameter, dominate the image and are
scattered throughout. On the other hand, the smaller grains are sig-
nificantly more abundant, yet they are considerably smaller, varying
from 1–5 microns in diameter. These smaller grains are scarcely
noticeable at lower magnifications and display a noticeably smoother
surface structure compared to the larger grains. The dielectric per-
mittivity and dielectric loss measurements at both low and high fre-
quencies with a DC-bias electric field revealed that this sample
structure is not a simple parallel plate capacitor. The dielectric per-
mittivity and loss of the measured ferroelectric cannot be simply cal-
culated from the measured capacitance value and loss of the test
structure by using the thickness of the sample and the area of the silver
patch. Studies have reported that variations in the thickness of the
oxide layer, the density of interface traps, and the bulk doping profiles
of high-k gate dielectrics can impact the intrinsic oxide parasitic
resistances, series resistances, and interfacial layer59. These factors can
cause differences between the actual sample structure and the test

Table 2 | Cell parameters and density information for
(Ba0.8Sr0.2)CeO3 and (Ba0.4Sr0.6)CeO3

Single Phase ML-predicted perovskites

Chemical formula (Ba0.8Sr0.2)CeO3 (Ba0.4Sr0.6)CeO3

Formula weight 315.505 295.621

Crystal system Orthorhombic Orthorhombic

Space group Pnma Pnma

Unit cell dimensions ɑ = 6.1925(5) Å ɑ = 6.1692(4) Å

b = 8.7674 (2) Å b = 8.6751(6) Å

c = 6.1906(5) Å c = 6.0990(4) Å

Volume 336.10 (1) Å3 326.41(4) Å3

Z 4 4

Density(calculated) 6.235 g/cm3 6.016g/cm3

R-factors Rwp = 0.0628 Rwp = 0.0445

Rp = 0.0461 Rp = 0.0335

x2 = 5.401 x2 = 2.933

RF
2 = 0.0626 RF

2 = 0.0727

Total No. of variables 24 24

No. of profile points 3649 3649

Fig. 7 | Distinctive behavior of Pure-BST". a SEM images for the Pure-BST sample
rapid sintered at 1400 °C for 10min. b Conventional LCRmeters typically measure
the device capacitance based on: (1) parallel capacitance model or (2) series, or (3)

series and parallelmodel. (4) The proposed three-element equivalent circuitmodel
for Pure-BST”. c DC-field variation in the dielectric tunability at room temperature
for Pure-BST sample at 100kHz.
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model used by the LCR meter, leading to inaccuracies and difficulties
in retrieving the real dielectric constant. The C-V test typically assumes
thin oxides tobe capacitorswithparallel resistors, as shown in Fig. 7b.1.
For a high leakage current capacitor with an ultrathin gate dielectric, a
three-element circuit model is commonly used (Fig. 7b.2). This design
suggests that the measured capacitance during accumulation should
not be viewed solely as theoxide layer capacitancebut shouldalso take
into account the effects of both the gate leakage current and the loss
due to AC conductance arising from interface traps and includes all of
the series resistances. For low leakage current structures, the device is
dominated by a series resistance only, which represents the internal
loss (Fig. 7b.3). However, neither of the equivalent circuit methods
described above can explain the behavior of the Pure-BST” accurately.
The random distributed cavities present in the microstructure of the
Pure-BST” causes localized heating of the capacitor regions when a DC
bias is applied, leading to the thermal tuning of the samples. Taking
into account these conditions and assuming the feature sizes of the
structure are much smaller than the wavelength of the microwave
signal, the test structure could be analysed following an equivalent
circuit with three elements (Fig. 7b.4). The circuit includes an addi-
tional parallel resistor that acts as a model for the resistive cavities
present in the microstructure of the Pure-BST”. This structure pos-
sesses peculiar tuning performance with a hybrid and simultaneous
thermal/electrical bias as shown in Fig. 7c. As a sanity check, we placed
a resistor across the terminals of a capacitor and recorded the same
behavior. Although this effect amplifies the dielectric loss, its sig-
nificance is limited to higher frequencies where only the intrinsic loss
becomes relevant. The structure exhibits the capacity to improve its
performance through optimization, and one may intend to report on
this where careful design andmodification of the structure is required.

Methods
Automated experimentation
Automated sintering. To make a bulk sample, the powder pellets
should be sintered into a denseblock60–63. Typically, sintering for oxide
dielectric materials is performed in an air furnace by heating them to
the sintering temperature, holding it for an hour or more, and then
cooling them to room temperature. However, traditional sintering
poses various challenges such as extended processing durations, high
energy consumption and CO2 emissions, rendering it impractical for
high-throughput experiments. In this work, a compromised rapid
heating system based on rapid annealing tube furnaces was
developed64. This sintering approach offers a controlled and auto-
mated method for sintering bulk oxide dielectric materials. Through
the utilization of a high-temperature tube furnace model (M.L. Fur-
naces: ST14/50/180 with a maximum heating temperature of 1400 °C),
along with the regulation of the heating and cooling rate, holding
temperature, and hold time, the sintering procedure can be fine-tuned
to enhance the density and dielectric performance. The use of a
Eurotherm controller and an Arduino controller (Arduino Uno) allows
for control andmonitoring of the sintering process, further enhancing
its efficiency and robustness. The use of a robotic arm and a vacuum
module gripper (Fig. 2b) allows for the automated transfer of green
pellets from the sample tray to the alumina sample holder, which can
be inserted and retracted from the tube furnace by a motorized stage.

High-throughput dielectric characteristics details. The samples
produced through the high-throughput rapid sintering process are
uniform in shape, having a consistent thickness and radius. We note
from low-frequencymeasurements and the available literature that the
ceramic samples that we are fabricating have high permittivity values
(typically >1000) and permeability = 1. As disc-shaped dielectric reso-
nators are known to support resonant modes that depend heavily on
the dielectric properties of the material, the automated setup uses a
free space dielectric characterization technique to measure the

resonant modes within the hot samples in 0 to 3GHz frequency
range65. This is done using the designated sensor which excites and
measures the resonant frequency of the TM020 mode through closely
coupled coaxial loops. The resonant frequency is directly related to the
permittivity of the sample through Eq. 1,

ε0 = εr =
1
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where c is the speed of light and r is the sample radius. This testing is
relatively insensitive to sample geometry but is of limited use in our
case, as all the samples have the same geometry. As the samples were
removed from the furnace, theywere placed between two coaxial loops
of the sensor. A non-contact infrared temperature sensor (Optris, CS-
LT) was positioned 30mm below the samples to continuously monitor
the temperatureof the sample surface. The accuracyof the temperature
sensor is ±1.5 °Cwithdata points collected every second. Themeasuring
probe was moved into and out of the measurement position using a
motorized stage controlled by the main controller. To increase the
cooling rate, a pneumatic solenoid valve was activated, which
controlled the flow of compressed air to a cooling vortex tube. The
transmission response S21 was measured through a Vector Network
Analyser (VNA)model (AnritsuMS2036A). The frequency response was
measured at 2-s intervals until the sample cooled to room temperature.
The S21 peak shift was detected using MATLAB code, and permittivity
was calculated using Eq. 1. To evaluate the performance of the
automated measurements, a numerical model representing the sensor
was built in CST Microwave Studio. The field maps confirm the
excitation of theTM020mode at the corresponding resonant frequency.
The resonant frequencywasmeasuredandused to calculate the relative
permittivity of a sample. The simulated results show good agreement
with those values calculated via Eq. 1. The uncertainties for this
measurement are calculated by the root sum-of-squares technique
(RSS). To use RSS, a set of independent uncertainties were identified
such as ε data fittings, resonant frequency (Half width half maximum
(HWHM)) SD errors, and sample diameter measurements.

Human-in-the-loop analysis
Sample fabrication. All samples were prepared by solid-state reaction
methods. Stoichiometric amounts of barium carbonate (BaCO3,
Aldrich, 99%), strontium carbonate (SrCO3, Aldrich, 99.9%), titanium
oxide (TiO2, Aldrich, 99.8%), niobiumoxide (Nb2O5, Alfa Aesar, 99.9%),
tantalum oxide (Alfa Aesar, 99.85%), hafnium oxide and zirconium
oxide were ball milled at 180 rpm for 20 h. The mixture was dried and
sieved, followedby calcination at 1000 °C for 4 h. The powderwasball-
milled again, dried and sieved for pelletizing under 150MPa pressure.
For ML-predicted samples, the raw materials were hand-mixed with
ethanol by a mortar and pestle. The dried powder was pressed into a
pellet with 150MPa pressure. All samples are pressed into pellets of
15mm in diameter and ca. 1.5mm in thickness. As a deviation from the
normal process, the samples were partially sintered at 200 °C to
enhance their mechanical strength and ensure that they could endure
automated handling better.

Density, phase, and structural analysis. The effectiveness of the high-
throughput rapid sintering systemwasdeterminedby rapidly sintering
samples and subjecting them to various tests, including density mea-
surements, SEM, and XRD. The Archimedes method was used to
determine the volume density of the samples. The surface and mor-
phology of the ceramic samples were observed by SEM. The phases
present were analysed by XRD. Structural refinement was performed
between the experimental and observed XRD patterns. R values (Rexp,
RBragg, Rwp, Rp, Rf, x

2) are reliability factors to examine the quality of
fitting between the experimental and Rietveld-calculated diffraction
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peaks. These factors have been reported previously66. This assured the
accurate representation of material properties in the samples’ dielec-
tric performance, preventing distortion due to porosity or the pre-
sence of secondary phases.

Low- and medium-frequency measurement procedures. For all
dielectric measurements below 1MHz, the top and bottom surfaces of
pellets were polished, coated with silver paste (Gwent Electronic
Materials Ltd. Pontypool, U.K.) and heated at 250 °C to formelectrodes.

At low to medium frequencies (1 kHz to 1MHz), the dielectric
permittivity and loss were measured using a precision impedance
analyzer (Agilent 4294A) under DC bias electric fields (at 0 and
4 kVmm−1 at room temperature. The precision of signal frequencies
ranging between 20Hz and 1MHz is ±0.01%. The dielectric loss tan-
gent value is calculated as Eq. 2,

tanδ=
ε00

ε0
ð2Þ

where ε’ and ε’’ is the real and imaginary part of complex dielectric
permittivity67. The setup consisted of an auto-balancing bridge that
effectively adjusted the values of the internal components in a bridge
configuration (Wheatstone), allowing for the measurement of the
unknown sample. The following equation was then used to compute
the electrical tuning of the samples,

τ %ð Þ= εr 0ð Þ � εr Eð Þ
εr 0ð Þ × 100 ð3Þ

where εr (0) and εr (E) are the relative permittivity at 0 electric field and
with an electric field of E applied, respectively. To assess the overall
dielectric tunable properties, the figure of merit (FOM) is defined as:

FOM=
Tunability

tanδ
ð4Þ

Additionally, the temperature-dependent dielectric permittivity
was measured using a Curie point setup with an LCR meter model
(Agilent 4284A) at 1–100 kHz, which was connected to a cryogenic
chamber that controlled the temperature from 80 °C to room
temperature.

Current-electric field (I-E) and polarization-electric field (P-E)
loops were measured with a ferroelectric hysteresis measurement
tester (NPL, UK)with voltage applied in a triangularwaveformat 10Hz.
This technique applied very high electric fields (kV mm−1) at low fre-
quencies (<1 kHz). Unlike other methods, permittivity was not mea-
sured separately from electrical biasing, as the exciting voltage was
large enough and slow enough to serve as a biasing field itself. This
allowed much higher fields to be applied at the expense of a much
lower frequency of testing and ensured that we were not under-
estimating samples that hadhigher tunability but neededgreaterfields
to achieve saturation. Thus, permittivity was extracted from the gra-
dient of the P-E loop as a function of the field. All of these measure-
ments were conducted at room temperature.

High-frequency measurement procedure: For high-frequency
measurements (range of 1–10GHz), samples required smooth, flat
surfaces and a coplanarwaveguide pattern deposited on top. The CPW
was achieved by using stainless steel (magnetic grade 400 series)
metal masks that were laser etched using fiber laser technology
(PrMat) (Supplementary Fig. 10). Samples were placed on a magnetic
base, and the masks were positioned on top. They were coated four
timeswith a silver target using amagnetron sputter coater (AGAR auto
sputter coater) for 300 s at 40mA. The permittivity of CPW patterned
samples at 1–10GHz was measured using a VNA along with a

microprobe station (model: EVERBEING INT’L CORP, C-6 Probe Sta-
tion) and a bias tee. With the EB-050 micro-positioner, the sample
location under the probewas precisely adjusted in increments as small
as 1 µm. Additionally, the equipment featured a hard chrome-plated
platen, vacuum chuck, and standard anti-vibration mounts. Before
measuring the samples, a standard calibration substrate (CS-5, GGB
Industries)was used to calibrate the probe, and the calibration process
was conducted through the short-open-load-through (SOLT) method.

A fixed power exciting wave was passed through the bias tee, the
microprobe, one endof the coplanarwaveguide, and backout through
the other side of themicroprobe, a DCblock, and back into the second
port of the VNA. The transmitted signal S21 was then measured and
compared to the reflected signal (S11) to evaluate the permittivity and
the loss of the material. The bias tee allowed a DC voltage
(0–2 kVmm−1) to be applied between the center conductor and the
grounds on either side. The S21 phase shift is directly proportional to
the permittivity of the CPW substrate, and any shift in the S21 phase
during voltage/temperature biasing is due to tuning in the material68.
Tunability was then calculated through Eq. 3. Shown in Supplementary
Fig. 13b, the SD error of the system, related to measurements before
and after applying bias, corresponds to an average error of ±1.94%.
Additionally, the thermal variation of permittivity (from ambient to
80 °C) was obtained by using a ceramic heater and a low-mass ther-
mocouple. This measurement is susceptible to errors correlated with
probes shifting at themicroscale due to thermal expansion on heating.
This phenomenon can introduce inaccuracies, which are difficult to
address, especially at microwave frequencies where precise probe
positioning is critical for reliablemeasurements. Supplementary Fig. 13
compares measurements at room temperature before and after heat-
ing, which were used to determine the error values of Table 1.

Data availability
All data needed to evaluate the conclusions of this study alongwith the
tested training datasets, algorithms/ codes, testing/ validation data,
and source data underlying all the figures and tables in themanuscript
and the Supplementary Information are provided in the paper, the
Supplementary Information and/or the Mendeley Respiratory avail-
able publicly at DOI link: https://doi.org/10.17632/j59wsrzt6f.169.

Code availability
The code required to reproduce the high throughput characterization,
train the models, and reproduce the ML-predicted materials synthe-
sized in this study are publicly available via the data respiratory link.
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