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Genome-wide association studies (GWAS) have found widespread evidence of
pleiotropy, but characterization of global patterns of pleiotropy remain highly
incomplete due to insufficient power of current approaches. We develop fas-
tASSET, a method that allows efficient detection of variant-level pleiotropic
association across many traits. We analyze GWAS summary statistics of 116
complex traits of diverse types collected from the GRASP repository and large
GWAS Consortia. We identify 2293 independent loci and find that the lead
variants in nearly all these loci (-99%) to be associated with >2 traits (median =
6). We observe that degree of pleiotropy estimated from our study predicts
that observed in the UK Biobank for a much larger number of traits (K = 4114)
(correlation = 0.43, p-value <2.2 x 10~6). Follow-up analyzes of 21 trait-specific
variants indicate their link to the expression in trait-related tissues for a small
number of genes involved in relevant biological processes. Our findings pro-
vide deeper insight into the nature of pleiotropy and leads to identification of
highly trait-specific susceptibility variants.

Genome-wide association studies (GWAS) have identified thousands of
susceptibility loci across individual complex traits and diseases'. Stu-
dies have also pointed to the evidence of widespread pleiotropy*=, i.e.,
genetic variants within individual loci are often associated with mul-
tiple traits. The discovery of pleiotropy has transformed the analysis
and interpretation of GWAS data. It has, for example, led to the
development of more powerful statistical methods for association
testing®™ and polygenic prediction’®, robust methods for causal
inference accounting for pleiotropic associations> ™, as well as new
study designs to investigate multiple or even hundreds of traits
simultaneously'®™. The presence of pleiotropy also poses unique

opportunities and challenges for developing or/and repurposing
drugs while minimizing their “off-target” antagonistic effects®.

There has been a long quest in genetics to characterize the degree
and nature of pleiotropy for complex traits”. Early population genetic
models postulated universal pleiotropy where genetic variants at any
given locus have the potential to affect all traits®. More recent
experimental studies, however, have suggested that while pleiotropy is
highly prevalent, it is likely to be modular in nature, i.e. any given gene
is likely to affect a relatively small number of traits*. Data from recent
GWAS for human traits have also indicated pleiotropy is pervasive?,
but quantifying the true extent of pleiotropy has been challenging.
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A number of recent studies*?? have quantified the degree of pleiotropy
associated with a variant based on the number of associated traits that
reach genome-wide significance (p<5x1078) in individual trait ana-
lysis, but such analysis inevitably leads to serious underestimation of
the extent of pleiotropy due to lack of power for GWAS of individual
traits for the detection of smaller effect-sizes. Another recent study
adopted use of a more liberal threshold (z-statistic >2 or < -2)* for
large scale detection of pleiotropy, but such an analysis can introduce
a large number of false positives.

In addition, while previous studies have mostly focused on
detecting highly pleiotropic loci and variants”***, we believe that
given the evidence of highly abundant pleiotropy, an interesting line of
investigation would be to detect highly trait-specific loci and variants
and explore their unique biological characteristics, if any. Identifica-
tion of trait specific genetic association may facilitate identification of
“core genes” under the omnigenic model for complex traits*?, dis-
tinguish the genetic architecture of related traits and potentially help
develop drug targets with fewer side effects. Detection of trait-specific
associations, however, requires highly powerful methods for detecting
pleiotropy as undetected weaker associations would lead to an
increase in findings for trait-specific variants. The most comprehensive
analysis of pleiotropy based on current GWAS* has reported that
almost 70% of identified individual SNPs to be associated with a single
trait-domain, but these are likely to be highly overestimated due to the
lack of power of the underlying analytic method.

In this paper, we develop fastASSET, an extension of the ASso-
ciation analysis based on subSETs (ASSET), which allows detection of
any association between a variant and an underlying subset of traits
that contribute to the association signal’. A major advantage of ASSET,
compared to other multi-trait association tests®*’, is that it not only
allows powerful detection of SNPs that show any association across a
group of traits, but also readily maps significant SNPs to sets of asso-
ciated traits. The subset selection feature, which has shown to have
robust sensitivity for the detection of true traits under association
even when power of individual studies vary’, makes the method ideally
suited for the investigation of the extent of pleiotropy in current
GWAS. While the method has been successfully applied to a number of
multi-trait GWAS analyzes”? involving a limited number of traits, it is
not feasible to implement for the analysis of very large number of traits
because of computational burdens associated with all subset search.
Here, we develop fastASSET that allows association testing for indivi-
dual SNPs across many traits by first incorporating a pre-screening step
and then performing ASociation-testing based on SubsETs (ASSET) on
selected traits with suitable adjustment for the pre-screening for p-
value evaluation. Pre-screening excludes traits with large p-values from
subset search and reduces the computational burden. The subset
selection feature gives fastASSET unique advantage to map significant
variants to sets of associated traits. The vast majority of multi-trait
methods such as metaCCA*°, MOSTest”, and JASS®’>, MultiPhen®,
metaMANOVA, metaUSAT?®, and HIPO’ focuses on identifying variants
associated with at least one of the traits without specifying which traits
are associated (Table 1). Such discoveries are harder to interpret when
many traits are analyzed simultaneously, considering that genetic
associations have been reported across most part of the genome'.
MTAG" uses multi-trait summary statistics to estimate SNP effects on
each trait but does not account for multiple testing across traits which
is critical for the analysis of many traits simultaneously. fastASSET
returns both multiple-testing adjusted p-values for association testing
and a subset of selected traits, enhancing the interpretation of pleio-
tropic associations (Table 1).

We use fastASSET to analyze 116 traits collected from large
GWAS Consortia and the Genome-Wide Repository of Associations
Between SNPs and Phenotypes (GRASP) hosted by the National
Institutes of Health (NIH). We identify 2293 independent loci that are

associated with at least one trait and show that lead variants at nearly
all of these loci are associated with two or more traits. We show that
the degree of pleiotropy we estimate for the underlying variants
based on the 116 traits predicts the level of their pleiotropy asso-
ciated with a much larger number of traits (>4000) in the UK Biobank
Study. We conduct a series of follow-up analyses to examine whether
the degree of pleiotropy of genetic variants may be related to func-
tional mechanisms, including cis-regulatory effects, chromatin
states, transcription factor (TF) binding, and enhancer-gene con-
nections. We further provide detail characterization of 21 highly
unique trait-specific variants, i.e., those were associated with only
one trait in the fastASSET analysis. In addition, we apply fastASSET to
study the patterns of pleiotropy in East Asian population and com-
pare with the patterns in European data. Finally, we discuss the lim-
itations of the study and the different types of pleiotropy. We caution
that the pleiotropy discussed in the study are based on associations
and not necessarily causal patterns.

Results

Overview of datasets and methods

We collect 338 summary-level datasets from the NIH GRASP reposi-
tory and supplement it with 20 summary-level datasets from large
GWAS Consortia. See Supplementary Fig. 1 for data preprocessing
pipeline and Methods for details. After filtering out duplicated and
highly correlated traits, removing studies with small sample sizes and
data quality issues, we retain 116 well-powered studies consisting of
primarily participants of European ancestry (Supplementary
Data 1 and 2). The studies cover a wide range of complex traits and
diseases in 16 domains (Supplementary Data 1). Genetic correlation
analysis using linkage disequilibrium (LD) score regression’ reveals
widespread genome-wide pleiotropy (Supplementary Fig. 2). Here,
we use LD scores for European ancestry downloaded from the LDSC
GitHub repository (see “Methods” for details). We restrict further
analysis to 7,462,466 single-nucleotide polymorphisms (SNP) for
which summary-statistics were available for at least 50 out of the 116
traits and have minor allele frequency (MAF) > 0.01.

We develop fastASSET, an extension of the ASSET method’, to
conduct multi-trait association testing across a large number of traits
(see Fig. 1, Methods and Supplementary Notes for details). ASSET was
originally designed to conduct single-SNP association tests by per-
forming meta-analysis across all subsets of traits and then evaluating
the significance of the maximum of meta-analysis z-scores over all
subsets’. In this method, for SNPs that reach a desired significance
threshold for association, the set of traits for which the underlying
meta-analysis z-statistics is maximized defines the set of underlying
associated traits. For the analysis of a large number of traits, the ori-
ginal ASSET, which searches through all subsets, is computationally
intractable. The fastASSET method reduces the computational burden
by only searching among the traits which show suggestive evidence of
associations. The method first de-correlates the z-statistics for a given
SNP associated with different traits using estimates of phenotypic
correlations available from the LD score regression (see Fig. 1 and
Methods). Next, it selects the set of traits that shows suggestive level of
association (e.g. p<0.05) with the given SNP based on the de-
correlated z-statistics. The de-correlated z-statistics are then adjusted
for the pre-selection step as Zz;=sign(z;) ® (1 -%) where
Pe=P(Zy|> 12 |11Z,| > ®71(0.975)) and @ is the quantile function of
standard normal distribution. The adjusted z-statistics are then further
transformed back to the original scale of the traits, also using estimates
of phenotypic correlations available from the LD score regression, and
then these Z-statistics are incorporated as input into the original ASSET
method. For each SNP, fastASSET outputs a p-value for the association
with any trait under consideration (“global association”) and a set of
associated traits.
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Table 1| Summary of existing methods for multi-trait association testing using GWAS summary statistics

Method Description Output Reference
(PMID)
metaCCA Perform canonical correlation analysis (CCA) using correlation matrices P-value for association with a set of traits 27153689
estimated from summary statistics and reference panel (global association)
MOSTest Mahalanobis norm of the vector of z-statistics (z7£~'z) with correlation 32665545
matrix X estimated form randomly permuted genotypes
JASS 2 32002517
Omnibus test statistic based on z"2 'z and sumZ statistic (wm)v
MultiPhen Regression with the genotype as dependent variable and phenotype for 22567092
multiple traits as independent variable
metaMANOVA Test association using multivariate analysis of variance statistic, highly 29226385
similar to MOSTest and JASS Omnibus test. Correlation matrix X is estimated
using SNPs with no association with the traits.
metaUSAT Optimal combination of metaMANOVA and sum of squared score (SSU) 29226385
statistics
HIPO Search for the linear combination of multi-trait summary statistics that 30289880
maximizes average non-centrality parameter across SNPs
MTAG Use multi-trait summary statistics to obtain single-trait effect size estimates  Estimate of individual-trait GWAS effect size 29292387
by incorporating a prior distribution on the effect size and associated test statistic
ASSET/fastASSET  Search for optimal subset of traits that maximizes meta-analysis z-statistic ~ P-value for association with a set of traits 22560090
(global association) and a subset of selected
traits
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Fig. 1| Pipeline of fastASSET. fastASSET is a statistical method for large-scale
multi-trait analysis across many traits. As an extension of ASSET, fastASSET sear-
ches for the subset of traits that leads to maximum meta-analysis z-statistic, among
those that pass a liberal pre-screening threshold P <p,,,, (€.g., Py =0.05). It
adjusts the z-statistics for pre-screening to avoid “double dipping” while account-
ing for sample overlap across studies. The procedure is as follows. 1) Apply hier-
archical clustering to the LD score regression intercept matrix (top-left heatmap),

which represents correlation of z-statistics induced by sample overlap. 2) De-
correlate z-statistics within each cluster using Cholesky decomposition. Select the
traits with P<p,,, corresponding to de-correlated z-statistics (red rows in the
tables). 3) Adjust the z-statistics for pre-screening using conditional p-values. 4) Re-
introduce the correlation by multiplying by the Cholesky decomposition. 5)
Combine z-statistics across clusters and feed to ASSET as input.

Simulation studies

We simulate GWAS summary statistics for 116 traits (see Supplemen-
tary Notes for simulation settings). We compare fastASSET to three ad-
hoc approaches: selecting traits whose individual-trait associations
reach 1) genome-wide significance p<5x1078, 2) p<0.05, or 3)
FDR < 0.05 across traits. Averaged across scenarios, fastASSET out-
performs p<5x107% and p<0.05 in estimating the degree of

pleiotropy (Fig. 2a, b). The genome-wide threshold p<5x10~8

highly conservative and consistently underestimates the degree of
pleiotropy. The liberal threshold p < 0.05 introduces many false posi-
tives and tends to overestimate pleiotropy by a large margin, especially
when the true degree of pleiotropy is low (2 or 5 traits). The other
method, FDR <0.05, have comparable performance with fastASSET
when N =100k. fastASSET tends to be more accurate than FDR < 0.05
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Fig. 2 | Performance of fastASSET for estimation of pleiotropy and trait selec-
tion in simulation studies. a Estimated degree of pleiotropy (number of traits) vs.
true degree of pleiotropy (dashed lines). Boxplots show the median (centerline)
and first and third quartiles (lower and upper hinges) of the distribution (n =300
replications). The top of upper whisker represents the largest value no more than
1.5 * interquartile range (IQR) from the hinge; the bottom of lower whisker repre-
sents the smallest value no more than 1.5 * IQR of the hinge. b Average absolute
error for estimating the degree of pleiotropy, defined as the mean( | estimate-
truth | ). The individual-trait-based methods (false discovery rate (FDR) < 0.05,
p<0.05,p<5x107°) are based on two-sided z-test. ¢ Precision-recall for identifying
associated traits. For a-c, GWAS regression coefficients for one SNP,j and 116 traits
(ﬁj vector of length 116) are simulated from model ﬁ, =pB; +e;, where g; is the error

term generated from multivariate normal distribution that reflects realistic corre-
lation across traits. True effect §; is simulated by first randomly selecting a set of
K=2, 5,10 or 15 traits (columns) which have true associations with the SNP, fol-
lowed by generating the effect size from fy;, + N(mean = 0,variance = 0.01%).
Around half of the K traits (round(K/2)) have ﬁﬂx = —0.01 and the rest have

Bri =0.0L, which reflects bidirectional fixed effects. Effect size heterogeneity is
reflected by N(mean = 0,variance = 0.01%). We vary the sample size N, assumed to
be the same across all traits, to 50k, 100k and 200k (rows). This simulation pro-
cedure is repeated 300 times for each setting. See Supplementary Notes for details.
Calculation of precision and recall is restricted to SNPs that reach genome-wide
significance for global association: fastASSET p-value <5 x10~% for fastASSET,
metaUSAT p-value <5x1078 for the other three methods.

under lower sample size (N=50k) but less accurate when N =200k
(Figs. 2a, b). This is likely due to the increased power of individual-trait-
based approach under large sample size, hence there is less benefit in
using a multi-trait method. The performance for identifying the subset
of associated traits tracks closely with that for estimating pleiotropy
(Fig. 2c). When N =50k or 100k and K=2 or 5, fastASSET maintains

high precision and substantially improves recall compared to more
conservative methods p <5 x10~8 and FDR < 0.05. fastASSET performs
similarly to FDR < 0.05 under larger N and K and appears less powerful
(lower recall) when N=200k and K=10 or 15. The Genome-wide
threshold p<5x1078 has low recall across scenarios, while the liberal
threshold p<0.05 has low precision. fastASSET is conservative in

Nature Communications | (2024)15:6985



Article

https://doi.org/10.1038/s41467-024-51075-5

detecting trait-specific variants (associated with 1 trait), with high
precision and very low recall (Supplementary Data 3). This property
appears more desirable when the sample size is low. For example,
when N =20k, the precision for fastASST is 47.8% and that for FDR <
0.05 is 13%. Though the recall for fastASSET is much lower (3.7% vs 15%
for FDR <0.05), the high precision allows us to restrict follow-up
analyses to high-confidence trait-specific SNPs. When the sample size
is larger, the precision of FDR < 0.05 catches up with that of fastASSET
with a higher recall.

In addition, fastASSET has well controlled type I error for
detecting global association. metaUSAT (v1.17) and metaMANOVA®,
two methods that only conduct global association testing but not
subset selection, have moderately inflated type I error (Supplementary
Data 4). fastASSET has comparable power to metaUSAT and meta-
MANOVA (Supplementary Fig. 3), with slight power gain at N=200k
and slight loss when N=50k. We observe that power reaches near
saturation for several scenarios. This indicates that power difference is
less distinguishable across methods for pleiotropic analysis across
many traits. Hence the subset selection feature provided by fastASSET
is an important advantage over other multi-trait methods. We also
compare the running time of fastASSET and the original ASSET (Sup-
plementary Data 5). The running time of ASSET grows rapidly with the
number of traits analyzed. For 25 traits, ASSET uses ~46 min (2733.89 s)
to analyze 100 SNPs. However, fastASSET can complete analysis of the
same data within a few seconds, even if the number of traits reaches
100. Compared to two other multi-trait methods, fastASSET is faster
than metaUSAT but slower than metaMANOVA (Supplemen-
tary Data 5).

We conduct additional simulations to evaluate the performance
of fastASSET to estimate pleiotropy in more general scenarios that
allow heterogeneous sample size and genetic correlation across traits
(Supplementary Fig. 4). In this scenario, genetic effects are simulated
as the sum of a homogeneous component (same effect size across
associated traits) and a heterogeneous component (varying effect size
across traits). See the legend of Supplementary Fig. 4 for details. The
patterns are largely similar to the previous simulation setting: fas-
tASSET is more accurate than FDR<0.05 in estimating degree of
pleiotropy when N =50k, but could be less accurate in some scenarios
when N=200k. When there are only heterogeneous effects (homo-
geneous effect = 0), fastASSET has a clear advantage over FDR < 0.05
for estimating pleiotropy, but can have low precision for identifying
associated traits in some settings (when only two traits have true
associations). When the homogeneous effect is strong (Supplementary
Fig. 4c), fastASSET appears to have comparable performance with
FDR < 0.05 when averaged across all scenarios. However, it has better
precision-recall tradeoff compared to the scenario with no homo-
geneous effect.

Quantifying and validating levels of pleiotropy

We find widespread genetic associations and varying degree of pleio-
tropy across the genome (Fig. 3). Identified associations represent
2293 loci (fastASSET p-value <5x1078,r2<0.1 and>500kb apart,
Supplementary Data 6). We further investigate the signal density
within each locus by counting the number of independent genome-
wide significant SNPs (fastASSET p-value <5x107%,r2<0.1) within
100 kb of the lead SNP (see “Methods” for details). We observe sub-
stantial variation in signal density (Fig. 3). Multiple independent signals
were present at nearly half (48% out of 2293) of the loci; 11% of the loci
harbored at least 5 independent signals and some loci can harbor up to
25 signals (Fig. 3). For the loci with multiple associated SNPs, levels of
pleiotropy can vary within the locus (Fig. 3). For example, SNP
1s3760047 (chrl6:281299) is associated with 4 traits, but 8 out of the
15 significant SNPs within 100 kb are associated with 2-5 traits and the
remaining 7 SNPs are associated with 6-10 traits (Supplementary
Data 6). In the following, we use the lead SNPs detected by fastASSET

for each locus to study the level of pleiotropy across the genome and
its relationship with different types of variant annotations.

The vast majority of the lead SNPs are associated with 2-10 traits
with a median of 6 (Fig. 4a). At the two ends of the spectrum, we found
21 SNPs to be associated with only one trait, representing highly trait-
specific genetic mechanisms and 58 SNPs to be highly pleiotropic
defined as those which are associated with 16 or more traits. Next, we
investigate whether the degree of pleiotropy we estimate for the lead
variants based on the 116 traits also predicts degree of pleiotropy that
the same variants will manifest across a much wider spectrum of traits.
To test this hypothesis, we collect the summary statistics for 4114 traits
from the Neale lab UK Biobank (UKB) GWAS**, and quantify the levels
of pleiotropy for each of the 2293 lead SNPs by the number of asso-
ciated traits at per-SNP false discovery rate (FDR) < 0.05. See “Methods”
for details. We observe that degree of pleiotropy estimated from our
study predicts that observed in the UK Biobank (spearman correlation =
0.43, p-value <2.2x107°, Fig. 4b). The relationship remains highly
significant even after adjusting for LD score (partial correlation = 0.42,
p-value <2.2x107%). The analysis indicates that pleiotropic char-
acteristics of the detected SNPs is not specific to the selected traits in
our discovery analysis and likely represent a much broader property
related to their roles in gene regulation.

Relationship with functional and LD annotations

We investigated how the level of pleiotropy is correlated with different
types of variant annotations. First, we found that the numbers of
associated traits detected by fastASSET to be positively correlated with
LD score values across the 2293 lead SNPs (R?>=0.059, p-value =
4.95x10732, Fig. 4c). The pattern is expected since lead SNPs which
tag more SNPs due to LD will appear to be associated with a larger
number of traits when there are distinct causal variants for distinct
traits within the loci. We also found that SNPs associated with a larger
number of traits tend to be significant expression quantitative trait loci
(eQTL) for a larger number tissues and for a larger number of eGenes
(both R2=0.069, p-value <2.2x107%). Trait-specific SNPs are sig-
nificant eQTL for a median of 1 tissue and 1 gene, while highly pleio-
tropic SNPs (>15 traits) are significant eQTL for a median of 22.5
tissues and 4.5 genes (Fig. 4d). While such pattern has been reported
earlier*, we observe a much sharper dose-response trend and higher
level of statistical significance (e.g. compared to Fig. 1e in ref. 4), arising
likely due to the higher accuracy of the fastASSET analysis for the
detection of degree of pleiotropy. In our dataset, eQTLs explain less
variation of pleiotropy if it is quantified by the number of traits
reaching p <5x 1078 (the approach adopted by Watanabe et al.*), with
R*=0.031 for number of tissues and R?*=0.052 for number of eGenes.
We also found more pleiotropic SNPs tend to be in regions of active
chromatin state in a larger number of tissue or cell types, reflected by
results from the IDEAS method®~* (Fig. 4e). This trend is especially
pronounced for the promoter (10 _TssA, 8_TssAFInk and 14_TssWk) and
transcription (5_Tx and 2_TxWKk) related chromatin states, but weaker
for enhancer-related states (4_Enh, 6_ EnhG and 17 EnhGA). We observe
similar relationship using chromatin states learned by ChromHMM
(Supplementary Fig. 5). In a multivariate regression analysis that
accounts for LD and all functional annotations simultaneously, we
found the relationship between degree of pleiotropy and three types
of functional characteristics of the SNPs each remain highly significant
(p-value <0.005), with eQTL tissue specificity showing the largest
effect size in per standard deviation unit (Fig. 4f). Further, analysis
based on the JASPAR and HOCOMOCO databases®® revealed that
more pleiotropic SNPs (>10 traits) are more likely to overlap with
transcription factor binding sites (TFBS) (p-value=0.022, Supple-
mentary Fig. 6). The relationship remains significant (p-value = 0.021)
after adjusting for the annotations in Fig. 4 (Supplementary Fig. 6).
Finally, analysis based on activity-by-contact (ABC) model revealed
that among the SNPs that overlap with enhancers, level of pleiotropy
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SNP. See Supplementary Data 6 for details.
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Fig. 4 | Number of associated traits detected by fastASSET and its relationship
with different variant annotations. Results are shown for only the lead SNPs of

2,293 independent loci identified by fastASSET. Sub-figures show (a) Distribution of
number of associated traits; b Relationship with the number of associated traits in
the UK Biobank (per-SNP FDR < 0.05, each point represents a lead SNP);

c Relationship with linkage disequilibrium (LD score). For b and ¢ shared area along
the blue line is the 95% confidence band. d Relationship with number of tissues and
genes for which the SNP is a significant eQTL in GTEx v8; e Relationship with the

number of cell types in which the SNP is in each active chromatin state; f Effect of
each annotation on pleiotropy (number of associated traits) conditional on other

annotations, and 95% confidence intervals. Chromatin states are learned by IDEAS
method (Zhang et al, 2017) using data from the Roadmap Epigenomics Consortium.
Coefficients in (f) are estimated using multiple linear regression model of the form
pleiotropy ~ (LD score) + (num.of tissues as eQTL)+(num.of eGenes)+

(num.of cell types in active chromatin) where all dependent and independent
variables are standardized to have unit variance. Boxplots show the median (cen-
terline) and first and third quartiles (lower and upper hinges) of the distribution; the
top of the upper whisker represents the largest value no more than 1.5 * inter-
quartile range (IQR) from the hinge; the bottom of lower whisker represents the
smallest value no more than 1.5 * IQR of the hinge.

increases with the number of active tissues (correlation = 0.09,
p-value =0.069, Supplementary Fig. 6). However, this relationship
disappears after adjusting for other annotations (p-value = 0.65, Sup-
plementary Fig. 6).

Trait-specific Variants

The fastASSET analysis identified 21 independent trait-specific lead
SNPs, defined as those for which associated subset included only one
trait (Table 2). We observe that the association p-value between a trait-
specific SNP and the primary trait are at least 108 times lower than the

next most strongly associated trait (Fig. 5 and Supplementary Fig. 7).
Highly pleiotropic SNPs, however, often have comparable level of
associations with a large number of traits (Fig. 5 and Supplementary
Fig. 7). We also validate the nature of trait specificity of these SNPs in
the external UK Biobank study (Table 2). Notably, even though UK
Biobank covered a much larger of traits, the trait-specific SNPs we
identified for Alzheimer’s disease, breast cancer, prostate cancer,
Crohn’s disease (CD) are only associated with traits related to these
diseases, except rs4631223 detected for primary trait CD was also
found to be associated with Urea. Some of the disease-specific SNPs we
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Fig. 5| Top 10 associated traits for trait-specific SNPs for binary diseases and
matched highly pleiotropic SNPs. a Trait-specific SNPs for binary disease traits.
b Matched highly pleiotropic SNPs. Traits are ordered by descending order of
-logl0(p-value) in each panel. See Supplementary Data 1 for sample size of
individual-trait GWASs. P-values are from two-sided z-tests for individual traits.
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Each disease-specific SNP is matched to the highly pleiotropic SNP (> 15 traits) that
has the smallest association p-value with the disease (matched trait shown in the
parentheses). See Supplementary Fig. 7 for trait-specific SNPs for quantitative traits
and matched highly pleiotropic SNPs. See “Methods” for details of the matching
procedure.

detected were not significant (FDR > 0.05) in the UK Biobank (Table 2)
likely due to its lower number of cases for rare diseases compared to
large case-control studies that contributed to our discovery analysis.
For quantitative traits, we observe replication of trait-specificity in the
UK biobank for most of the trait-specific SNPs for intelligence, male
baldness, age at menarche and monocyte count (Table 2). The trait-
specific SNPs we detected for heel bone mineral density (BMD), height
and diastolic blood pressure (DBP), however, were associated with a
larger number of traits in the UKB, but the majority of the additional
traits were related to the primary trait.

Cis-regulatory effects for trait-specific SNPs

To gain further insight into the mechanisms driving trait-specific SNPs,
we search for their cis-eGenes and corresponding tissues in GTEx®, as
well as the biological functions of the eGenes in the GeneCards
database*’. Although eQTL studies may be biased towards specific
types of variants”, they still explain a significant fraction of trait
heritability*’, which could increase further as more eQTL data are
collected on new cell types or contexts. Among the 21 trait-specific
SNPs, 11 SNPs are eQTLs for at least one gene-tissue pair (g-value <

0.05) in GTEx v8 (Fig. 6 and Supplementary Fig. 8). Five of them are
associated with the expression of one single gene. rs6733839 (Alzhei-
mer’s disease) is a significant eQTL for BINI gene in aorta (Fig. 6).
Though the aorta does not appear to be the relevant tissue for Alz-
heimer’s disease, the SNP is also moderately associated the expression
of the BINI in brain cerebellum (Supplementary Fig. 9). rs7667257
(breast cancer) is an eQTL for only GLRA3 in breast mammary tissue,
which is exactly the relevant issue for breast cancer. rs12653946
(prostate cancer) is associated with the expression of /IRX4 in 4 tissues
but has the largest effect size in prostate-the disease’s tissue of
occurrence (Fig. 6). rs9914258 (heel BMD) is associated with the
expression of GAS72 with the strongest effect in cultured fibroblasts
(Supplementary Fig. 8). rs41409548 (monocyte count) is associated
with the expression of IL17RA in brain cortex (Supplementary Fig. 8)
and a number of other brain tissues (Supplementary Fig. 9).

The other trait-specific SNPs, though not exactly tissue or gene
specific, are generally associated with a small number of genes in a
small number of tissues compared to highly pleiotropic “matched”
SNPs that are also associated with the same traits. rs4631223 (Crohn’s
disease) is associated with the expression of 7TC33 and PTGER4, and
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Fig. 6 | Cis-regulatory effects of trait-specific SNPs for binary diseases and
matched highly pleiotropic SNPs. For each SNP, we show its protein-coding
eGenes (g-value < 0.05) and the corresponding top tissues in GTEx v8. The top
tissues for each variant-gene pair are defined as those with eQTL effect size is
>0.7*(the largest effect size among significant tissues for this variant-gene pair);
the tissue harboring the largest effect is highlighted by darker dashed lines. In
addition, we annotate each gene name by the total number of associated tissues

Gene Tissue
BINT (1) Artery - Aorta
GLRA3 (1) Breast - Mammary Tissue
IRX4 (4) Prostate
TTC33 (1) Cells - Cultured fibroblasts
PTGER4 (3) Small Intestine - Terminal lleum
IRGM (6) Adipose - Visceral (Omentum)
ZNF300 (7) Artery - Tibial
RBM22 (1) Colon - Sigmoid
ELL (9) Colon - Transverse
LRRC25 (11) e
ISYNAT (2) Brain - Cerebellum [PAXgene]
SSBP4 (18) Brain - Nucleus accumbens (basal ganglia)
CRHR1 (1) Esophagus - Mucosa
LRRC37A (42) Hiver
LRRC37A2 (48) Muscle - Skeletal
ARL17A (46) Skin - Not Sun Exposed (Suprapubic)
WNT3 (21) SHiesn
FMNL 2) Whole Blood
T Adipose - Subcutaneous
SPRLZC ) Adrenal Gland
Artery - Coronary
ARHGAP27 (9)
Brain - Amygdala
BoE ) Brain - Anterior cingulate cortex (BA24)
) Brain - Caudate (basal ganglia)
ACBRE() Brain - Cerebellar Hemisphere [Frozen]
SosRal) Brain - Cortex [PAXgene]
MAETOD) Brain - Frontal Cortex (BA9) [Frozen]
A2 Brain - Hippocampus
BENDIE ) Brain - Hypothalamus
CREBL4(Y) Brain - Putamen (basal ganglia)
RABT30) Brain - Spinal cord (cervical c-1)
L) Brain - Substantia nigra
SLZLE) Cells - EBV-transformed lymphocytes
UOE2I0E ) Esophagus - Gastroesophageal Junction
Uil Esophagus - Muscularis
S Heart - Atrial Appendage
Stes@ Heart - Left Ventricle
CRTC2(5) Kidney - Cortex
Clorf43 (1) Lung
S100A14 (1) Minor Salivary Gland
ZOMOTd) Nerve - Tibial
MAMSTR (15) Ovary
NTNS5 (27) Pancreas
RASIP1(11) Pituitary
PLA2G4C (1) Skin - Sun Exposed (Lower leg)
FUT2 (16) Stomach
FAMBS3E (1) Thyroid

(g-value < 0.05) regardless of effect size. Each trait-specific SNP is matched to the
highly pleiotropic SNP (>15 traits) that have the strongest association with the trait
(lowest p-value). See “Methods” for details of the matching procedure. Pseudo-
genes and non-coding RNAs are excluded. See Supplementary Fig. 8 for trait-
specific SNPs for quantitative traits and highly pleiotropic SNPs. BrCa: breast can-
cer; PrCa: prostate cancer; CD: Crohn’s disease.

the largest effect size for PTGER4 is in small intestine (Fig. 6), the organ
where Crohn’s disease usually occurs. Another trait-specific SNP for
Crohn’s disease, rs4958425, is associated with the expression of JRGM,
ZNF300 and RBM22. The association for RMB22 occurs in colon
transverse and a secondary association for ZNF300 occurs in colon
sigmoid (Fig. 6), both of which are in the digestive system. IRGM is
moderately associated with rs4958425 in small intestine (Supplemen-
tary Fig. 9). Previous studies have supported the connections between
the trait mechanisms and the functions of some of the genes above,

including the role of BINI in Alzheimer’s disease, PTGER4 and /RGM in
Crohn’s disease and ILI7RA in monocyte count”™*® (Supplemen-
tary Data 7).

We further used COLOC* to conduct colocalization analysis for
the loci indexed by 11 trait-specific SNPs that are also significant eQTLs
in GTEx. We find evidence of colocalization (PP4>0.8) between
genetic effects on the trait and on gene expression for 8 trait-specific
SNPs (Supplementary Data 8), indicating shared causal SNPs. Many of
the genes and tissues we highlighted as potential mechanisms for trait-
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specific SNPs (Fig. 6 and Supplementary Fig. 8) are also supported by
colocalization, e.g. IRX4 and prostate, PTGER4 and small intestine,
RBM22 and transverse colon, etc. (Supplementary Data 8). These
results provide further evidence that trait-specificity may be driven by
gene- and tissue-specific cis-regulatory effects.

Chromatin state of trait-specific SNPs

We explore another potential mechanism of trait-specificity using
chromatin states learned by the IDEAS method® using data from
Roadmap Epigenomics Consortium*®, Though the number of SNPs is
small, we find suggestive evidence that trait specific SNPs tend to be in
active chromatin state only in specific tissue or cell types (Fig. 7). On
the other hand, highly pleiotropic SNPs tend to have active chromatin
state in a wide range of tissue and cell types (Fig. 7). For a number of
trait-specific SNPs, chromatin state results strongly link the SNP to
trait/disease related tissues. For example, rs4631223 (Crohn’s disease)
is in active chromatin state in blood and T-cells, B-cells and digestive
tissues, which are related to the immune mechanism of Crohn’s dis-
ease and the organ where it occurs. rs6733839 (Alzheimer’s disease) is
active in brain and muscle tissues (Fig. 7), both of which were shown to
be involved the disease**~, though it is also active in immune cells and
digestive tissues, whose role in the disease is less clear. rs61926181
(DBP) is active in heart tissues which is also closely related to DBP.

Pleiotropy in East Asian population

To study the patterns of pleiotropy in a different population, we collect
GWAS summary statistics for 220 traits in Biobank Japan (BBJ)*. After
quality control (see “Methods” for details), 75 traits remain for the final
statistical analysis (Supplementary Data 9). Using fastASSET, we iden-
tify 778 loci with significant global association (p<5x1078,72<0.1,
lead SNPs are >500 kb apart). See Supplementary Data 10 for the list of
lead SNPs. The number of associated traits ranges from 1 to 20, with
mode at 4 traits (Fig. 8a). For each variant identified in BBJ, we compute

the number of associated traits in European population (SNP-specific
FDR < 0.05). The level of pleiotropy in BBJ and that in European sample
has a correlation of 0.34 (p<2.2x107'%) among approximately the
same set of traits, showing evidence of replication and heterogeneity
across populations. Consistent with the results for European ancestry
(Fig. 4c), the level of pleiotropy is correlated with LD score with
R?=0.093 (Fig. 8c). We identify 10 trait-specific lead SNPs in the BB)
(Fig. 8d). These SNPs are associated with breast cancer, prostate can-
cer, height, G-glutamyl transpeptidase (GGT), platelet count (PLT), and
urolithiasis. In the GTEx data, these trait-specific SNPs are eQTLs for a
small number of genes and tissues, though they appear less tissue- and
gene-specific than the trait-specific SNPs identified in the European
data (Supplementary Data 11). This could be due to the lack of eQTL
data for East Asian ancestry, and GTEx (primarily European) cannot
accurately reflect ancestry-matched eQTL effects possibly due to dif-
ferences in allele frequencies and LD with causal variants.

Discussion

In this paper, we present fastASSET for large-scale multi-trait genome-
wide association analysis. fastASSET possesses two features simulta-
neously: 1) a p-value for global association and 2) a subset of traits
associated with each variant. The power of fastASSET for global asso-
ciation is comparable to existing multi-trait methods (Supplementary
Fig. 3). The subset selection feature, which is not possessed by the vast
majority of multi-trait methods, is a unique advantage that enables us
to study patterns of pleiotropy. In particular, for joint analysis of a wide
range of traits, global association testing without specifying the set of
associated traits is difficult to interpret. We observe that fastASSET
estimates degree of pleiotropy and identifies associated traits more
accurately than ad-hoc methods based on individual-trait p-values
(Fig. 2). Compared to these ad-hoc methods for trait selection, fas-
tASSET offers a formal way to screen out variants without any phe-
notypic effects. Although it is possible to extend fastASSET for multi-
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Fig. 8 | Results of analysis of Biobank Japan data. a Distribution of level of
pleiotropy. b Level of pleiotropy in Biobank Japan (BBJ) and European population.
c Pleiotropy in BBJ vs. LD score for East Asian population. Shaded area along the
blue line is the 95% confidence band. d Ten trait-specific SNPs identified in BBJ and

their top 10 associated traits. BC: breast cancer; GGT: G-glutamyl transpeptidase;
PLT: platelet count; PrC: prostate cancer; Uro: urolithiasis. P-values are from two-
sided z-tests for individual traits.

ancestry multi-trait analysis, it requires further development of
methods and hence is left as a future direction. More specifically,
genetic effect sizes are expected to be less heterogeneous for the same
trait across ancestries than across different traits. Such varying levels
of heterogeneity is not reflected by the current fastASSET.

A related type of methods try to deconvolve the genetic compo-
nents that act together’>®. These methods typically focus on pleio-
tropic components that have effects on a widespread range of traits or
at least a module of related traits. They tend to ignore trait-specific
variants since those variants are unlikely to have major contributions
to the components. fastASSET can be used to study both pleiotropic
and trait-specific variants. In addition, deconvolution methods**** do
not directly quantify the level of pleiotropy for each variant, which
would require further development of downstream methods.

We apply fastASSET to summary statistics of 116 traits to quantify
degree of pleiotropy at the level of individual SNPs across the genome
and their relationship with various annotation characteristics.

Specifically, we detect a much higher degree of pleiotropy at individual
variant level than earlier studies and show that patterns of pleiotropy
may be driven by multiple functional mechanisms. In a first-of-its-kind
effort, we identify 21 highly trait-specific variants and conduct exten-
sive follow-up studies to show that they can often be linked to the
functions of specific genes in trait-related tissues.

While our analysis confirms the ubiquitous nature of pleiotropy
reported in prior studies***, we are able to provide several insights due
to both the use of a rapid powerful method for cross-trait association
analysis and detailed follow-up investigation of relationship between
the level of pleiotropy and functional characteristics across the SNPs.
First, we observed that pleiotropy is ubiquitous, not only at a locus
level but also at the level of individual variants. A prior large-scale study
of pleiotropy across 558 traits based on UK Biobank had noted earlier
that while >90% of loci are pleiotropic, about 60% of the individual
SNPs show pleiotropic association with more than one trait and only
32% show association across multiple domains of traits*. Our analysis,
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though based on a smaller number of traits, reveals that lead variants
across almost all the identified loci are associated with more than one
trait. The nature of pleiotropy, however, is “modular’, i.e. a given
variant has detectable effect only on a small fraction of the traits
studied.

Second, our study confirms observations reported in previous
studies** that variants affecting expression in multiple genes and
tissues tend to be more pleiotropic, but we are able to detect the trend
at a stronger resolution due to more precise characterization of the
nature of pleiotropy. We further show that the level of pleiotropy is
associated with the tissue-specificity of active chromatin states, and
the relationship appears to be stronger for promoter and transcription
related states than enhancers. Among SNPs located in enhancer
regions, we found pleiotropy can be driven by interaction with multi-
ple genes in multiple cell types. Finally, we also demonstrate enrich-
ment of TF binding sites among pleiotropic SNPs.

Finally, a unique contribution of this paper is the identification of
the highly unique trait-specific variants. We show that the trait-specific
SNPs detected by fastASSET have dominant associations with the pri-
mary trait that are far stronger than any secondary associations (Fig. 5
and Supplementary Fig. 7) and they show similar pattern of trait spe-
cificity even when examined against a much larger number of traits in
the UK Biobank study (Table 2). Despite their small number, the trait-
specific SNPs can provide unique insight to biological mechanisms. We
find that they often have clearly interpretable regulatory effects
(Figs. 6 and 7). Some of them regulate the expression of a single gene in
a single tissue. Others are active in multiple tissues, but the strongest
regulatory effects occur in trait-related tissues. For some other SNPs
the mechanisms are less obvious, but still clearly contrast with highly
pleiotropic SNPs which can affect many genes in many tissues.

Our study has several limitations. In our discovery analysis, we
restricted the analysis to a diverse but relatively small set of (K=116)
traits that have large associated GWAS (N ranging from 7000 to 1.2
million; >50% studies have N >100k). As we have excluded vast num-
ber of other traits for which GWAS data are also available, we have not
been able to provide a more complete genotype-phenotype maps.
Nevertheless, we observe that the level of pleiotropy we observe for
the detected SNPs with respect to a smaller number of traits correlates
well with the level of pleiotropy observed in the UK Biobank study with
respect to a much larger number of traits. It is particularly notable that
the trait-specific SNPs we detect based on only 116 traits largely show
same or similar trait specific effect when validated against more than
4000 traits in the UK Biobank. The correlation could be even higher if
pleiotropy were quantified by fastASSET in UK Biobank. However,
pleiotropic analysis of more than 4000 traits will be a massive task as it
requires careful filtering of traits based on correlations. This analysis is
beyond the scope of the current paper. A related limitation is to use the
number of traits as the metric for pleiotropy. While also adopted by
several other studies*?, this metric depends on the set of traits being
studied. We strive to eliminate the impact by selecting a broad range of
traits and eliminating highly correlated traits. However, this issue
could still have an impact and future studies are warranted on the
optimal selection of traits or alternative metric of pleiotropy.

Although fastASSET has robust performance for estimating the
level of pleiotropy when considering all the scenarios, it can be less
accurate in some scenarios. For example, the estimated level of
pleiotropy can be miscalibrated (Fig. 2). This is likely due to the meta-
analysis procedure that underpins fastASSET, which is optimal when
the SNP have similar effect size on all traits. In the original ASSET
paper’, we acknowledged that the subset selection feature can be
conservative. It tends to select the stronger effects and leave out some
traits with weaker effects. However, selecting only the stronger asso-
ciations allows us to focus on the main pathways underlying the
genetic effects of the SNP, and ignore less important peripheral
effects. Therefore, the results from fastASSET needs to be interpreted

carefully. SNPs could have effects on traits other than those selected by
fastASSET. However, the association with main traits is much stronger,
which is enough to justify that regulating these traits is the primary
function of the SNP. For example, rs61926181 is selected as a trait-
specific SNP for DBP, though it is also associated with SBP based on raw
p-values. Nevertheless, the association with DBP is substantially
stronger despite the two traits being highly correlated. In contrast,
rs6035355 is classified to be associated with both DBP and SBP (Sup-
plementary Data 6) since the significance level is nearly identical
(p=1.58x10"% for DBP, p=1.77 x10~® for SBP).

Another limitation of our study is that we have primarily identified
pleiotropic associations based on single SNP association analysis
without further exploring the underlying causal relationship among
traits and SNPs. For example, pleiotropy between one SNP and two
traits can be classified into multiple types®™: 1) vertical pleiotropy due
to causal relationship between two traits; 2) horizontal pleiotropy that
arises from the SNP having independent effects on both traits 3)
linkage disequilibrium between two distinct causal variants for differ-
ent traits; 4) disease misclassification. Categories 3 and 4 are referred
to as spurious pleiotropy in some literature®. The pleiotropy discussed
in this paper can be viewed as pleiotropy at the locus level instead of
the variant level. Identifying patterns of pleiotropy at the level of causal
variants across many traits accounting for LD and heterogeneity in
effect size is a challenging task. A more detailed characterization of
pleiotropy at the level of each individual variant will ultimately require
joint fine-mapping analysis across many traits by each locus, but
methods for large-scale multi-trait fine-mapping are currently not
available.

In summary, we develop a method and carry out a large-scale
pleiotropic analysis across GWAS of a diverse set of traits. Our study
provides insights into functional characteristics of the genome that
contribute to pleiotropy and leads to the identification of unique trait-
specific genetic variants which have not been previously explored. In
the future, large-scale cross-trait fine-mapping studies are needed to
pinpoint causal variants and the underlying nature of pleiotropy.

Methods
Data and initial filtering
We collect 338 full summary level datasets published between 2007
and 2019 from the NIH Genome-Wide Repository of Associations
Between SNPs and Phenotypes (GRASP). GRASP includes a wide range
of phenotypes including anthropometric traits, biomarkers, blood cell
levels, adipose volume, early growth traits, social science Indices,
cardiometabolic diseases, psychiatric and neurological diseases,
autoimmune diseases, etc. We further collect 20 summary-level data-
sets from GWAS Consortia for the traits included in GRASP but when
the Consortia offer a study with larger sample sizes. See Supplemen-
tary Data 1 and 2 for a full list of datasets. Thus restricting the analysis
to the GRASP traits allowed us to carry out the pleiotropic analysis of
across a diverse set of traits with large available GWAS, but avoid
including many overlapping traits such as those in UK Biobank.

We apply several filtering steps sequentially (see Supplementary
Fig. 1for a flow chart): 1) remove datasets in which the genetics variants
do not have genome-wide coverage (genotyped by exome array,
metabochip and immunochip); 2) remove datasets that only report p-
values without direction of effect; 3) remove studies with small sample
size: for continuous traits, we remove studies with sample size <5,000;
for binary traits, we remove studies with <5000 cases or <5000 con-
trols; 4) remove studies where >25% individuals are of non-European
ancestry; 5) remove duplicated traits: among the studies for the same
trait, we keep the study with the largest sample size and discard the
rest of them; 6) remove traits that are deterministic functions of other
traits in our study, or other traits adjusted of covariates. After the
filtering, 150 traits entered downstream analysis (see Supplementary
Data 2 for all traits removed from analysis).
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LD score regression and further filtering

We applied LD score regression®* to estimate the heritability and
genetic correlation across 150 traits. LD scores based on 1000 Gen-
omes European data and the list of HapMap3 SNPs were downloaded
from the LDSC GitHub repository (https://github.com/bulik/Idsc).
Only SNPs in HapMap3 were used to calculate the LD score and per-
form the regression.

To ensure the traits have a substantial genetic component, we
remove 21 traits that do not have a heritability estimate that is sig-
nificantly different from O (z statistic >1.96). To further reduce the
genetic overlaps of the traits, we remove 13 traits that have high
genetic correlation (r,) with others. In short, if two traits have genetic
correlation |r,|>0.95, we remove the trait less enriched of genetic
associations, quantified by the product of the sample size of the study
(N) and the heritability of the trait (h?). The algorithm is as follows:

1. Sort the traits in decreasing order of NH.

2. Start from the trait with the highest Nh%, remove the traits that
have |r,|>0.95 with this trait.

3. Proceed to the trait with the next highest Nh?, repeat until no
pairs of traits have |rg|>0.95.

After the above filtering steps, we retain a final list of 116 traits for
statistical analysis (Supplementary Data 1). We further restricted to the
variants that are available for > 50 traits, and in 1000 Genomes Phase 3
European sample with minor allele frequency (MAF) >0.01. This leads
to a total of 7,462,466 variants. Since our goal is not to identify causal
variants, the discrepancy of reference panels across studies should not
have a major impact.

Statistical Analysis Using fastASSET

The first step to study the patterns of pleiotropy is to quantify the level
of pleiotropy across the genome. Previous studies often have quanti-
fied the pleiotropy of a SNP by counting the number of traits that reach
p<5x10~% inindividual trait analysis. This approach, however, is likely
to miss many weaker associations. Here we described fastASSET, an
accelerated version of the ASSET method which 1) detects SNPs
associated with any trait in our collection (“global association”) and
2) reports a subset of traits associated with each SNP.

The original ASSET is developed based on meta-analysis across
different phenotypes and searches for the subset of traits with max-
imum meta-analysis z-statistic’. However, since we are analyzing a
large number of traits, the orignal ASSET which searches through all
subsets is computationally intractable. To reduce the computational
burden, we pre-select the traits that show suggestive evidence of
association with the given SNP using a liberal p-value threshold,
denoted by p,, (e.g. 0.1 or 0.05). We only conduct subset search
among the traits with p-value <p,,,. Denote the corresponding
threshold for z-statistic by z,,, = ®1(1 — Bury,

Before the subset search, the z-statistics z; (k=1, ... K traits) need
to be adjusted for pre-selection to prevent type I error inflation. If the
SNP is not associated with any of the given traits and none of the
studies have overlapping samples, z;’s are independent across studies
and can be adjusted independently. The adjusted p-value is

P(1Z1> |z, 121> Zep,)
(lZl >zthr)
P(1Z1> |21, 121> 244
pthr

which is equal to if 12¢| >z, and equal to 1if |z;| <z
Hence the adjusted z-statistic is z; =sign(z;) ®'(1 —%).

However, the data used for our study have complex sample
overlaps, hence z;’s of overlapping studies are no longer independent.
To apply the above adjustment, we first de-correlate the z-statistics.
The correlation of z-statistics due to sample overlap can be estimated

Pi=P(IZ1> 12121 > zep,) =
@

P(1Z1> |z])
thr

using bivariate LD score regression’:

VTSP iy @)

E [zljzzj [l }
where p(z) is the correlation of z;; and z,; under the null hypothesis and
[; is the LD score. Since sample overlap usually occurs between traits in
the same study or consortium, the correlation matrix of z-statistics
p={0}, .
partition the traits into blocks using hierarchical clustering based on
distance matrix 1 — |p?|. We cut the hierarchical clustering tree at
0.8 such that ’p(z)

de-correlate the z-statistics within each cluster and ignore between-
cluster correlation.

B roughly follows a block diagonal structure. We first

<0.2 if studies k and [ are in different clusters. We

Within each cluster, we first order the studies by effective sample
size from smallest to largest. For continuous traits, the effective sam-
ple size is the total sample size; for binary traits, the effective sample

size is defined as ;eseMeonro Denote by p@® the LD score regression
Nease + Neontrol

intercept matrix of the traits in cluster ¢. Denote by vector Z© the
z-statistics of traits in cluster ¢, and by N© the effective sample size. If
trait k is continuous, N(‘) is the total sample size; if trait k is case-
control, N = feselonrol_ Define § =

Nease +"contr [
genotype and traits are standardized to have unit variance. The de-
correlation and adjustment algorithm proceeds as follows:

1. Apply Cholesky decomposition to p®9 = U U.

\/1‘_0 as the standard error when
N

2. De-correlated the z-statistics by 77 =(")'79. select the traits
with ‘?k”) >z, and adjust the z-statistics independently for each
trait using the conditional p-value approach described by Eq. (1).

Denote the adjusted z-statistics by iadjm

3. Convert the z-statistics back to the original scale by
24" =U"Zy; ). Leave the standard errors S unchanged. Retain
the elements of Z,;" and 8 corresponding to the selected traits

and denote them as Z and S.

Finally, we combine the adjusted z-statistics and standard errors
(ZY and SY,,t=1,...,T) for the selected traits from all clusters. The
combined summary statistics are used as input for ASSET analysis

(see Supplementary Notes for a brief description of ASSET)’.

Analysis of data for 116 traits

Since different studies are relatively independent, LD score regression®
analysis did not reflect substantial sample overlap across different
studies. The clusters, based on sample overlap and phenotypic cor-
relation are generally small and restricted to traits within the same
study (Supplementary Fig. 2). For a small proportion of the SNPs, a
large number of traits pass the pre-selection threshold (single-trait
p-value < 0.05) which makes the subsequent subset search computa-
tionally intractable. We removed a total of 16,686 SNPs that were
associated with more than 16 traits in one direction (either positive or
negative). Under the global null hypothesis of no association, the
probability of observing such pattern is small (113 x 10~8) and thus we
consider these SNPs to be pleiotropic though they are not further
analyzed by ASSET. In fact, the majority of these SNPs can be tagged by
SNPs that are analyzed by ASSET through LD (r*>0.5) and hence
removing them does not lead to significant loss of information, except
309 SNPs from 74 independent regions (r*< 0.1, > 500 kb apart). We
choose the SNP with the largest number of traits that pass p <0.05
threshold as the index SNP for each locus. As a sensitivity analysis, we
allocate additional computational resources to run fastASSET analysis
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for the 74 lead SNPs. These SNPs are enriched in pleiotropic SNPs, but
some of the SNPs are associated with only a few traits (Supplementary
Fig. 10). Due to their small number, they should not have a major
impact on the characterization of pleiotropy.

Among the SNPs we analyzed by ASSET, we further removed 2620
SNPs for which one of the one-sided ASSET p-values is smaller than the
p-values from standard meta-analysis of the selected traits, indicating
convergence issues in the underlying p-value approximation method.

For each of the remaining 7,443,160 SNPs, fastASSET reports a p-
value for global association and a set of traits associated with the SNP.
For each SNP, we use the number of its associated traits reported by
fastASSET as the metric of pleiotropy. We consider SNPs with fas-
tASSET p-value p<5x10~% as genome-wide significant. LD clumping
leads to 10,628 independently associated SNPs with r? <0.1. We then
group these SNPs into 2293 independent loci of which the lead SNP
(lowest p-value within the locus) are at least 500 kb apart. As a metric
of signal density within each locus, we count the number of indepen-
dently associated SNPs within 100 kb of the lead SNP.

We are especially interested in trait-specific SNPs (associated with
only 1 trait as identified by fastASSET) and secondarily highly pleio-
tropic variants with associated with >15 traits.

Validation in UK Biobank

We download the UK Biobank (UKB) GWAS summary statistics from
Neale lab**. Among the 2293 index SNPs of the independent loci
identified by fastASSET, 6 SNPs are not included in the UK Biobank
summary statistics. For each of those SNPs, we identify a proxy SNP in
the UKB summary statistics as the one with the highest r2 within 100 kb
of the lead SNP. If r2 < 0.8 between the lead SNP and the proxy SNP, we
exclude the locus from the validation study in UKB. We successfully
found proxies for 5 index SNPs and one other (rs12203592) does not
have a proxy SNP with r2>0.8.

Among the 11,934 summary level datasets published by Neale lab
(round 2 GWAS, August 1st, 2018), we removed the GWAS results for
age, sex and 22 datasets that do not have a phenotype code. For
continuous traits, we use the summary dataset for the inverse rank
normalized trait (variable type continuous_irnt) and discard the data-
set for the raw trait (variable type continuous_raw). We only keep the
datasets for joint analyzes across both sexes and discard the sex-
stratified results. In addition, there are two versions of GWASs for a
subset of 166 traits. We keep the most recent version (v2) and remove
the first version. After filtering, we retain 4114 summary level datasets
for our validation study. For each the 2292 index SNPs, we select the
associated traits among the remaining 4114 UKB traits by a per-SNP
FDR threshold of 0.05. Note that we are not able to conduct an inde-
pendent validation study due to substantial sample overlap between
our primary discovery data and UKB. Instead, we use UKB data to test
the generalizability of the estimated degree of pleiotropy from 116
traits to a larger number of traits.

Relationship between pleiotropy and LD

To study the relationship between pleiotropy and LD, we estimate LD
scores from 1000 Genomes Phase 3 EUR sample using SNPs with
MAF > 0.01 and 1 centiMorgan (cM) window. The calculation is per-
formed using Idsc software™. Note that here we choose to estimate LD
scores using all the SNPs in our analysis instead of using those down-
loaded from LDSC, which include only HapMap3 SNPs.

eQTL status lookup and colocalization

To explore potential cis-regulatory mechanisms that may drive
pleiotropy, we look up the lead SNPs of the 2293 loci identified by
fastASSET to explore the relationship between the pleiotropy and
eQTL tissue/gene specificity. We accessed eQTL summary statistics
for 49 tissues in GTEx v8%. We lift over the base pair coordinates
from hgl9 to hg38 to match the genome build of GTEx v8. For each

of the lead variant, we count the number of tissues in which it is a
significant eQTL for at least one gene with g-value <0.05, and the
total number of unique genes for which it is a significant eQTL
regardless of tissues.

For each trait-specific locus, we conduct colocalization analysis
between the GWAS signal for the corresponding trait and eQTL signals
in GTEx v8. We restrict to protein-coding genes and gene-tissue pairs
for which the lead SNP of the locus is a significant eQTL at g-value <
0.05. We use the SNPs within 50 kb from the lead SNP as input to
COLOC". We consider the GWAS and eQTL signals to be colocalized if
the posterior probability of colocalization (PP4) > 0.8.

Chromatin state

To explore potential relationship between pleiotropy and chromatin
states, we queried their chromatin state using 15-state chromHMM
model*® in the Haplogreg v4.1 database®. The chromatin state was
learned using a core set of 5 histone marks (H3K4me3, H3K4mel,
H3K36me3, H3K27me3, H3K9me3) for 111 epigenomes from the
Roadmap Epigenomics Project*®. We defined chromatin states with
state number <=7 as an active and open chromatin state, including
active transcription start site (1_TssA), flanking active TSS (2_
TssAFInk), transcription at gene 5’ and 3’ (3_TxFInk), strong tran-
scription (4_Tx), weak transcription (5. TxWk), genic enhancers
(6_EnhG) and enhancers (7_Enh). For each variant, we count the num-
ber of datasets in Roadmap whether it falls in active chromatin state as
well as the number of broad categories provided by Roadmap (https://
egg2.wustl.edu/roadmap/web_portal/meta.html). We also study and
evaluate the association of pleiotropy with each active chromatin state
separately. For example, we select the lead SNPs identified by fas-
tASSET that are 1 TssA in at least one Roadmap dataset and investigate
the relationship between the number of traits selected by fastASSET
and the number of tissue/cell type groups in which this variant is in
1 TssA. We perform same analysis for other active chromatin states to
learn the association. The tissue and cell type groups are defined by the
Roadmap Epigenomics Consortium as provided in the link: (https://
docs.google.com/spreadsheets/d/
1yikGx4MsO9Ei36b64y0y9Vb60oPCSIBGIFbYEt-N6gOM/edit#gid=15).

In addition to chromHMM based model, we conduct similar ana-
lysis using the chromatin states learned by the IDEAS, an integrative
and discriminative epigenome annotation system employing 2D gen-
ome segmentation method®*® to jointly characterize the chromatin
states across many different cell types. Since the IDEAS classification of
chromatin states is marginally different from ChromHMM, we con-
sider 10 TssA (Active Transcription Start Site), 8 TssAFInk (Flanking
Active TSS), 14 TssWk (Weak TSS), 5. Tx (Strong Transcription),
2 TxWk (Weak Transcription), 4 Enh (Enhancers), 6_EnhG (Genic
Enhancers), 17_EnhGA (Active Genic Enhancers) as an active and open
chromatin state. IDEAS algorithm here integrates epigenomes by
preserving the position-dependency and cell type specific epigenetic
events at fine scales™.

The IDEAS bigBed files were downloaded from http://bx.psu.edu/
~yuzhang/Roadmap_ideas/.

The bigBed files were converted to bed format using UCSC pro-
gram bigBedToBed program fetched from the directory of binary
utilities in http://hgdownload.cse.ucsc.edu/admin/exe/.

The bed files thus processed were used for further downstream
analysis, including the association of pleiotropy and epigenetic states.
Blacklisted genomic region was filtered out where applicable as pro-
vided by ENCODE.

Transcription factor binding sites

To understand potential relationship between pleiotropy transcription
factor (TF) binding, we downloaded and referenced the JASPAR 2018%
and HOCOMOCO V11*, homosapiens comprehensive model collection
of motif database. Intersection of variants with TF binding sites was
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performed by Bedtools v2.29.2% to observe the association between
SNPs and transcription factor binding sites.

To associate level of pleiotropy with TF binding profiles, we
divide the 2,293 lead SNPs into two pleiotropy bins: 1) associated
with 1-10 traits 2) associated with >10 traits. We calculate the pro-
portion of SNPs in each bin that overlaps with transcription binding
sites (TFBS). To explore whether this relationship is independent of
the effects of other annotations, we fit the following logistic regres-
sion: (associated with >10 traits) -(overlapping with TFBS)+ (LD
score) + (number of tissues for which the variant is an eQTL)+
(number of eGenes) + (number of cell types for which the variant is in
active chromatin state) and check the significance of the first
predictor.

Enhancer-gene connection

The activity-by-contact (ABC) model combines chromatin states with
3-dimensional contacts to map enhancers to their target genes*”’. We
download the enhancer-gene map for 131 human cell types and tissues
constructed by the ABC model from the Engreitz lab website (https://
www.engreitzlab.org/resources/). This dataset includes all enhancer-
gene connections with ABC scores >= 0.015.

Among the lead SNPs that overlap with enhancers, we compute
the correlation between the level of pleiotropy and the number of cell
types for which the overlapping enhancer affects at least one target
gene by the ABC model. We further compute the partial correlation
adjusting for other annotations: LD score, number of tissues for which
the variant is an eQTL, number of eGenes, number of cell types for
which the variant is in active chromatin state.

Matching trait-specific SNPs to highly pleiotropic SNPs

In the functional follow-up studies of 21 trait-specific SNPs, we match
each of them to one SNP that is also associated with the given trait but
show high-degree of pleiotropy (associated with >15 traits). For each
trait-specific SNP (e.g. for Crohn’s disease), we examine the individual-
trait p-value between the trait (e.g. Crohn’s disease) and all the highly
pleiotropic SNPs and choose the one that shows the strongest asso-
ciation (lowest p-values) with the given trait (e.g Crohn’s disease). In
this procedure, multiple trait-specific SNPs for one trait could be
matched to the same highly pleiotropic SNP. This matching procedure
applies to the examination of top 10 associated traits for lead SNPs
(Fig. 5), eQTL analysis (Fig. 6) and chromatin state analysis (Fig. 7).

Analysis of Biobank Japan data

We download the summary statistics for 220 phenotypes in Biobank
Japan (BBJ)”. We run LD score regression® to estimate the genetic
correlation (slope) and phenotypic correlation (intercept) of these
traits. LD scores of East Asian population are obtained from GitHub
repository Idsc (https://github.com/bulik/ldsc). We apply similar
quality control pipeline as in the analysis of European data: 1) remove
continuous traits with total sample size <5,000 or case-control disease
traits with <2,000 cases or <2,000 controls; 2) remove traits with
heritability z-score <1.96; 3) remove highly correlated traits with
genetic correlation > 0.95 or < - 0.95; 4) remove SNPs with MAF < 0.01
in BBJ. After filtering, we retain 75 traits and 4,965,789 SNPs for fas-
tASSET analysis. Genome-wide significant SNPs are defined as those
with fastASSET global association p-value <5x10~%. We conduct LD
clumping based on fastASSET p-values for global association using
genotype data of 1000 Genomes Phase 3 East Asian population
(N =504) as the reference panel. We require the lead SNPs of different
loci to be nearly independent (r2 < 0.1) and at least 500 kb apart. To
compare patterns of pleiotropy between East Asian and European
ancestry, we obtain the summary statistics for European ancestry
GWAS used in Sakaue et al.?? (UK Biobank and FinnGen). We success-
fully match 72 (out of 75) traits from BBJ in our analysis to traits in UK
Biobank and FinnGen.

Inclusion & ethics statement
This study uses publicly available data. Ethics approvals were obtained
by the original studies that generated the data.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All data used in this paper are publicly available. Summary statistics
from the GRASP repository are available for download at https://
grasp.nhlbi.nih.gov/Overview.aspx. Other summary data are avail-
able through links provided by the original publication (see Sup-
plementary Data 1 for references). Biobank Japan GWAS summary
statistics are available at the National. Bioscience Database Center
(NBDC) Human Database with the accession code hum0197 (https://
humandbs.dbcls.jp/en/hum0197-v18). Functional genomic data can
be accessed via links below. GTEx Consortium: https://www.
gtexportal.org/home/. Roadmap Epigenomics Project: https://egg?2.
wustl.edu/roadmap/web_portal/index.html. Neale lab UK Biobank
GWAS: http://www.nealelab.is/uk-biobank. JASPAR database for
transcription factor binding profiles: http://jaspar.genereg.net/. ABC
model: https://www.engreitzlab.org/resources/. Biobank Japan
GWAS and European ancestry validation GWAS summary statistics:
https://humandbs.dbcls.jp/en/hum0197-vi8 Source data are pro-
vided with this paper.

Code availability

fastASSET (v0.1.0)*' is available as an R package via GitHub repository
https://github.com/gqi/fastASSET. It is also available as a function in
the ASSET R package (https://github.com/sbstatgen/ASSET, function
fast asset). LD score regression was performed using LDSC (v1.0.1):
https://github.com/bulik/Idsc. Data collection and analysis were con-
ducted using R v4.0.2 and 4.3.2.
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