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Genome-wide large-scale multi-trait analysis
characterizes global patterns of pleiotropy
and unique trait-specific variants

Guanghao Qi1, Surya B. Chhetri2,3, Debashree Ray 4,5, Diptavo Dutta 6,
Alexis Battle 2,7,8, Samsiddhi Bhattacharjee 9 & Nilanjan Chatterjee 5,10

Genome-wide association studies (GWAS) have found widespread evidence of
pleiotropy, but characterization of global patterns of pleiotropy remain highly
incomplete due to insufficient power of current approaches. We develop fas-
tASSET, a method that allows efficient detection of variant-level pleiotropic
association across many traits. We analyze GWAS summary statistics of 116
complex traits of diverse types collected from the GRASP repository and large
GWAS Consortia. We identify 2293 independent loci and find that the lead
variants in nearly all these loci (~99%) to be associatedwith ≥ 2 traits (median =
6). We observe that degree of pleiotropy estimated from our study predicts
that observed in the UK Biobank for a much larger number of traits (K = 4114)
(correlation = 0.43, p-value <2:2× 10�16). Follow-up analyzes of 21 trait-specific
variants indicate their link to the expression in trait-related tissues for a small
number of genes involved in relevant biological processes. Our findings pro-
vide deeper insight into the nature of pleiotropy and leads to identification of
highly trait-specific susceptibility variants.

Genome-wide association studies (GWAS) have identified thousands of
susceptibility loci across individual complex traits and diseases1. Stu-
dies have also pointed to the evidence of widespreadpleiotropy2–5, i.e.,
genetic variants within individual loci are often associated with mul-
tiple traits. The discovery of pleiotropy has transformed the analysis
and interpretation of GWAS data. It has, for example, led to the
development of more powerful statistical methods for association
testing6–11 and polygenic prediction10, robust methods for causal
inference accounting for pleiotropic associations12–15, as well as new
study designs to investigate multiple or even hundreds of traits
simultaneously16–19. The presence of pleiotropy also poses unique

opportunities and challenges for developing or/and repurposing
drugs while minimizing their “off-target” antagonistic effects20.

There has been a long quest in genetics to characterize the degree
and nature of pleiotropy for complex traits21. Early population genetic
models postulated universal pleiotropy where genetic variants at any
given locus have the potential to affect all traits21. More recent
experimental studies, however, have suggested thatwhile pleiotropy is
highly prevalent, it is likely to bemodular in nature, i.e. any given gene
is likely to affect a relatively small number of traits21. Data from recent
GWAS for human traits have also indicated pleiotropy is pervasive2–5,
but quantifying the true extent of pleiotropy has been challenging.
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Anumber of recent studies4,22 have quantified the degree of pleiotropy
associated with a variant based on the number of associated traits that
reach genome-wide significance (p< 5× 10�8) in individual trait ana-
lysis, but such analysis inevitably leads to serious underestimation of
the extent of pleiotropy due to lack of power for GWAS of individual
traits for the detection of smaller effect-sizes. Another recent study
adopted use of a more liberal threshold (z-statistic > 2 or < -2)23 for
large scale detection of pleiotropy, but such an analysis can introduce
a large number of false positives.

In addition, while previous studies have mostly focused on
detecting highly pleiotropic loci and variants17,22,24, we believe that
given the evidence of highly abundant pleiotropy, an interesting line of
investigation would be to detect highly trait-specific loci and variants
and explore their unique biological characteristics, if any. Identifica-
tion of trait specific genetic association may facilitate identification of
“core genes” under the omnigenic model for complex traits25,26, dis-
tinguish the genetic architecture of related traits and potentially help
develop drug targets with fewer side effects. Detection of trait-specific
associations, however, requires highly powerfulmethods for detecting
pleiotropy as undetected weaker associations would lead to an
increase infindings for trait-specific variants. Themost comprehensive
analysis of pleiotropy based on current GWAS4 has reported that
almost 70% of identified individual SNPs to be associated with a single
trait-domain, but these are likely to be highly overestimated due to the
lack of power of the underlying analytic method.

In this paper, we develop fastASSET, an extension of the ASso-
ciation analysis based on subSETs (ASSET), which allows detection of
any association between a variant and an underlying subset of traits
that contribute to the association signal7. Amajor advantage of ASSET,
compared to other multi-trait association tests6,8,9, is that it not only
allows powerful detection of SNPs that show any association across a
group of traits, but also readily maps significant SNPs to sets of asso-
ciated traits. The subset selection feature, which has shown to have
robust sensitivity for the detection of true traits under association
evenwhen power of individual studies vary7, makes themethod ideally
suited for the investigation of the extent of pleiotropy in current
GWAS.While themethodhas been successfully applied to a number of
multi-trait GWAS analyzes27–29 involving a limited number of traits, it is
not feasible to implement for the analysis of very large number of traits
because of computational burdens associated with all subset search.
Here, we develop fastASSET that allows association testing for indivi-
dual SNPs acrossmany traits byfirst incorporating apre-screening step
and then performing ASociation-testing based on SubsETs (ASSET) on
selected traits with suitable adjustment for the pre-screening for p-
value evaluation. Pre-screening excludes traitswith largep-values from
subset search and reduces the computational burden. The subset
selection feature gives fastASSET unique advantage to map significant
variants to sets of associated traits. The vast majority of multi-trait
methods such as metaCCA30, MOSTest31, and JASS32, MultiPhen8,
metaMANOVA, metaUSAT6, and HIPO9 focuses on identifying variants
associatedwith at least one of the traits without specifyingwhich traits
are associated (Table 1). Such discoveries are harder to interpret when
many traits are analyzed simultaneously, considering that genetic
associations have been reported across most part of the genome1.
MTAG10 uses multi-trait summary statistics to estimate SNP effects on
each trait but does not account for multiple testing across traits which
is critical for the analysis of many traits simultaneously. fastASSET
returns both multiple-testing adjusted p-values for association testing
and a subset of selected traits, enhancing the interpretation of pleio-
tropic associations (Table 1).

We use fastASSET to analyze 116 traits collected from large
GWAS Consortia and the Genome-Wide Repository of Associations
Between SNPs and Phenotypes (GRASP) hosted by the National
Institutes of Health (NIH). We identify 2293 independent loci that are

associated with at least one trait and show that lead variants at nearly
all of these loci are associated with two or more traits. We show that
the degree of pleiotropy we estimate for the underlying variants
based on the 116 traits predicts the level of their pleiotropy asso-
ciatedwith amuch larger number of traits (>4000) in theUKBiobank
Study. We conduct a series of follow-up analyses to examine whether
the degree of pleiotropy of genetic variants may be related to func-
tional mechanisms, including cis-regulatory effects, chromatin
states, transcription factor (TF) binding, and enhancer-gene con-
nections. We further provide detail characterization of 21 highly
unique trait-specific variants, i.e., those were associated with only
one trait in the fastASSET analysis. In addition, we apply fastASSET to
study the patterns of pleiotropy in East Asian population and com-
pare with the patterns in European data. Finally, we discuss the lim-
itations of the study and the different types of pleiotropy.We caution
that the pleiotropy discussed in the study are based on associations
and not necessarily causal patterns.

Results
Overview of datasets and methods
We collect 338 summary-level datasets from the NIH GRASP reposi-
tory and supplement it with 20 summary-level datasets from large
GWAS Consortia. See Supplementary Fig. 1 for data preprocessing
pipeline and Methods for details. After filtering out duplicated and
highly correlated traits, removing studies with small sample sizes and
data quality issues, we retain 116 well-powered studies consisting of
primarily participants of European ancestry (Supplementary
Data 1 and 2). The studies cover a wide range of complex traits and
diseases in 16 domains (Supplementary Data 1). Genetic correlation
analysis using linkage disequilibrium (LD) score regression3 reveals
widespread genome-wide pleiotropy (Supplementary Fig. 2). Here,
we use LD scores for European ancestry downloaded from the LDSC
GitHub repository (see “Methods” for details). We restrict further
analysis to 7,462,466 single-nucleotide polymorphisms (SNP) for
which summary-statistics were available for at least 50 out of the 116
traits and have minor allele frequency (MAF) > 0.01.

We develop fastASSET, an extension of the ASSET method7, to
conduct multi-trait association testing across a large number of traits
(see Fig. 1, Methods and Supplementary Notes for details). ASSET was
originally designed to conduct single-SNP association tests by per-
forming meta-analysis across all subsets of traits and then evaluating
the significance of the maximum of meta-analysis z-scores over all
subsets7. In this method, for SNPs that reach a desired significance
threshold for association, the set of traits for which the underlying
meta-analysis z-statistics is maximized defines the set of underlying
associated traits. For the analysis of a large number of traits, the ori-
ginal ASSET, which searches through all subsets, is computationally
intractable. The fastASSETmethod reduces the computational burden
by only searching among the traits which show suggestive evidence of
associations. The method first de-correlates the z-statistics for a given
SNP associated with different traits using estimates of phenotypic
correlations available from the LD score regression (see Fig. 1 and
Methods). Next, it selects the set of traits that shows suggestive level of
association (e.g. p<0:05) with the given SNP based on the de-
correlated z-statistics. The de-correlated z-statistics are then adjusted
for the pre-selection step as ezk = sign zk

� �
Φ�1ð1�epk

2 Þ whereepk =PðjZk j> jzk jjjZk j>Φ�1ð0:975ÞÞ and Φ is the quantile function of
standard normal distribution. The adjusted z-statistics are then further
transformedback to theoriginal scale of the traits, alsousing estimates
of phenotypic correlations available from the LD score regression, and
then theseZ-statistics are incorporated as input into theoriginalASSET
method. For each SNP, fastASSET outputs a p-value for the association
with any trait under consideration (“global association”) and a set of
associated traits.
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Simulation studies
We simulate GWAS summary statistics for 116 traits (see Supplemen-
taryNotes for simulation settings).We compare fastASSET to three ad-
hoc approaches: selecting traits whose individual-trait associations
reach 1) genome-wide significance p< 5× 10�8, 2) p<0:05, or 3)
FDR <0.05 across traits. Averaged across scenarios, fastASSET out-
performs p< 5× 10�8 and p<0:05 in estimating the degree of

pleiotropy (Fig. 2a, b). The genome-wide threshold p< 5× 10�8 is
highly conservative and consistently underestimates the degree of
pleiotropy. The liberal threshold p<0:05 introduces many false posi-
tives and tends tooverestimatepleiotropyby a largemargin, especially
when the true degree of pleiotropy is low (2 or 5 traits). The other
method, FDR <0.05, have comparable performance with fastASSET
when N= 100k. fastASSET tends to be more accurate than FDR <0.05

Table 1 | Summary of existing methods for multi-trait association testing using GWAS summary statistics

Method Description Output Reference
(PMID)

metaCCA Perform canonical correlation analysis (CCA) using correlation matrices
estimated from summary statistics and reference panel

P-value for association with a set of traits
(global association)

27153689

MOSTest Mahalanobis norm of the vector of z-statistics (zTΣ�1z) with correlation
matrix Σ estimated form randomly permuted genotypes

32665545

JASS
Omnibus test statistic based on zTΣ�1z and sumZ statistic

wTZð Þ2
wTΣw

32002517

MultiPhen Regression with the genotype as dependent variable and phenotype for
multiple traits as independent variable

22567092

metaMANOVA Test association using multivariate analysis of variance statistic, highly
similar toMOSTest and JASSOmnibus test. CorrelationmatrixΣ is estimated
using SNPs with no association with the traits.

29226385

metaUSAT Optimal combination of metaMANOVA and sum of squared score (SSU)
statistics

29226385

HIPO Search for the linear combination of multi-trait summary statistics that
maximizes average non-centrality parameter across SNPs

30289880

MTAG Use multi-trait summary statistics to obtain single-trait effect size estimates
by incorporating a prior distribution on the effect size

Estimate of individual-trait GWAS effect size
and associated test statistic

29292387

ASSET/fastASSET Search for optimal subset of traits that maximizes meta-analysis z-statistic P-value for association with a set of traits
(global association) and a subset of selected
traits

22560090

Fig. 1 | Pipeline of fastASSET. fastASSET is a statistical method for large-scale
multi-trait analysis across many traits. As an extension of ASSET, fastASSET sear-
ches for the subset of traits that leads tomaximummeta-analysis z-statistic, among
those that pass a liberal pre-screening threshold P <ppthr (e.g., pthr =0:05). It
adjusts the z-statistics for pre-screening to avoid “double dipping” while account-
ing for sample overlap across studies. The procedure is as follows. 1) Apply hier-
archical clustering to the LD score regression intercept matrix (top-left heatmap),

which represents correlation of z-statistics induced by sample overlap. 2) De-
correlate z-statistics within each cluster using Cholesky decomposition. Select the
traits with P <ppthr corresponding to de-correlated z-statistics (red rows in the
tables). 3) Adjust the z-statistics for pre-screening using conditional p-values. 4) Re-
introduce the correlation by multiplying by the Cholesky decomposition. 5)
Combine z-statistics across clusters and feed to ASSET as input.
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under lower sample size (N = 50k) but less accurate when N= 200k
(Figs. 2a, b). This is likely due to the increased power of individual-trait-
based approach under large sample size, hence there is less benefit in
using amulti-traitmethod. The performance for identifying the subset
of associated traits tracks closely with that for estimating pleiotropy
(Fig. 2c). When N= 50k or 100k and K= 2 or 5, fastASSET maintains

high precision and substantially improves recall compared to more
conservativemethods p< 5 × 10�8 and FDR <0.05. fastASSETperforms
similarly to FDR <0.05 under larger N and K and appears less powerful
(lower recall) when N= 200k and K = 10 or 15. The Genome-wide
threshold p< 5 × 10�8 has low recall across scenarios, while the liberal
threshold p <0.05 has low precision. fastASSET is conservative in

Fig. 2 | Performance of fastASSET for estimation of pleiotropy and trait selec-
tion in simulation studies. a Estimated degree of pleiotropy (number of traits) vs.
true degree of pleiotropy (dashed lines). Boxplots show the median (centerline)
and first and third quartiles (lower and upper hinges) of the distribution (n = 300
replications). The top of upper whisker represents the largest value no more than
1.5 * interquartile range (IQR) from the hinge; the bottom of lower whisker repre-
sents the smallest value no more than 1.5 * IQR of the hinge. b Average absolute
error for estimating the degree of pleiotropy, defined as the mean( | estimate-
truth | ). The individual-trait-based methods (false discovery rate (FDR) < 0.05,
p <0.05, p < 5 × 10−8) are based on two-sided z-test. c Precision-recall for identifying
associated traits. For a–c, GWAS regression coefficients for one SNP j and 116 traits
(β̂j , vector of length 116) are simulated frommodel β̂j =βj + ej , where ej is the error

term generated from multivariate normal distribution that reflects realistic corre-
lation across traits. True effect βj is simulated by first randomly selecting a set of
K = 2, 5, 10 or 15 traits (columns) which have true associations with the SNP, fol-
lowed by generating the effect size from βf ix +Nðmean=0,variance=0:012Þ.
Around half of the K traits (round(K/2)) have βf ix = �0:01 and the rest have
βf ix =0:01, which reflects bidirectional fixed effects. Effect size heterogeneity is
reflected by Nðmean=0,variance=0:012Þ. We vary the sample size N, assumed to
be the same across all traits, to 50k, 100k and 200k (rows). This simulation pro-
cedure is repeated 300 times for each setting. See Supplementary Notes for details.
Calculation of precision and recall is restricted to SNPs that reach genome-wide
significance for global association: fastASSET p-value < 5 × 10�8 for fastASSET,
metaUSAT p-value < 5 × 10�8 for the other three methods.
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detecting trait-specific variants (associated with 1 trait), with high
precision and very low recall (Supplementary Data 3). This property
appears more desirable when the sample size is low. For example,
when N = 20k, the precision for fastASST is 47.8% and that for FDR <
0.05 is 13%. Though the recall for fastASSET ismuch lower (3.7% vs 15%
for FDR <0.05), the high precision allows us to restrict follow-up
analyses to high-confidence trait-specific SNPs. When the sample size
is larger, the precision of FDR <0.05 catches up with that of fastASSET
with a higher recall.

In addition, fastASSET has well controlled type I error for
detecting global association. metaUSAT (v1.17) and metaMANOVA6,
two methods that only conduct global association testing but not
subset selection, havemoderately inflated type I error (Supplementary
Data 4). fastASSET has comparable power to metaUSAT and meta-
MANOVA (Supplementary Fig. 3), with slight power gain at N = 200k
and slight loss when N = 50k. We observe that power reaches near
saturation for several scenarios. This indicates that power difference is
less distinguishable across methods for pleiotropic analysis across
many traits. Hence the subset selection feature provided by fastASSET
is an important advantage over other multi-trait methods. We also
compare the running time of fastASSET and the original ASSET (Sup-
plementary Data 5). The running time of ASSET grows rapidly with the
number of traits analyzed. For 25 traits, ASSET uses ~46min (2733.89 s)
to analyze 100 SNPs. However, fastASSET can complete analysis of the
same data within a few seconds, even if the number of traits reaches
100. Compared to two other multi-trait methods, fastASSET is faster
than metaUSAT but slower than metaMANOVA (Supplemen-
tary Data 5).

We conduct additional simulations to evaluate the performance
of fastASSET to estimate pleiotropy in more general scenarios that
allow heterogeneous sample size and genetic correlation across traits
(Supplementary Fig. 4). In this scenario, genetic effects are simulated
as the sum of a homogeneous component (same effect size across
associated traits) and a heterogeneous component (varying effect size
across traits). See the legend of Supplementary Fig. 4 for details. The
patterns are largely similar to the previous simulation setting: fas-
tASSET is more accurate than FDR<0.05 in estimating degree of
pleiotropy when N= 50k, but could be less accurate in some scenarios
when N= 200k. When there are only heterogeneous effects (homo-
geneous effect = 0), fastASSET has a clear advantage over FDR <0.05
for estimating pleiotropy, but can have low precision for identifying
associated traits in some settings (when only two traits have true
associations).When thehomogeneous effect is strong (Supplementary
Fig. 4c), fastASSET appears to have comparable performance with
FDR <0.05 when averaged across all scenarios. However, it has better
precision-recall tradeoff compared to the scenario with no homo-
geneous effect.

Quantifying and validating levels of pleiotropy
We find widespread genetic associations and varying degree of pleio-
tropy across the genome (Fig. 3). Identified associations represent
2293 loci (fastASSET p-value < 5 × 10�8, r2 < 0:1 and > 500 kb apart,
Supplementary Data 6). We further investigate the signal density
within each locus by counting the number of independent genome-
wide significant SNPs (fastASSET p-value < 5 × 10�8, r2 < 0:1) within
100 kb of the lead SNP (see “Methods” for details). We observe sub-
stantial variation in signal density (Fig. 3).Multiple independent signals
were present at nearly half (48% out of 2293) of the loci; 11% of the loci
harbored at least 5 independent signals and some loci canharbor up to
25 signals (Fig. 3). For the loci with multiple associated SNPs, levels of
pleiotropy can vary within the locus (Fig. 3). For example, SNP
rs3760047 (chr16:281299) is associated with 4 traits, but 8 out of the
15 significant SNPs within 100 kb are associated with 2–5 traits and the
remaining 7 SNPs are associated with 6-10 traits (Supplementary
Data 6). In the following, we use the lead SNPs detected by fastASSET

for each locus to study the level of pleiotropy across the genome and
its relationship with different types of variant annotations.

The vast majority of the lead SNPs are associated with 2–10 traits
with a median of 6 (Fig. 4a). At the two ends of the spectrum, we found
21 SNPs to be associated with only one trait, representing highly trait-
specific genetic mechanisms and 58 SNPs to be highly pleiotropic
defined as those which are associated with 16 or more traits. Next, we
investigate whether the degree of pleiotropy we estimate for the lead
variants based on the 116 traits also predicts degree of pleiotropy that
the same variants will manifest across a much wider spectrum of traits.
To test this hypothesis, we collect the summary statistics for 4114 traits
from the Neale lab UK Biobank (UKB) GWAS33,34, and quantify the levels
of pleiotropy for each of the 2293 lead SNPs by the number of asso-
ciated traits at per-SNP false discovery rate (FDR) <0.05. See “Methods”
for details. We observe that degree of pleiotropy estimated from our
study predicts that observed in the UKBiobank (spearman correlation =
0.43, p-value < 2:2 × 10�16, Fig. 4b). The relationship remains highly
significant even after adjusting for LD score (partial correlation = 0.42,
p-value < 2:2 × 10�16). The analysis indicates that pleiotropic char-
acteristics of the detected SNPs is not specific to the selected traits in
our discovery analysis and likely represent a much broader property
related to their roles in gene regulation.

Relationship with functional and LD annotations
We investigated how the level of pleiotropy is correlatedwith different
types of variant annotations. First, we found that the numbers of
associated traits detectedby fastASSET tobepositively correlatedwith
LD score values across the 2293 lead SNPs (R2 = 0.059, p-value =
4:95 × 10�32, Fig. 4c). The pattern is expected since lead SNPs which
tag more SNPs due to LD will appear to be associated with a larger
number of traits when there are distinct causal variants for distinct
traits within the loci. We also found that SNPs associated with a larger
number of traits tend to be significant expression quantitative trait loci
(eQTL) for a larger number tissues and for a larger number of eGenes
(both R2 = 0.069, p-value < 2:2× 10�16). Trait-specific SNPs are sig-
nificant eQTL for a median of 1 tissue and 1 gene, while highly pleio-
tropic SNPs ( > 15 traits) are significant eQTL for a median of 22.5
tissues and 4.5 genes (Fig. 4d). While such pattern has been reported
earlier4, we observe a much sharper dose-response trend and higher
level of statistical significance (e.g. compared to Fig. 1e in ref. 4), arising
likely due to the higher accuracy of the fastASSET analysis for the
detection of degree of pleiotropy. In our dataset, eQTLs explain less
variation of pleiotropy if it is quantified by the number of traits
reaching p< 5× 10�8 (the approach adopted by Watanabe et al.4), with
R2 = 0.031 for number of tissues and R2 = 0.052 for number of eGenes.
We also found more pleiotropic SNPs tend to be in regions of active
chromatin state in a larger number of tissue or cell types, reflected by
results from the IDEAS method35,36 (Fig. 4e). This trend is especially
pronounced for the promoter (10_TssA, 8_TssAFlnk and 14_TssWk) and
transcription (5_Tx and 2_TxWk) related chromatin states, but weaker
for enhancer-related states (4_Enh, 6_EnhG and 17_EnhGA).We observe
similar relationship using chromatin states learned by ChromHMM
(Supplementary Fig. 5). In a multivariate regression analysis that
accounts for LD and all functional annotations simultaneously, we
found the relationship between degree of pleiotropy and three types
of functional characteristics of the SNPs each remain highly significant
(p-value < 0.005), with eQTL tissue specificity showing the largest
effect size in per standard deviation unit (Fig. 4f). Further, analysis
based on the JASPAR and HOCOMOCO databases37,38 revealed that
more pleiotropic SNPs (>10 traits) are more likely to overlap with
transcription factor binding sites (TFBS) (p-value = 0.022, Supple-
mentary Fig. 6). The relationship remains significant (p-value = 0.021)
after adjusting for the annotations in Fig. 4 (Supplementary Fig. 6).
Finally, analysis based on activity-by-contact (ABC) model revealed
that among the SNPs that overlap with enhancers, level of pleiotropy
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Fig. 3 | Brisbane plot showing signal density and levels of pleiotropy of 2,293
genome-wide significant loci identified by fastASSET analysis across 116 traits.
We define significant SNPs as those that have fastASSET p-value < 5 × 10�8 (two-
sided) and clump themtoobtain 10,628 independent SNPs (r2 <0:1), whichwe then
group into 2293 loci whose lead SNPs (strongest association within a locus) are at
least 500 kb apart. Each dot represents the lead SNP of a locus, and the y axis is the
number of independent significant SNPs within 100kb from the lead SNP. In a dots
are colored by the number of traits associated with the lead SNP as reported by
fastASSET. In b–e dots are colored by the proportion of significant SNPs in a locus

(within 100kb from the lead SNP) that fall into each category of pleiotropy. bColor
represents proportion of significant SNPs that are trait-specific (associated with 1
trait). cColor represents proportion of significant SNPs that are associatedwith 2–5
traits. d Color represents proportion of significant SNPs that are associated with
6–10 traits. e Color represents proportion of significant SNPs that are associated
with > 10 traits. Nearly half (1094) of the loci harbor at least two independent
genome-wide significant SNPswithin 100 kbof the leadSNP (including the leadSNP
itself); 248 (11%) loci harbor at least 5 significant SNPs within 100kb of the lead
SNP. See Supplementary Data 6 for details.
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increases with the number of active tissues (correlation = 0.09,
p-value = 0.069, Supplementary Fig. 6). However, this relationship
disappears after adjusting for other annotations (p-value = 0.65, Sup-
plementary Fig. 6).

Trait-specific Variants
The fastASSET analysis identified 21 independent trait-specific lead
SNPs, defined as those for which associated subset included only one
trait (Table 2). We observe that the association p-value between a trait-
specific SNP and the primary trait are at least 108 times lower than the

next most strongly associated trait (Fig. 5 and Supplementary Fig. 7).
Highly pleiotropic SNPs, however, often have comparable level of
associations with a large number of traits (Fig. 5 and Supplementary
Fig. 7). We also validate the nature of trait specificity of these SNPs in
the external UK Biobank study (Table 2). Notably, even though UK
Biobank covered a much larger of traits, the trait-specific SNPs we
identified for Alzheimer’s disease, breast cancer, prostate cancer,
Crohn’s disease (CD) are only associated with traits related to these
diseases, except rs4631223 detected for primary trait CD was also
found tobe associatedwithUrea. Someof the disease-specific SNPswe

Fig. 4 | Number of associated traits detected by fastASSET and its relationship
with different variant annotations. Results are shown for only the lead SNPs of
2,293 independent loci identifiedby fastASSET. Sub-figures show (a) Distributionof
number of associated traits; b Relationship with the number of associated traits in
the UK Biobank (per-SNP FDR <0.05, each point represents a lead SNP);
cRelationshipwith linkage disequilibrium (LD score). Forb and c shared area along
the blue line is the 95% confidence band.d Relationshipwith number of tissues and
genes for which the SNP is a significant eQTL in GTEx v8; e Relationship with the
number of cell types in which the SNP is in each active chromatin state; f Effect of
each annotation on pleiotropy (number of associated traits) conditional on other

annotations, and 95% confidence intervals. Chromatin states are learned by IDEAS
method (Zhang et al, 2017)usingdata from theRoadmapEpigenomicsConsortium.
Coefficients in (f) are estimated using multiple linear regression model of the form
pleiotropy∼ LD scoreð Þ+ num:of tissues as eQTLð Þ+ num:of eGenesð Þ+
ðnum:of cell types in active chromatinÞ where all dependent and independent
variables are standardized to have unit variance. Boxplots show the median (cen-
terline) andfirst and thirdquartiles (lower andupper hinges) of thedistribution; the
top of the upper whisker represents the largest value no more than 1.5 * inter-
quartile range (IQR) from the hinge; the bottom of lower whisker represents the
smallest value no more than 1.5 * IQR of the hinge.
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detectedwere not significant (FDR ≥0:05) in the UK Biobank (Table 2)
likely due to its lower number of cases for rare diseases compared to
large case-control studies that contributed to our discovery analysis.
For quantitative traits, we observe replication of trait-specificity in the
UK biobank for most of the trait-specific SNPs for intelligence, male
baldness, age at menarche and monocyte count (Table 2). The trait-
specific SNPs we detected for heel bonemineral density (BMD), height
and diastolic blood pressure (DBP), however, were associated with a
larger number of traits in the UKB, but the majority of the additional
traits were related to the primary trait.

Cis-regulatory effects for trait-specific SNPs
To gain further insight into themechanisms driving trait-specific SNPs,
we search for their cis-eGenes and corresponding tissues in GTEx39, as
well as the biological functions of the eGenes in the GeneCards
database40. Although eQTL studies may be biased towards specific
types of variants41, they still explain a significant fraction of trait
heritability42, which could increase further as more eQTL data are
collected on new cell types or contexts. Among the 21 trait-specific
SNPs, 11 SNPs are eQTLs for at least one gene-tissue pair (q-value <

0.05) in GTEx v8 (Fig. 6 and Supplementary Fig. 8). Five of them are
associated with the expression of one single gene. rs6733839 (Alzhei-
mer’s disease) is a significant eQTL for BIN1 gene in aorta (Fig. 6).
Though the aorta does not appear to be the relevant tissue for Alz-
heimer’s disease, the SNP is alsomoderately associated the expression
of the BIN1 in brain cerebellum (Supplementary Fig. 9). rs7667257
(breast cancer) is an eQTL for only GLRA3 in breast mammary tissue,
which is exactly the relevant issue for breast cancer. rs12653946
(prostate cancer) is associated with the expression of IRX4 in 4 tissues
but has the largest effect size in prostate–the disease’s tissue of
occurrence (Fig. 6). rs9914258 (heel BMD) is associated with the
expression of GAS72 with the strongest effect in cultured fibroblasts
(Supplementary Fig. 8). rs41409548 (monocyte count) is associated
with the expression of IL17RA in brain cortex (Supplementary Fig. 8)
and a number of other brain tissues (Supplementary Fig. 9).

The other trait-specific SNPs, though not exactly tissue or gene
specific, are generally associated with a small number of genes in a
small number of tissues compared to highly pleiotropic “matched”
SNPs that are also associated with the same traits. rs4631223 (Crohn’s
disease) is associated with the expression of TTC33 and PTGER4, and

Fig. 5 | Top 10 associated traits for trait-specific SNPs for binary diseases and
matched highly pleiotropic SNPs. a Trait-specific SNPs for binary disease traits.
b Matched highly pleiotropic SNPs. Traits are ordered by descending order of
-log10(p-value) in each panel. See Supplementary Data 1 for sample size of
individual-trait GWASs. P-values are from two-sided z-tests for individual traits.

Each disease-specific SNP ismatched to the highly pleiotropic SNP ( > 15 traits) that
has the smallest association p-value with the disease (matched trait shown in the
parentheses). See Supplementary Fig. 7 for trait-specific SNPs for quantitative traits
and matched highly pleiotropic SNPs. See “Methods” for details of the matching
procedure.
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the largest effect size for PTGER4 is in small intestine (Fig. 6), the organ
where Crohn’s disease usually occurs. Another trait-specific SNP for
Crohn’s disease, rs4958425, is associated with the expression of IRGM,
ZNF300 and RBM22. The association for RMB22 occurs in colon
transverse and a secondary association for ZNF300 occurs in colon
sigmoid (Fig. 6), both of which are in the digestive system. IRGM is
moderately associated with rs4958425 in small intestine (Supplemen-
tary Fig. 9). Previous studies have supported the connections between
the trait mechanisms and the functions of some of the genes above,

including the role of BIN1 in Alzheimer’s disease, PTGER4 and IRGM in
Crohn’s disease and IL17RA in monocyte count43–46 (Supplemen-
tary Data 7).

We further used COLOC47 to conduct colocalization analysis for
the loci indexed by 11 trait-specific SNPs that are also significant eQTLs
in GTEx. We find evidence of colocalization (PP4 >0.8) between
genetic effects on the trait and on gene expression for 8 trait-specific
SNPs (Supplementary Data 8), indicating shared causal SNPs. Many of
the genes and tissueswehighlighted as potentialmechanisms for trait-

Fig. 6 | Cis-regulatory effects of trait-specific SNPs for binary diseases and
matched highly pleiotropic SNPs. For each SNP, we show its protein-coding
eGenes (q-value < 0.05) and the corresponding top tissues in GTEx v8. The top
tissues for each variant-gene pair are defined as those with eQTL effect size is
>0.7*(the largest effect size among significant tissues for this variant-gene pair);
the tissue harboring the largest effect is highlighted by darker dashed lines. In
addition, we annotate each gene name by the total number of associated tissues

(q-value < 0.05) regardless of effect size. Each trait-specific SNP is matched to the
highly pleiotropic SNP (>15 traits) that have the strongest association with the trait
(lowest p-value). See “Methods” for details of the matching procedure. Pseudo-
genes and non-coding RNAs are excluded. See Supplementary Fig. 8 for trait-
specific SNPs for quantitative traits and highly pleiotropic SNPs. BrCa: breast can-
cer; PrCa: prostate cancer; CD: Crohn’s disease.
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specific SNPs (Fig. 6 and Supplementary Fig. 8) are also supported by
colocalization, e.g. IRX4 and prostate, PTGER4 and small intestine,
RBM22 and transverse colon, etc. (Supplementary Data 8). These
results provide further evidence that trait-specificity may be driven by
gene- and tissue-specific cis-regulatory effects.

Chromatin state of trait-specific SNPs
We explore another potential mechanism of trait-specificity using
chromatin states learned by the IDEAS method35 using data from
Roadmap Epigenomics Consortium48. Though the number of SNPs is
small, we find suggestive evidence that trait specific SNPs tend to be in
active chromatin state only in specific tissue or cell types (Fig. 7). On
the other hand, highly pleiotropic SNPs tend to have active chromatin
state in a wide range of tissue and cell types (Fig. 7). For a number of
trait-specific SNPs, chromatin state results strongly link the SNP to
trait/disease related tissues. For example, rs4631223 (Crohn’s disease)
is in active chromatin state in blood and T-cells, B-cells and digestive
tissues, which are related to the immune mechanism of Crohn’s dis-
ease and the organ where it occurs. rs6733839 (Alzheimer’s disease) is
active in brain andmuscle tissues (Fig. 7), both of which were shown to
be involved the disease49–51, though it is also active in immune cells and
digestive tissues, whose role in the disease is less clear. rs61926181
(DBP) is active in heart tissues which is also closely related to DBP.

Pleiotropy in East Asian population
To study thepatterns of pleiotropy in adifferent population,we collect
GWAS summary statistics for 220 traits in Biobank Japan (BBJ)22. After
quality control (see “Methods” for details), 75 traits remain for the final
statistical analysis (Supplementary Data 9). Using fastASSET, we iden-
tify 778 loci with significant global association (p< 5× 10�8, r2 < 0:1,
lead SNPs are >500 kb apart). See Supplementary Data 10 for the list of
lead SNPs. The number of associated traits ranges from 1 to 20, with
mode at4 traits (Fig. 8a). For each variant identified inBBJ,we compute

the number of associated traits in European population (SNP-specific
FDR <0.05). The level of pleiotropy in BBJ and that in European sample
has a correlation of 0.34 (p<2:2× 10�16) among approximately the
same set of traits, showing evidence of replication and heterogeneity
across populations. Consistent with the results for European ancestry
(Fig. 4c), the level of pleiotropy is correlated with LD score with
R2 = 0.093 (Fig. 8c). We identify 10 trait-specific lead SNPs in the BBJ
(Fig. 8d). These SNPs are associated with breast cancer, prostate can-
cer, height, G-glutamyl transpeptidase (GGT), platelet count (PLT), and
urolithiasis. In the GTEx data, these trait-specific SNPs are eQTLs for a
small number of genes and tissues, though they appear less tissue- and
gene-specific than the trait-specific SNPs identified in the European
data (Supplementary Data 11). This could be due to the lack of eQTL
data for East Asian ancestry, and GTEx (primarily European) cannot
accurately reflect ancestry-matched eQTL effects possibly due to dif-
ferences in allele frequencies and LD with causal variants.

Discussion
In this paper, we present fastASSET for large-scale multi-trait genome-
wide association analysis. fastASSET possesses two features simulta-
neously: 1) a p-value for global association and 2) a subset of traits
associated with each variant. The power of fastASSET for global asso-
ciation is comparable to existing multi-trait methods (Supplementary
Fig. 3). The subset selection feature, which is not possessed by the vast
majority of multi-trait methods, is a unique advantage that enables us
to study patterns of pleiotropy. In particular, for joint analysis of awide
range of traits, global association testing without specifying the set of
associated traits is difficult to interpret. We observe that fastASSET
estimates degree of pleiotropy and identifies associated traits more
accurately than ad-hoc methods based on individual-trait p-values
(Fig. 2). Compared to these ad-hoc methods for trait selection, fas-
tASSET offers a formal way to screen out variants without any phe-
notypic effects. Although it is possible to extend fastASSET for multi-

Fig. 7 | Cell types in which the trait-specific and matched highly pleiotropic
SNPs have active chromatin state. Each trait-specific SNP ismatched to the highly
pleiotropic SNP (>15 traits) that have the strongest associationwith the trait (lowest
p-value). See Methods for details of the matching procedure. Chromatin states are

learned by applying the IDEAS method to data from the Roadmap Epigenomics
Project. BrCa: breast cancer; PrCa: prostate cancer; CD: Crohn’s disease; BMD: bone
mineral density; DBP: diastolic blood pressure; mono: monocyte count.

Article https://doi.org/10.1038/s41467-024-51075-5

Nature Communications |         (2024) 15:6985 11



ancestry multi-trait analysis, it requires further development of
methods and hence is left as a future direction. More specifically,
genetic effect sizes are expected to be less heterogeneous for the same
trait across ancestries than across different traits. Such varying levels
of heterogeneity is not reflected by the current fastASSET.

A related type of methods try to deconvolve the genetic compo-
nents that act together52,53. These methods typically focus on pleio-
tropic components that have effects on a widespread range of traits or
at least a module of related traits. They tend to ignore trait-specific
variants since those variants are unlikely to have major contributions
to the components. fastASSET can be used to study both pleiotropic
and trait-specific variants. In addition, deconvolution methods52,53 do
not directly quantify the level of pleiotropy for each variant, which
would require further development of downstream methods.

We apply fastASSET to summary statistics of 116 traits to quantify
degree of pleiotropy at the level of individual SNPs across the genome
and their relationship with various annotation characteristics.

Specifically,wedetect amuchhigher degreeof pleiotropy at individual
variant level than earlier studies and show that patterns of pleiotropy
may be driven by multiple functional mechanisms. In a first-of-its-kind
effort, we identify 21 highly trait-specific variants and conduct exten-
sive follow-up studies to show that they can often be linked to the
functions of specific genes in trait-related tissues.

While our analysis confirms the ubiquitous nature of pleiotropy
reported in prior studies4,22, we are able to provide several insights due
to both the use of a rapid powerful method for cross-trait association
analysis and detailed follow-up investigation of relationship between
the level of pleiotropy and functional characteristics across the SNPs.
First, we observed that pleiotropy is ubiquitous, not only at a locus
level but alsoat the level of individual variants.A prior large-scale study
of pleiotropy across 558 traits based on UK Biobank had noted earlier
that while >90% of loci are pleiotropic, about 60% of the individual
SNPs show pleiotropic association with more than one trait and only
32% show association across multiple domains of traits4. Our analysis,

Fig. 8 | Results of analysis of Biobank Japan data. a Distribution of level of
pleiotropy. b Level of pleiotropy in Biobank Japan (BBJ) and European population.
c Pleiotropy in BBJ vs. LD score for East Asian population. Shaded area along the
blue line is the 95% confidence band. d Ten trait-specific SNPs identified in BBJ and

their top 10 associated traits. BC: breast cancer; GGT: G-glutamyl transpeptidase;
PLT: platelet count; PrC: prostate cancer; Uro: urolithiasis. P-values are from two-
sided z-tests for individual traits.
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though based on a smaller number of traits, reveals that lead variants
across almost all the identified loci are associated with more than one
trait. The nature of pleiotropy, however, is “modular”21, i.e. a given
variant has detectable effect only on a small fraction of the traits
studied.

Second, our study confirms observations reported in previous
studies4,39 that variants affecting expression in multiple genes and
tissues tend to bemore pleiotropic, but we are able to detect the trend
at a stronger resolution due to more precise characterization of the
nature of pleiotropy. We further show that the level of pleiotropy is
associated with the tissue-specificity of active chromatin states, and
the relationship appears to be stronger for promoter and transcription
related states than enhancers. Among SNPs located in enhancer
regions, we found pleiotropy can be driven by interaction with multi-
ple genes in multiple cell types. Finally, we also demonstrate enrich-
ment of TF binding sites among pleiotropic SNPs.

Finally, a unique contribution of this paper is the identification of
the highly unique trait-specific variants. We show that the trait-specific
SNPs detected by fastASSET have dominant associations with the pri-
mary trait that are far stronger than any secondary associations (Fig. 5
and Supplementary Fig. 7) and they show similar pattern of trait spe-
cificity even when examined against a much larger number of traits in
the UK Biobank study (Table 2). Despite their small number, the trait-
specific SNPs can provide unique insight to biologicalmechanisms.We
find that they often have clearly interpretable regulatory effects
(Figs. 6 and7). Someof them regulate the expressionof a singlegene in
a single tissue. Others are active in multiple tissues, but the strongest
regulatory effects occur in trait-related tissues. For some other SNPs
the mechanisms are less obvious, but still clearly contrast with highly
pleiotropic SNPs which can affect many genes in many tissues.

Our study has several limitations. In our discovery analysis, we
restricted the analysis to a diverse but relatively small set of (K = 116)
traits that have large associated GWAS (N ranging from 7000 to 1.2
million; > 50% studies have N> 100k). As we have excluded vast num-
ber of other traits for which GWAS data are also available, we have not
been able to provide a more complete genotype-phenotype maps.
Nevertheless, we observe that the level of pleiotropy we observe for
the detected SNPs with respect to a smaller number of traits correlates
well with the level of pleiotropy observed in the UKBiobank studywith
respect to amuch larger number of traits. It is particularly notable that
the trait-specific SNPs we detect based on only 116 traits largely show
same or similar trait specific effect when validated against more than
4000 traits in the UK Biobank. The correlation could be even higher if
pleiotropy were quantified by fastASSET in UK Biobank. However,
pleiotropic analysis ofmore than 4000 traits will be amassive task as it
requires careful filtering of traits based on correlations. This analysis is
beyond the scopeof the current paper. A related limitation is touse the
number of traits as the metric for pleiotropy. While also adopted by
several other studies4,22, this metric depends on the set of traits being
studied.We strive to eliminate the impact by selecting a broad range of
traits and eliminating highly correlated traits. However, this issue
could still have an impact and future studies are warranted on the
optimal selection of traits or alternative metric of pleiotropy.

Although fastASSET has robust performance for estimating the
level of pleiotropy when considering all the scenarios, it can be less
accurate in some scenarios. For example, the estimated level of
pleiotropy can be miscalibrated (Fig. 2). This is likely due to the meta-
analysis procedure that underpins fastASSET, which is optimal when
the SNP have similar effect size on all traits. In the original ASSET
paper7, we acknowledged that the subset selection feature can be
conservative. It tends to select the stronger effects and leave out some
traits with weaker effects. However, selecting only the stronger asso-
ciations allows us to focus on the main pathways underlying the
genetic effects of the SNP, and ignore less important peripheral
effects. Therefore, the results from fastASSET needs to be interpreted

carefully. SNPs couldhave effects on traits other than those selectedby
fastASSET. However, the association withmain traits is much stronger,
which is enough to justify that regulating these traits is the primary
function of the SNP. For example, rs61926181 is selected as a trait-
specific SNP forDBP, though it is also associatedwith SBPbasedon raw
p-values. Nevertheless, the association with DBP is substantially
stronger despite the two traits being highly correlated. In contrast,
rs6035355 is classified to be associated with both DBP and SBP (Sup-
plementary Data 6) since the significance level is nearly identical
(p= 1:58× 10�8 for DBP, p= 1:77 × 10�8 for SBP).

Another limitation of our study is thatwe have primarily identified
pleiotropic associations based on single SNP association analysis
without further exploring the underlying causal relationship among
traits and SNPs. For example, pleiotropy between one SNP and two
traits can be classified into multiple types54: 1) vertical pleiotropy due
to causal relationship between two traits; 2) horizontal pleiotropy that
arises from the SNP having independent effects on both traits 3)
linkage disequilibrium between two distinct causal variants for differ-
ent traits; 4) disease misclassification. Categories 3 and 4 are referred
to as spurious pleiotropy in some literature54. Thepleiotropydiscussed
in this paper can be viewed as pleiotropy at the locus level instead of
the variant level. Identifyingpatterns of pleiotropy at the level of causal
variants across many traits accounting for LD and heterogeneity in
effect size is a challenging task. A more detailed characterization of
pleiotropy at the level of each individual variant will ultimately require
joint fine-mapping analysis across many traits by each locus, but
methods for large-scale multi-trait fine-mapping are currently not
available.

In summary, we develop a method and carry out a large-scale
pleiotropic analysis across GWAS of a diverse set of traits. Our study
provides insights into functional characteristics of the genome that
contribute to pleiotropy and leads to the identification of unique trait-
specific genetic variants which have not been previously explored. In
the future, large-scale cross-trait fine-mapping studies are needed to
pinpoint causal variants and the underlying nature of pleiotropy.

Methods
Data and initial filtering
We collect 338 full summary level datasets published between 2007
and 2019 from the NIH Genome-Wide Repository of Associations
Between SNPs and Phenotypes (GRASP). GRASP includes a wide range
of phenotypes including anthropometric traits, biomarkers, blood cell
levels, adipose volume, early growth traits, social science Indices,
cardiometabolic diseases, psychiatric and neurological diseases,
autoimmune diseases, etc. We further collect 20 summary-level data-
sets from GWAS Consortia for the traits included in GRASP but when
the Consortia offer a study with larger sample sizes. See Supplemen-
tary Data 1 and 2 for a full list of datasets. Thus restricting the analysis
to the GRASP traits allowed us to carry out the pleiotropic analysis of
across a diverse set of traits with large available GWAS, but avoid
including many overlapping traits such as those in UK Biobank.

We apply several filtering steps sequentially (see Supplementary
Fig. 1 for aflowchart): 1) removedatasets inwhich the genetics variants
do not have genome-wide coverage (genotyped by exome array,
metabochip and immunochip); 2) remove datasets that only report p-
values without direction of effect; 3) remove studies with small sample
size: for continuous traits, we remove studies with sample size <5,000;
for binary traits, we remove studies with <5000 cases or <5000 con-
trols; 4) remove studies where >25% individuals are of non-European
ancestry; 5) remove duplicated traits: among the studies for the same
trait, we keep the study with the largest sample size and discard the
rest of them; 6) remove traits that are deterministic functions of other
traits in our study, or other traits adjusted of covariates. After the
filtering, 150 traits entered downstream analysis (see Supplementary
Data 2 for all traits removed from analysis).
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LD score regression and further filtering
We applied LD score regression3,55 to estimate the heritability and
genetic correlation across 150 traits. LD scores based on 1000 Gen-
omes European data and the list of HapMap3 SNPs were downloaded
from the LDSC GitHub repository (https://github.com/bulik/ldsc).
Only SNPs in HapMap3 were used to calculate the LD score and per-
form the regression.

To ensure the traits have a substantial genetic component, we
remove 21 traits that do not have a heritability estimate that is sig-
nificantly different from 0 (z statistic > 1:96). To further reduce the
genetic overlaps of the traits, we remove 13 traits that have high
genetic correlation (rg) with others. In short, if two traits have genetic
correlation jrg j>0:95, we remove the trait less enriched of genetic
associations, quantified by the product of the sample size of the study
(N) and the heritability of the trait (h2). The algorithm is as follows:
1. Sort the traits in decreasing order of Nh2.
2. Start from the trait with the highest Nh2, remove the traits that

have jrg j>0:95 with this trait.
3. Proceed to the trait with the next highest Nh2, repeat until no

pairs of traits have jrg j>0:95.

After the above filtering steps, we retain a final list of 116 traits for
statistical analysis (Supplementary Data 1).We further restricted to the
variants that are available for ≥ 50 traits, and in 1000Genomes Phase 3
European sample with minor allele frequency (MAF) >0:01. This leads
to a total of 7,462,466 variants. Since our goal is not to identify causal
variants, the discrepancy of reference panels across studies should not
have a major impact.

Statistical Analysis Using fastASSET
The first step to study the patterns of pleiotropy is to quantify the level
of pleiotropy across the genome. Previous studies often have quanti-
fied the pleiotropy of a SNPby counting the number of traits that reach
p< 5× 10�8 in individual trait analysis. This approach, however, is likely
to miss many weaker associations. Here we described fastASSET, an
accelerated version of the ASSET method which 1) detects SNPs
associated with any trait in our collection (“global association”) and
2) reports a subset of traits associated with each SNP.

The original ASSET is developed based on meta-analysis across
different phenotypes and searches for the subset of traits with max-
imum meta-analysis z-statistic7. However, since we are analyzing a
large number of traits, the orignal ASSET which searches through all
subsets is computationally intractable. To reduce the computational
burden, we pre-select the traits that show suggestive evidence of
association with the given SNP using a liberal p-value threshold,
denoted by pthr (e.g. 0.1 or 0.05). We only conduct subset search
among the traits with p-value <pthr . Denote the corresponding
threshold for z-statistic by zthr =Φ

�1ð1� pthr
2 Þ.

Before the subset search, the z-statistics zk (k = 1, . . . ,K traits) need
to be adjusted for pre-selection to prevent type I error inflation. If the
SNP is not associated with any of the given traits and none of the
studies have overlapping samples, zk ’s are independent across studies
and can be adjusted independently. The adjusted p-value is

epk =P jZ j> jzk j
��jZ j> zthr� �

=
P jZ j> jzk j, jZ j> zthr
� �

P jZ j> zthr
� �

=
P jZ j> jzk j, jZ j> zthr
� �

pthr

ð1Þ

which is equal to
P Zj j > zkj jð Þ

pthr
if jzk j> zthr , and equal to 1 if zk

�� ��≤ zthr .
Hence the adjusted z-statistic is ezk = sign zk

� �
Φ�1ð1�epk

2 Þ.
However, the data used for our study have complex sample

overlaps, henceezk ’s of overlapping studies are no longer independent.
To apply the above adjustment, we first de-correlate the z-statistics.
The correlation of z-statistics due to sample overlap can be estimated

using bivariate LD score regression3:

E z1jz2j
�� lj

h i
=

ffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
ρg

M
lj +ρ

ðzÞ
12

ð2Þ

where ρðzÞ
12 is the correlation of z1j and z2j under the null hypothesis and

lj is the LD score. Since sample overlap usually occurs between traits in
the same study or consortium, the correlation matrix of z-statistics

ρðzÞ = ρ zð Þ
kl

n o
k,l = 1,...,K

roughly follows a block diagonal structure.We first

partition the traits into blocks using hierarchical clustering based on
distance matrix 1� jρ zð Þj. We cut the hierarchical clustering tree at

0.8 such that ρ zð Þ
kl

��� ���<0:2 if studies k and l are in different clusters. We

de-correlate the z-statistics within each cluster and ignore between-
cluster correlation.

Within each cluster, we first order the studies by effective sample
size from smallest to largest. For continuous traits, the effective sam-
ple size is the total sample size; for binary traits, the effective sample

size is defined as NcaseNcontrol
Ncase +Ncontrol

. Denote by ρðz,tÞ the LD score regression

intercept matrix of the traits in cluster t. Denote by vector ZðtÞ the

z-statistics of traits in cluster t, and by NðtÞ the effective sample size. If

trait k is continuous, NðtÞ
k is the total sample size; if trait k is case-

control, NðtÞ
k = ncasencontrol

ncase +ncontrol
. Define SðtÞ = 1ffiffiffiffiffiffi

NðtÞ
p as the standard error when

genotype and traits are standardized to have unit variance. The de-
correlation and adjustment algorithm proceeds as follows:
1. Apply Cholesky decomposition to ρðz,tÞ =UTU.

2. De-correlated the z-statistics by eZðtÞ
= ðUT Þ�1

ZðtÞ. Select the traits

with ez tð Þ
k

��� ���> zthr and adjust the z-statistics independently for each

trait using the conditional p-value approach described by Eq. (1).

Denote the adjusted z-statistics by eZadj
ðtÞ
.

3. Convert the z-statistics back to the original scale by
Zadj

ðtÞ =UTeZadj
ðtÞ
. Leave the standard errorsSðtÞ unchanged. Retain

the elements ofZadj
ðtÞ and SðtÞ corresponding to the selected traits

and denote them as ZðtÞ
scr and SðtÞ

scr .

Finally, we combine the adjusted z-statistics and standard errors
(ZðtÞ

scr and SðtÞ
scr ,t = 1, . . . ,T) for the selected traits from all clusters. The

combined summary statistics are used as input for ASSET analysis
(see Supplementary Notes for a brief description of ASSET)7.

Analysis of data for 116 traits
Since different studies are relatively independent, LD score regression3

analysis did not reflect substantial sample overlap across different
studies. The clusters, based on sample overlap and phenotypic cor-
relation are generally small and restricted to traits within the same
study (Supplementary Fig. 2). For a small proportion of the SNPs, a
large number of traits pass the pre-selection threshold (single-trait
p-value < 0.05) which makes the subsequent subset search computa-
tionally intractable. We removed a total of 16,686 SNPs that were
associated with more than 16 traits in one direction (either positive or
negative). Under the global null hypothesis of no association, the
probability of observing such pattern is small (1:13 × 10�8) and thus we
consider these SNPs to be pleiotropic though they are not further
analyzed by ASSET. In fact, themajority of these SNPs can be tagged by
SNPs that are analyzed by ASSET through LD (r2 > 0.5) and hence
removing them does not lead to significant loss of information, except
309 SNPs from 74 independent regions (r2 < 0.1, > 500 kb apart). We
choose the SNP with the largest number of traits that pass p <0.05
threshold as the index SNP for each locus. As a sensitivity analysis, we
allocate additional computational resources to run fastASSET analysis
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for the 74 lead SNPs. These SNPs are enriched in pleiotropic SNPs, but
some of the SNPs are associated with only a few traits (Supplementary
Fig. 10). Due to their small number, they should not have a major
impact on the characterization of pleiotropy.

Among the SNPswe analyzed by ASSET, we further removed 2620
SNPs for which one of the one-sided ASSET p-values is smaller than the
p-values from standard meta-analysis of the selected traits, indicating
convergence issues in the underlying p-value approximation method.

For each of the remaining 7,443,160 SNPs, fastASSET reports a p-
value for global association and a set of traits associated with the SNP.
For each SNP, we use the number of its associated traits reported by
fastASSET as the metric of pleiotropy. We consider SNPs with fas-
tASSET p-value p< 5× 10�8 as genome-wide significant. LD clumping
leads to 10,628 independently associated SNPs with r2 <0:1. We then
group these SNPs into 2293 independent loci of which the lead SNP
(lowest p-value within the locus) are at least 500 kb apart. As a metric
of signal density within each locus, we count the number of indepen-
dently associated SNPs within 100 kb of the lead SNP.

We are especially interested in trait-specific SNPs (associated with
only 1 trait as identified by fastASSET) and secondarily highly pleio-
tropic variants with associated with >15 traits.

Validation in UK Biobank
We download the UK Biobank (UKB) GWAS summary statistics from
Neale lab34. Among the 2293 index SNPs of the independent loci
identified by fastASSET, 6 SNPs are not included in the UK Biobank
summary statistics. For each of those SNPs, we identify a proxy SNP in
theUKB summary statistics as theonewith thehighest r2 within 100 kb
of the lead SNP. If r2 <0:8 between the lead SNP and the proxy SNP, we
exclude the locus from the validation study in UKB. We successfully
found proxies for 5 index SNPs and one other (rs12203592) does not
have a proxy SNP with r2 ≥0:8.

Among the 11,934 summary level datasets published by Neale lab
(round 2 GWAS, August 1st, 2018), we removed the GWAS results for
age, sex and 22 datasets that do not have a phenotype code. For
continuous traits, we use the summary dataset for the inverse rank
normalized trait (variable type continuous_irnt) and discard the data-
set for the raw trait (variable type continuous_raw). We only keep the
datasets for joint analyzes across both sexes and discard the sex-
stratified results. In addition, there are two versions of GWASs for a
subset of 166 traits. We keep the most recent version (v2) and remove
the first version. After filtering, we retain 4114 summary level datasets
for our validation study. For each the 2292 index SNPs, we select the
associated traits among the remaining 4114 UKB traits by a per-SNP
FDR threshold of 0.05. Note that we are not able to conduct an inde-
pendent validation study due to substantial sample overlap between
our primary discovery data and UKB. Instead, we use UKB data to test
the generalizability of the estimated degree of pleiotropy from 116
traits to a larger number of traits.

Relationship between pleiotropy and LD
To study the relationship between pleiotropy and LD, we estimate LD
scores from 1000 Genomes Phase 3 EUR sample using SNPs with
MAF >0.01 and 1 centiMorgan (cM) window. The calculation is per-
formed using ldsc software55. Note that here we choose to estimate LD
scores using all the SNPs in our analysis instead of using those down-
loaded from LDSC, which include only HapMap3 SNPs.

eQTL status lookup and colocalization
To explore potential cis-regulatory mechanisms that may drive
pleiotropy, we look up the lead SNPs of the 2293 loci identified by
fastASSET to explore the relationship between the pleiotropy and
eQTL tissue/gene specificity. We accessed eQTL summary statistics
for 49 tissues in GTEx v839. We lift over the base pair coordinates
from hg19 to hg38 to match the genome build of GTEx v8. For each

of the lead variant, we count the number of tissues in which it is a
significant eQTL for at least one gene with q-value < 0.05, and the
total number of unique genes for which it is a significant eQTL
regardless of tissues.

For each trait-specific locus, we conduct colocalization analysis
between the GWAS signal for the corresponding trait and eQTL signals
in GTEx v8. We restrict to protein-coding genes and gene-tissue pairs
for which the lead SNP of the locus is a significant eQTL at q-value <
0.05. We use the SNPs within 50 kb from the lead SNP as input to
COLOC47. We consider the GWAS and eQTL signals to be colocalized if
the posterior probability of colocalization (PP4) > 0.8.

Chromatin state
To explore potential relationship between pleiotropy and chromatin
states, we queried their chromatin state using 15-state chromHMM
model56 in the Haplogreg v4.1 database57. The chromatin state was
learned using a core set of 5 histone marks (H3K4me3, H3K4me1,
H3K36me3, H3K27me3, H3K9me3) for 111 epigenomes from the
Roadmap Epigenomics Project48. We defined chromatin states with
state number <=7 as an active and open chromatin state, including
active transcription start site (1_TssA), flanking active TSS (2_
TssAFlnk), transcription at gene 5′ and 3′ (3_TxFlnk), strong tran-
scription (4_Tx), weak transcription (5_TxWk), genic enhancers
(6_EnhG) and enhancers (7_Enh). For each variant, we count the num-
ber of datasets in Roadmapwhether it falls in active chromatin state as
well as the number of broad categories provided by Roadmap (https://
egg2.wustl.edu/roadmap/web_portal/meta.html). We also study and
evaluate the association of pleiotropywith each active chromatin state
separately. For example, we select the lead SNPs identified by fas-
tASSET that are 1_TssA in at least one Roadmapdataset and investigate
the relationship between the number of traits selected by fastASSET
and the number of tissue/cell type groups in which this variant is in
1_TssA. We perform same analysis for other active chromatin states to
learn the association. The tissue and cell type groups aredefinedby the
Roadmap Epigenomics Consortium as provided in the link: (https://
docs.google.com/spreadsheets/d/
1yikGx4MsO9Ei36b64yOy9Vb6oPC5IBGlFbYEt-N6gOM/edit#gid=15).

In addition to chromHMM based model, we conduct similar ana-
lysis using the chromatin states learned by the IDEAS, an integrative
and discriminative epigenome annotation system employing 2D gen-
ome segmentation method35,36 to jointly characterize the chromatin
states acrossmany different cell types. Since the IDEAS classification of
chromatin states is marginally different from ChromHMM, we con-
sider 10_TssA (Active Transcription Start Site), 8_TssAFlnk (Flanking
Active TSS), 14_TssWk (Weak TSS), 5_Tx (Strong Transcription),
2_TxWk (Weak Transcription), 4_Enh (Enhancers), 6_EnhG (Genic
Enhancers), 17_EnhGA (Active Genic Enhancers) as an active and open
chromatin state. IDEAS algorithm here integrates epigenomes by
preserving the position-dependency and cell type specific epigenetic
events at fine scales36.

The IDEAS bigBed files were downloaded from http://bx.psu.edu/
~yuzhang/Roadmap_ideas/.

The bigBed files were converted to bed format using UCSC pro-
gram bigBedToBed program fetched from the directory of binary
utilities in http://hgdownload.cse.ucsc.edu/admin/exe/.

The bed files thus processed were used for further downstream
analysis, including the association of pleiotropy and epigenetic states.
Blacklisted genomic region was filtered out where applicable as pro-
vided by ENCODE.

Transcription factor binding sites
Tounderstandpotential relationship betweenpleiotropy transcription
factor (TF) binding, we downloaded and referenced the JASPAR 201837

andHOCOMOCOV1138, homosapiens comprehensivemodel collection
of motif database. Intersection of variants with TF binding sites was
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performed by Bedtools v2.29.258 to observe the association between
SNPs and transcription factor binding sites.

To associate level of pleiotropy with TF binding profiles, we
divide the 2,293 lead SNPs into two pleiotropy bins: 1) associated
with 1–10 traits 2) associated with >10 traits. We calculate the pro-
portion of SNPs in each bin that overlaps with transcription binding
sites (TFBS). To explore whether this relationship is independent of
the effects of other annotations, we fit the following logistic regres-
sion: (associated with >10 traits) ~(overlapping with TFBS) + (LD
score) + (number of tissues for which the variant is an eQTL) +
(number of eGenes) + (number of cell types for which the variant is in
active chromatin state) and check the significance of the first
predictor.

Enhancer-gene connection
The activity-by-contact (ABC) model combines chromatin states with
3-dimensional contacts tomap enhancers to their target genes59,60. We
download the enhancer-genemap for 131 human cell types and tissues
constructed by the ABC model from the Engreitz lab website (https://
www.engreitzlab.org/resources/). This dataset includes all enhancer-
gene connections with ABC scores >= 0.015.

Among the lead SNPs that overlap with enhancers, we compute
the correlation between the level of pleiotropy and the number of cell
types for which the overlapping enhancer affects at least one target
gene by the ABC model. We further compute the partial correlation
adjusting for other annotations: LD score, number of tissues for which
the variant is an eQTL, number of eGenes, number of cell types for
which the variant is in active chromatin state.

Matching trait-specific SNPs to highly pleiotropic SNPs
In the functional follow-up studies of 21 trait-specific SNPs, we match
each of them to one SNP that is also associated with the given trait but
show high-degree of pleiotropy (associated with >15 traits). For each
trait-specific SNP (e.g. for Crohn’s disease), we examine the individual-
trait p-value between the trait (e.g. Crohn’s disease) and all the highly
pleiotropic SNPs and choose the one that shows the strongest asso-
ciation (lowest p-values) with the given trait (e.g Crohn’s disease). In
this procedure, multiple trait-specific SNPs for one trait could be
matched to the same highly pleiotropic SNP. This matching procedure
applies to the examination of top 10 associated traits for lead SNPs
(Fig. 5), eQTL analysis (Fig. 6) and chromatin state analysis (Fig. 7).

Analysis of Biobank Japan data
We download the summary statistics for 220 phenotypes in Biobank
Japan (BBJ)22. We run LD score regression3 to estimate the genetic
correlation (slope) and phenotypic correlation (intercept) of these
traits. LD scores of East Asian population are obtained from GitHub
repository ldsc (https://github.com/bulik/ldsc). We apply similar
quality control pipeline as in the analysis of European data: 1) remove
continuous traits with total sample size <5,000 or case-control disease
traits with <2,000 cases or <2,000 controls; 2) remove traits with
heritability z-score <1.96; 3) remove highly correlated traits with
genetic correlation > 0.95 or < −0.95; 4) remove SNPs withMAF<0.01
in BBJ. After filtering, we retain 75 traits and 4,965,789 SNPs for fas-
tASSET analysis. Genome-wide significant SNPs are defined as those
with fastASSET global association p-value < 5 × 10�8. We conduct LD
clumping based on fastASSET p-values for global association using
genotype data of 1000 Genomes Phase 3 East Asian population
(N = 504) as the reference panel. We require the lead SNPs of different
loci to be nearly independent (r2 < 0:1) and at least 500 kb apart. To
compare patterns of pleiotropy between East Asian and European
ancestry, we obtain the summary statistics for European ancestry
GWAS used in Sakaue et al.22 (UK Biobank and FinnGen). We success-
fully match 72 (out of 75) traits from BBJ in our analysis to traits in UK
Biobank and FinnGen.

Inclusion & ethics statement
This study uses publicly available data. Ethics approvals were obtained
by the original studies that generated the data.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in this paper are publicly available. Summary statistics
from the GRASP repository are available for download at https://
grasp.nhlbi.nih.gov/Overview.aspx. Other summary data are avail-
able through links provided by the original publication (see Sup-
plementary Data 1 for references). Biobank Japan GWAS summary
statistics are available at the National. Bioscience Database Center
(NBDC) Human Database with the accession code hum0197 (https://
humandbs.dbcls.jp/en/hum0197-v18). Functional genomic data can
be accessed via links below. GTEx Consortium: https://www.
gtexportal.org/home/. Roadmap Epigenomics Project: https://egg2.
wustl.edu/roadmap/web_portal/index.html. Neale lab UK Biobank
GWAS: http://www.nealelab.is/uk-biobank. JASPAR database for
transcription factor binding profiles: http://jaspar.genereg.net/. ABC
model: https://www.engreitzlab.org/resources/. Biobank Japan
GWAS and European ancestry validation GWAS summary statistics:
https://humandbs.dbcls.jp/en/hum0197-v18 Source data are pro-
vided with this paper.

Code availability
fastASSET (v0.1.0)61 is available as an R package via GitHub repository
https://github.com/gqi/fastASSET. It is also available as a function in
the ASSET R package (https://github.com/sbstatgen/ASSET, function
fast_asset). LD score regression was performed using LDSC (v1.0.1):
https://github.com/bulik/ldsc. Data collection and analysis were con-
ducted using R v4.0.2 and 4.3.2.
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