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Deciphering cell–cell communication at
single-cell resolution for spatial
transcriptomics with subgraph-based graph
attention network

Wenyi Yang1,7, Pingping Wang 2,7, Shouping Xu 3,7, Tao Wang4, Meng Luo 1,
YidengCai 1, ChangXu 1, Guangfu Xue1, JinhaoQue1, Qian Ding1, Xiyun Jin 2,
Yuexin Yang1, Fenglan Pang1, Boran Pang5, Yi Lin2, Huan Nie1, Zhaochun Xu 2 ,
Yong Ji 6 & Qinghua Jiang 1,2

The inference of cell–cell communication (CCC) is crucial for a better under-
standing of complex cellular dynamics and regulatory mechanisms in biolo-
gical systems. However, accurately inferring spatial CCCs at single-cell
resolution remains a significant challenge. To address this issue, we present a
versatilemethod, called DeepTalk, to infer spatial CCC at single-cell resolution
by integrating single-cell RNA sequencing (scRNA-seq) data and spatial tran-
scriptomics (ST) data. DeepTalk utilizes graph attention network (GAT) to
integrate scRNA-seq and ST data, which enables accurate cell-type identifica-
tion for single-cell ST data and deconvolution for spot-based ST data. Then,
DeepTalk can capture the connections among cells at multiple levels using
subgraph-based GAT, and further achieve spatially resolved CCC inference at
single-cell resolution. DeepTalk achieves excellent performance in discovering
meaningful spatial CCCs on multiple cross-platform datasets, which demon-
strates its superior ability to dissect cellular behaviorwithin intricate biological
processes.

Cell–cell communication (CCC) is a fundamental biological process that
plays a crucial role in immune cooperation, organ development, stem
cell niches, and other biological phenomena1–3. Advances in single-cell
transcriptomics, particularly single-cell RNA sequencing (scRNA-seq),
have revolutionized the study of individual cells, providing unprece-
dented insights into their composition, function, and dynamics4.
Computational tools such as CellPhoneDB5, CellChat6, NicheNet7,
CytoTalk8, scTensor9, iTALK10, ICELLNET11, SingleCellSignalR12 and

Scriabin13 have been developed to infer and decipher CCC networks14.
Tools like CellPhoneDB and CellChat, for instance, offer deep insights
into ligand-receptor interactions (LRIs), which are pivotal in under-
standing signal transduction across diverse cell types. These tools
employ innovative methods and statistical tests to quantify the prob-
ability of each interaction, facilitating in the assessment of the null
hypothesis and inference of the specific cell types involved in inter-
cellular communication. Additionally, NicheNet andCytoTalk reveal the
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complex gene-gene interactions within cells in response to external
stimuli, while scTensor employs hypergraphs to expose the intricacies
of higher-order intercellular communications andvisualize the complex
network of interactions. Other tools, such as iTALK, ICELLNET, and
SingleCellSignalR, provide further functionalities and resources for
analyzing ligand-receptor (L-R) interactions. Notably, Scriabin enables
the examination of intercellular communication at the single-cell level,
unveiling the delicate web of cellular interactions. Nonetheless, a sig-
nificant drawback of current single-cell analysis methods is their
inability to fully capture spatial information14. The lack of cellular spatial
information increases the probability of false positives, causing the
incorrect categorization of physically separated cells as those engaged
in intercellular communication15. Therefore, spatial information should
be incorporated into the CCC analysis to advance the field and enhance
understanding of this complex process16.

Spatial transcriptomics (ST) provides valuable spatial information
regarding cells or spots that comprise multiple or partial cells17–21.
These techniques facilitate the measurement of spatial gene expres-
sion in two-dimensional (2D) or three-dimensional (3D) tissue samples
with varying degrees of cellular resolution22. The incorporation of ST
significantly enhances the accuracy and reliability of spatial CCC
inference in biology and biomedicine. Recently, several methodolo-
gies have emerged to decipher the underlying mechanisms of CCC
within a spatial context. For instance, CellPhoneDBv3(CPDB3) restricts
the interactions among cell types located within the same micro-
environment, as determined by spatial information23. stLearn associ-
ates the co-expression of ligand and receptor genes with the spatial
diversity of cell types24. SVCA25 and MISTy26 employ probabilistic and
machine learning models, respectively, to identify spatially correlated
gene interactions between cells. NCEM27 uses a function to fit the
relationship between cell types, spatial environments, and gene
expression. Contrastingly, Giotto constructed spatially proximate
graphs to identify the interactions between L-R pairs binding through
the membrane-bound receptors28. Additionally, SpaOTsc performs
structured optimal transport mapping between scRNA-seq and ST
data, assigning spatial positions to cells and inferring the ligand-
receptor signaling network mediating spatial constraints using
cell–cell distances as transport costs29. While this method quantifies
the likelihood of intercellular interactions, its specificity for image-
based spatial expression data and reliance on predefined pathways
somewhat limits its versatility and applicability. COMMOT30, an
extension of SpaOTsc’s optimal transport framework, deduces the
direction of communication by applying optimal transport analysis
tools to ST data, considering the complex ligand-receptor interactions
and the constraints imposed by effective intercellular communication
distance. Moreover, NICHES31 distinguishes itself as a notable addition
to this toolbox, leveraging spatial transcriptomic information to
understandCCCs at a single-cell resolution. This tool proves invaluable
in gaining a deeper understanding of the intricate interactions and
organizational patterns inherent within tissues. These methodologies
hold immense promise for the direct analysis of CCC within a spatial
context. Nonetheless, they encounter limitations stemming from the
gene throughput and spatial resolution of ST data. Furthermore, the
majority of thesemethods primarily focus on identifying CCCbetween
paired cell types, neglecting the analysis of CCC between paired indi-
vidual cells. Methods capable of simultaneously overcoming the lim-
itations of ST data and inferring CCC at a single-cell resolution remain
scarce, thereby restricting our comprehension of the coordinated
activities exhibited by various cells in biological processes.

Here, we develop DeepTalk, an innovative method that combines
cell-specific gene expression data and spatial affinities of cells to pre-
dict CCC at single-cell resolution. DeepTalk employs a graph attention
network (GAT)32 alongside a subgraph-based GAT to unveil the intri-
catemechanismsunderlyingCCCswithin the spatial context of healthy
and diseased tissues. This effectively overcomes the limitations posed

by the restricted gene throughput and inadequate spatial resolution of
ST data by integrating it with scRNA-seq data sourced from the iden-
tical region. Extensive evaluations using diverse publicly available
datasets validate the exceptional performance and robustness of
DeepTalk in identifying spatial CCC. Our results demonstrate that
DeepTalk has great potential to discover meaningful CCC patterns
across diverse conditions and provide valuable insights into the spatial
intercellular dynamics within tissues.

Results
Overview of the DeepTalk workflow
The two pivotal tasks in analyzing the scRNA-seq and ST data are the
determination of cell types and CCC, as these tasks provide insights
into fine-grained tissue organization and cellular-level communica-
tions. The proposed deep learning approach, DeepTalk, consists of
two primary components: (1) DeepTalk-Integration (DT-Integration),
which integrates sc/snRNA-seq and ST data to identify cell types in
single-cell ST data and perform deconvolution for non-single-cell ST
data, and (2) DeepTalk-CCC (DT-CCC), which predicts spatially-
resolved intercellular communication at a single-cell resolution for
the processed ST data (Fig. 1a). Initially, GAT was employed to
‘decode’ the single-cell or spot-based ST data matrix. This decoding
process involves utilizing self-attention mechanisms to focus on the
relationships within the scRNA-seq or ST data and cross-attention
mechanisms to capture the connections between scRNA-seq data
and ST data. Through this decoding step, a weight matrix is gener-
ated, representing the optimal proportions of cell types for each cell
or spot (Fig. 1b). The cells are labeled with the cell type exhibiting the
maximum weight for the single-cell ST data, whereas different cell
types with varying weights are used for the spot-based ST data as
references to project the cells from the scRNA-seq data onto spatial
spots. Through an iterative process, the optimal combination of cells
is further refined to reconstruct the single-cell ST data based on
spots (Fig. 1c).

Subsequently, DT-CCC infers CCC at a single-cell resolution by
creating a cell graph that incorporates distance information and cell
expression data to establish connections between cells. This con-
struction accounts for both the positions and similarities of cells,
reflecting their spatial arrangement. Individual subgraphs are gener-
ated for each cell, encoding their local characteristics through a sub-
graph encoder. Tocapture the local features of cellswithin their spatial
context, DT-CCC utilizes a subgraph-based GAT33, which enables it to
assess the traits of each cell based on the data from adjacent cells
(Fig. 1d). The model grasps cell positions and interactions by com-
prehending local intercellular relationships. It integrates the distinct
features of all cells and deciphers the underlying connections between
them using an attention-based graph neural network. This approach
enables the inference of CCC and comprehension of cell interplay at a
spatial level. Furthermore, to enhance the model’s generalization
ability, a pre-training and fine-tuning strategy is adopted34. Through
pre-training on a large-scale dataset, the model learns the general
patterns of intercellular communication and spatial relationships.
Subsequent fine-tuning of specific datasets enhances the model
accuracy in predicting CCC. This training approach contributes to the
robustness and accuracy of the model for inferring intercellular com-
munication. Furthermore, DT-CCC provides visualization capabilities
to intuitively showcase the composition of cell types and spatial
intercellular communication (Fig. 1e). When compared to other state-
of-the-art methods, DT-CCC has demonstrated strong performance
when applied to spot-based ST and single-cell ST data.

Performance comparison of DeepTalk-Integration with state-of-
the-art integration methods
The integration of ST and scRNA-seq data is crucial in accurately elu-
cidating the complex CCC within a spatial context. To enhance our
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understanding of CCC, we harness the predictive capabilities of spatial
transcript distributionmodels for undetected transcripts and perform
sophisticated cell type deconvolution analysis on tissue samples. To
assess the integration efficiency of our approach, we present DT-
Integration and pit it against eight cutting-edge techniques, utilizing a
diverse dataset curated by Li et al.35, which encompasses 45 paired ST
and scRNA-seq datasets. The ST datasets use various techniques,
including osmFISH36, seqFISH19, MERFISH37, STARmap38, ISS39,
BaristaSeq40, ST41, 10XVisium42, Slide-seq18, andHDST43. Thesedatasets
can be categorized into image-based and sequence-based (seq-based)
methods44. Image-based STmethods, such as in situ hybridization and
fluorescence microscopy, detect transcript spatial distributions with
high resolution and accuracy; however, they may be limited in the
number of detected transcripts. Seq-based ST methods capture the
entire transcriptome-scale expression of RNA with spatially defined
points and exhibit high technical coverage but low spatial resolution.
Additionally, techniques such as Drop-seq45, Smart-seq46, and 10X
Chromium47 are used to generate the scRNA-seq datasets.

Initially, we undertake a rigorous evaluation of DT-Integration’s
performance alongside eight other integration methods: Tangram48,
gimVI49, SpaGE50, Seurat51, SpaOTsc29, novoSpaRc52, LIGER53, and
stPlus54. Our assessment focuses on predicting the spatial distribution
of undetected RNA transcripts within the ST datasets. To guarantee
stringent and reproducible testing, we employ a ten-fold cross-
validation55 technique on the 45 paired datasets. For a systematic
evaluation of the eight integration methods in predicting the spatial
distribution of undetected transcripts, we utilize multiple metrics:
Pearson correlation coefficient (PCC)56, structural similarity index
(SSIM)57, rootmean square error (RMSE)58, Jensen-Shannondivergence
(JSD)59, and accuracy score (AS)35. These metrics offer a robust
assessment of the accuracy, structural similarity, error magnitude,

divergence, and overall performance of the predictions across the 45
paired datasets (Fig. 2a, Supplementary Figs. 1 and 2). Consequently,
DT-Integration proves to be the best method, surpassing other
approaches in both image-based and seq-based datasets.

Second, we evaluate the performances of DT-Integration and
seven other integration methods (Tangram, Cell2location60,
SpatialDWLS61, RCTD62, Stereoscope63, DestVI64, and SPOTlight65) for
cell-type deconvolution. For the purpose of comparing their perfor-
mances, we utilize the STARmap and seqFISH+ datasets as our base-
lines. Additionally, we simulate a “grid” that represents low spatial
resolution datasets, following a precedent established in previous
research35. In these simulated low-resolution datasets, each “spot”
within the grid contains a varying number of cells, ranging from 1 to 18,
much like the ST datasets that are generated using techniques such as
10X Visium or ST methods. The STARmap dataset captures 1549 cells
corresponding to 15 cell types38 (Fig. 2b). After grid transformation, the
simulated dataset comprises 189 spots, each containing 1–18 cells. In
identifying the positions of L4 excitatory neurons, DT-Integration
demonstrated high accuracy and consistency, achieving a Pearson
correlation coefficient (PCC) of 0.88, the highest among all methods.
RCTD and Stereoscope closely followed with a PCC of 0.87 (Fig. 2c).
For a broader analysis, we also plotted the positions of Layer 2/3(L2/3)
and L5 excitatory neurons (Supplementary Fig. 3).

Additionally, we used metrics like PCC, SSIM, RMSE, and JSD to
assess the accuracy of these eight integration methods in predicting
cell-type composition within the simulated grid dataset (Fig. 2d). Our
evaluations consistently showed that DT-Integration surpassed the
other seven methods. We extended this analysis to the seqFISH+
dataset, which included 72 simulated spots19 (Fig. 2e). Using the true
positional values of L4 excitatory neurons, we found that DT-
Integration achieved the highest PCC value of 0.69 (Fig. 2f). We also
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mapped the positions of L5/6 excitatory neurons for clarity (Supple-
mentary Fig. 4). Across all cell types, DT-Integration excelled in terms
of PCC, SSIM, RMSE, and JSD (Fig. 2g). To enhance the robustness of
our evaluation,we incorporated 32 simulateddatasets compiled byLin
et al.35 Once again, DT-Integration proved its superiority over the other
methods, consistently outperforming them across multiple metrics
(Supplementary Fig. 5).

Identification of spatially resolved CCCs in mouse visual cortex
using the MERFISH dataset
DeepTalk was employed to analyze the MERFISH dataset, encom-
passing measurement data for 268 genes across 2399 cells originating
from the VISp (visual cortex) region of the mouse20. To train the
DeepTalk- Integration model, a total of 254 genes common to
both MERFISH and snRNA-seq datasets were aligned with 11,759
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SMART-Seq2 snRNA-seq records from the VISp region66. This align-
ment served to reveal the spatial distribution of various cell types. The
derived probability mappings were then fused with cell-type annota-
tions sourced from the snRNA-seq data, resulting in spatial probability
distributions for each distinct cell type (Fig. 3a). It’s worth noting that
glutamatergic cells demonstrated unique patterns across different
cortical layers, while themajority of non-neuronal cells and GABAergic
neurons showcased a granular distribution, aligning with established
research findings48. Furthermore, a deterministic mapping was con-
ducted by assigning the most probable cell types to their respective
spatial locations, providing a visualization of the cell type distribu-
tions (Fig. 3b).

Subsequently, DT-CCC was used to predict CCC the mediated by
L-R pairs for this MERFISH dataset. To assess DT-CCC’s predictive
prowess, ROC curves were used to represent the prediction perfor-
mances of the top five L-R pairs with the most CCC under L-R pair
mediation (Fig. 3c). Based on the DT-CCC prediction results, the area
under curve (AUC) value of the CCC mediated by the L-R pairs was
within 0.84 and 0.95, indicating that the proposed method has high
accuracy and reliability in evaluating the influence of L-R pairs. Fur-
thermore, DT-CCC was compared to other prediction methods,
including statistical methods (e.g., CellCall67, CellChat, CellPhoneDB,
ICELLNET, iTALK, and SingleCellSignalR), network-based methods
(e.g., Connectome and NicheNet), and ST-basedmethods (e.g., Giotto,
CellChatv268, CPDB3, COMMOTand stLearn). The distance enrichment
score (DES) served as a benchmark to evaluate the concordance
between anticipated spatial patterns and the observed CCC69, asses-
sing the uniformity of spatial trends among cells. DT-CCC proved
superior in CCC prediction, achieving a notable DES of 0.45, sig-
nificantly outperforming other methods (Fig. 3d). By incorporating
spatial data, we refined DT-CCC’s predictive accuracy, based on the
assumption that CCCs are more evident among adjacent cell types
thandistant ones.Toexhibit the rangeofCCCs amongcells at different
proximities, we handpicked five cell types—L2/3 intratelencephalic
neurons (IT), L4, L5 IT, L5 pyramidal tract neurons (PT), and L6 PT—
known for their clustering tendencies among glutamatergic cells
(Fig. 3a). We then calculated the spatial distances between these cells
(Supplementary Fig. 6). Our results showed that L2/3 IT cells are near
to L4, while L6 PT is the farthest from L4. Using L4 as a baseline, we
computed the CCCprobabilities between L4 and the other cell groups.
In comparisons with 13 other methods (Fig. 3e and Supplementary
Fig. 7), DT-CCC clearly excelled in differentiating between closely and
distantly interacting cell types.

To further test the predictive prowess of DT-CCC at the single-
cell resolution, we benchmarked it against NICHES and Scrabin, two
leading techniques in inferring intercellular communications. We
selected five specific cell types—L2/3 IT, L4, L5 IT, L5 PT, and L6 PT—
for our analysis. By using low-dimensional embedding, we visualized
their CCC patterns, with each dot on the visualization signifying a
CCC event, particularly focusing on the receiver cell (Fig. 3f). This
visualization technique underscores DT-CCC’s proficiency in

identifying nuanced communication patterns among various cell
types. Additionally, we compared the CCC strength at the single-cell
resolution. Both DT-CCC and NICHES agreed that spatially proximate
cells exhibit more pronounced CCCs compared to distant cells,
aligning with previous hypotheses (Fig. 3g). However, Scrabin, which
doesn’t incorporate spatial data, tends to overlook these spatial
relationships, resulting in less accurate CCC pattern evaluations
(Fig. 3h). Overall, DT-CCC excelled in differentiating CCC patterns,
emphasizing the significance of spatial location in shaping the cel-
lular microenvironment.

We also selectively analyzed the glutamatergic cells at varying
spatial distances and showed that the CCCs are mediated by L-R pairs
(Fig. 3i, Supplementary Figs. 8 and 9). Apolipoprotein (Apoe) E70, a
critical protein involed in lipidmetabolismand transport,may regulate
neural function in themouse visual cortex through its association with
the metabotropic glutamate receptor 5(Grm5)71. This interaction
potentially modulates the synaptic plasticity and stability of neural
connections, which is crucial in visual signal transmission and infor-
mation processing. The presence of Apoe may modify the activation
pattern of Grm5, thereby affecting the transmission of glutamatergic
signals and neuronal activity. By binding to Grm5, Apoe can regulate
the release and concentration of glutamatergic neurotransmitters,
influencing the synaptic transmission between neurons in the mouse
visual cortex and modulating visual information processing and per-
ception. Additionally, the binding of Apoe regulates the neuroin-
flammatory responses and cellular apoptosis, exerting protective
effects against the damage and development of diseases in the mouse
visual cortex. The interaction between Apoe and Grm5 significantly
influences the mouse visual cortex by regulating the glutamatergic
signal transmission, synaptic plasticity, and neural connection stabi-
lity, thus impacting the normal functioning of visual information and
neural function. The visualization of heat maps demonstrates a higher
frequency of CCC occurring between neighboring cell types, revealing
the importance of cell distance in facilitating CCC. In addition to
demonstrating the distance-related CCC patterns, we investigated the
top 50 communications between L2/3 and L4 cells mediated by Apoe-
Grm5, aiming to gain deeper insights into CCCs at single-cell
resolution.

Single-cell level delineation of spatially resolved CCC in adult
mouse brain with 10X Visium data
The DeepTalkmodel was used to analyze intercellular communication
in the low-resolution ST (10X Visium) data obtained from the brain of
an adultmouse72. The cortical clusters were investigated and analyzed,
and this dataset provided, insights into the transmission of signals and
intercellular interactions. Initially, the standard Scanpy functions were
used to preprocess the Visium data48,73 (as shown in Methods), iden-
tifying 324 spots and 16,562 genes (Fig. 4a). To overcome the limita-
tions imposed by low resolution, Squidpy functions were used to
assign cells to each voxel, ensuring an equal number of segmented
slices per cell. This deterministic approach enabled the precise

Fig. 2 | Performance comparison of DeepTalk-Integration with state-of-the-art
integrationmethods. a Boxplots showcasing the Accuracy Score of nine different
integration methods across all 45 paired datasets, encompassing 28 sequence-
based and 17 image-based datasets. The boxplots display data distribution where
the box spans from the first to the third quartile,marking themedianwith a distinct
line. The whiskers reach out to the maximum range within 1.5 times the inter-
quartile range, and individual outliers are denoted by separate dots. b A STARmap
slide from the STARmap dataset (mouse visual cortex), annotated with various cell
types. Each grid portrays a simulated spot encompassing multiple cells.
c Illustration of the proportion of Layer 4 (L4) excitatory neurons within simulated
spots from the STARmap dataset, alongside predictions from eight integration
methods.dBoxplots presenting the PCC, SSIM, RMSE, and JSD for eight integration
methods, specifically analyzed for the STARmapdataset. The boxplots display data

distribution where the box spans from the first to the third quartile, marking the
medianwith a distinct line. Thewhiskers reachout to themaximum rangewithin 1.5
times the interquartile range; n = 189 predicted spots. e A seqFISH+ slide from the
seqFISH+ dataset (mouse cortex), annotated with cell types. Analogous to the
STARmap slide, each grid symbolizes a simulated spot with multiple cells.
f Depiction of the proportion of L4 excitatory neurons in simulated spots from the
seqFISH+ dataset, accompanied by predictions from eight integration techniques.
g Boxplots exhibiting the metrics of PCC, SSIM, RMSE, and JSD for the eight inte-
gration methods tested on the seqFISH+ dataset. The boxplots display data dis-
tribution where the box spans from the first to the third quartile, marking the
medianwith a distinct line. Thewhiskers reachout to themaximum rangewithin 1.5
times the interquartile range; n = 72 predicted spots. Source data are provided as a
Source Data file.
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mapping of each cell within each voxel, thereby predicting cellular
localization at a single-cell resolution (Fig. 4b). These predictions were
instrumental in correlating cell types with their spatial positions,
thereby revealing important patterns and mechanisms of intercellular
communication.

To further enhance prediction accuracy, we trained a model by
combining 10X Visium and scRNA-seq data, incorporating 1291

genes74. Subsequently, this model was applied to the scRNA-seq data
obtained from the adult mouse cortical region, which comprised
21,697 cells66. The probability distributions for different cell types
within the spatial context were obtained by merging the probability
mapping results with cell-type annotations acquired from the snRNA-
seq data (Fig. 4a). Based on the deterministic mapping results, the
most probable cell type was assigned to each spatial location to
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visually represent the cell type distribution (Fig. 4b). This integrated
approach yielded valuable insights into cell localization, cell type
classification, and the overall structure of intercellular communication
networks.

To investigate the details of intercellular communication
mechanisms, the DT-CCC model was employed to predict the CCC
mediated by various L-R pairs. This study focused on glutamatergic
cells as the target cells owing to their varying spatial distances. Based
on the strength of CCC with other glutamatergic cells, the interaction
between the L5 IT cells and top 50 L-R pairs was primarily explored.
The heatmap visualization of these interaction pairs revealed that the
cells in closer proximity to L5 IT cells exhibited stronger communica-
tion (Fig. 4c). This indicates an intimate connection and communica-
tion between L5 IT cells and glutamatergic cells at specific spatial
locations. To assess the predictive capabilities of the DT-CCC model,
ROC curves were generated for the top 10 L-R pairs involved in CCC
(Fig. 4d). Based on the DT-CCC predictions, the highest AUC value
achieved for the CCC mediated by L-R pairing was 0.96. Utilizing DES
as a performance indicator,we comparedDT-CCC’s efficacywith other
prediction methods (Fig. 4e).

To understand the intricate communication patterns among cells
situated at varying distances, we specifically selected five glutamater-
gic cell clusters—L2/3 IT, L4, L5 IT, L6 IT, and L6 corticothalamic neu-
rons (CT)—noted for their clustering behavior (Fig. 4a).Wedetermined
the spatial relationships between these cells (Supplementary Fig. 11),
revealing that L2/3 IT cells are closely adjacent to L4, whereas L6
CT cells are farthest from L4. With L4 as a reference, we calculated the
communication probabilities between L4 and the other cell types. In a
comparative analysis with 13 alternative methods (Fig. 4f and Supple-
mentary Fig. 12), DT-CCC demonstrated its superiority in distinguish-
ing between closely and distantly communicating cell types.

In evaluating DT-CCC’s precision in predicting CCC at the single-
cell level, we compared it to NICHES and Scrabin. We narrowed our
focus to five cell types: L2/3 IT, L4, L5 IT, L6 IT, and L6CT. Utilizing low-
dimensional embedding, we represented each CCC event as a point,
emphasizing the receiving cell (Fig. 4g). This approach underscores
DT-CCC’s ability to differentiate distinct intercellular communication
patterns. Additionally, we assessed CCC strength at the single-cell
level, finding that both DT-CCC and NICHES accurately predicted
stronger CCC among spatially proximate cells (Fig. 4h). Scrabin,
however, fell short in this evaluation. To gain deeper insights into the
local cellular environment, we visualized neighboring cells using low-
dimensional embedding,with eachpoint representing a cluster ofCCC
events centered around a specific receiving cell (Fig. 4i). Once again,
DT-CCC excelled in discerning diverse CCC patterns.

The results of CCC between glutamatergic cells mediated by the
gene pairs Psen1-Pparg are also presented (Fig. 4j, Supplementary
Figs. 13 and 14). Psen1 (Presenilin 1) is intricately linked to Alzheimer’s
disease and fulfills crucial functions in intracellular signal transduction
as well as membrane protein transport75. Conversely, Pparg (peroxi-
some proliferator-activated receptor gamma) belongs to the nuclear
receptor superfamily and functions as a transcription factor, over-
seeing diverse biological processes encompassing adipocyte differ-
entiation, glucose metabolism, and inflammatory response76.
Glutamate-facilitated communication among cells essentially
depends on the meticulous release and reception of the neuro-
transmitter glutamate, a process that is meticulously modulated by a
range of factors, including intracellular signaling cascades and the
transcriptional activities of regulatory factors. The heatmap visualiza-
tion effectively demonstrates this intricate relationship. Additionally,
our analysis identified the top 50pairs of L2/3 andL4 cellswherePsen1-
Pparg mediation was observed. These results shed light on the pat-
terns of intercellular connections and the strength of communication
under certain conditions. A deep exploration of these CCCs offers
valuable insights into their significance in cellular and tissue functions,
enhancing our understanding of the complex interactions within
neural networks. By elucidating these connections, we can better
comprehend the intricacies of neural communication and potentially
develop more targeted therapeutic approaches for neurological
disorders.

In summary, we have tentatively applied the DT-CCC model to
analyze intercellular communication in low-resolution ST data, and
have obtained some promising preliminary results. Through the
model’s predictions of cell-type localization, probability mapping, and
CCCs, we have uncovered the intricate structure and organization of
intercellular communication networks.

Spatial representation of CCCs at the single-cell resolution in
human pancreatic ductal adenocarcinoma using the ST dataset
TheDeepTalk algorithmwasused to analyze the STdata acquired from
the human pancreatic ductal adenocarcinoma (PDAC) dataset41, which
was generated using the ST technology and encompassed various
tissue regions, including cancer, pancreatic, ductal, and stromal
regions (Fig. 5a)41. To ensure data accuracy and reliability, expert his-
tology professionals annotated these regions using the H&E staining.
First, we reconstructed the single-cell ST data, which were integrated
and analyzed to investigate the distribution and gene expression
characteristics of various PDAC cell types (Fig. 5a). To address any
uncertainty, deconvolution was performed using the matched scRNA-
seq data (PDAC-A) from the same individuals (Fig. 5b). DT-CCC

Fig. 3 | DeepTalk-CCC detects spatially CCCs for mouse visual cortex region
fromMERFISH data. a Probabilistic mapping of snRNA-seq data onMERFISH data.
Assigns a likelihood score to each cell subset within the three main categories,
indicating their potential cell type. b Deterministic mapping of cell types. Displays
segmented cells on the MERFISH slide, color-coded based on the most probable
snRNA-seq profile mapped using DeepTalk-Integration. c ROC Curve Evaluation of
DeepTalk-CCC (DT-CCC) using the MERFISH Dataset. This curve illustrates the
performance of DT-CCC in terms of true positive rate vs. false positive rate. d DES
Rankings of CCC Tools Evaluation. A comparative analysis of various cell–cell
communication tools, ranked according to their performance in the evaluation
process. The boxplots display data distribution where the box spans from the first
to the thirdquartile,marking themedianwith a distinct line. Thewhiskers reachout
to the maximum range within 1.5 times the interquartile range, and individual
outliers are denoted by separate dots; n = 5 repeated independent tests.
e Comparison of communication scores between adjacent and distant cell types.
Highlights spatial proximity-based differences in communication scores between
Layer 4 (L4) cells andother cell type, including L2/3 intratelencephalic neurons (IT),
L5 IT, L5 pyramidal tract neurons (PT), and L6 PT. The boxplots display data

distribution where the box spans from the first to the third quartile, marking the
medianwith a distinct line. Thewhiskers reachout to themaximum rangewithin 1.5
times the interquartile range, and individual outliers are denoted by separate dots;
N: number of predicted L-R(ligand–receptor) pairs. f Visualization of CCC via low-
dimensional embedding. Each point in the graph represents a CCC event, with the
cell serving as the receptor cell. g Comparison of the CCC score between spatially
adjacent and distant cells at single-cell level. This plot compares the communica-
tion scores between spatially adjacent cells and distant cells at the single-cell level,
revealing differences in communication strength based on proximity. The boxplots
display data distribution where the box spans from the first to the third quartile,
marking the median with a distinct line. The whiskers reach out to the maximum
range within 1.5 times the interquartile range, and individual outliers are denoted
by separate dots; n = 169 L4 cells. h Local microenvironment viewed via low-
dimensional embedding. Each point in this diagram represents a collection of CCC
events where the cell of interest serves as the receiver. i Predicted CCCs mediated
by Apoe - Grm5 pairs. It includes the scores of CCCsmediated by Apoe - Grm5 pairs
between glutamatergic cells (left) and the predicted CCCs from L2/3 IT cells to L4
cells (right). Source data are provided as a Source Data file.
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assigned different cell types to their specific tissue regions, facilitating
the exploration of intricate cellular composition and spatial relation-
ships within PDAC.

DT-CCC was employed to predict communication among cells in
the PDAC dataset. Heatmaps were generated to visually represent the
strength of communication between cancer clone A, cancer clone B,
and neighboring cells, mediated by specific L-R pairs (Fig. 5c). Notably,

the results demonstrated a positive correlation between the predicted
strength of the interaction and the spatial distance between cell types,
this suggests that cells in closer proximity are more likely to engage in
communication, providing a deeper understanding of the transmission
of cell-to-cell information and interactionmechanisms in PDAC tissues.

To evaluate the predictive accuracy of DT-CCC, we generated
ROC curves for the top 10 L-R pairs, focusing on CCC accuracy
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(Fig. 5d). Our DT-CCC predictions indicate that the AUC value for CCC
mediated by L-R pairing falls between 0.82 and 0.93. Additionally,
according to the DES metric, DT-CCC demonstrates superior CCC
prediction accuracy compared to other methods (Fig. 5e).

To gain insights into the intricate interactions among various cell
types depending on their distances, we carefully selected five cell
populations for detailed analysis: Cancer clone A, Cancer clone B,
Ductal terminal, Ductal antigen-presenting, and Ductal centroacinar
cells (Fig. 4a). By consulting the cell locations mapped in Supple-
mentary Fig. 16, we precisely calculated the spatial distances among
these cells. Our investigation revealed a noteworthy pattern: Cancer
clone B cells are in close proximity to Cancer clone A cells, whereas
Ductal centroacinar cells are situated farthest apart. Adopting Cancer
clone A cells as a benchmark, we explored the likelihood of interac-
tions with other cell groups. When contrasting DT-CCC’s predicted
communication intensities against 13 other methods (Fig. 5f and Sup-
plementary Fig. 17), it becomes evident that DT-CCC shines in distin-
guishing between cells communicating at close and far distances.

To rigorously assess the accuracy of DT-CCC’s CCC predictions at
the single-cell level, we compared it to NICHES and Scrabin. Focusing
on our five key cell types, we employed low-dimensional embedding to
visualize their CCC patterns. In this visualization, each CCC event is
represented as a point, with a focus on the receiving cell (Fig. 5g). This
underscores DT-CCC’s remarkable ability to differentiate between
various intercellular communication patterns, despite the challenges
posed by similar communication patterns among cell subtypes.
Additionally, we analyzed CCC strength at the single-cell level, finding
that both DT-CCC and NICHES indicate more intense CCC among
spatially adjacent cells (Fig. 5h). While NICHES reflects spatial infor-
mation, Scrabin falls short in this aspect. To delve deeper, we used low-
dimensional embedding to visualize cells surrounding a specific
receiving cell, with each point representing a cluster of CCC events
centered around that cell (Fig. 5i). Despite the challenges in distin-
guishing local microenvironments, DT-CCC outperforms other meth-
ods in reflecting the local communication environment of cells.

The interaction between the ligand EFNA577 and the receptor
EPHA278 plays a crucial role in various physiological and pathological
processes in the human body, particularly in regulating intercellular
communication. EPHA2, a receptor tyrosine kinase, engages in bidir-
ectional signaling with various Ephrin-A ligands, including EFNA5,
thereby influencing cellular processes such as migration, adhesion,
proliferation, anddifferentiation. In the context of PDAC, these cellular
behaviors are particularly significant as they are intimately linked to
tumor growth, invasion, and metastasis. As a ligand for EPHA2, EFNA5
interacts with the receptor to induce bidirectional signaling,

modulating the adhesion, organization, and development of neurons,
vascular systems, and epithelial cells. In PDAC, this interaction can
affect the adhesive properties and migratory abilities of tumor cells,
altering the tumor’s growth pattern and metastatic potential. The
heatmaps presented here illustrate the CCC potential mediated by
EFNA5-EPHA2 in PDAC tissues. These heatmaps offer invaluable
insights for deeper investigations into related signaling pathways and
cellular functions (Fig. 5j). Additionally, we showcase the top 50 CCCs
from cancer clone A cells to ductal end cells at a single-cell resolution,
mediated by EFNA5-EPHA2. These findings unveil the various interac-
tion patterns and strengths of communication between specific cells
under different conditions (Supplementary Figs. 18 and 19). This
detailed information provides a more holistic understanding of
dynamic CCCs and their crucial roles in functional regulation at both
the cellular and tissue levels.

Discussion
DeepTalk is a powerful approach devised to elucidate themechanisms
and functions of CCC. It utilizes an attentionmechanism-basedGNN to
accurately predict the L–R pairs that mediate intercellular commu-
nication and visualize CCC at multiple scales. The validation experi-
ments have demonstrated the remarkable capability of DeepTalk to
identify and visualize the spatial communication mediated by the
significantly enriched intercellular L–R pairs. To substantiate the effi-
cacy and versatility of DeepTalk, diverse representative experimental
datasets were utilized, such as the single-cell ST dataset obtained from
MERFISH and the spot-based ST dataset acquired using ST and 10x
Visium. These datasets include the ST information pertaining to var-
ious technical platforms and experimental conditions, encompassing
intricate and diverse CCC. They confirm the applicability of DeepTalk
to different data types, further validating its generalizability and
reliability.

DeepTalk emerges as an ingenious approach applicable to both
single-cell and spot-based ST datasets. This is achieved by amalga-
mating scRNA-seq and ST datasets, elevating CCC analysis. For single-
cell ST datasets, it employs a similarity-driven classification approach.
Rather than relying on expression patterns, itmeticulously categorizes
and analyzes these datasets by pinpointing the most similar and top-
ranked cell clusters. Its attention mechanism-driven GNN uncovers
pertinent relationships and intercellular correlation patterns, bolster-
ing classification accuracy and reliability. When dealing with spot-
based ST datasets, DeepTalk introduces a cutting-edge data recon-
struction technique. By carefully selecting and mapping optimal cell
combinations, it recreates STmaps at a single-cell level, encompassing
details about known cell types. This tactic reveals intercellular

Fig. 4 | DeepTalk-CCC detects spatially CCCs for adult mouse brain from 10X
Visiumdata. a Probabilistic mapping of scRNA-seq data onto 10XVisiumdata. The
color bar represents the probability of mapping glutamatergic cells. b Number of
cells per spot(left) and 10X Visium slide with segmented cells colored by the cell-
type annotation of the most likely snRNA-seq profile mapped on that position by
DeepTalk-Integration (right). c The score of predicted cell–cell communications
(CCCs) from Layer 5 intratelencephalic neurons (L5 IT) cells to other cell types.
d ROC Curve Evaluation of DeepTalk-CCC (DT-CCC) using the 10X Visium Dataset.
This curve illustrates the performance of DT-CCC in terms of true positive rate vs.
false positive rate. eDES Rankings of CCCTools Evaluation. A comparative analysis
of various CCC tools, ranked according to their performance in the evaluation
process. The boxplots display data distribution where the box spans from the first
to the thirdquartile,marking themedianwith a distinct line. Thewhiskers reachout
to the maximum range within 1.5 times the interquartile range, and individual
outliers are denoted by separate dots; n = 5 repeated independent tests.
f Comparison of communication scores between adjacent and distant cell types.
Highlights spatial proximity-based differences in communication scores between
L4 cells and other cell type, including L2/3 IT, L5 IT, L6 IT, and L6 corticothalamic
neurons (CT). The boxplots display data distribution where the box spans from the

first to the third quartile, marking the median with a distinct line. The whiskers
reach out to the maximum range within 1.5 times the interquartile range, and
individual outliers are denoted by separate dots; N: number of predicted L-
R(ligand–receptor) pairs. g Visualization of CCC via low-dimensional embedding.
Eachpoint in the graph represents aCCCevent, with the cell serving as the receptor
cell. h Comparison of the CCC score between spatially adjacent and distant cells at
single-cell level. This plot compares the communication scores between spatially
adjacent cells and distant cells at the single-cell level, revealing differences in
communication strength based on proximity. The boxplots display data distribu-
tion where the box spans from the first to the third quartile, marking the median
with a distinct line. The whiskers reach out to the maximum range within 1.5 times
the interquartile range, and individual outliers are denoted by separate dots;
n = 600L4 cells. i Localmicroenvironment viewed via low-dimensional embedding.
Each point in this diagram represents a collection of CCC events where the cell of
interest serves as the receiver. j Predicted CCCs mediated by Psen1 - Pparg pairs.
The scores ofCCCsmediatedbyPsen1 - Ppargpairs amongglutamatergic cells (left)
and the predicted CCCs from L2/3 IT cells to L4 cells (right). Source data are
provided as a Source Data file.
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connections and spatial distribution patterns, effectively transforming
spot-based ST data into single-cell resolution ST data. This not only
enhances data interpretability but also boosts information accuracy.
The integration of scRNA-seq and ST datasets broadens our compre-
hension of CCC across various dimensions and levels. scRNA-seq data
offers intricate insights into intracellular gene expression, while ST
data exposes intercellular interactions and correlations. By

amalgamating these data types, DeepTalk presents a holistic and
multifaceted perspective, fostering a deeper understanding of CCC
mechanisms.

DeepTalk explores the communication preferences between dif-
ferent cell types and identifies the trends in these preferences in var-
ious ST datasets. DeepTalk analysis can be used to accurately
characterize the spatial distributionof each cell type at a reconstructed
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single-cell resolution, furnishing information on the proximity rela-
tionships between different cell types. Utilizing a subgraph-based
GNN, DeepTalk examines cellular interactions at multiple levels, fos-
tering a multifaceted analytical approach that aids in constructing
intercellular communication networks and unveils intricate inter-
connection patterns. By investigating these networks, the commu-
nicationpatterns and relationship features betweendifferent cell types
can be determined with improved accuracy. Furthermore, DeepTalk
facilitates the statistical analysis and visualization of LRIs in proximity,
expanding the understanding of the CCCmechanisms and patterns by
providing a visual representation of the dynamic communication
networks between cells. Furthermore, LRI analysis can identify the
specific L–R pairs that mediate intercellular communication, further
enriching our understanding of CCC.

Indeed, analyzing and visualizing spatial CCC at single-cell reso-
lution poses challenges for scRNA-seq data. Generally, CCC is inter-
preted as L–R pairs between different cell types. However, DeepTalk
overcomes these challenges by incorporating spatial information,
allowing the selection of adjacent co-expressing cell pairs in space.
This approach provides information-rich methods for analyzing and
visualizing LRIs and their mediated CCC from different perspectives,
including in the context of disease pathophysiology. The excellent
performance of DeepTalk on the benchmark ST dataset demonstrates
its ability to decipher the CCC mechanisms in both healthy and dis-
eased tissues. It offers a nuanced and precise interpretation of CCC by
disclosing intercellular LRIs and their functions inCCC. Furthermore, it
can predict and visualize the intercellular communication at single-cell
resolution, and analyzes the associated L–R pairs, which is crucial for
understanding the physiological and pathological processes and
developing therapeutic approaches. By amalgamating scRNA-seq and
ST datasets, DeepTalk elevates our anatomical understanding of CCC,
offering more granular insights; it also presents a multifaceted and
integrated approach to comprehending CCC through the exploration
and visualization of intercellular LRIs.

In essence, DeepTalk offers a significant method that utilizes
GNNs and attention mechanisms to predict and illustrate CCC medi-
ated by L–R pairs. By combining scRNA-seq and ST datasets, it
enhances our analytical capabilities in exploring CCC, ultimately pro-
viding detailed and accurate understanding of cellular interactions. In
spite of challenges like long-distance communication and multimodal
data amalgamation, DeepTalk stands as a crucial tool for unraveling
the intricacies of CCC by probing the cell-to-cell dialog and visually
presenting these interactions. Its applications extend to studying
physiological and pathological processes, as well as aiding in the
development of innovative therapeutic approaches. Additionally,
integrating other omics data, particularly those generated by cutting-

edge technologies like 10x Multiome and digital spatial profiling, can
further refine our examination of spatial control in CCC. By amalga-
mating multimodal data, we can achieve a deeper comprehension of
the mechanisms that drive CCCs. To advance CCC research, DeepTalk
can evolve to encompass spatial constraints and multimodal data
integration, thereby enabling more precise and detailed inference
analyses.

Methods
Preprocessing of datasets
Several preprocessing steps were performed for each dataset. Quality
control of the scRNA-seq data was performed using Scanpy. Cells were
filtered based on several criteria to ensure the quality of the down-
stream analysis. Specifically, cells with a mitochondrial gene expres-
sion percentage exceeding 20% were excluded, as a high
mitochondrial content can indicate stressed or apoptotic cells. How-
ever, it’s important to note that the mitochondrial gene expression
percentage threshold can be adjusted based on specific circum-
stances. Cells with an abnormally high total count or an excessively
large number of expressed genes were also removed. The specific
thresholds for total counts and the number of genes were carefully
chosen based on the characteristics of each dataset to retain only the
highest quality cells for further analysis. Additionally, Scanpy’s filter_-
cells and filter_genes functions were utilized to further purify the
dataset by removing low-quality cells and genes. For both scRNA-seq
and ST datasets, normalization of the expression matrix is essential.
We employed the widely-used normalize_total function from the
Scanpy package to perform this normalization. The normalization can
be mathematically represented as:

X0
ij =

XijP
jXij

*T , ð1Þ

where Xij is the raw count of gene i in cell j, Xij` is the normalized
expression value, andT is the target sumof counts after normalization,
ensuring consistency across all cells.

During the integration of scRNA-seq and ST data, the selection of
training genes is paramount. To enhance the discriminative power of
ST data, we carefully curate a set of marker genes that are uniformly
distributed across different cell types in the scRNA-seq data as training
genes. Specifically, we employ the rank_genes_groups functionality in
Scanpy to identify themost highly expressed genes within specific cell
types. Following this,we create a non-redundant gene set and intersect
it with the gene list in the ST dataset. Genes that record a zero count in
either dataset are excluded from our training gene set, thus guaran-
teeing that only relevant and expressed genes are included. This

Fig. 5 | DeepTalk-CCC detects spatially CCCs for Human pancreatic ductal
adenocarcinoma from ST data. a Annotated spatial regions of PDAC data (left)
juxtaposed with the probabilistic mapping of scRNA-seq data onto ST data (right).
b ST slide showcasing segmented cells, colored according to the most probable
scRNA-seq profile mapped by DeepTalk-Integration. c Scores indicating predicted
cell–cell communications (CCCs) between cancer clone A, cancer clone B, and
other cell types. d ROC curve evaluation of DeepTalk-CCC (DT-CCC) using the ST
dataset. This curve illustrates the performance of DT-CCC in terms of true positive
rate vs. false positive rate. e DES rankings of CCC tools evaluation. A comparative
assessment of various CCC tools, ranked based on their evaluation performance.
The boxplots display data distribution where the box spans from the first to the
thirdquartile,marking themedianwith adistinct line. Thewhiskers reachout to the
maximum range within 1.5 times the interquartile range, and individual outliers are
denoted by separate dots; n = 5 repeated independent tests. f Comparison of
communication scores between adjacent and distant cell types. Highlights spatial
proximity-based differences in communication scores between Cancer clone A
(CCA) cells and other cell types, including Cancer clone B (CCB), Ductal terminal
(DT), Ductal antigen-presenting (DAP), and Ductal centroacinar (DC). The boxplots

display data distribution where the box spans from the first to the third quartile,
marking the median with a distinct line. The whiskers reach out to the maximum
range within 1.5 times the interquartile range, and individual outliers are denoted
by separate dots; N: number of predicted L-R(ligand–receptor) pairs.
g Visualization of cell–cell communication. Represents CCC events as points in a
low-dimensional embedding, with the receiver cell indicated. h Single-cell level
comparison of communication scores. Compares communication scores between
adjacent anddistant cells, revealing proximity-baseddifferences in strength. i Local
microenvironment visualization. Represents collections of CCC events where the
cell of interest serves as the receiver in a low-dimensional embedding. The boxplots
display data distribution where the box spans from the first to the third quartile,
marking the median with a distinct line. The whiskers reach out to the maximum
range within 1.5 times the interquartile range, and individual outliers are denoted
by separate dots; n = 127 cancer clone A cells. j Predicted CCCsmediated by EFNA5-
EPHA2 pairs. Displays scores of CCCs mediated by EFNA5-EPHA2 pairs between
ductal cells and cancer cells andpredictedCCCs fromCancer cloneAcells toDuctal
terminal cells. Source data are provided as a Source Data file.
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procedure results in a refined gene set comprising ‘n’ genes, which will
serve as the foundation for model training. For model validation, we
adopt a leave-one-out validation strategy. Specifically, we sequentially
designate each gene in the refined gene set as the test gene, while the
remaining ‘n-1’ genes function as training genes. This training process
is iterated ‘n’ times, omitting a different gene each time, to ensure that
each gene receives an independent prediction evaluation.

DeepTalk algorithm
The DeepTalk model has two components: integration of the scRNA-
seq and ST datasets (DeepTalk-Integration) and prediction of the
spatial CCCs (DeepTalk-CCC). The former focuses on determining the
cell-type composition of the single-cell or spot-based ST datasets,
whereas the latter is designed to predict the spatially mediated CCCs
influenced by the L–R pairs in the spatial context.

Integration of the scRNA-seq and ST datasets
An attention-based GNN was used to integrate the scRNA-seq and ST
datasets (Supplementary Fig. 20a). This network was tasked with
generating matching descriptors, denoted as f i 2 RD, where ‘D’
represents the dimensionality of the feature space, determining the
length or number of components in the feature vector. These
descriptors were created through feature communication among the
initial features, which encompassed raw or minimally processed data
such as transcriptomic information and cell positions. Initially, we
developed a point encoder combining the transcriptomic data and cell
positions for each cell, denoted as i. By employing a multilayer per-
ceptron (MLP), the cell positions were embedded into a high-
dimensional vector, represented as:

xð0Þ
i = di +MLPenc pi

� �
, ð2Þ

where di refers to the gene expression data obtained from the tran-
scriptome and pi represents the positional information of the cells.
This point encoder allows the GNN to simultaneously leverage the di

and pi during subsequent inference stages.
Subsequently, we created a graph integrating two omics with

nodes representing the cells from both transcriptomics. Self-edges
connected each cell i to all other cells within the same omics, whereas
cross-edges linked cell i to all other cells with different omics. To
propagate information effectively, message-passing equations were
employed, enabling the diffusion of information along the self- and
cross-edges. This approach resulted in a multi-GNN where each node
started with a high-dimensional state. At each layer, the updated
representations were computed by simultaneously aggregating mes-
sages from all edges of all the nodes within the graph.

In the proposed framework, the intermediate representation of
element i in the scRNA-seq A at layer l is denoted by xðlÞ

Ai . The message
mε!i represents the aggregation of information from all cells j, such
that {j : ði,jÞ 2 ε}, where ε 2 fεself , εcrossg. The residual message-passing
update for all i in the scRNA-seq A can be expressed as follows:

xðl + 1ÞAi =xðlÞAi +MLP xðlÞAi
����mε!i

h i� �
ð3Þ

where the concatenation operator ½�jj�� is used for concatenation. A
comparable update can be simultaneously applied to all the points in
omics B. To create a hierarchical structure, a predeterminednumber of
layers L with distinct parameters are linked together and the infor-
mation is alternately aggregated along the self- and cross-edges;
starting from l = 1, ε= εself when l is an odd number and ε= εcross when
l is an evennumber. This approachenabled iterative aggregation along
different edges, thereby facilitating effective representation learning.

The aggregation and computation of the message mε!i were
performed by an attentionmechanism. The self- and cross-edges used
self- and cross-attention, respectively. As in database retrieval, the

query qi was used to retrieve values vj for specific elements based on
their attributes, represented as keys kj . Thereafter, the message was
computed by taking the weighted average of the retrieved values as
follows:

mε!i =
X

j:ði,jÞ2ε
aijvj , ð4Þ

The attention weight aij is calculated as the softmax of the key-
query similarities and is represented as aij = SoftmaxðqT

i kjÞ. The key,
query, and value are obtained by applying linear projections to the
deep features of the GNN. Considering that the query point i belongs
to the scRNA-seq dataset Q and all source points reside in the ST
dataset S, this relationship can be expressed as Q,Sð Þ 2 fA,Bg2.

qi =W 1x
ðlÞ
Qi +b1 ð5Þ

kj

vj
=
W 2

W 3
xðlÞ
Sj +

b2

b3
, ð6Þ

The projection parameters are specific to each layer l; these
parameters are learned and shared across all points in both datasets.
Multi-head attention was employed to enhance the expressiveness of
the model, enabling the representation of both geometric transfor-
mations and assignments. The resulting matching descriptors were
obtained via linear projections as follows:

fAi =W � x lð Þ
Ai +b, 8l 2 A, ð7Þ

They were similarly obtained for points in B.
Creating individual representations for every potential match in a

matrix of size ncells × nspots is impractical. Therefore, an alternative
approach was adopted by representing the pairwise scores as a simi-
laritymatrixM 2 Rncells ×nspots capturing the similarity of thematching
descriptors.

Mi,j =<f
A
i ,f

B
j >,8 i,jð Þ 2 A×B, ð8Þ

where< � , � > is the inner product. The matching descriptors are not
normalized, and their magnitude may vary on a per-feature basis
throughout the training process to reflect the confidence level of the
predictions. To derive the mapping matrix, the following objective
function was minimized with respect to M:

ϕ eM� �
=
Xngenes

k
cossimððMTA�,kÞ,B�,kÞ+

Xnspots

k
cossimððMTAj,�Þ,Bj,�Þ,

ð9Þ

where cossim is the cosine similarity function and * indicates matrix
slicing.

Spatial CCC prediction
During pretraining, we employed a random-walk strategy to generate
pretraining subgraphs GC for each node in the graph. This process
involved masking and predicting nodes within the random walks,
effectively capturing the graph’s overall connectivity patterns (Sup-
plementary Fig. 20b). For each node v in the graph during pretraining
(and for each node-pair during fine-tuning), we generated individual
subgraphs denoted as gc 2 Gc. Each subgraph gc was encoded as a set
of nodes represented by gc = ðv1, v2, . . ., v Vcj jÞ, where jVcj denotes the
number of nodes in gc.

We assigned a low-dimensional vector representation to each
node vi in the subgraph. This representation was obtained bymapping
the attributes (such as gene expression data or cellular phenotypes)
and the structure-based embedding of vi using the function f attr(.). The
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resulting stacked vector was denoted as hi =Wef attr vi

� �
, whereWe is a

learnable embedding matrix. Collectively, the node embeddings
within the subgraph gc were represented asHc = ðh1,h2, . . . ,hjVc jÞ. This
flexible representation approach allowed us to incorporate both node
and relation attributes into low-dimensional embeddings. Alter-
natively, these embeddings could also be initialized using the output
embeddings from other global feature generation methods that cap-
ture the multi-relational graph structure. Specifically, for the initi-
alization of node features in our study, we merged pretrained node
representation vectors from node2vec with gene expression data
acquired from cells.

For a subgraph gc, where Vc represents the set of nodes and
Hc 2 Rd × jVc j denotes their corresponding global input embeddings,
the main objective of contextual learning is to transform these global
embeddings to reflect the most representative roles of the nodes
within the structureof gc. This transformationwas achieved via a series
of layers, with the model having the flexibility to incorporate multiple
layers to account for higher-order relationships within the graph. To
capture higher-order relational dependencies between nodes—
including indirect and multi-step interactions—we introduced a
semantic association matrix, denoted as �A, which acts as an asym-
metric weight matrix. This asymmetry originated from the different
influences that the two cellsmayhave on eachotherwithin a subgraph.
The weights of the matrix �A

k
were iteratively learned in each transla-

tion layer k by considering the connectivity between nodes through
the local context subgraph gc and larger global graph G.

In the k + 1 translation layer, the semantic association matrix �A
k 2

RjVc j × jVc j was updated via the transformation operation, which
involves performing message passing across all nodes within the
subgraph gc and updating the node embeddingsHk

c = ðhk
1 ,h

k
2, . . . ,h

k
jVcjÞ

to Hk + 1
c . The update process ensures that the embeddings capture the

evolving representations of the nodes based on the contextual infor-
mation derived from the message passing and relationship updates in
the subgraph. Specifically, the updated node embeddings Hk + 1

c are
computed as follows:

HK + 1
c = fNNðWsH

k
c
�A
k
+HK

c , ð10Þ

Here, fNN represents a non-linear function, and Ws 2 Rd ×d is a
learnable transformation matrix.

The non-linear function and the transformation matrix were used
to compute the corresponding entry �A

k
ij in the semantic association

matrix. To retain contextual embeddings from the previous step, we
incorporate a residual connection. This ensures that global relations
are preserved by passing the original global embeddings through the
layers. For the two nodes vi and vj within the subgraph gc, the calcu-
lation of �A

k
ij utilizes a multihead attention mechanism with Nh heads,

allowing us to capture the relational dependencies within different
subspaces. For each head, �A

k
ij was computed as follows:

A�k
i,j =

exp W 1h
k
i

� �
W 2h

k
j

� �� �
PjVc j

t = 1 exp W 1h
k
i

� �T
W 2h

k
t

� �� � , ð11Þ

where the transformation matrices W 1 and W 2 are learnable para-
meters. By applying multiple translation layers, multiple embeddings
were generated for each node within the subgraph. Considering the
various embeddings in downstream tasks, the node embeddings
learned from different layers fhk

i gk = 1,...,K were embedded into the
contextual embedding ehi for each node. This aggregation was per-
formed as follows:

ehi =h
1
i � h2

i � � � � � hK
i , ð12Þ

After obtaining the embedding vectors fehigi = 1 ,2 ,... ,jVc j for the
nodes within gc, these embeddings can be used as inputs for predic-
tion tasks. During pretraining, a linear projection function was applied
to the embeddings to predict the probabilities of themasked nodes. In
the fine-tuning step, we utilized a single-layer feed-forward network
with a softmax activation function for binary link prediction, facilitat-
ing predictions regarding the presence or absence of links
between nodes.

Pretraining in the proposed model involves training a self-
supervised node-prediction task. For each node in G, a node gc with
a diameter (the maximum shortest distance between any pair of
nodes) was created using the aforementioned generation methods.
Subsequently, a single node within the subgraph was randomly
masked for predictionwithout altering the graph structure. Therefore,
pretraining was accomplished by maximizing the probability of cor-
rectly predicting the masked node vm based on the given context gc.
The probability was computed in the following form:

θ= argmaxθΠgc2GC
Πvm2gc

p vmjgc,θ
� �

, ð13Þ

where θ represents the set of model parameters.
To fine-tune themodel further, we focused on a contextualized link

prediction task. Multiple fine-grained contexts were generated for each
node pair considered for link prediction. During this stage, the model
was trained tomaximize the probability of observing a positive edge (ep)
given its corresponding context (gcp). Simultaneously, themodel learned
to assign low probabilities to the negatively sampled edges (en) and their
associated contexts (gcn). The overall objective was constructed by
summing over two subsets of training data: positive edges (Dp) and
negative edges (Dn). By optimizing this objective, themodel improved its
ability to accurately predict the positive and negative edges.

L=Σðep,gcpÞ2Dp
log P epjgcp,θ

� �� �
+Σðen,gcnÞ2Dn

log 1� P enjgcn,θ
� �� �

, ð14Þ

The probability of an edge between two nodes, denoted by
e= ðvi, vjÞ, was calculated using the similarity score Sðvi, vjÞ, which can

be mathematically expressed as Sðvi, vjÞ = σðehT

i � ehjÞ, where ehi and
ehj

are embeddings of vi and vj, respectively. σð�Þ represents sigmoid
function. The probability of an edge between two nodes was thereby
calculated based on the similarity of their embeddings.

Definition of cell type for the ST dataset
To analyze the single-cell ST dataset, the cell type with the highest
coefficient was assigned to each individual cell type. For the 10X Vis-
iumfluorescencedataset used in this study, squidpy.im.segment () was
used to segment the tissue image. For the ST dataset, the maximum
cell number (Ncell) was defined for each spot, and Ncell was set to 20
based on a recent review79. To determine the optimal combination (ω)
of cells for each spot, the following function was used:

ωi i 2 1,2, . . . ,kð Þ= ½Ncellβi�+ 1 ðfNcellβig≥0:5
½Ncellβi� Ncellβi

	 

<0:5

,

(
ð15Þ

where Ncellβi

h i
and fNcellβig represent the integer and fractional

parts of Ncellβi, respectively. Thereafter, a subset of cells (n=
Pk

i= 1ωi)
was randomly selected from the total cell population (S) and the
merged expression profile (ϵ) of the cell was compared with the
ground truth using the following function:

argmin n<Ncell

	 
Xn

i = 1
Y i �

Xm

j = 1
ϵ j
i

� �2
, ð16Þ

To assign the coordinates ðx0 , y0Þ to each sampled cell, we intro-
duced a probabilistic distribution based on the ratio (R) of the same
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cell type inneighboring spots, allowing us to determine the probability
of locating a cell in a specific region within a spot. The distribution was
calculated using the following equation:

x0 = x0 +
admin cos

θπ
180

� �
2

, ð17Þ

y0 = y0 +admin sin
θπ
180

� �
=2, ð18Þ

where dmin represents the minimum spatial distance to the closest
neighbor spot and α 2 ð0,1� and θ 2 ð0,360� represent the weight for
dmin and angle toward the spot center (x0, y0), respectively. Notably,θ
is determined by the following probability equation:

eP θð Þ= Rq + 1PQ
i ðRi + 1Þ

,θ 2 90q� 90,90qð �, ð19Þ

where q is the qth neighbor spot amongQ spots. Practically,Qwas set
to 4, dividing the space around the spot into four quadrants and fil-
tering the nearest neighbor in each quadrant. After determining θ, the
corresponding neighbor spot (x0 , y0) was selected to calculate the
probabilistic distribution of α using the following equation:

bP αð Þ=
Rx0, y0 + 1

Rx0, y0 +Rx0 , y0 + 2
, α 2 0,0:5ð �

Rx0, y0 + 1
Rx0, y0 +Rx0 , y0 + 2

, α 2 0:5,1ð �

8<: , ð20Þ

whereRx0,y0
and Rx0 ,y0 represent the ratios of the given cell type in each

spot to its neighboring spot, respectively. These optimal cellular
combinations were integrated for all spots to reconstruct the single-
cell resolution ST dataset for the spot-based ST dataset.

Definition of the CCC score
To generate the cell–cell distance matrix D, the spatial coordinates of
individual cells were used to calculate their Euclidean distances.
However, to focus on nearby secretion andparacrine signalingwithin a
specific range, we only considered the cells that were 200 μm apart79.
Subsequently, the K-nearest neighbors (KNN) algorithmwas applied to
select the K closest cells from the distance matrix D, aiding the con-
struction of a cell graph network by establishing connections between
the selected cells. The receptor was used as the query node to ensure
the biological relevance of the identified CCCs. A random walk algo-
rithm was employed to filter and score the downstream-activated
transcription factors (TFs). Thus, the TFs activated in response to a
queried receptor were identified; consequently, we considered only
cells with activated TFs as receptor cells. This approach provides a
more accurate representation of the intercellular information transfer
and communication as it reflects the actual cellular response to sig-
naling events.

To ascertain the co-expression of a specific ligand-receptor pair
between the sender cells (of type A) expressing a given ligand and the
receiver cells (of type B) expressing the corresponding receptor in the
cell graph network, we computed the number of cell–cell pairs (C0

Ai ,Bj
)

exhibiting this ligand-receptor interaction. This involved identifying
the direct neighboring nodes (1-hop away) of the sender cells expres-
sing ligand i and the receiver cells expressing receptor j. For each
ligand-receptor interaction between cell types A and B, there may be
distinct cell–cell pair counts.

A permutation test was employed to gauge the significance of
these observed counts. This entailed randomly reassigning cell labels
and recomputing the ligand-receptor interaction counts. This proce-
dure was iterated (Z) times, generating a background distribution
C = C1

Ai ,Bj
,C2

Ai ,Bj
, . . . ,CZ

Ai ,Bj
. The P-value was then determined by

juxtaposing the observed cell–cell pair counts for the specified ligand-
receptor interactions against this background distribution.

Mathematically, the P-value was computed as follows:

PAiBj
=
card x 2 Cjx ≥C0

Ai,Bj

n o
Z

, ð21Þ

P-values less than 0.05 were considered statistically significant
and were used to calculate the CCC score of the ligand-receptor
interaction from senders to receivers. This score was computed as
SAi ,Bj

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LAi

×RBj

q
, where LAi

is the gene expression of the ligand L in
cell i of cell type A and RBj

is the gene expression of the receptor R in
cell j of cell type B.

Benchmark metrics
Benchmarkmetrics for integration methods. Five metrics were used
to evaluate the integration methods, one of the metrics being the
Pearson correlation coefficient (PCC), which is calculated using the
following equation:

PCC=
E½ exi � eui

� �
xi�ui

� ��eσiσi
, ð22Þ

where xi and exi represent the spatial expression vectors of the i-th
gene in the ground truth and the predicted results, respectively.
Similarly, ui and eui correspond to the average expression value of the i-
th gene in the ground truth and the predicted result, respectively, and
σi and eσi represent the standard deviation of the spatial expression of
the i-th gene in the ground truth and the predicted result, respectively.
While evaluating a specific gene, a higher PCC value indicates a higher
prediction accuracy for that gene. The PCC valuemeasures the degree
of linear association between the ground truth and predicted results
for a particular gene.

The evaluationof the integrationmethods also used the structural
similarity index (SSIM). To prepare the data for SSIM calculation, the
expression matrix was scaled by adjusting the expression values of
each gene to lie in the range of 0–1 as follows:

x0ij =
xij

maxðfxi1, . . . ,xiMgÞ
, ð23Þ

where xij denotes the expression of the i-th gene in the j-th spot, andM
is the total number of spots. Normalizing the expression values facili-
tated a consistent and comparable evaluation of integration methods
using the SSIM metric. After scaling the gene expression values
between 0 and 1, the SSIM value for each genewas calculated using the
following equation:

SSIM=
2euiui +C

2
1

� �
2cov x0

i ,exi

� �
+C2

2

� �
eu2
i +u

2
i +C

2
1

� � eσ2
1 + σ

2
i +C

2
2

� � , ð24Þ

To calculate the SSIM value for each gene, we utilized the same
definitions of ui, eui,σi and eσi as in the calculation of the PCC value, but
for the scaled gene expression. Additionally, C1 and C2 were intro-
duced as constant values and set to 0.01 and 0.03, respectively. The
term cov xi,exi

� �
represents the covariance between the expression

vectors of the i-th gene in the ground truth (xi`) and the predicted
result (exi`). Similar to the PCC value, a higher SSIM value indicates a
higher level of prediction accuracy for a given gene.

The z-score for the spatial expression of each gene was calculated
for all spots. The root mean square error (RMSE) was computed as
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follows:

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM

j= 1
ðezij�zijÞ2

r
, ð25Þ

where zij and ezij are the z-scores of the spatial expression of the i-th
gene in the j-th spot in the ground truth and predicted results,
respectively. For a given gene, a lower RMSE value indicates a higher
level of prediction accuracy.

The Jensen–Shannon divergence (JSD) uses the relative informa-
tion entropy, particularly the Kullback–Leibler divergence, to quantify
the difference between the two distributions. To calculate the spatial
distribution probability of each gene, the following steps were per-
formed:

Pij =
xijPM
j = 1xij

, ð26Þ

To calculate the spatial distribution probability of each gene, we
assign xij as the expression value of the i-th gene in the j-th spot, where
M is the total number of spots and Pij is the distribution probability of
the i-th gene in the j-th spot. After calculating the spatial distribution
probability, the JSD value for each gene was evaluated using the fol-
lowing equations:

JSD=
1
2
KL ePi

ePi +Pi

2

�����
 !

+
1
2
KL Pi

ePi +Pi

2

�����
 !

, ð27Þ

KL aijjbi =
XM

j =0
ðaij × log

aij
bij

 !
, ð28Þ

wherePi and ePi represent the spatial distributionprobability vectors of
the i-th gene in the ground truth and predicted result, respectively;
KLðaijjbiÞ denotes the Kullback–Leibler divergence between the two
probability distributions ai and bi; aij and bij represent the predicted
and real probabilities of the i-th gene in the j-th spot, respectively. For a
given gene, a lower JSD value indicates a higher level of prediction
accuracy.

To evaluate the relative accuracy of the integration methods for
each dataset, an accuracy score (AS) was defined by combining the
PCC, SSIM, RMSE, and JSD metrics. For a given dataset, the average
PCC, SSIM, RMSE, and JSD values were calculated for all the genes
predicted by each integration method. Subsequently, the PCC and
SSIMvalues of the integrationmethodswere sorted in ascending order
to obtain RANKPCC and RANKSSIM, respectively. The integration
methodwith the highest PCC/SSIM value hadRANKPCC=SSIM equal to N,
whereas the method with the lowest PCC/SSIM value had the
RANKPCC=SSIM value of 1. Similarly, the RMSE and JSD values of the
integration methods were sorted in the descending order to obtain
RANKRMSE and RANKJSD, respectively. The integrationmethodwith the
highest RMSE/JSD value had RANKRMSE=JSD = 1, whereas the method
with the lowest RMSE/JSD value had RANKRMSE=JSD = N. Finally, the
average values of RANKPCC, RANKSSIM, RANKRMSE, and RANKJSD were
determined to obtain the AS value for each integration method as
follows:

AS=
1
4

RANKPCC +RANKSSIM +RANKRMSE +RANKJSD

� �
, ð29Þ

The method with the highest AS value exhibited the best perfor-
mance among the integration methods.

Benchmark metrics for the CCC prediction method
TheWasserstein distance conceptwas introduced as ametric to assess
the spatial communication tendency in a specific ligand-receptor (L-R)
pair. Here, L and R represent the gene expression distributions of the
ligand and receptor, respectively. For brevity, we refer to the actual
Wasserstein distances between thesedistributions asdreal. To establish
a comparative baseline, we constructed random gene expression dis-
tributions, Lr and Rr , by permuting the coordinates of each data point
in L and R. By repeatedly permuting (1000 times in our case) and
calculating the Wasserstein distance between Lr and Rr , denoted as
dsimulation, we obtained a set of dsimulation values. Subsequently, the
spatial communication tendency was quantified by computing the
ratio of dreal to the mean of the dsimulation set, referred to as dratio. This
ratio serves as a measure of the spatial communication tendency
specific to the L-R pair under consideration.

dratio =
drealPn

i = 1dsimulationi
=n0 ð30Þ

By increasing the number of permutations (n), we constructed a
null distribution of dreal using the dsimulation set. This null distribution
was then utilized in a one-sided permutation test to derive a P-value,
indicating the significance of the observed spatial communication
tendency. Additionally, left- and right-sided P-values were calculated
to distinguish between short- and long-range communications. To
quantify the consistency between expected and observed spatial dis-
tance tendencies, we employed the DES metric, where a higher value
signifies better consistency69. Based on their dratio and P-values, short-
and long-range communications were ranked to form expected com-
munication lists, Ls and Ll , respectively. Subsequently, we extracted
communications from the CCC tool’s results and created observed
communication lists, S, for eachcell typepair. These listsweredenoted
as Sn and Sf , for nearby and distant cell type pairs, respectively. To
compute the DES for a particular cell type pair, we considered
weighted P-value proportions (Pmatch and Punmatch) while iterating
through the expected communication list. The presence or absence of
communication in the observed list determined the addition or sub-
traction of the corresponding weights, respectively. This approach
allowed us to assess the consistency between expected and observed
communications for a given cell type pair. A similar methodology was
applied to compute the DES for distant cell type pairs. The Pmatch and
Punmatch values for the j-th interaction in Ls are defined as follows:

Pmatch Sn,j
� �

=
X

lrj2Sn
j ≤ i

1� Pvaluej
Σlrj2sn ð1� PvaluejÞ

, ð31Þ

where n represents the total number of matched interactions between
Sn and Ls. The DES represents the maximum deviation of
(Pmatch � Punmatch) from 0, providing a quantitative measure of con-
sistency between expected and observed spatial interaction
tendencies.

Comparison with other methods
To compare the predictive performance of DeepTalk with that of
other methods for predicting the spatial distribution of undetected
transcripts, we used a dataset comprising 45 paired ST and scRNA-
seq datasets curated by Li et al.35. These datasets were generated
using various techniques, including FISH, osmFISH, seqFISH, MER-
FISH, STARmap, ISS, EXseq, BaristaSeq, ST, 10X Visium, Slide-seq,
Seq-scope, and HDST. STARmap and seqFISH+ST datasets were
employed to assess the accuracy of DeepTalk and other methods for
cell type decomposition. For the single-cell ST dataset, the cells were
separated into distinct groups based on fixed spatial distances and
combined to create simulated spots, resulting in a reference dataset.
The performances of Tangram, Cell2location, SpatialDWLS, RCTD,
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Stereoscope, DestVI, and SPOTlight in predicting cell-type compo-
sitions within each spot were evaluated by comparing themwith true
cell-type compositions, using metrics such as PCC, SSIM, RMSE, JSD,
and AS. By utilizing a benchmark dataset comprising the MERFISH,
10X Visium, and ST datasets, we compared the performance of
DeepTalk with that of other methods for inferring CCC, including
CellCall, CellChat, CellChatV2, CellPhoneDB, CellPhoneDBV3,
ICELLNET, iTALK, SingleCellSignalR, Giotto, stLearn, Connectome,
NicheNet, COMMOT. All methods were evaluated using their default
parameters. For the comparison of NICHES and Scrabin, two meth-
ods for inferring CCC at the single-cell resolution, we utilize the same
ground-truth ligand-receptor pairs obtained from OmniPath80 for
this analysis.

Visualize the CCC patterns using UMAP
To visualize the CCC patterns using UMAP, we predicted CCC events
mediated by various L-R pairs at single-cell resolution. Each predicted
event was assigned a quantitative score reflecting the communication
strength, resulting in a matrix where rows represent distinct CCC
events, and columns correspond to unique L-R pairs. For dimension-
ality reduction and visualization, we employed Scanpy, a robust tool
for single-cell analysis. Initially, we scaled the data using sc.pp.scale()
to normalize the feature values. This was followed by principal com-
ponent analysis (PCA) using sc.tl.pca(), which helped reduce the
dimensionality of the dataset while preserving itsmain structure. Next,
we constructed a neighborhood graph using sc.pp.neighbors(), which
identifies cells that are close to each other in the high-dimensional
space. This step is crucial for subsequent manifold learning techni-
ques. Finally, we used sc.tl.umap() to craft the UMAP visualizations,
thereby enabling the depiction of intricate CCC patterns within a two-
dimensional framework.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This study made use of publicly available datasets. The detailed
information of 45 paired spatial transcriptomics and scRNA-seq data-
sets, alongwith 32 simulateddatasets for assessing the effectiveness of
the integrationmethod,were retrieved fromhttps://drive.google.com/
drive/folders/1pHmE9cg_tMcouV1LFJFtbyBJNp7oQo9J?usp=sharing35.
MERFISH VISp data and Smart-Seq2 VISp snRNA-seq data were avail-
able at http://github.com/spacetx-spacejam/data. 10x Genomics Vis-
ium Fluorescent dataset is available from https://support.
10xgenomics.com/spatial-gene-expression/datasets and adult mouse
cortical region scRNA-seq data were obtained through GEO under
accession number GSE115746. The scRNA-seq and ST data of the
human PDAC data were obtained through GEO under accession
number GSE111672. Source data for the main figures are provided with
this paper. Source data are provided with this paper.

Code availability
DeepTalk is implemented in the open-source Python using PyTorch,
and source code are publicly available at (https://github.com/
JiangBioLab/DeepTalk)81.
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