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The inference of cell-cell communication (CCC) is crucial for a better under-
standing of complex cellular dynamics and regulatory mechanisms in biolo-
gical systems. However, accurately inferring spatial CCCs at single-cell
resolution remains a significant challenge. To address this issue, we present a
versatile method, called DeepTalk, to infer spatial CCC at single-cell resolution
by integrating single-cell RNA sequencing (scRNA-seq) data and spatial tran-
scriptomics (ST) data. DeepTalk utilizes graph attention network (GAT) to
integrate scRNA-seq and ST data, which enables accurate cell-type identifica-
tion for single-cell ST data and deconvolution for spot-based ST data. Then,
DeepTalk can capture the connections among cells at multiple levels using
subgraph-based GAT, and further achieve spatially resolved CCC inference at
single-cell resolution. DeepTalk achieves excellent performance in discovering
meaningful spatial CCCs on multiple cross-platform datasets, which demon-
strates its superior ability to dissect cellular behavior within intricate biological
processes.

Cell-cell communication (CCC) is a fundamental biological process that
plays a crucial role in immune cooperation, organ development, stem
cell niches, and other biological phenomena'™. Advances in single-cell
transcriptomics, particularly single-cell RNA sequencing (scRNA-seq),
have revolutionized the study of individual cells, providing unprece-
dented insights into their composition, function, and dynamics®*.
Computational tools such as CellPhoneDB®, CellChat®, NicheNet’,
CytoTalk®, scTensor’, iTALK, ICELLNET", SingleCellSignalR” and

Scriabin® have been developed to infer and decipher CCC networks™.
Tools like CellPhoneDB and CellChat, for instance, offer deep insights
into ligand-receptor interactions (LRIs), which are pivotal in under-
standing signal transduction across diverse cell types. These tools
employ innovative methods and statistical tests to quantify the prob-
ability of each interaction, facilitating in the assessment of the null
hypothesis and inference of the specific cell types involved in inter-
cellular communication. Additionally, NicheNet and CytoTalk reveal the
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complex gene-gene interactions within cells in response to external
stimuli, while scTensor employs hypergraphs to expose the intricacies
of higher-order intercellular communications and visualize the complex
network of interactions. Other tools, such as iTALK, ICELLNET, and
SingleCellSignalR, provide further functionalities and resources for
analyzing ligand-receptor (L-R) interactions. Notably, Scriabin enables
the examination of intercellular communication at the single-cell level,
unveiling the delicate web of cellular interactions. Nonetheless, a sig-
nificant drawback of current single-cell analysis methods is their
inability to fully capture spatial information'. The lack of cellular spatial
information increases the probability of false positives, causing the
incorrect categorization of physically separated cells as those engaged
in intercellular communication®. Therefore, spatial information should
be incorporated into the CCC analysis to advance the field and enhance
understanding of this complex process'.

Spatial transcriptomics (ST) provides valuable spatial information
regarding cells or spots that comprise multiple or partial cells”*.
These techniques facilitate the measurement of spatial gene expres-
sion in two-dimensional (2D) or three-dimensional (3D) tissue samples
with varying degrees of cellular resolution?. The incorporation of ST
significantly enhances the accuracy and reliability of spatial CCC
inference in biology and biomedicine. Recently, several methodolo-
gies have emerged to decipher the underlying mechanisms of CCC
within a spatial context. For instance, CellPhoneDBv3(CPDB3) restricts
the interactions among cell types located within the same micro-
environment, as determined by spatial information”. stLearn associ-
ates the co-expression of ligand and receptor genes with the spatial
diversity of cell types*. SVCA* and MISTy* employ probabilistic and
machine learning models, respectively, to identify spatially correlated
gene interactions between cells. NCEM* uses a function to fit the
relationship between cell types, spatial environments, and gene
expression. Contrastingly, Giotto constructed spatially proximate
graphs to identify the interactions between L-R pairs binding through
the membrane-bound receptors?®. Additionally, SpaOTsc performs
structured optimal transport mapping between scRNA-seq and ST
data, assigning spatial positions to cells and inferring the ligand-
receptor signaling network mediating spatial constraints using
cell-cell distances as transport costs”. While this method quantifies
the likelihood of intercellular interactions, its specificity for image-
based spatial expression data and reliance on predefined pathways
somewhat limits its versatility and applicability. COMMOT®’, an
extension of SpaOTsc’s optimal transport framework, deduces the
direction of communication by applying optimal transport analysis
tools to ST data, considering the complex ligand-receptor interactions
and the constraints imposed by effective intercellular communication
distance. Moreover, NICHES™ distinguishes itself as a notable addition
to this toolbox, leveraging spatial transcriptomic information to
understand CCCs at a single-cell resolution. This tool proves invaluable
in gaining a deeper understanding of the intricate interactions and
organizational patterns inherent within tissues. These methodologies
hold immense promise for the direct analysis of CCC within a spatial
context. Nonetheless, they encounter limitations stemming from the
gene throughput and spatial resolution of ST data. Furthermore, the
majority of these methods primarily focus on identifying CCC between
paired cell types, neglecting the analysis of CCC between paired indi-
vidual cells. Methods capable of simultaneously overcoming the lim-
itations of ST data and inferring CCC at a single-cell resolution remain
scarce, thereby restricting our comprehension of the coordinated
activities exhibited by various cells in biological processes.

Here, we develop DeepTalk, an innovative method that combines
cell-specific gene expression data and spatial affinities of cells to pre-
dict CCC at single-cell resolution. DeepTalk employs a graph attention
network (GAT)** alongside a subgraph-based GAT to unveil the intri-
cate mechanisms underlying CCCs within the spatial context of healthy
and diseased tissues. This effectively overcomes the limitations posed

by the restricted gene throughput and inadequate spatial resolution of
ST data by integrating it with scRNA-seq data sourced from the iden-
tical region. Extensive evaluations using diverse publicly available
datasets validate the exceptional performance and robustness of
DeepTalk in identifying spatial CCC. Our results demonstrate that
DeepTalk has great potential to discover meaningful CCC patterns
across diverse conditions and provide valuable insights into the spatial
intercellular dynamics within tissues.

Results

Overview of the DeepTalk workflow

The two pivotal tasks in analyzing the scRNA-seq and ST data are the
determination of cell types and CCC, as these tasks provide insights
into fine-grained tissue organization and cellular-level communica-
tions. The proposed deep learning approach, DeepTalk, consists of
two primary components: (1) DeepTalk-Integration (DT-Integration),
which integrates sc/snRNA-seq and ST data to identify cell types in
single-cell ST data and perform deconvolution for non-single-cell ST
data, and (2) DeepTalk-CCC (DT-CCC), which predicts spatially-
resolved intercellular communication at a single-cell resolution for
the processed ST data (Fig. 1a). Initially, GAT was employed to
‘decode’ the single-cell or spot-based ST data matrix. This decoding
process involves utilizing self-attention mechanisms to focus on the
relationships within the scRNA-seq or ST data and cross-attention
mechanisms to capture the connections between scRNA-seq data
and ST data. Through this decoding step, a weight matrix is gener-
ated, representing the optimal proportions of cell types for each cell
or spot (Fig. 1b). The cells are labeled with the cell type exhibiting the
maximum weight for the single-cell ST data, whereas different cell
types with varying weights are used for the spot-based ST data as
references to project the cells from the scRNA-seq data onto spatial
spots. Through an iterative process, the optimal combination of cells
is further refined to reconstruct the single-cell ST data based on
spots (Fig. 1c).

Subsequently, DT-CCC infers CCC at a single-cell resolution by
creating a cell graph that incorporates distance information and cell
expression data to establish connections between cells. This con-
struction accounts for both the positions and similarities of cells,
reflecting their spatial arrangement. Individual subgraphs are gener-
ated for each cell, encoding their local characteristics through a sub-
graph encoder. To capture the local features of cells within their spatial
context, DT-CCC utilizes a subgraph-based GAT*?, which enables it to
assess the traits of each cell based on the data from adjacent cells
(Fig. 1d). The model grasps cell positions and interactions by com-
prehending local intercellular relationships. It integrates the distinct
features of all cells and deciphers the underlying connections between
them using an attention-based graph neural network. This approach
enables the inference of CCC and comprehension of cell interplay at a
spatial level. Furthermore, to enhance the model’s generalization
ability, a pre-training and fine-tuning strategy is adopted**. Through
pre-training on a large-scale dataset, the model learns the general
patterns of intercellular communication and spatial relationships.
Subsequent fine-tuning of specific datasets enhances the model
accuracy in predicting CCC. This training approach contributes to the
robustness and accuracy of the model for inferring intercellular com-
munication. Furthermore, DT-CCC provides visualization capabilities
to intuitively showcase the composition of cell types and spatial
intercellular communication (Fig. 1e). When compared to other state-
of-the-art methods, DT-CCC has demonstrated strong performance
when applied to spot-based ST and single-cell ST data.

Performance comparison of DeepTalk-Integration with state-of-
the-art integration methods

The integration of ST and scRNA-seq data is crucial in accurately elu-
cidating the complex CCC within a spatial context. To enhance our
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Fig. 1| Workflow of the DeepTalk. a DeepTalk takes the single-cell RNA sequen-
cing (scRNA-seq) data and spatial transcriptomics (ST) data as input. b DeepTalk-
Integration integrates scRNA-seq and ST data using attentional graph neural net-
works. By employing self-attention mechanisms to capture cell relationships within
scRNA-seq or ST data, and utilizing cross-attention mechanisms to explore con-
nections between scRNA-seq and ST data, DeepTalk-Integration generate a weight
matrix that represents the optimal cell type proportions for each cell or spot. ¢ The
integration results of DeepTalk-Integration. It’s mainly contains correction of low-

quality data for spatially measured genes, cell-type localization and single-cell
deconvolution. d DeepTalk-CCC predicts the cell-cell communications using
subgraph-based attentional graph neural networks. e DeepTalk-CCC offers visua-
lization outputs for spatially-resolved intercellular communication at the single-cell
level. The Tissue component in (a) was created with BioRender.com, released under
a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International
license.

understanding of CCC, we harness the predictive capabilities of spatial
transcript distribution models for undetected transcripts and perform
sophisticated cell type deconvolution analysis on tissue samples. To
assess the integration efficiency of our approach, we present DT-
Integration and pit it against eight cutting-edge techniques, utilizing a
diverse dataset curated by Li et al.*>, which encompasses 45 paired ST
and scRNA-seq datasets. The ST datasets use various techniques,
including osmFISH*, seqFISH', MERFISH”, STARmap®*, ISS*,
BaristaSeq*®, ST*, 10X Visium*, Slide-seq', and HDST**. These datasets
can be categorized into image-based and sequence-based (seq-based)
methods**. Image-based ST methods, such as in situ hybridization and
fluorescence microscopy, detect transcript spatial distributions with
high resolution and accuracy; however, they may be limited in the
number of detected transcripts. Seq-based ST methods capture the
entire transcriptome-scale expression of RNA with spatially defined
points and exhibit high technical coverage but low spatial resolution.
Additionally, techniques such as Drop-seq®, Smart-seq*®, and 10X
Chromium®* are used to generate the scRNA-seq datasets.

Initially, we undertake a rigorous evaluation of DT-Integration’s
performance alongside eight other integration methods: Tangram*®,
gimVI*’, SpaGE®, Seurat™, SpaOTsc?’, novoSpaRc®, LIGER*, and
stPlus®*. Our assessment focuses on predicting the spatial distribution
of undetected RNA transcripts within the ST datasets. To guarantee
stringent and reproducible testing, we employ a ten-fold cross-
validation® technique on the 45 paired datasets. For a systematic
evaluation of the eight integration methods in predicting the spatial
distribution of undetected transcripts, we utilize multiple metrics:
Pearson correlation coefficient (PCC)*, structural similarity index
(SSIM)*’, root mean square error (RMSE)*®, Jensen-Shannon divergence
(SD)*’, and accuracy score (AS)*. These metrics offer a robust
assessment of the accuracy, structural similarity, error magnitude,

divergence, and overall performance of the predictions across the 45
paired datasets (Fig. 2a, Supplementary Figs. 1 and 2). Consequently,
DT-Integration proves to be the best method, surpassing other
approaches in both image-based and seq-based datasets.

Second, we evaluate the performances of DT-Integration and
seven other integration methods (Tangram, Cell2location®,
SpatialDWLS®, RCTD®?, Stereoscope®, DestVI**, and SPOTlight®’) for
cell-type deconvolution. For the purpose of comparing their perfor-
mances, we utilize the STARmap and seqFISH+ datasets as our base-
lines. Additionally, we simulate a “grid” that represents low spatial
resolution datasets, following a precedent established in previous
research®. In these simulated low-resolution datasets, each “spot”
within the grid contains a varying number of cells, ranging from1to 18,
much like the ST datasets that are generated using techniques such as
10X Visium or ST methods. The STARmap dataset captures 1549 cells
corresponding to 15 cell types® (Fig. 2b). After grid transformation, the
simulated dataset comprises 189 spots, each containing 1-18 cells. In
identifying the positions of L4 excitatory neurons, DT-Integration
demonstrated high accuracy and consistency, achieving a Pearson
correlation coefficient (PCC) of 0.88, the highest among all methods.
RCTD and Stereoscope closely followed with a PCC of 0.87 (Fig. 2c).
For a broader analysis, we also plotted the positions of Layer 2/3(L2/3)
and LS excitatory neurons (Supplementary Fig. 3).

Additionally, we used metrics like PCC, SSIM, RMSE, and JSD to
assess the accuracy of these eight integration methods in predicting
cell-type composition within the simulated grid dataset (Fig. 2d). Our
evaluations consistently showed that DT-Integration surpassed the
other seven methods. We extended this analysis to the seqFISH+
dataset, which included 72 simulated spots” (Fig. 2e). Using the true
positional values of L4 excitatory neurons, we found that DT-
Integration achieved the highest PCC value of 0.69 (Fig. 2f). We also
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mapped the positions of L5/6 excitatory neurons for clarity (Supple-
mentary Fig. 4). Across all cell types, DT-Integration excelled in terms
of PCC, SSIM, RMSE, and JSD (Fig. 2g). To enhance the robustness of
our evaluation, we incorporated 32 simulated datasets compiled by Lin
et al.> Once again, DT-Integration proved its superiority over the other
methods, consistently outperforming them across multiple metrics
(Supplementary Fig. 5).

Identification of spatially resolved CCCs in mouse visual cortex
using the MERFISH dataset

DeepTalk was employed to analyze the MERFISH dataset, encom-
passing measurement data for 268 genes across 2399 cells originating
from the VISp (visual cortex) region of the mouse®. To train the
DeepTalk- Integration model, a total of 254 genes common to
both MERFISH and snRNA-seq datasets were aligned with 11,759
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Fig. 2 | Performance comparison of DeepTalk-Integration with state-of-the-art
integration methods. a Boxplots showcasing the Accuracy Score of nine different
integration methods across all 45 paired datasets, encompassing 28 sequence-
based and 17 image-based datasets. The boxplots display data distribution where
the box spans from the first to the third quartile, marking the median with a distinct
line. The whiskers reach out to the maximum range within 1.5 times the inter-
quartile range, and individual outliers are denoted by separate dots. b A STARmap
slide from the STARmap dataset (mouse visual cortex), annotated with various cell
types. Each grid portrays a simulated spot encompassing multiple cells.

c lllustration of the proportion of Layer 4 (L4) excitatory neurons within simulated
spots from the STARmap dataset, alongside predictions from eight integration
methods. d Boxplots presenting the PCC, SSIM, RMSE, and JSD for eight integration
methods, specifically analyzed for the STARmap dataset. The boxplots display data

distribution where the box spans from the first to the third quartile, marking the
median with a distinct line. The whiskers reach out to the maximum range within 1.5
times the interquartile range; n =189 predicted spots. e A seqFISH+ slide from the
seqFISH+ dataset (mouse cortex), annotated with cell types. Analogous to the
STARmap slide, each grid symbolizes a simulated spot with multiple cells.

f Depiction of the proportion of L4 excitatory neurons in simulated spots from the
seqFISH+ dataset, accompanied by predictions from eight integration techniques.
g Boxplots exhibiting the metrics of PCC, SSIM, RMSE, and JSD for the eight inte-
gration methods tested on the seqFISH+ dataset. The boxplots display data dis-
tribution where the box spans from the first to the third quartile, marking the
median with a distinct line. The whiskers reach out to the maximum range within 1.5
times the interquartile range; n = 72 predicted spots. Source data are provided as a
Source Data file.

SMART-Seq2 snRNA-seq records from the VISp region®. This align-
ment served to reveal the spatial distribution of various cell types. The
derived probability mappings were then fused with cell-type annota-
tions sourced from the snRNA-seq data, resulting in spatial probability
distributions for each distinct cell type (Fig. 3a). It's worth noting that
glutamatergic cells demonstrated unique patterns across different
cortical layers, while the majority of non-neuronal cells and GABAergic
neurons showcased a granular distribution, aligning with established
research findings*®. Furthermore, a deterministic mapping was con-
ducted by assigning the most probable cell types to their respective
spatial locations, providing a visualization of the cell type distribu-
tions (Fig. 3b).

Subsequently, DT-CCC was used to predict CCC the mediated by
L-R pairs for this MERFISH dataset. To assess DT-CCC’s predictive
prowess, ROC curves were used to represent the prediction perfor-
mances of the top five L-R pairs with the most CCC under L-R pair
mediation (Fig. 3¢c). Based on the DT-CCC prediction results, the area
under curve (AUC) value of the CCC mediated by the L-R pairs was
within 0.84 and 0.95, indicating that the proposed method has high
accuracy and reliability in evaluating the influence of L-R pairs. Fur-
thermore, DT-CCC was compared to other prediction methods,
including statistical methods (e.g., CellCall’, CellChat, CellPhoneDB,
ICELLNET, iTALK, and SingleCellSignalR), network-based methods
(e.g., Connectome and NicheNet), and ST-based methods (e.g., Giotto,
CellChatv2°¢, CPDB3, COMMOT and stLearn). The distance enrichment
score (DES) served as a benchmark to evaluate the concordance
between anticipated spatial patterns and the observed CCC®’, asses-
sing the uniformity of spatial trends among cells. DT-CCC proved
superior in CCC prediction, achieving a notable DES of 0.45, sig-
nificantly outperforming other methods (Fig. 3d). By incorporating
spatial data, we refined DT-CCC'’s predictive accuracy, based on the
assumption that CCCs are more evident among adjacent cell types
than distant ones. To exhibit the range of CCCs among cells at different
proximities, we handpicked five cell types—L2/3 intratelencephalic
neurons (IT), L4, L5 IT, LS pyramidal tract neurons (PT), and L6 PT—
known for their clustering tendencies among glutamatergic cells
(Fig. 3a). We then calculated the spatial distances between these cells
(Supplementary Fig. 6). Our results showed that L2/3 IT cells are near
to L4, while L6 PT is the farthest from L4. Using L4 as a baseline, we
computed the CCC probabilities between L4 and the other cell groups.
In comparisons with 13 other methods (Fig. 3e and Supplementary
Fig. 7), DT-CCC clearly excelled in differentiating between closely and
distantly interacting cell types.

To further test the predictive prowess of DT-CCC at the single-
cell resolution, we benchmarked it against NICHES and Scrabin, two
leading techniques in inferring intercellular communications. We
selected five specific cell types—L2/3 IT, L4, L5 IT, L5 PT, and L6 PT—
for our analysis. By using low-dimensional embedding, we visualized
their CCC patterns, with each dot on the visualization signifying a
CCC event, particularly focusing on the receiver cell (Fig. 3f). This
visualization technique underscores DT-CCC’s proficiency in

identifying nuanced communication patterns among various cell
types. Additionally, we compared the CCC strength at the single-cell
resolution. Both DT-CCC and NICHES agreed that spatially proximate
cells exhibit more pronounced CCCs compared to distant cells,
aligning with previous hypotheses (Fig. 3g). However, Scrabin, which
doesn’t incorporate spatial data, tends to overlook these spatial
relationships, resulting in less accurate CCC pattern evaluations
(Fig. 3h). Overall, DT-CCC excelled in differentiating CCC patterns,
emphasizing the significance of spatial location in shaping the cel-
lular microenvironment.

We also selectively analyzed the glutamatergic cells at varying
spatial distances and showed that the CCCs are mediated by L-R pairs
(Fig. 3i, Supplementary Figs. 8 and 9). Apolipoprotein (Apoe) E”°, a
critical protein involed in lipid metabolism and transport, may regulate
neural function in the mouse visual cortex through its association with
the metabotropic glutamate receptor 5(GrmS)”. This interaction
potentially modulates the synaptic plasticity and stability of neural
connections, which is crucial in visual signal transmission and infor-
mation processing. The presence of Apoe may modify the activation
pattern of Grmb3, thereby affecting the transmission of glutamatergic
signals and neuronal activity. By binding to Grm5, Apoe can regulate
the release and concentration of glutamatergic neurotransmitters,
influencing the synaptic transmission between neurons in the mouse
visual cortex and modulating visual information processing and per-
ception. Additionally, the binding of Apoe regulates the neuroin-
flammatory responses and cellular apoptosis, exerting protective
effects against the damage and development of diseases in the mouse
visual cortex. The interaction between Apoe and GrmS significantly
influences the mouse visual cortex by regulating the glutamatergic
signal transmission, synaptic plasticity, and neural connection stabi-
lity, thus impacting the normal functioning of visual information and
neural function. The visualization of heat maps demonstrates a higher
frequency of CCC occurring between neighboring cell types, revealing
the importance of cell distance in facilitating CCC. In addition to
demonstrating the distance-related CCC patterns, we investigated the
top 50 communications between L2/3 and L4 cells mediated by Apoe-
Grm5, aiming to gain deeper insights into CCCs at single-cell
resolution.

Single-cell level delineation of spatially resolved CCC in adult
mouse brain with 10X Visium data

The DeepTalk model was used to analyze intercellular communication
in the low-resolution ST (10X Visium) data obtained from the brain of
an adult mouse’ The cortical clusters were investigated and analyzed,
and this dataset provided, insights into the transmission of signals and
intercellular interactions. Initially, the standard Scanpy functions were
used to preprocess the Visium data*®” (as shown in Methods), iden-
tifying 324 spots and 16,562 genes (Fig. 4a). To overcome the limita-
tions imposed by low resolution, Squidpy functions were used to
assign cells to each voxel, ensuring an equal number of segmented
slices per cell. This deterministic approach enabled the precise
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mapping of each cell within each voxel, thereby predicting cellular
localization at a single-cell resolution (Fig. 4b). These predictions were
instrumental in correlating cell types with their spatial positions,
thereby revealing important patterns and mechanisms of intercellular
communication.

To further enhance prediction accuracy, we trained a model by
combining 10X Visium and scRNA-seq data, incorporating 1291

genes’*. Subsequently, this model was applied to the scRNA-seq data
obtained from the adult mouse cortical region, which comprised
21,697 cells®. The probability distributions for different cell types
within the spatial context were obtained by merging the probability
mapping results with cell-type annotations acquired from the snRNA-
seq data (Fig. 4a). Based on the deterministic mapping results, the
most probable cell type was assigned to each spatial location to
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Fig. 3 | DeepTalk-CCC detects spatially CCCs for mouse visual cortex region
from MERFISH data. a Probabilistic mapping of snRNA-seq data on MERFISH data.
Assigns a likelihood score to each cell subset within the three main categories,
indicating their potential cell type. b Deterministic mapping of cell types. Displays
segmented cells on the MERFISH slide, color-coded based on the most probable
snRNA-seq profile mapped using DeepTalk-Integration. ¢ ROC Curve Evaluation of
DeepTalk-CCC (DT-CCC) using the MERFISH Dataset. This curve illustrates the
performance of DT-CCC in terms of true positive rate vs. false positive rate. d DES
Rankings of CCC Tools Evaluation. A comparative analysis of various cell-cell
communication tools, ranked according to their performance in the evaluation
process. The boxplots display data distribution where the box spans from the first
to the third quartile, marking the median with a distinct line. The whiskers reach out
to the maximum range within 1.5 times the interquartile range, and individual
outliers are denoted by separate dots; n =5 repeated independent tests.

e Comparison of communication scores between adjacent and distant cell types.
Highlights spatial proximity-based differences in communication scores between
Layer 4 (L4) cells and other cell type, including L2/3 intratelencephalic neurons (IT),
LS IT, LS pyramidal tract neurons (PT), and L6 PT. The boxplots display data

distribution where the box spans from the first to the third quartile, marking the
median with a distinct line. The whiskers reach out to the maximum range within 1.5
times the interquartile range, and individual outliers are denoted by separate dots;
N: number of predicted L-R(ligand-receptor) pairs. f Visualization of CCC via low-
dimensional embedding. Each point in the graph represents a CCC event, with the
cell serving as the receptor cell. g Comparison of the CCC score between spatially
adjacent and distant cells at single-cell level. This plot compares the communica-
tion scores between spatially adjacent cells and distant cells at the single-cell level,
revealing differences in communication strength based on proximity. The boxplots
display data distribution where the box spans from the first to the third quartile,
marking the median with a distinct line. The whiskers reach out to the maximum
range within 1.5 times the interquartile range, and individual outliers are denoted
by separate dots; n=169 L4 cells. h Local microenvironment viewed via low-
dimensional embedding. Each point in this diagram represents a collection of CCC
events where the cell of interest serves as the receiver. i Predicted CCCs mediated
by Apoe - GrmS pairs. It includes the scores of CCCs mediated by Apoe - GrmS pairs
between glutamatergic cells (left) and the predicted CCCs from L2/3 IT cells to L4
cells (right). Source data are provided as a Source Data file.

visually represent the cell type distribution (Fig. 4b). This integrated
approach yielded valuable insights into cell localization, cell type
classification, and the overall structure of intercellular communication
networks.

To investigate the details of intercellular communication
mechanisms, the DT-CCC model was employed to predict the CCC
mediated by various L-R pairs. This study focused on glutamatergic
cells as the target cells owing to their varying spatial distances. Based
on the strength of CCC with other glutamatergic cells, the interaction
between the L5 IT cells and top 50 L-R pairs was primarily explored.
The heatmap visualization of these interaction pairs revealed that the
cells in closer proximity to L5 IT cells exhibited stronger communica-
tion (Fig. 4c). This indicates an intimate connection and communica-
tion between LS IT cells and glutamatergic cells at specific spatial
locations. To assess the predictive capabilities of the DT-CCC model,
ROC curves were generated for the top 10 L-R pairs involved in CCC
(Fig. 4d). Based on the DT-CCC predictions, the highest AUC value
achieved for the CCC mediated by L-R pairing was 0.96. Utilizing DES
as a performance indicator, we compared DT-CCC'’s efficacy with other
prediction methods (Fig. 4e).

To understand the intricate communication patterns among cells
situated at varying distances, we specifically selected five glutamater-
gic cell clusters—L2/3 IT, L4, LS IT, L6 IT, and L6 corticothalamic neu-
rons (CT)—noted for their clustering behavior (Fig. 4a). We determined
the spatial relationships between these cells (Supplementary Fig. 11),
revealing that L2/3 IT cells are closely adjacent to L4, whereas L6
CT cells are farthest from L4. With L4 as a reference, we calculated the
communication probabilities between L4 and the other cell types. In a
comparative analysis with 13 alternative methods (Fig. 4f and Supple-
mentary Fig. 12), DT-CCC demonstrated its superiority in distinguish-
ing between closely and distantly communicating cell types.

In evaluating DT-CCC'’s precision in predicting CCC at the single-
cell level, we compared it to NICHES and Scrabin. We narrowed our
focus to five cell types: L2/3 IT, L4, L5IT, L6 IT, and L6 CT. Utilizing low-
dimensional embedding, we represented each CCC event as a point,
emphasizing the receiving cell (Fig. 4g). This approach underscores
DT-CCC'’s ability to differentiate distinct intercellular communication
patterns. Additionally, we assessed CCC strength at the single-cell
level, finding that both DT-CCC and NICHES accurately predicted
stronger CCC among spatially proximate cells (Fig. 4h). Scrabin,
however, fell short in this evaluation. To gain deeper insights into the
local cellular environment, we visualized neighboring cells using low-
dimensional embedding, with each point representing a cluster of CCC
events centered around a specific receiving cell (Fig. 4i). Once again,
DT-CCC excelled in discerning diverse CCC patterns.

The results of CCC between glutamatergic cells mediated by the
gene pairs Psenl-Pparg are also presented (Fig. 4j, Supplementary
Figs. 13 and 14). Psenl (Presenilin 1) is intricately linked to Alzheimer’s
disease and fulfills crucial functions in intracellular signal transduction
as well as membrane protein transport™. Conversely, Pparg (peroxi-
some proliferator-activated receptor gamma) belongs to the nuclear
receptor superfamily and functions as a transcription factor, over-
seeing diverse biological processes encompassing adipocyte differ-
entiation, glucose metabolism, and inflammatory response’.
Glutamate-facilitated communication among cells essentially
depends on the meticulous release and reception of the neuro-
transmitter glutamate, a process that is meticulously modulated by a
range of factors, including intracellular signaling cascades and the
transcriptional activities of regulatory factors. The heatmap visualiza-
tion effectively demonstrates this intricate relationship. Additionally,
our analysis identified the top 50 pairs of L2/3 and L4 cells where Psenl-
Pparg mediation was observed. These results shed light on the pat-
terns of intercellular connections and the strength of communication
under certain conditions. A deep exploration of these CCCs offers
valuable insights into their significance in cellular and tissue functions,
enhancing our understanding of the complex interactions within
neural networks. By elucidating these connections, we can better
comprehend the intricacies of neural communication and potentially
develop more targeted therapeutic approaches for neurological
disorders.

In summary, we have tentatively applied the DT-CCC model to
analyze intercellular communication in low-resolution ST data, and
have obtained some promising preliminary results. Through the
model’s predictions of cell-type localization, probability mapping, and
CCCs, we have uncovered the intricate structure and organization of
intercellular communication networks.

Spatial representation of CCCs at the single-cell resolution in

human pancreatic ductal adenocarcinoma using the ST dataset
The DeepTalk algorithm was used to analyze the ST data acquired from
the human pancreatic ductal adenocarcinoma (PDAC) dataset*, which
was generated using the ST technology and encompassed various
tissue regions, including cancer, pancreatic, ductal, and stromal
regions (Fig. 5a)"". To ensure data accuracy and reliability, expert his-
tology professionals annotated these regions using the H&E staining.
First, we reconstructed the single-cell ST data, which were integrated
and analyzed to investigate the distribution and gene expression
characteristics of various PDAC cell types (Fig. 5a). To address any
uncertainty, deconvolution was performed using the matched scRNA-
seq data (PDAC-A) from the same individuals (Fig. 5b). DT-CCC
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assigned different cell types to their specific tissue regions, facilitating
the exploration of intricate cellular composition and spatial relation-
ships within PDAC.

DT-CCC was employed to predict communication among cells in
the PDAC dataset. Heatmaps were generated to visually represent the
strength of communication between cancer clone A, cancer clone B,
and neighboring cells, mediated by specific L-R pairs (Fig. 5c). Notably,

UMAP UMAP UMAP
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Q
B
a

IT ®L6 CT

the results demonstrated a positive correlation between the predicted
strength of the interaction and the spatial distance between cell types,
this suggests that cells in closer proximity are more likely to engage in
communication, providing a deeper understanding of the transmission
of cell-to-cell information and interaction mechanisms in PDAC tissues.

To evaluate the predictive accuracy of DT-CCC, we generated
ROC curves for the top 10 L-R pairs, focusing on CCC accuracy

Nature Communications | (2024)15:7101



Article

https://doi.org/10.1038/s41467-024-51329-2

Fig. 4 | DeepTalk-CCC detects spatially CCCs for adult mouse brain from 10X
Visium data. a Probabilistic mapping of scRNA-seq data onto 10X Visium data. The
color bar represents the probability of mapping glutamatergic cells. b Number of
cells per spot(left) and 10X Visium slide with segmented cells colored by the cell-
type annotation of the most likely snRNA-seq profile mapped on that position by
DeepTalk-Integration (right). ¢ The score of predicted cell-cell communications
(CCCs) from Layer 5 intratelencephalic neurons (L5 IT) cells to other cell types.

d ROC Curve Evaluation of DeepTalk-CCC (DT-CCC) using the 10X Visium Dataset.
This curve illustrates the performance of DT-CCC in terms of true positive rate vs.
false positive rate. e DES Rankings of CCC Tools Evaluation. A comparative analysis
of various CCC tools, ranked according to their performance in the evaluation
process. The boxplots display data distribution where the box spans from the first
to the third quartile, marking the median with a distinct line. The whiskers reach out
to the maximum range within 1.5 times the interquartile range, and individual
outliers are denoted by separate dots; n =5 repeated independent tests.

f Comparison of communication scores between adjacent and distant cell types.
Highlights spatial proximity-based differences in communication scores between
L4 cells and other cell type, including L2/3 IT, L5 IT, L6 IT, and L6 corticothalamic
neurons (CT). The boxplots display data distribution where the box spans from the

first to the third quartile, marking the median with a distinct line. The whiskers
reach out to the maximum range within 1.5 times the interquartile range, and
individual outliers are denoted by separate dots; N: number of predicted L-
R(ligand-receptor) pairs. g Visualization of CCC via low-dimensional embedding.
Each point in the graph represents a CCC event, with the cell serving as the receptor
cell. h Comparison of the CCC score between spatially adjacent and distant cells at
single-cell level. This plot compares the communication scores between spatially
adjacent cells and distant cells at the single-cell level, revealing differences in
communication strength based on proximity. The boxplots display data distribu-
tion where the box spans from the first to the third quartile, marking the median
with a distinct line. The whiskers reach out to the maximum range within 1.5 times
the interquartile range, and individual outliers are denoted by separate dots;
n=600 L4 cells. i Local microenvironment viewed via low-dimensional embedding.
Each point in this diagram represents a collection of CCC events where the cell of
interest serves as the receiver. j Predicted CCCs mediated by Psenl - Pparg pairs.
The scores of CCCs mediated by Psenl - Pparg pairs among glutamatergic cells (left)
and the predicted CCCs from L2/3 IT cells to L4 cells (right). Source data are
provided as a Source Data file.

(Fig. 5d). Our DT-CCC predictions indicate that the AUC value for CCC
mediated by L-R pairing falls between 0.82 and 0.93. Additionally,
according to the DES metric, DT-CCC demonstrates superior CCC
prediction accuracy compared to other methods (Fig. 5e).

To gain insights into the intricate interactions among various cell
types depending on their distances, we carefully selected five cell
populations for detailed analysis: Cancer clone A, Cancer clone B,
Ductal terminal, Ductal antigen-presenting, and Ductal centroacinar
cells (Fig. 4a). By consulting the cell locations mapped in Supple-
mentary Fig. 16, we precisely calculated the spatial distances among
these cells. Our investigation revealed a noteworthy pattern: Cancer
clone B cells are in close proximity to Cancer clone A cells, whereas
Ductal centroacinar cells are situated farthest apart. Adopting Cancer
clone A cells as a benchmark, we explored the likelihood of interac-
tions with other cell groups. When contrasting DT-CCC'’s predicted
communication intensities against 13 other methods (Fig. 5f and Sup-
plementary Fig. 17), it becomes evident that DT-CCC shines in distin-
guishing between cells communicating at close and far distances.

To rigorously assess the accuracy of DT-CCC’s CCC predictions at
the single-cell level, we compared it to NICHES and Scrabin. Focusing
on our five key cell types, we employed low-dimensional embedding to
visualize their CCC patterns. In this visualization, each CCC event is
represented as a point, with a focus on the receiving cell (Fig. 5g). This
underscores DT-CCC’s remarkable ability to differentiate between
various intercellular communication patterns, despite the challenges
posed by similar communication patterns among cell subtypes.
Additionally, we analyzed CCC strength at the single-cell level, finding
that both DT-CCC and NICHES indicate more intense CCC among
spatially adjacent cells (Fig. 5h). While NICHES reflects spatial infor-
mation, Scrabin falls short in this aspect. To delve deeper, we used low-
dimensional embedding to visualize cells surrounding a specific
receiving cell, with each point representing a cluster of CCC events
centered around that cell (Fig. 5i). Despite the challenges in distin-
guishing local microenvironments, DT-CCC outperforms other meth-
ods in reflecting the local communication environment of cells.

The interaction between the ligand EFNAS” and the receptor
EPHA2’® plays a crucial role in various physiological and pathological
processes in the human body, particularly in regulating intercellular
communication. EPHA2, a receptor tyrosine kinase, engages in bidir-
ectional signaling with various Ephrin-A ligands, including EFNAS,
thereby influencing cellular processes such as migration, adhesion,
proliferation, and differentiation. In the context of PDAC, these cellular
behaviors are particularly significant as they are intimately linked to
tumor growth, invasion, and metastasis. As a ligand for EPHA2, EFNAS
interacts with the receptor to induce bidirectional signaling,

modulating the adhesion, organization, and development of neurons,
vascular systems, and epithelial cells. In PDAC, this interaction can
affect the adhesive properties and migratory abilities of tumor cells,
altering the tumor’s growth pattern and metastatic potential. The
heatmaps presented here illustrate the CCC potential mediated by
EFNAS-EPHA2 in PDAC tissues. These heatmaps offer invaluable
insights for deeper investigations into related signaling pathways and
cellular functions (Fig. 5j). Additionally, we showcase the top 50 CCCs
from cancer clone A cells to ductal end cells at a single-cell resolution,
mediated by EFNAS-EPHA2. These findings unveil the various interac-
tion patterns and strengths of communication between specific cells
under different conditions (Supplementary Figs. 18 and 19). This
detailed information provides a more holistic understanding of
dynamic CCCs and their crucial roles in functional regulation at both
the cellular and tissue levels.

Discussion

DeepTalk is a powerful approach devised to elucidate the mechanisms
and functions of CCC. It utilizes an attention mechanism-based GNN to
accurately predict the L-R pairs that mediate intercellular commu-
nication and visualize CCC at multiple scales. The validation experi-
ments have demonstrated the remarkable capability of DeepTalk to
identify and visualize the spatial communication mediated by the
significantly enriched intercellular L-R pairs. To substantiate the effi-
cacy and versatility of DeepTalk, diverse representative experimental
datasets were utilized, such as the single-cell ST dataset obtained from
MERFISH and the spot-based ST dataset acquired using ST and 10x
Visium. These datasets include the ST information pertaining to var-
ious technical platforms and experimental conditions, encompassing
intricate and diverse CCC. They confirm the applicability of DeepTalk
to different data types, further validating its generalizability and
reliability.

DeepTalk emerges as an ingenious approach applicable to both
single-cell and spot-based ST datasets. This is achieved by amalga-
mating scRNA-seq and ST datasets, elevating CCC analysis. For single-
cell ST datasets, it employs a similarity-driven classification approach.
Rather than relying on expression patterns, it meticulously categorizes
and analyzes these datasets by pinpointing the most similar and top-
ranked cell clusters. Its attention mechanism-driven GNN uncovers
pertinent relationships and intercellular correlation patterns, bolster-
ing classification accuracy and reliability. When dealing with spot-
based ST datasets, DeepTalk introduces a cutting-edge data recon-
struction technique. By carefully selecting and mapping optimal cell
combinations, it recreates ST maps at a single-cell level, encompassing
details about known cell types. This tactic reveals intercellular
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connections and spatial distribution patterns, effectively transforming
spot-based ST data into single-cell resolution ST data. This not only
enhances data interpretability but also boosts information accuracy.
The integration of scRNA-seq and ST datasets broadens our compre-
hension of CCC across various dimensions and levels. scRNA-seq data
offers intricate insights into intracellular gene expression, while ST
data exposes intercellular interactions and correlations. By

amalgamating these data types, DeepTalk presents a holistic and
multifaceted perspective, fostering a deeper understanding of CCC
mechanisms.

DeepTalk explores the communication preferences between dif-
ferent cell types and identifies the trends in these preferences in var-
ious ST datasets. DeepTalk analysis can be used to accurately
characterize the spatial distribution of each cell type at a reconstructed
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Fig. 5 | DeepTalk-CCC detects spatially CCCs for Human pancreatic ductal
adenocarcinoma from ST data. a Annotated spatial regions of PDAC data (left)
juxtaposed with the probabilistic mapping of scRNA-seq data onto ST data (right).
b ST slide showcasing segmented cells, colored according to the most probable
scRNA-seq profile mapped by DeepTalk-Integration. ¢ Scores indicating predicted
cell-cell communications (CCCs) between cancer clone A, cancer clone B, and
other cell types. d ROC curve evaluation of DeepTalk-CCC (DT-CCC) using the ST
dataset. This curve illustrates the performance of DT-CCC in terms of true positive
rate vs. false positive rate. e DES rankings of CCC tools evaluation. A comparative
assessment of various CCC tools, ranked based on their evaluation performance.
The boxplots display data distribution where the box spans from the first to the
third quartile, marking the median with a distinct line. The whiskers reach out to the
maximum range within 1.5 times the interquartile range, and individual outliers are
denoted by separate dots; n =5 repeated independent tests. f Comparison of
communication scores between adjacent and distant cell types. Highlights spatial
proximity-based differences in communication scores between Cancer clone A
(CCA) cells and other cell types, including Cancer clone B (CCB), Ductal terminal
(DT), Ductal antigen-presenting (DAP), and Ductal centroacinar (DC). The boxplots

display data distribution where the box spans from the first to the third quartile,
marking the median with a distinct line. The whiskers reach out to the maximum
range within 1.5 times the interquartile range, and individual outliers are denoted
by separate dots; N: number of predicted L-R(ligand-receptor) pairs.

g Visualization of cell-cell communication. Represents CCC events as points in a
low-dimensional embedding, with the receiver cell indicated. h Single-cell level
comparison of communication scores. Compares communication scores between
adjacent and distant cells, revealing proximity-based differences in strength. i Local
microenvironment visualization. Represents collections of CCC events where the
cell of interest serves as the receiver in a low-dimensional embedding. The boxplots
display data distribution where the box spans from the first to the third quartile,
marking the median with a distinct line. The whiskers reach out to the maximum
range within 1.5 times the interquartile range, and individual outliers are denoted
by separate dots; n =127 cancer clone A cells. j Predicted CCCs mediated by EFNAS-
EPHA2 pairs. Displays scores of CCCs mediated by EFNAS-EPHA2 pairs between
ductal cells and cancer cells and predicted CCCs from Cancer clone A cells to Ductal
terminal cells. Source data are provided as a Source Data file.

single-cell resolution, furnishing information on the proximity rela-
tionships between different cell types. Utilizing a subgraph-based
GNN, DeepTalk examines cellular interactions at multiple levels, fos-
tering a multifaceted analytical approach that aids in constructing
intercellular communication networks and unveils intricate inter-
connection patterns. By investigating these networks, the commu-
nication patterns and relationship features between different cell types
can be determined with improved accuracy. Furthermore, DeepTalk
facilitates the statistical analysis and visualization of LRIs in proximity,
expanding the understanding of the CCC mechanisms and patterns by
providing a visual representation of the dynamic communication
networks between cells. Furthermore, LRI analysis can identify the
specific L-R pairs that mediate intercellular communication, further
enriching our understanding of CCC.

Indeed, analyzing and visualizing spatial CCC at single-cell reso-
lution poses challenges for scRNA-seq data. Generally, CCC is inter-
preted as L-R pairs between different cell types. However, DeepTalk
overcomes these challenges by incorporating spatial information,
allowing the selection of adjacent co-expressing cell pairs in space.
This approach provides information-rich methods for analyzing and
visualizing LRIs and their mediated CCC from different perspectives,
including in the context of disease pathophysiology. The excellent
performance of DeepTalk on the benchmark ST dataset demonstrates
its ability to decipher the CCC mechanisms in both healthy and dis-
eased tissues. It offers a nuanced and precise interpretation of CCC by
disclosing intercellular LRIs and their functions in CCC. Furthermore, it
can predict and visualize the intercellular communication at single-cell
resolution, and analyzes the associated L-R pairs, which is crucial for
understanding the physiological and pathological processes and
developing therapeutic approaches. By amalgamating scRNA-seq and
ST datasets, DeepTalk elevates our anatomical understanding of CCC,
offering more granular insights; it also presents a multifaceted and
integrated approach to comprehending CCC through the exploration
and visualization of intercellular LRIs.

In essence, DeepTalk offers a significant method that utilizes
GNNs and attention mechanisms to predict and illustrate CCC medi-
ated by L-R pairs. By combining scRNA-seq and ST datasets, it
enhances our analytical capabilities in exploring CCC, ultimately pro-
viding detailed and accurate understanding of cellular interactions. In
spite of challenges like long-distance communication and multimodal
data amalgamation, DeepTalk stands as a crucial tool for unraveling
the intricacies of CCC by probing the cell-to-cell dialog and visually
presenting these interactions. Its applications extend to studying
physiological and pathological processes, as well as aiding in the
development of innovative therapeutic approaches. Additionally,
integrating other omics data, particularly those generated by cutting-

edge technologies like 10x Multiome and digital spatial profiling, can
further refine our examination of spatial control in CCC. By amalga-
mating multimodal data, we can achieve a deeper comprehension of
the mechanisms that drive CCCs. To advance CCC research, DeepTalk
can evolve to encompass spatial constraints and multimodal data
integration, thereby enabling more precise and detailed inference
analyses.

Methods

Preprocessing of datasets

Several preprocessing steps were performed for each dataset. Quality
control of the scRNA-seq data was performed using Scanpy. Cells were
filtered based on several criteria to ensure the quality of the down-
stream analysis. Specifically, cells with a mitochondrial gene expres-
sion percentage exceeding 20% were excluded, as a high
mitochondrial content can indicate stressed or apoptotic cells. How-
ever, it’s important to note that the mitochondrial gene expression
percentage threshold can be adjusted based on specific circum-
stances. Cells with an abnormally high total count or an excessively
large number of expressed genes were also removed. The specific
thresholds for total counts and the number of genes were carefully
chosen based on the characteristics of each dataset to retain only the
highest quality cells for further analysis. Additionally, Scanpy’s filter -
cells and filter_genes functions were utilized to further purify the
dataset by removing low-quality cells and genes. For both scRNA-seq
and ST datasets, normalization of the expression matrix is essential.
We employed the widely-used normalize_total function from the
Scanpy package to perform this normalization. The normalization can
be mathematically represented as:

Xj = Xi .r, o)
25X

where X;; is the raw count of gene i in cell j, X, is the normalized
expression value, and T is the target sum of counts after normalization,
ensuring consistency across all cells.

During the integration of scRNA-seq and ST data, the selection of
training genes is paramount. To enhance the discriminative power of
ST data, we carefully curate a set of marker genes that are uniformly
distributed across different cell types in the scRNA-seq data as training
genes. Specifically, we employ the rank_genes_groups functionality in
Scanpy to identify the most highly expressed genes within specific cell
types. Following this, we create a non-redundant gene set and intersect
it with the gene list in the ST dataset. Genes that record a zero count in
either dataset are excluded from our training gene set, thus guaran-
teeing that only relevant and expressed genes are included. This
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procedure results in a refined gene set comprising ‘n” genes, which will
serve as the foundation for model training. For model validation, we
adopt a leave-one-out validation strategy. Specifically, we sequentially
designate each gene in the refined gene set as the test gene, while the
remaining ‘n-1" genes function as training genes. This training process
is iterated ‘n’ times, omitting a different gene each time, to ensure that
each gene receives an independent prediction evaluation.

DeepTalk algorithm

The DeepTalk model has two components: integration of the scRNA-
seq and ST datasets (DeepTalk-Integration) and prediction of the
spatial CCCs (DeepTalk-CCC). The former focuses on determining the
cell-type composition of the single-cell or spot-based ST datasets,
whereas the latter is designed to predict the spatially mediated CCCs
influenced by the L-R pairs in the spatial context.

Integration of the scRNA-seq and ST datasets

An attention-based GNN was used to integrate the scRNA-seq and ST
datasets (Supplementary Fig. 20a). This network was tasked with
generating matching descriptors, denoted as f; ¢ R?, where ‘D’
represents the dimensionality of the feature space, determining the
length or number of components in the feature vector. These
descriptors were created through feature communication among the
initial features, which encompassed raw or minimally processed data
such as transcriptomic information and cell positions. Initially, we
developed a point encoder combining the transcriptomic data and cell
positions for each cell, denoted as i. By employing a multilayer per-
ceptron (MLP), the cell positions were embedded into a high-
dimensional vector, represented as:

xi-O) =d; +MLP, (pi)' 2

where d; refers to the gene expression data obtained from the tran-
scriptome and p; represents the positional information of the cells.
This point encoder allows the GNN to simultaneously leverage the d;
and p; during subsequent inference stages.

Subsequently, we created a graph integrating two omics with
nodes representing the cells from both transcriptomics. Self-edges
connected each cell i to all other cells within the same omics, whereas
cross-edges linked cell i to all other cells with different omics. To
propagate information effectively, message-passing equations were
employed, enabling the diffusion of information along the self- and
cross-edges. This approach resulted in a multi-GNN where each node
started with a high-dimensional state. At each layer, the updated
representations were computed by simultaneously aggregating mes-
sages from all edges of all the nodes within the graph.

In the proposed framework, the intermediate representation of
element i in the scRNA-seq A at layer [ is denoted by x%}. The message
m,_; represents the aggregation of information from all cells j, such
that {j : (i) € &}, where € € {€gf, £r055)- The residual message-passing
update for all i in the scRNA-seq A can be expressed as follows:

XL 0 MLP( {Xﬁm ‘mf*"] ) v

where the concatenation operator [-||-] is used for concatenation. A
comparable update can be simultaneously applied to all the points in
omics B. To create a hierarchical structure, a predetermined number of
layers L with distinct parameters are linked together and the infor-
mation is alternately aggregated along the self- and cross-edges;
starting from [ = 1, £ = &5, when [ is an odd number and £ = &,,;; when
lis an even number. This approach enabled iterative aggregation along
different edges, thereby facilitating effective representation learning.

The aggregation and computation of the message m,_; were
performed by an attention mechanism. The self- and cross-edges used
self- and cross-attention, respectively. As in database retrieval, the

query q; was used to retrieve values v; for specific elements based on
their attributes, represented as keys k;. Thereafter, the message was
computed by taking the weighted average of the retrieved values as
follows:

m.;= Zj:(i,/)es Vi 4)

The attention weight a; is calculated as the softmax of the key-
query similarities and is represented as a; = Softmax(q,.Tkj). The key,
query, and value are obtained by applying linear projections to the
deep features of the GNN. Considering that the query point i belongs
to the scRNA-seq dataset Q and all source points reside in the ST
dataset S, this relationship can be expressed as (Q,S) € {4,B}%.

q;=W,x) +b, (5)
ki W b

Jo= 240 B2
v, W; Xsj b,’ ©6)

The projection parameters are specific to each layer [; these
parameters are learned and shared across all points in both datasets.
Multi-head attention was employed to enhance the expressiveness of
the model, enabling the representation of both geometric transfor-
mations and assignments. The resulting matching descriptors were
obtained via linear projections as follows:

fl=w.x0+b,v, e A4, @)

They were similarly obtained for points in B.

Creating individual representations for every potential match in a
matrix of size Nceys X Ngpors is impractical. Therefore, an alternative
approach was adopted by representing the pairwise scores as a simi-
larity matrix M e R"€45* POt capturing the similarity of the matching
descriptors.

M;; =<} £7>v(ij) e AxB, ()

where< ., . > is the inner product. The matching descriptors are not
normalized, and their magnitude may vary on a per-feature basis
throughout the training process to reflect the confidence level of the
predictions. To derive the mapping matrix, the following objective
function was minimized with respect to M:

P(M) =1 cosgm(MT Ak ) B ) + > cOSgin(MT Ay 10,B; ),
9

where cosg,, is the cosine similarity function and * indicates matrix
slicing.

Spatial CCC prediction

During pretraining, we employed a random-walk strategy to generate
pretraining subgraphs G for each node in the graph. This process
involved masking and predicting nodes within the random walks,
effectively capturing the graph’s overall connectivity patterns (Sup-
plementary Fig. 20b). For each node v in the graph during pretraining
(and for each node-pair during fine-tuning), we generated individual
subgraphs denoted as g.. € G,. Each subgraph g, was encoded as a set
of nodes represented by g. = (v, 05, ..., Uy, where |V | denotes the
number of nodes in g..

We assigned a low-dimensional vector representation to each
node v; in the subgraph. This representation was obtained by mapping
the attributes (such as gene expression data or cellular phenotypes)
and the structure-based embedding of v; using the function f . (.). The
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resulting stacked vector was denoted as h; = W f . (V;), where W, isa
learnable embedding matrix. Collectively, the node embeddings
within the subgraph g were represented as H, = (h,h,, ..., hy, ). This
flexible representation approach allowed us to incorporate both node
and relation attributes into low-dimensional embeddings. Alter-
natively, these embeddings could also be initialized using the output
embeddings from other global feature generation methods that cap-
ture the multi-relational graph structure. Specifically, for the initi-
alization of node features in our study, we merged pretrained node
representation vectors from node2vec with gene expression data
acquired from cells.

For a subgraph g., where V, represents the set of nodes and
H. e R# Vel denotes their corresponding global input embeddings,
the main objective of contextual learning is to transform these global
embeddings to reflect the most representative roles of the nodes
within the structure of g.. This transformation was achieved via a series
of layers, with the model having the flexibility to incorporate multiple
layers to account for higher-order relationships within the graph. To
capture higher-order relational dependencies between nodes—
including indirect and multi-step interactions—we introduced a
semantic association matrix, denoted as A, which acts as an asym-
metric weight matrix. This asymmetry originated from the different
influences that the two cells may have on each other within a subgraph.
The weights of the matrix A" were iteratively learned in each transla-
tion layer k by considering the connectivity between nodes through
the local context subgraph g, and larger global graph G.

In the k +1 translation layer, the semantic association matrix A e
RIVe*IVel was updated via the transformation operation, which
involves performing message passing across all nodes withm the
subgraph g. and updating the node embeddings H" = (hk,hé, . W D
to H" *1, The update process ensures that the embeddmgs capture the
evolvmg representations of the nodes based on the contextual infor-
mation derived from the message passing and relationship updates in
the subgraph. Specifically, the updated node embeddings H’g 1 are
computed as follows:

HE = fun W HEA" + HE, 10)

Here, fyN represents a non-linear function, and W, € R%% s a
learnable transformation matrix.

The non-linear function and the transformation matrix were used
to compute the corresponding entry ,?l,’-; in the semantic association
matrix. To retain contextual embeddings from the previous step, we
incorporate a residual connection. This ensures that global relations
are preserved by passing the original global embeddings through the
layers. For the two nodes v; and v; within the subgraph g, the calcu-
lation of A utilizes a multlhead attentlon mechanism with N, heads,
allowing us to capture the relatlonal dependencies within different
subspaces. For each head, A was computed as follows:

ke exp((WIhf) (thj’f»
e ((w) (wart) )

where the transformation matrices W, and W, are learnable para-
meters. By applying multiple translation layers, multiple embeddings
were generated for each node within the subgraph. Considering the
various embeddmgs in downstream tasks, the node embeddlngs

an

contextual embedding h for each node This aggregation was per-
formed as follows:

h=h;oh’@...ohf, (12)

After obtaining the embedding vectors {h;};_, , . for the
nodes within g, these embeddings can be used as inputs for predic-
tion tasks. During pretraining, a linear projection function was applied
to the embeddings to predict the probabilities of the masked nodes. In
the fine-tuning step, we utilized a single-layer feed-forward network
with a softmax activation function for binary link prediction, facilitat-
ing predictions regarding the presence or absence of links
between nodes.

Pretraining in the proposed model involves training a self-
supervised node-prediction task. For each node in G, a node g, with
a diameter (the maximum shortest distance between any pair of
nodes) was created using the aforementioned generation methods.
Subsequently, a single node within the subgraph was randomly
masked for prediction without altering the graph structure. Therefore,
pretraining was accomplished by maximizing the probability of cor-
rectly predicting the masked node v,, based on the given context g.
The probability was computed in the following form:

0=argmaxgll, . I1

8c€o, v,,,egcp(vm Igc'e)' (13)
where 0 represents the set of model parameters.

To fine-tune the model further, we focused on a contextualized link
prediction task. Multiple fine-grained contexts were generated for each
node pair considered for link prediction. During this stage, the model
was trained to maximize the probability of observing a positive edge (e,,)
given its corresponding context (g,,). Simultaneously, the model learned
to assign low probabilities to the negatively sampled edges (e,,) and their
associated contexts (g.,). The overall objective was constructed by
summing over two subsets of training data: positive edges (D)) and
negative edges (D,,). By optimizing this objective, the model improved its
ability to accurately predict the positive and negative edges.

L =Z(e,,,gc,,>e,;,, log<P<ep |gcp,0)) +z<en,gm>eD,, log(1-P(e,lgc.0)), (14)

The probability of an edge between two nodes, denoted by
e=(v; V), was calculated using the similarity score S(v;, v;), which can

be mathematically expressed as S(v;, v)) =a(h,-T . hj), where h,- and hj
are embeddings of v; and v;, respectively. o(-) represents sigmoid
function. The probability of an edge between two nodes was thereby
calculated based on the similarity of their embeddings.

Definition of cell type for the ST dataset

To analyze the single-cell ST dataset, the cell type with the highest
coefficient was assigned to each individual cell type. For the 10X Vis-
ium fluorescence dataset used in this study, squidpy.im.segment () was
used to segment the tissue image. For the ST dataset, the maximum
cell number (N,_,;) was defined for each spot, and N_,; was set to 20
based on a recent review’®. To determine the optimal combination (w)
of cells for each spot, the following function was used:

. (NeeuBil*1 ({Nceui} 20.5
w(icl2,. . k= , 15)

' { [Ncellﬁi] {Ncellﬁi}<0-5
where ,[ cellﬁl] and {N_qB;} represent the integer and fractional
parts of N, B;, respectively. Thereafter, a subset of cells (n= Z, 10;)

was randomly selected from the total cell population (S) and the
merged expression profile (€) of the cell was compared with the
ground truth using the following function:

6)

Srel)

To assign the coordinates (x',)’) to each sampled cell, we intro-
duced a probabilistic distribution based on the ratio (R) of the same

argmin{n<N g, }27:1 (Yi -
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cell type in neighboring spots, allowing us to determine the probability
of locating a cell in a specific region within a spot. The distribution was
calculated using the following equation:

ad i, cos (Z%)

17
5 , a7

X'=xq+

o
y yO + admm Sln <180> /2 (18)
where d,,,;, represents the minimum spatial distance to the closest
neighbor spot and «a € (0,1] and 8 < (0,360] represent the weight for
dmin and angle toward the spot center (x,y,), respectively. Notably, 8
is determined by the following probability equation:

P(6) = 6 € (90g — 90,90q], 19

+
ZQ Ri+
where q is the qth neighbor spot among Q spots. Practically, Q was set
to 4, dividing the space around the spot into four quadrants and fil-
tering the nearest neighbor in each quadrant. After determining 0, the
corresponding neighbor spot (x',y’) was selected to calculate the
probabilistic distribution of a using the following equation:

RxO,yO +1

_ romose'l . @e(0,05]
Pay= P , (20)
W, a e (05,1]

where R, , and R, represent the ratios of the given cell type in each
spot to its neighboring spot, respectively. These optimal cellular
combinations were integrated for all spots to reconstruct the single-
cell resolution ST dataset for the spot-based ST dataset.

Definition of the CCC score

To generate the cell-cell distance matrix D, the spatial coordinates of
individual cells were used to calculate their Euclidean distances.
However, to focus on nearby secretion and paracrine signaling within a
specific range, we only considered the cells that were 200 pm apart™.
Subsequently, the K-nearest neighbors (KNN) algorithm was applied to
select the K closest cells from the distance matrix D, aiding the con-
struction of a cell graph network by establishing connections between
the selected cells. The receptor was used as the query node to ensure
the biological relevance of the identified CCCs. A random walk algo-
rithm was employed to filter and score the downstream-activated
transcription factors (TFs). Thus, the TFs activated in response to a
queried receptor were identified; consequently, we considered only
cells with activated TFs as receptor cells. This approach provides a
more accurate representation of the intercellular information transfer
and communication as it reflects the actual cellular response to sig-
naling events.

To ascertain the co-expression of a specific ligand-receptor pair
between the sender cells (of type A) expressing a given ligand and the
receiver cells (of type B) expressing the corresponding receptor in the
cell graph network, we computed the number of cell-cell pairs (C9 A5, )
exhibiting this ligand-receptor interaction. This involved ldentlfymg
the direct neighboring nodes (1-hop away) of the sender cells expres-
sing ligand i and the receiver cells expressing receptor j. For each
ligand-receptor interaction between cell types A and B, there may be
distinct cell-cell pair counts.

A permutation test was employed to gauge the significance of
these observed counts. This entailed randomly reassigning cell labels
and recomputing the ligand-receptor interaction counts. This proce-
dure was iterated (2) times, generating a background distribution
C=Chp CiprrChpe The Pvalue was then determined by

juxtaposing the observed cell-cell pair counts for the specified ligand-
receptor interactions against this background distribution.
Mathematically, the P-value was computed as follows:

card{x eClxz Cgi'Bj}

21
Pagp = 7 , @D

P-values less than 0.05 were considered statistically significant
and were used to calculate the CCC score of the ligand-receptor
interaction from senders to receivers. This score was computed as
SaB = \/La, %R, where L, is the gene expression of the ligand L in
cell i of Cell type 'A and RB is the gene expression of the receptor R in
cellj of cell type B.

Benchmark metrics

Benchmark metrics for integration methods. Five metrics were used
to evaluate the integration methods, one of the metrics being the
Pearson correlation coefficient (PCC), which is calculated using the
following equation:

E[(X; — ;) (x;—u;)]

pcc=—"L U U (22)
0

where x; and X; represent the spatial expression vectors of the i-th
gene in the ground truth and the predicted results, respectively.
Similarly, u; and @; correspond to the average expression value of the i-
th gene in the ground truth and the predicted result, respectively, and
0; and o; represent the standard deviation of the spatial expression of
the i-th gene in the ground truth and the predicted result, respectively.
While evaluating a specific gene, a higher PCC value indicates a higher
prediction accuracy for that gene. The PCC value measures the degree
of linear association between the ground truth and predicted results
for a particular gene.

The evaluation of the integration methods also used the structural
similarity index (SSIM). To prepare the data for SSIM calculation, the
expression matrix was scaled by adjusting the expression values of
each gene to lie in the range of 0-1 as follows:

' Xy

X=—
Y max({xy, ... X

) @3)

where x;; denotes the expression of the i-th gene in the j-th spot, and M
is the total number of spots. Normalizing the expression values facili-
tated a consistent and comparable evaluation of integration methods
using the SSIM metric. After scaling the gene expression values
between 0 and 1, the SSIM value for each gene was calculated using the
following equation:

(2ﬁiu,- + Cf) (2cov(x;,i,-) + C%)

P2+ 2\ (6% +02+C2
(ui+ui+Cl><01+0i+C2)

To calculate the SSIM value for each gene, we utilized the same
definitions of u;, u;, 0; and g; as in the calculation of the PCC value, but
for the scaled gene expression. Additionally, C; and C, were intro-
duced as constant values and set to 0.01 and 0.03, respectively. The
term cov(x;,X;) represents the covariance between the expression
vectors of the i-th gene in the ground truth (x;") and the predicted
result (X;"). Similar to the PCC value, a higher SSIM value indicates a
higher level of prediction accuracy for a given gene.

The z-score for the spatial expression of each gene was calculated
for all spots. The root mean square error (RMSE) was computed as

SSIM = , (24)
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follows:

1M - 5
21"

RMSE = (25)

where z; and iij are the z-scores of the spatial expression of the i-th
gene in the j-th spot in the ground truth and predicted results,
respectively. For a given gene, a lower RMSE value indicates a higher
level of prediction accuracy.

The Jensen-Shannon divergence (JSD) uses the relative informa-
tion entropy, particularly the Kullback-Leibler divergence, to quantify
the difference between the two distributions. To calculate the spatial
distribution probability of each gene, the following steps were per-
formed:

(26)

To calculate the spatial distribution probability of each gene, we
assign x;; as the expression value of the i-th gene in the j-th spot, where
M s the total number of spots and P is the distribution probability of
the i-th gene in the j-th spot. After calculating the spatial distribution
probability, the JSD value for each gene was evaluated using the fol-

lowing equations:

JSD = %KL <|>,.

@7)

P,+P;\ 1
5 >+§KL<P,-

P, +P,
5

a;;
KL (ail |b;= Zj"io(ay x Iogb'{.> , (28)
y

where P; and I7‘,~ represent the spatial distribution probability vectors of
the i-th gene in the ground truth and predicted result, respectively;
KL(a;||b;) denotes the Kullback-Leibler divergence between the two
probability distributions a; and b;; a; and b represent the predicted
and real probabilities of the i-th gene in the j-th spot, respectively. For a
given gene, a lower JSD value indicates a higher level of prediction
accuracy.

To evaluate the relative accuracy of the integration methods for
each dataset, an accuracy score (AS) was defined by combining the
PCC, SSIM, RMSE, and JSD metrics. For a given dataset, the average
PCC, SSIM, RMSE, and JSD values were calculated for all the genes
predicted by each integration method. Subsequently, the PCC and
SSIM values of the integration methods were sorted in ascending order
to obtain RANKpcc and RANKggy, respectively. The integration
method with the highest PCC/SSIM value had RANKpc/ssiv €qual to N,
whereas the method with the lowest PCC/SSIM value had the
RANKpcc s Value of 1. Similarly, the RMSE and JSD values of the
integration methods were sorted in the descending order to obtain
RANKRyse and RANK|qp, respectively. The integration method with the
highest RMSE/JSD value had RANKgysejsp =1, whereas the method
with the lowest RMSE/JSD value had RANKgysesp =N. Finally, the
average values of RANKpcc, RANKgg, RANKgyse, and RANK g, were
determined to obtain the AS value for each integration method as
follows:

As=1 (RANKpcc + RANKsgiy + RANKgyse + RANKgp), — (29)

4

The method with the highest AS value exhibited the best perfor-
mance among the integration methods.

Benchmark metrics for the CCC prediction method

The Wasserstein distance concept was introduced as a metric to assess
the spatial communication tendency in a specific ligand-receptor (L-R)
pair. Here, L and R represent the gene expression distributions of the
ligand and receptor, respectively. For brevity, we refer to the actual
Wasserstein distances between these distributions as d ., . To establish
a comparative baseline, we constructed random gene expression dis-
tributions, L, and R,, by permuting the coordinates of each data point
in L and R. By repeatedly permuting (1000 times in our case) and
calculating the Wasserstein distance between L, and R,, denoted as
dsimulation» We obtained a set of dgmulation Values. Subsequently, the
spatial communication tendency was quantified by computing the
ratio of d ., to the mean of the dsimulation S€t, referred to as d. .. This
ratio serves as a measure of the spatial communication tendency
specific to the L-R pair under consideration.

d, real

d., . =— "™
ratio n
Zi = ldsimulation,- /l’l’

(30)

By increasing the number of permutations (n), we constructed a
null distribution of d ., using the dsmuiation S€t. This null distribution
was then utilized in a one-sided permutation test to derive a P-value,
indicating the significance of the observed spatial communication
tendency. Additionally, left- and right-sided P-values were calculated
to distinguish between short- and long-range communications. To
quantify the consistency between expected and observed spatial dis-
tance tendencies, we employed the DES metric, where a higher value
signifies better consistency®’. Based on their d,,;, and P-values, short-
and long-range communications were ranked to form expected com-
munication lists, L; and L;, respectively. Subsequently, we extracted
communications from the CCC tool’s results and created observed
communication lists, S, for each cell type pair. These lists were denoted
as S, and S, for nearby and distant cell type pairs, respectively. To
compute the DES for a particular cell type pair, we considered
weighted P-value proportions (P and Pumacn) While iterating
through the expected communication list. The presence or absence of
communication in the observed list determined the addition or sub-
traction of the corresponding weights, respectively. This approach
allowed us to assess the consistency between expected and observed
communications for a given cell type pair. A similar methodology was
applied to compute the DES for distant cell type pairs. The P, .., and
P nmaten Values for the j-th interaction in L, are defined as follows:

1 — Pvalue;

Pt (Snd) =2y 5T Praluey’ b

Jjsi

where n represents the total number of matched interactions between
S, and L,. The DES represents the maximum deviation of
(Pratch — Punmatcn) from O, providing a quantitative measure of con-
sistency between expected and observed spatial interaction
tendencies.

Comparison with other methods

To compare the predictive performance of DeepTalk with that of
other methods for predicting the spatial distribution of undetected
transcripts, we used a dataset comprising 45 paired ST and scRNA-
seq datasets curated by Li et al.”. These datasets were generated
using various techniques, including FISH, osmFISH, seqFISH, MER-
FISH, STARmap, ISS, EXseq, BaristaSeq, ST, 10X Visium, Slide-seq,
Seq-scope, and HDST. STARmap and seqFISH+ST datasets were
employed to assess the accuracy of DeepTalk and other methods for
cell type decomposition. For the single-cell ST dataset, the cells were
separated into distinct groups based on fixed spatial distances and
combined to create simulated spots, resulting in a reference dataset.
The performances of Tangram, Cell2location, SpatialDWLS, RCTD,
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Stereoscope, DestVI, and SPOTIlight in predicting cell-type compo-
sitions within each spot were evaluated by comparing them with true
cell-type compositions, using metrics such as PCC, SSIM, RMSE, JSD,
and AS. By utilizing a benchmark dataset comprising the MERFISH,
10X Visium, and ST datasets, we compared the performance of
DeepTalk with that of other methods for inferring CCC, including
CellCall, CellChat, CellChatV2, CellPhoneDB, CellPhoneDBV3,
ICELLNET, iTALK, SingleCellSignalR, Giotto, stLearn, Connectome,
NicheNet, COMMOT. All methods were evaluated using their default
parameters. For the comparison of NICHES and Scrabin, two meth-
ods for inferring CCC at the single-cell resolution, we utilize the same
ground-truth ligand-receptor pairs obtained from OmniPath® for
this analysis.

Visualize the CCC patterns using UMAP

To visualize the CCC patterns using UMAP, we predicted CCC events
mediated by various L-R pairs at single-cell resolution. Each predicted
event was assigned a quantitative score reflecting the communication
strength, resulting in a matrix where rows represent distinct CCC
events, and columns correspond to unique L-R pairs. For dimension-
ality reduction and visualization, we employed Scanpy, a robust tool
for single-cell analysis. Initially, we scaled the data using sc.pp.scale()
to normalize the feature values. This was followed by principal com-
ponent analysis (PCA) using sc.tl.pca(), which helped reduce the
dimensionality of the dataset while preserving its main structure. Next,
we constructed a neighborhood graph using sc.pp.neighbors(), which
identifies cells that are close to each other in the high-dimensional
space. This step is crucial for subsequent manifold learning techni-
ques. Finally, we used sc.tl.umap() to craft the UMAP visualizations,
thereby enabling the depiction of intricate CCC patterns within a two-
dimensional framework.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

This study made use of publicly available datasets. The detailed
information of 45 paired spatial transcriptomics and scRNA-seq data-
sets, along with 32 simulated datasets for assessing the effectiveness of
the integration method, were retrieved from https://drive.google.com/
drive/folders/IpHmME9cg tMcouVILFJFtbyBJNp70Qo9J?usp=sharing™.

MERFISH VISp data and Smart-Seq2 VISp snRNA-seq data were avail-
able at http://github.com/spacetx-spacejam/data. 10x Genomics Vis-
ium Fluorescent dataset is available from https://support.
10xgenomics.com/spatial-gene-expression/datasets and adult mouse
cortical region scRNA-seq data were obtained through GEO under
accession number GSE115746. The scRNA-seq and ST data of the
human PDAC data were obtained through GEO under accession
number GSE111672. Source data for the main figures are provided with
this paper. Source data are provided with this paper.

Code availability

DeepTalk is implemented in the open-source Python using PyTorch,
and source code are publicly available at (https://github.com/
JiangBioLab/DeepTalk)®.

References

1. Shao, X., Lu, X., Liao, J., Chen, H. & Fan, X. New avenues for sys-
tematically inferring cell-cell communication: through single-cell
transcriptomics data. Protein Cell 11, 866-880 (2020).

2. Armingol, E., Officer, A., Harismendy, O. & Lewis, N. E. Deciphering
cell-cell interactions and communication from gene expression.
Nat. Rev. Genet 22, 71-88 (2021).

10.

.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

Bloemendal, S. & Kiick, U. Cell-to-cell communication in plants,
animals, and fungi: a comparative review. Naturwissenschaften
100, 3-19 (2013).

Svensson, V., Vento-Tormo, R. & Teichmann, S. A. Exponential
scaling of single-cell RNA-seq in the past decade. Nat. Protoc. 13,
599-604 (2018).

Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R.
CellPhoneDB: inferring cell-cell communication from combined
expression of multi-subunit ligand-receptor complexes. Nat. Pro-
toc. 15, 1484-1506 (2020).

Jin, S., et al. Inference and analysis of cell-cell communication
using CellChat. Nat. Commun. 12, 1088 (2021).

Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling inter-
cellular communication by linking ligands to target genes. Nat.
Methods 17, 159-162 (2020).

Hu, Y., Peng, T., Gao, L. & Tan, K. J. CytoTalk: De novo construction
of signal transduction networks using single-cell transcriptomic
data. Sci. Adv. 7, eabf1356 (2021).

Tsuyuzaki, K., Ishii, M. & Nikaido, I. Uncovering hypergraphs of
cell-cell interaction from single cell RNA-sequencing data. Preprint
at bioRxiv https://doi.org/10.1101/566182 (2019).

Wang, Y. et al. iTALK: an R package to characterize and illustrate
intercellular communication. Preprint at bioRxiv https://doi.org/10.
1101/507871 (2019).

Noél, F. et al. Dissection of intercellular communication using the
transcriptome-based framework ICELLNET. Nat. Commun. 12,
1089 (2021).

Cabello-Aguilar, S. et al. SingleCellSignalR: inference of inter-
cellular networks from single-cell transcriptomics. Nucleic Acids
Res. 48, e55-€55 (2020).

Wilk, A. J., Shalek, A. K., Holmes, S. & Blish, C. A. Comparative
analysis of cell-cell communication at single-cell resolution. Nat.
Biotechnol. 42, 470-483 (2024).

Almet, A. A. et al. The landscape of cell-cell communication
through single-cell transcriptomics. Curr. Opin. Syst. Biol. 26,
12-23 (2021).

Armingol, E. et al. Inferring a spatial code of cell-cell interactions
across a whole animal body. PLoS Comput. 18, €1010715 (2022).
Dries, R. et al. Advances in spatial transcriptomic data analysis.
Genome Res. 31, 1706-1718 (2021).

Stahl, P. L. et al. Visualization and analysis of gene expression in
tissue sections by spatial transcriptomics. Science 353, 78-82
(2016).

Rodriques, S. G., et al. Slide-seq: a scalable technology for mea-
suring genome-wide expression at high spatial resolution. Science
363, 1463-1467 (2019).

Eng, C. L. et al. Transcriptome-scale super-resolved imaging in
tissues by RNA segFISH. Nature 568, 235-239 (2019).

Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X.
Spatially resolved, highly multiplexed RNA profiling in single cells.
Science 348, aaa6090 (2015).

Wang, X. et al. Three-dimensional intact-tissue sequencing of
single-cell transcriptional states. Science 361, eaat5691 (2018).
Rao, A., Barkley, D., Franga, G. S. & Yanai, |. Exploring tissue archi-
tecture using spatial transcriptomics. Nature 596, 211-220 (2021).
Garcia-Alonso, L. et al. Mapping the temporal and spatial dynamics
of the human endometrium in vivo and in vitro. Nat. Genetics 53,
1698-1711 (2021).

Pham, D. et al. stLearn: integrating spatial location, tissue mor-
phology and gene expression to find cell types, cell-cell interac-
tions and spatial trajectories within undissociated tissues. Preprint
at bioRxiv https://doi.org/10.1101/2020.05.31.125658 (2020).
Arnol, D., Schapiro, D., Bodenmiller, B., Saez-Rodriguez, J. & Stegle,
0. J. Cr Modeling cell-cell interactions from spatial molecular data

Nature Communications | (2024)15:7101

16


https://drive.google.com/drive/folders/1pHmE9cg_tMcouV1LFJFtbyBJNp7oQo9J?usp=sharing
https://drive.google.com/drive/folders/1pHmE9cg_tMcouV1LFJFtbyBJNp7oQo9J?usp=sharing
http://github.com/spacetx-spacejam/data
https://support.10xgenomics.com/spatial-gene-expression/datasets
https://support.10xgenomics.com/spatial-gene-expression/datasets
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115746
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111672
https://github.com/JiangBioLab/DeepTalk
https://github.com/JiangBioLab/DeepTalk
https://doi.org/10.1101/566182
https://doi.org/10.1101/507871
https://doi.org/10.1101/507871
https://doi.org/10.1101/2020.05.31.125658

Article

https://doi.org/10.1038/s41467-024-51329-2

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

with spatial variance component analysis. Cell Rep. 29, e206-e211
(2019).

Tanevski, J. & Flores, R. O. R. Explainable multiview framework for
dissecting spatial relationships from highly multiplexed data.
Genome Biol. 23, 1-31 (2022).

Fischer, D. S., Schaar, A. C. & Theis, F. J. J. N. B. Modeling inter-
cellular communication in tissues using spatial graphs of cells. Nat.
Biotechnol. 41, 332-336 (2023).

Dries, R. et al. Giotto: a toolbox for integrative analysis and visuali-
zation of spatial expression data. Genome Biol. 22, 1-31 (2021).
Cang, Z. & Nie, Q. J. Nc Inferring spatial and signaling relationships
between cells from single cell transcriptomic data. Nat. Commun.
11, 2084 (2020).

Cang, Z. et al. Screening cell-cell communication in spatial tran-
scriptomics via collective optimal transport. Nat. Methods 20,
218-228 (2023).

Raredon, M. S. B. et al. Comprehensive visualization of cell-cell
interactions in single-cell and spatial transcriptomics with NICHES.
Bioinformatics 39, btac775 (2023).

Velickovic, P. et al. Graph attention networks. In International Con-
ference on Learning Representations Vol. 6 (2018).

Alsentzer et al. Simulation of undiagnosed patients with novel
genetic conditions. Neural Netw. 33, 8017-8029 (2020).

Yanai, K. & Kawano, Y. Food image recognition using deep con-
volutional network with pre-training and fine-tuning. In 2015 IEEE
International Conference on Multimedia & Expo Workshops (2015).
Li, B. et al. Benchmarking spatial and single-cell transcriptomics
integration methods for transcript distribution prediction and cell
type deconvolution. Nat. Methods 19, 662-670 (2022).

Codeluppi, S. et al. Spatial organization of the somatosensory
cortex revealed by osmFISH. Nat. Methods 15, 932-935 (2018).
Zhang, M. et al. Spatially resolved cell atlas of the mouse primary
motor cortex by MERFISH. Nature 598, 137-143 (2021).

Dipoppa, M. et al. Vision and locomotion shape the interactions
between neuron types in mouse visual cortex. Neuron 98, 602-615.
e608 (2018).

Chen, W.-T. et al. Spatial transcriptomics and in situ sequencing to
study Alzheimer’s disease. Cell 182, 976-991.e919 (2020).

Chen, X. et al. Efficient in situ barcode sequencing using padlock
probe-based BaristaSeq. Nucleic Acids Res. 46, e22-e22 (2018).
Moncada, R. et al. Integrating microarray-based spatial tran-
scriptomics and single-cell RNA-seq reveals tissue architecture in
pancreatic ductal adenocarcinomas. Nat. Biotechnol. 38, 333-342
(2020).

Li, X. et al. From bulk, single-cell to spatial RNA sequencing. Int. J.
Oral Sci. 13, 36 (2021).

Vickovic, S. et al. High-definition spatial transcriptomics for in situ
tissue profiling. Nat. Methods 16, 987-990 (2019).

Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A.
An introduction to spatial transcriptomics for biomedical research.
Genome Med. 14, 1-18 (2022).

Macosko, E. Z. et al. Highly parallel genome-wide expression pro-
filing of individual cells using nanoliter droplets. Cell 161, 1202-1214
(2015).

Ramskold, D. et al. Full-length mRNA-Seq from single-cell levels of
RNA and individual circulating tumor cells. Nat. Biotechnol. 30,
777-782 (2012).

Zheng, G. X. et al. Massively parallel digital transcriptional profiling
of single cells. Nat. Commun. 8, 14049 (2017).

Biancalani, T. et al. Deep learning and alignment of spatially
resolved single-cell transcriptomes with Tangram. Nat. Methods 18,
1352-1362 (2021).

Lopez, R. et al. A joint model of unpaired data from scRNA-seq and
spatial transcriptomics for imputing missing gene expression

50.

51.

52.

53.

54.

55.

56.

57.

58.

50.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

7.

72.

73.

measurements. Preprint at https://arxiv.org/abs/1905.02269
(2019).

Abdelaal, T. et al. SpaGE: spatial gene enhancement using scRNA-
seq. Nucleic Acids Res. 48, €107-e107 (2020).

Stuart, T. et al. Comprehensive integration of single-cell data. Cell
177, 1888-1902.e1821 (2019).

Nitzan, M., Karaiskos, N., Friedman, N. & Rajewsky, N. J. N. Gene
expression cartography. Gene Expr. Cartogr. 576, 132-137

(2019).

Welch, J. D. et al. Single-cell multi-omic integration compares and
contrasts features of brain cell identity. Cell 177, 1873-1887.

e1817 (2019).

Shengquan, C., Boheng, Z., Xiaoyang, C., Xuegong, Z. & Rui, J.
stPlus: a reference-based method for the accurate enhancement of
spatial transcriptomics. Bioinformatics 37, i299-i307 (2021).
Browne, M.W. Cross-validation methods. J. Math. Psychol. 44,
108-132 (2000).

Cohen, I. et al. Pearson correlation coefficient. Noise reduction in
speech processing 1-4 (2009).

Brunet et al. On the mathematical properties of the structural
similarity index. Math. Prop. Struct. Similarity index. 21, 1488-1499
(20M).

Chai, T. et al. Root mean square error (RMSE) or mean absolute error
(MAE)?-Arguments against avoiding RMSE in the literature. Geosci.
Model Dev. 7, 1247-1250 (2014).

Menéndez, M. et al. The Jensen-Shannon divergence. J. Frankl. Inst.
334, 307-318 (1997).

Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types
in spatial transcriptomics. Nat. Biotechnol. 40, 661-671 (2022).
Dong, R. & Yuan, G.-C. J. Gb SpatialDWLS: accurate deconvolution
of spatial transcriptomic data. Genome Biol. 22, 145 (2021).

Cable, D. M. et al. Robust decomposition of cell type mixtures in
spatial transcriptomics. Nat. Biotechnol. 40, 517-526 (2022).
Andersson, A. et al. Single-cell and spatial transcriptomics enables
probabilistic inference of cell type topography. Commun. Biol. 3,
565 (2020).

Lopez, R. et al. Multi-resolution deconvolution of spatial tran-
scriptomics data reveals continuous patterns of inflammation.
Preprint at bioRxiv https://doi.org/10.1101/2021.05.10.443517
(2021).

Elosua-Bayes, M. et al. SPOTlight: seeded NMF regression to
deconvolute spatial transcriptomics spots with single-cell tran-
scriptomes. Nucleic Acids Res. 49, e50-e50 (2021).

Tasic, B. et al. Shared and distinct transcriptomic cell types across
neocortical areas. Nature 563, 72-78 (2018).

Zhang, Y. et al. CellCall: integrating paired ligand-receptor and
transcription factor activities for cell-cell communication. Nucleic
Acids Res. 49, 8520-8534 (2021).

Jin, S., Plikus, M. V. & Nie, Q. J. B. CellChat for systematic analysis of
cell-cell communication from single-cell and spatially resolved
transcriptomics. Preprint at bioRxiv https://doi.org/10.1101/2023.11.
05.565674 (2023).

Liu, Z., Sun, D. & Wang, C. Evaluation of cell-cell interaction
methods by integrating single-cell RNA sequencing data with spa-
tial information. Genome Biol. 23, 218 (2022).

Jiang, Q. et al. ApoE promotes the proteolytic degradation of Abeta.
Neuron 58, 681-693 (2008).

Haas, L. T. et al. Metabotropic glutamate receptor 5 couples cellular
prion protein to intracellular signalling in Alzheimer's disease. Brain
J. Neurol. 139, 526-546 (2016).

Palla, G. et al. Squidpy: a scalable framework for spatial omics
analysis. Nat. Methods 19, 171-178 (2022).

Wolf, F. A. et al. SCANPY: large-scale single-cell gene expression
data analysis. Genome Biol. 19, 1-5 (2018).

Nature Communications | (2024)15:7101

17


https://arxiv.org/abs/1905.02269
https://doi.org/10.1101/2021.05.10.443517
https://doi.org/10.1101/2023.11.05.565674
https://doi.org/10.1101/2023.11.05.565674

Article

https://doi.org/10.1038/s41467-024-51329-2

74. Rosenberg, A. B. et al. Single-cell profiling of the developing mouse
brain and spinal cord with split-pool barcoding. Science 360,
176-182 (2018).

75. Lanoiselée, H.-M. et al. APP, PSEN1, and PSEN2 mutations in early-
onset Alzheimer disease: a genetic screening study of familial and
sporadic cases. PLoS Med. 14, €1002270 (2017).

76. Janani, C., Kumari, B. R. PPAR gamma gene--a review. Diabetes
Metab. Syndr. Clin. Res. Rev. 9, 46-50 (2015).

77. Lenkiewicz, E. et al. Genomic and epigenomic landscaping defines
new therapeutic targets for adenosquamous carcinoma of the
pancreas. Cancer Res. 80, 4324-4334 (2020).

78. Dobrzanski, P. et al. Antiangiogenic and antitumor efficacy of EphA2
receptor antagonist. Cancer Res. 64, 910-919 (2004).

79. Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-
cell and spatial transcriptomics to elucidate intercellular tissue
dynamics. Nat. Rev. Genetics 22, 627-644 (2021).

80. Tirei, D. et al. Integrated intra- and intercellular signaling knowl-
edge for multicellular omics analysis. Mol. Syst. Biol. 17, €9923
(2021).

81. Wenyi, Y. et al. Deciphering cell-cell communication at single-cell
resolution for spatial transcriptomics with subgraph-based graph
attention network. Zenodo https://zenodo.org/records/

12685010 (2024).

Acknowledgements

This work was supported by the National Natural Science Foundation of
China (no. T2325009, Q.J.; no. 62032007, Q.J.; no. 32270789, Z.X.),
National Science and Technology Major Project of China (no.
20227D0117702, Q.J.), and Science, Technology & Innovation Project of
Xiongan New Area in China (no. 2022XAGGO117, Q.J.).

Author contributions

Q.J., Y.J., and Z.X. conceived and designed the study; Q.J., W.Y., Z.X.,
S.X., M.L., and C.X. performed the research; Z.X., P.W., Y.C,, J.Q., B.P.,
and H.N. collected and constructed the benchmark datasets; W.Y.,
Z.X., G.X., and Y.C. designed and implemented the computational
framework with guidance from Q.J.; Y.J., Z.X., P.W., and X.J. com-
pleted downstream analysis work. Z.X., Y.Y., Y. L., Q.D., and F.P.
released the source code on GitHub; Q.J., Y.J., W.Y., Z.X., T.W., and

M.L. wrote the paper with input from all other authors. All authors
read and approved the manuscript.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-51329-2.

Correspondence and requests for materials should be addressed to
Zhaochun Xu, Yong Ji or Qinghua Jiang.

Peer review information Nature Communications thanks the anon-
ymous reviewer(s) for their contribution to the peer review of this work. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Nature Communications | (2024)15:7101

18


https://zenodo.org/records/12685010
https://zenodo.org/records/12685010
https://doi.org/10.1038/s41467-024-51329-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Deciphering cell–cell communication at single-cell resolution for spatial transcriptomics with subgraph-based graph attention network
	Results
	Overview of the DeepTalk workflow
	Performance comparison of DeepTalk-Integration with state-of-the-art integration methods
	Identification of spatially resolved CCCs in mouse visual cortex using the MERFISH dataset
	Single-cell level delineation of spatially resolved CCC in adult mouse brain with 10X Visium data
	Spatial representation of CCCs at the single-cell resolution in human pancreatic ductal adenocarcinoma using the ST dataset

	Discussion
	Methods
	Preprocessing of datasets
	DeepTalk algorithm
	Integration of the scRNA-seq and ST datasets
	Spatial CCC prediction
	Definition of cell type for the ST dataset
	Definition of the CCC score
	Benchmark metrics
	Benchmark metrics for integration methods

	Benchmark metrics for the CCC prediction method
	Comparison with other methods
	Visualize the CCC patterns using UMAP
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




