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Emergent constraints on future Amazon
climate change-induced carbon loss using
past global warming trends

Irina Melnikova 1 , Tokuta Yokohata 1, Akihiko Ito 1,2, Kazuya Nishina 1,
Kaoru Tachiiri1,3 & Hideo Shiogama 1

Reducing uncertainty in the response of the Amazon rainforest, a vital com-
ponent of the Earth system, to future climate change is crucial for refining
climate projections. Here we demonstrate an emergent constraint (EC) on the
future response of the Amazon carbon cycle to climate change across CMIP6
Earth system models. Models that overestimate past global warming trends,
tend to estimate hotter and drier future Amazon conditions, driven by
northward shifts of the intertropical convergence zone over the Atlantic
Ocean, causing greater Amazon carbon loss. The proposed EC changes the
mean CMIP6 Amazon climate-induced carbon loss estimate (excluding CO2

fertilisation and land-use change impacts) from −0.27 (−0.59–0.05) to −0.16
(−0.42–0.10) GtC year−1 at 4.4 °C warming level, reducing the variance by 34%.
This study implies that climate-induced carbon loss in the Amazon rainforest
by 2100 is less than thought and that past global temperature trends can be
used to refine regional carbon cycle projections.

Emergent constraints (ECs) based on statistical relationships between
past and future climate simulations of Earth systemmodels (ESMs) and
observational data are promising approaches to constrain the uncer-
tainties of future climate changeprojections1–3. They include the casual
dependencies between models’ estimates of current and future cli-
mate, which are expressed in terms of correlations, and the bias in the
models’ estimates of current climate. The correlations, contingent
upon the physically understood underlying mechanisms, allow esti-
mating a range of ESMs that are consistent with observations4–6.

Recent studies have shown that ECs based on recent past
observed global temperature (Thist) trends allow effective constraining
of future change projections of global mean temperature (ΔTft) and
precipitation (ΔPft) from ESMs contributing to phases 5 and 6 of the
Coupled Model Intercomparison Project (CMIP5 and CMIP6)4,7. Fur-
thermore, substantial efforts have been directed towards proposing
ECs on the carbon cycle, which is a key unknown in Earth System
modelling, dependent on the climate forcing2,8–15. The ECs on carbon
cycle are applied globally to reduce uncertainty of the sensitivity of the

future carbon budgets, as well as soil carbon turnover to the global
temperature change9,11,14, and regionally to reduce uncertainty in pro-
jected gross photosynthesis over northern extratropical regions, per-
mafrost area loss, tropical carbon–climate feedback3,10,12,13,16,17.
Reducing uncertainty of the tropical climate-induced changes in the
carbon fluxes are of particular interest because it dominates the
uncertainty of the future tropical and global land carbon cycle
projections18–20.

Application of ECs holds significant promise for addressing
uncertainties in the carbon cycle dynamics in the Amazon, the world’s
largest tropical forest and a potential tipping element under climate
change due to its profound influence on atmospheric dynamics and
circulation patterns21–26. Although many studies have been conducted
in this area over the last few decades (e.g., the Large-scale
Biosphere–Atmosphere Experiments in Amazonia27), our under-
standing of Amazon functions in the Earth system is far from sufficient.
A recent observational study revealed an increasingly negative cou-
pling between interannual variations in tropical water availability and
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land carbon fluxes28. A CMIP6 ESM-based study has also identified a
localized dieback in the Amazon rainforest and projected a decrease in
the extent of humid regions and an expansion of areas with intense dry
periods by 210025. A CMIP5 ESM-based study revealed a projected
long-term future decrease in the land carbon uptake induced by soil
moisture reductions, attributed to the nonlinear responses of vege-
tation carbon fluxes to water stress29. There is a clear need to improve
our understanding of the interactions between climate variables, par-
ticularly related to temperature and water availability, and the Ama-
zon’s carbon cycle dynamics in ESMs.

This work is motivated by a recent study (Ref. 4) that identified
significant positive inter-model correlations between past global Thist
trends and future global mean ΔPft among CMIP5 and CMIP6 ESMs.
The emergent relationship is based on the strong correlation between
global Thist trends and ΔTft that are both dominated by the change in
the greenhouse gas forcing7, and the strong correlation between ΔTft,
and ΔPft (via interconnections between tropospheric warming, long-
wave radiative cooling and latent heat through precipitation4,30). The
authors (Ref. 4) elaborate that regional ΔTft correlates well with ΔPft in
large parts of theworld, while the Amazon basin presents a contrasting
pattern with negative correlations. Thus,modelswith greater warming
tend to have more increase of ΔPft globally but larger decreases of ΔPft
in the Amazon basin. By combining the knowledge gained from this
emergent relationship on future Amazon ΔPft4 and considering recent
observation- and model-based findings25,27–29, we examine whether
recent global Thist trends can constrain future projections of climate
change-induced carbon loss (when excluding CO2 fertilisation and
land-use change impacts) in the Amazon rainforest. We further aim to
shed light on the complex relationships between climate variables and
the Amazon’s carbon cycle dynamics.

Here, weuse the simulationoutputs of twelveCMIP6ESMswith an
interactive carbon cycle driven in fully coupled (COU) and biogeo-
chemically coupled (BGC) setups (Table S1). The BGC simulations
include impacts of changes in atmospheric CO2 concentration on

biosphere processes, but they do not include the radiative effects of
CO2 concentration changes. Thus, the difference between COU and
BGC simulations enables estimating the CO2 radiative impact on the
climate and carbon fluxes31. Hereafter, we refer to the radiative effects
of CO2 on carbon fluxes as their climate-driven changes, evenwhen the
scenario includes non-CO2 greenhouse gasses (GHGs), because CO2

concentration accounts for most of the GHG-induced forcing by 2100
under the Shared Socioeconomic Pathways 5-8.5 (SSP5-8.5)32.We focus
on two scenario experiments, namely, SSP5-8.5 and 1% per year CO2

concentration increases for 140 years until quadrupling of pre-
industrial levels (1pctCO2) (see Methods, Tables S1, S2, and
Figs. S1–S10).

Results
Defining region and timeframe for ECs
To propose ECs on future climate-driven changes in the carbon cycle,
wefirstdefine the region for the analysis. As the regionof interest is the
Amazon rainforest, we limit it to the dense forest that contains a
substantial carbon stock capable of accelerating global warming24 (we
selected ESM output grids in which the total forest tree biomass
exceeds 100 Mt degree grid−1, using data in Ref. 33, Fig. 1a). We con-
sidered alternatives such as defining the study area based on the
Amazon basin or tropical rainforest vegetation type. However, we
ultimately chose to prioritize the biomass threshold to focus on
regions with substantial carbon storage potential. The decision to
exclude broader areas like the Amazon basin aimed to prevent the
inclusion of biomes beyond tropical forests, which might introduce
confounding factors. Likewise, we avoided defining the study area
solely based on vegetation type “tropical rainforest’ to ensure con-
sistency across ESMs employing different vegetation maps.

Next, we verify the inter-model Pearson’s correlations between
past global Thist trends and regional future changes in climate and the
carbon cycle in those areas (Figs. 1 and S10). The Thist trends strongly
depend on the radiative forcing, primarily driven by GHGs, although

Fig. 1 | Region for observational constraints. aTotal forest tree biomass in 195033.
Black dots indicate grids with total biomass over 100 Mt. The middle and right
panels indicate spatial patterns of inter-model Pearson’s correlation coefficients
between the past 1980–2014 Thist trend and future changes in (b) precipitation ΔPft

and (c) climate-driven changes inNEPft estimated from the difference between fully
coupled (COU) and biogeochemically coupled (BGC) simulations, respectively. We
drew only correlations that are significant (p <0.1 based on Welch’s t test). Here,
N = 20 (SSP5-8.5 by 8 models and 1pctCO2 by 12 models).
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this relationship may be hindered by the uncertain aerosol forcing7.
Here, we select the 1980–2014 period for defining the recentThist trend
to avoid the impacts of global aerosol emission changes on the Thist
trend (the global aerosol emissions are nearly constant in this period
due to the compensation between their decrease inNorth America and
Europe and their increase in Asia)4,7. We estimate the future changes in
surface climate and carbon fluxes using theCOUandBGCESMoutputs
of 1pctCO2 and SSP5-8.5 CMIP6 scenarios. To increase the sample size,
we combine these two experiments by using the same (maximum
possible) inter-model mean global ΔTft level of 4.4 °C relative to pre-
industrial levels (see Methods). This level corresponds to the means
over the periods of years 120–139 for the 1pctCO2 scenario (repre-
senting a nearly quadrupled CO2 concentration) and years 2072–2091
for the SSP5-8.5 scenario. Henceforth, we refer to ΔTft and to future
changes in other climate and carbon cycle variables, based on the
aforementioned inter-model warming levels and time periods, unless
otherwise indicated.

For estimating future changes in climate, we use COU, and for
estimating climate-induced changes on carbon cycle we use the dif-
ference between COU and BGC simulation outputs of 1pctCO2 and
SSP5-8.5 scenarios. Estimating the difference between BGC and COU
(both of which have land-use change, non-CO2 GHG and aerosol
impacts in SSP5-8.5) allows lessening (although not completely
removing, see Ref. 34) the impacts of land-use change on carbon cycle
primarily through alterations in carbon pools35 and radiative effects of
non-CO2 GHGs and aerosols36 under the SSP5-8.5 scenario. Although
the dynamics of carbon cycle feedbacks are intricately tied to the GHG
concentration trajectories, a phenomenon referred to as scenario
dependence37, simulation outputs from both the idealized 1pctCO2

and the more socially relevant SSP5-8.5 scenarios show comparable
responseswithin theCMIP6model ensemblemean. Consequently, our
findings have potential applicability to a range of future scenarios
characterized by high (4.4 °C) warming levels. Unlike some existing
studies (Refs. 10,11), our approach does not involve estimating carbon-
climate feedback. I.e., we do not normalise the climate-driven carbon
flux estimates by eachmodel’s ΔTft (GtC year−1). Instead, our focus lies
in estimating future changes in surface climate and climate-driven
carbon fluxes corresponding to the mean warming level across ESMs.
Thus, our estimation reflects themean changes across the same future
time periods.

In agreement with existing studies4,7, the inter-model Pearson’s
correlation coefficients between the global Thist trend and regional
grid-level ΔTft changes are significantly positive (Fig. S10a). In contrast,
the correlations between the globalThist trend and regionalΔPft, as well
as soil moisture (ΔSMft), are significantly negative (Figs. 1b and
S10b)4,38. Furthermore, the correlation coefficients between the global
Thist trend and future grid-level climate-driven changes in carbon
fluxes, namely, gross primary production (GPP) and net ecosystem
production (NEP), defined as the balance between GPP and ecosystem
respiration, are also significantly negative (Figs. 1c and S10c–e).

ECs of climate-driven changes in carbon uptake
We find statistically significant CMIP6 inter-model correlations (at
p <0.05) between global Thist trends and future changes in some cli-
mate variables averagedover theAmazon rainforest region (Figs. 2 and
S11). In particular, global Thist trends positively correlate with regional
ΔTft and negatively correlate with ΔPft4, as well as ΔSMft (Figs. 2a and
S11). Additionally, we find strong negative correlations between the

Fig. 2 | Observational constraints on the future surface climate and climate-
driven changes in carbon cycle in the Amazon forest region. The vertical axes
indicate the (a) ΔPft (%) and (b) climate-driven ΔNEPft (GtC year−1) in the Amazon
forest estimated by the CMIP6 ESMs. The horizontal axes show the past global
(1980–2014) trends of Thist (°C year−1). Pearson’s correlation coefficients and
p values for two scenarios combined (SSP5-8.5 and 1pctCO2) are denoted at the
bottom of the panels. The black dashed lines show the linear reduced major axis

regressions. The horizontal box plots indicate the mean (white line), 17–83% range
(box) and 5–95% range (horizontal bar) of the observed Thist trends of HadCRUT452

estimated by Ref. 4. (light blue). The vertical box plots show the same as the
horizontalboxplots but for the rawCMIP6ESMs (black) and theconstrained ranges
using the observations (teal). The emergent constraint is estimated for the 120–139
year means of 1pctCO2 and 2072–2091 year means of SSP5-8.5 that both corre-
spond to intermodel mean 4.4 °C warming relative to preindustrial level.
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global Thist trends and future climate-driven changes in the Amazon
carbonfluxes, i.e.,ΔGPPft andΔNEPft (Figs. 2b and S11). Previous studies
have shown that ESMs with higher global Thist trends tend to project
greater global warming in the future7. We show that “hot” ESMs with
larger Thist past trends tend to project more warming and larger
decreases in ΔPft4,38, ΔSMft, and climate-driven ΔGPPft and ΔNEPft over
the Amazon region. The physical interpretation of these correlations is
explained in the next section.

Because some ESMs overestimate the observed global mean Thist
trends, the reliability of their projected ΔTft, ΔPft, ΔSMft, ΔGPPft, and
ΔNEPft over the Amazon region is lower. Here, we apply a hierarchical
ECs framework5 to constrain the uncertainty ranges of future changes
in these variables (see Methods). By using this framework, we can
constrain the means and ranges (Table S3) of future climate and
climate-driven carbon fluxes over the Amazon region. We can lower
the upper bounds (95th percentiles) of increase in ΔTft from 9.0 °C to
7.2 °C and raise the lower bounds (5th percentiles) of decrease in ΔPft
(from 38% to 23%), ΔSMft (27% to 17%), climate-driven ΔGPPft (68% to
42%) and ΔNEPft (0.6 GtC year−1 to 0.4 GtC year−1), respectively. As a
result, the variances of Tft, Pft, SMft, climate-driven GPPft, and NEPft can
be reduced by 35%, 47%, 45%, 43%, and 34%, respectively.

Physical interpretation
ECs need explanations of the physical mechanisms underlying the
correlations between the future changes and the observable past
metric3. It is known that greater warming of the polar region than the
other regions (polar amplification) leads to a northwards shift of the
intertropical convergence zone (ITCZ) over the Atlantic Ocean and
drying and additionalwarming in theAmazon region39. Supplementary
Fig. S12 shows future changes in vertical pressure velocity at the 500-
hPa surface. ESMs with larger Thist trends tend to project downwards
motion anomalies (positive values) over the Amazon region and the
tropical Atlantic Ocean and upwards motion anomalies (negative
values) over the subtropical region of the northern Atlantic Ocean,

indicatingmore northwards shifts of the ITCZ. This suggests that ESMs
with larger Thist trends (which project higher global warming in the
future7) tend to project greater warming and drying in the Amazon
basin due to these dynamical changes7.

We further find significant relationships across future changes in
T, P and other variables over the Amazon region (Fig. 3). ESMs with
larger warming (ΔTft) tend to project greater decreases in precipita-
tion (ΔPft) and soil moisture (ΔSMft) in the Amazon region. The
climate-driven ΔGPPft exhibits significant negative correlations with
ΔTft and positive correlations with ΔPft and ΔSMft. Hotter and drier
conditions limit photosynthetic uptake (GPP) in tropical forests by
the respective or combined stresses of high temperature and aridity.
Concurrently, a larger ΔTft amplifies ecosystem respiration, com-
prising plant autotrophic respiration and soil decomposition40. The
ecosystem response to the hotter and drier conditions via a simul-
taneous decrease in GPP and increase in ecosystem respiration
results in a greater decrease inNEP. Consequently, the climate-driven
ΔNEPft exhibits strong significant correlation with ΔTft (R = −0.68)
and ΔPft (R = −0.80). These mechanisms can explain the correlations
in Figs. 1, S10 and S12.

Discussion
Wefirst constrain the climate-driven changes in tropical carbonuptake
in the Amazon. The future CMIP6 model ensemble-mean climate-dri-
ven ΔNEPft and the 5–95% range (assuming a Gaussian distribution)
under the SSP5-8.5 and 1pctCO2 scenarios (at the 4.4 °C ensemble
mean warming level) can be constrained from −0.27 GtC year−1 and
−0.59–0.05 GtC year−1 (mean and 5–95% range) to −0.16 GtC year−1 and
−0.42–0.10 GtC year−1, the lower bands (5th percentile value) can be
raised from −0.59 GtC year−1 to −0.42 GtC year−1, and the variance can
be reduced by 34%. Increasing the mean Amazon climate-induced
changes by the proposed EC corresponds to almost doubling future
Amazon NEP, suggesting an enhanced carbon uptake capacity
(Fig. S13). The proposed EC implies stronger resilience (less climate-

Fig. 3 | Inter-model correlation analysis of future changes in surface climate
and climate-driven carbon cycle in the Amazon forest. The matrix shows scat-
terplots, fitted linear regression lines (black lines) with 95% bootstrap confidence
intervals (grey shading), and Pearson’s correlation coefficients between future
regional changes in climate variables, including ΔTft (°C),ΔPft (%) and ΔSMft (%), and
climate-driven changes in carbon fluxes, including ΔGPPft (%) and ΔNEPft (GtC

year−1), in the Amazon forest estimated by the considered CMIP6 ESMs for the
120–139 year means of 1pctCO2 and 2072–2091 year means of SSP5-8.5 that both
correspond to intermodel mean 4.4 °C warming relative to preindustrial level.
The statistical significance is shown by asterisks (** for p value <0.01 and *** for
p value < 0.001).
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induced carbon loss) of the Amazon rainforest to the projected
changes in climate by the end of the 21st century.

We confirm that the EC is also valid on other lower multi-model
ensemble mean warming levels, including 2.0 °C (that corresponds
to the doubled CO2 concentration level of the idealized
1pctCO2 scenario) and 4.0 °C relative to preindustrial (Figs. S14 and
Tables S4 and S5). The values of correlation coefficients increase with
the increase of the warming level.

We show that climate-driven ΔNEPft in the Amazon rainforest is
well related to ΔTft and ΔSMft, which in turn are well correlated with
ΔPft. Notably, the highest correlation coefficient is between ΔNEPft and
ΔPft. The proposed EC confirms the existing relationship between
warming-induced precipitation shifts and consequential carbon cycle
responses in the Amazon basin under high-warming scenarios. Under
future warming, in addition to hotter conditions, the Amazon rain-
forest may be exposed to the lower mean annual precipitation. These
conditions may lead to decreased ecosystem carbon sink / increased
carbon source, increased risk of droughts and fires, favouring tropical
forest biome transition to savanna, and thus triggering a potential
tippingpoint41,42. To gain further understanding, in follow-up studies, it
is necessary to decompose the contributions of T, P and SM and
examine their mechanisms (e.g., via dynamic vegetation shifts and
wildfire- and drought-related mortality) to the changes in the Amazon
forest carbon cycle. Although the discussion of the possible mechan-
isms is ongoing25,26, most current generation ESMs lack adequate
representation of these processes (Table S1, Refs. 43,44).

This study focuses on the climate-driven changes in the carbon
fluxes, and therefore, the emergent constraint on CO2 concentration-
driven and total changes in carbon flux in the Amazon were not pre-
sented. This is because the correlations between future changes in
climate and carbon fluxes (concentration-driven and total) are small as
shown in Fig. S15. The future uncertainty in the Amazon carbon uptake
by CMIP6 ESMs is dominated by the ecosystem response to CO2

increase (Fig S13, also compare Figs. S1 and S2, S4 and S5). Even though
the ESMs agree that rising CO2 concentrations increase the photo-
synthetic carbon uptake19,20,42, there are large uncertainties in the
representations of CO2 concentration effects on carbon flux because
there is still lack of evidence from the observation-based studies and
large-scale free-air carbon dioxide enrichment (FACE) experiments on
the long-term CO2 concentration effects on carbon fluxes19,20,28,42. This
highlights a need for further investigating to what extent the larger
climate-driven carbon loss in the Amazon basin is compensated by the
CO2 concentration-driven carbon gains under future high warming
scenarios. However, in contrast to changes driven by the CO2 con-
centration, the ESMs agree that climate-induced changes via warmer
and drier conditions in the Amazon basin result in carbon loss due to
reduced photosynthetic uptake, combined with increased respiration
and tree mortality, as discussed above. The proposed EC allows
reducing the uncertainty in the climate change-induced carbon loss in
the Amazon forest.

The correlations between future changes in the surface climate
and the climate-driven carbon cycle in the Amazon forest may be
further decomposed into correlations between future changes driven
by CO2 radiative effects (estimated from the difference between BGC
and COU) and CO2 physiological effects (estimated from BGC) on cli-
mate. Strong statistically significant correlations between the carbon
cycle and water cycle variables persist even when isolating the CO2

radiative effects but weaken when isolating the CO2 physiological
effects (Fig. S15), underscoring the paramount role of CO2 radiative
effects in the proposed EC.

Our analysis has unveiled robust and statistically significant cor-
relations between the future climate-driven changes in the Amazon
carbon fluxes and future global carbonfluxes whenwe exclude an ESM
(CanESM5) whose global carbon–climate feedback parameter is posi-
tive (i.e., the negative impact of carbon-climate feedback at low

latitudes is compensated by the positive impact of carbon–climate
feedback at higher latitudes)31 and thus different from the others (Fig.
S16). This provides model-based evidence that climate-induced chan-
ges in the Amazon carbon fluxes play a key role in driving the response
of the global carbon cycle to climate change. Furthermore, the strong
correlations between future climate-driven changes in theAmazonand
global carbon fluxes suggest the potential applicability of our findings
to a broader, global scale. The ESMs with larger recent past global
mean temperature trends project greater climate-driven loss of carbon
uptake in the Amazon and globally.

Considering these findings, we advocate for future studies to
adopt integrated approaches, combining modelling, monitoring, and
experimentalmethods to further analyse the future roleof theAmazon
forest carbon uptake in the global carbon cycle. Additionally, we urge
further investigation into the causal relationship between large-scale
circulation shifts and the observed increase in climate-induced carbon
loss in the Amazon basin. Exploring whether these shifts lead to
compensatory carbon gains in other global regions could be the next
step in untangling the complex interplay of ecosystem responses to
climate change and understanding its implications for global
carbon cycle.

Methods
ESM simulations
We analysed historical, idealized 1pctCO2 (a scenario with an imposed
1%per year increase in the concentrationofCO2until quadrupling) and
concentration-driven SSP5-8.5 simulations of twelve CMIP6 ESMs in
the fully coupled (COU) and biogeochemically coupled (BGC) setups
that were available at the time of analysis (Table S2). For the analysis,
the following CMIP6 variables were utilized: near-surface air tem-
perature, T (K); precipitation, P (kg m−2 s−1); surface downwelling
shortwave radiation, RAD (W m−2); total cloud cover percentage,
CLOUD (%); vertical velocity in pressure coordinates, ω (Pa s−1, positive
values indicate downwards); moisture in upper 0.1m of soil column,
SM (kg m−2); carbonmass flux out of atmosphere due to gross primary
production on land, GPP (kgCm−2 s−1); net primary production on land
as carbon mass flux, NPP (kgC m−2 s−1); carbon mass flux into atmo-
sphere due to autotrophic (plant) respiration on land, Ra (kgCm−2 s−1);
and total heterotrophic (microbial) respiration on land as carbonmass
flux, Rh (kgC m−2 s−1). The simulation outputs were corrected for the
piControl drift, and the anomalies of the climate and carbon cycle
variables (Δ) were estimated relative to the mean over the 1850–1899
period of the historical simulations (Figs. S1–S6). In the scatterplot and
time series figures (Figs. 2, S1 and S12), we express the changes in
climate and carbon cycle fluxes, excluding NEP, as percentages. This
choice is due to the considerable variation in the estimated absolute
preindustrial values among ESMs. For NEP, which can fluctuate
between positive and negative values, reflecting net ecosystem carbon
sink/source dynamics, we employ units of GtC year−1.

Soil moisture in the soil column below 0.1m may also be impor-
tant for the Amazon forest, as developing deep root systems is one of
the strategies employed by these ecosystems to cope with water
stress45,46. Forests with well-developed root systems may exhibit
greater resilience to droughts. Here we verified whether the estab-
lished correlations between thin surface soil moisture and climate and
carbonfluxes hold for the total soilmoisture content, SM total (kgCm−2

s−1). We found that despite the large range of soil depths considered in
ESMs (Table S1), correlations are significant between the future Ama-
zon SMft total and GPP ft (p <0.001) and the future Amazon SMft total
and P ft (p < 0.01) (Fig. S17) across the ESMs. Thus, our findings stay
valid for both soil moisture above and below 0.1m.

To combine outputs of the 1pctCO2 and SSP5-8.5 scenarios, we
estimated the ensemblemeanΔTof the twelve CMIP6 ESMs and found
that the ΔTmeans of periods over years 120–139 of 1pctCO2 and years
2072–2091 of SSP5-8.5 both correspond to ΔT = 4.4 °C (Fig. S7).
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Consequently, these two periods were used for estimating the future
response of climate and carbon cycle variables.

To isolate the impact of climate change on the carbon cycle, we
used the carbon cycle feedback framework described in previous
studies31,47. The changes in carbon storage (ΔC, [GtC]) can be decom-
posed into the changes driven by the atmospheric CO2 concentration
changes (ΔCO2, [ppm]) and ΔT [°C]:

ΔC = β×ΔCO2 + γ ×ΔT + ε ð1Þ

where β [GtC ppm−1] is the carbon–concentration feedback, γ [GtC
°C−1] is the carbon–climate feedback, and ε [GtC] is the residual term.
Analogously, the radiative impacts ofΔCO2 on climate variables can be
estimated as the differences between the COU and BGC simulation
outputs. These impacts exclude the biogeochemical impacts of ΔCO2

on climate36.

Evaluation of the ESM simulation outputs in the historical period. In
order to ensure the reliability and accuracy of the estimates of climate
and carbon cycle changes provided by the ESMs, we conducted a
comprehensive evaluation of their simulation outputs in the historical
period. This evaluation involved comparing ESMoutputswithmultiple
historical datasets (Figs. S8 and S9). The surface climate estimates
were evaluated against ERA5-Land reanalysis48, the GPP estimates were
evaluated against the satellite-based products (GOSIF, MODIS and
MUSES) and the NEP estimates were evaluated against Global Carbon
Project 2021 (GCP2021) inversions. The ESMs adequately estimate the
surface climate and carbon cycle over the historical period.

Emergent constraints. We established ECs based on temporal trends
of past global Thist and future mean Amazon climate-driven ΔNEPft,
following the methods used in global-scale climate EC studies7,38. The
past global Thist trends estimates from HadCRUT4 are provided by
Shiogama et al. (2022)4. The estimates account for the uncertainty of
the internal climate variability in the observed trends using CMIP6
piControl runs and for the blending effects between air temperature
over land, ice and the sea surface with limited coverage to the globally
complete surface air temperature4.

To calculate the original uncertainty ranges, we assumedGaussian
distributions for the ESM spreads. We calculated the observationally
constrained ranges of the future climate and carbon cycle projections
by applying the hierarchical ECs framework, fully described by Bow-
man et al.5 and Shiogama et al.4.

In the hierarchical ECs framework, the mean of the constrained
future projections (μ zjyð Þ) are estimated as follows:

μ zjyð Þ=μz +
ρx, zδzδx

δ2
x + δ

2
y

ðμy � μxÞ ð2Þ

where z stands for unconstrained future projections by ESMs, x indi-
cates past global Thist trends by ESMs, and y is the observational Thist
trends of HadCRUT4. The ρx, z indicates correlation between x and z.
The μ and δ are the mean and standard deviations, respectively. The
standard deviation of the constrained future projections (δ zjyð Þ) is
estimated as follows:

δ zjyð Þ= δz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ρx, z
2

1 + ðδ2
y=δ

2
xÞ

v

u

u

t ð3Þ

The relative reduction of variance (RRV) of the constrain relative
to the unconstrained future projections can be estimated as follows:

RRV = 1� δ2ðzjyÞ
δ2
z

 !

× 100% ð4Þ

Data availability
The data from the CMIP6 simulations are available from the CMIP6
archive: https://aims2.llnl.gov/search/cmip6/ (last accessed 20 July
2024). The global 1-degree maps of forest area, carbon stocks, and
biomass for 1950–201033 are available from the ORNL DAAC archive:
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1296 (last accessed 9
September 2023). ERA5-Landmonthly averaged data from 1950 to the
present48 are available from the Copernicus Climate Change Service
(C3S) Climate Data Store (CDS), https://cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=form (last
accessed 23 August 2023). The MUltiscale Satellite remotE Sensing
(MUSES) product for GPP49 was downloaded from the Zenodo archive
https://zenodo.org/record/3996814 (last accessed 23 August 2023).
Globally gridded MODIS GPP MOD17A2H MODIS/Terra Gross Primary
Productivity 8-Day L4 Global 500m SIN Grid V00650 is available from
NASAEOSDISLandProcessesDAAChttps://lpdaac.usgs.gov/products/
mod17a2hv006/ (last accessed 24 August 2023). A global, fine-
resolution dataset of GPP based on OCO-2, GOSIF GPP, is available
from the Global Ecology Data Repository https://globalecology.unh.
edu/data/GOSIF-GPP.html (last accessed 24 August 2023). Gridded
top-down CO2 fluxes from GCP2021 inversions for 1970-2020, v2.1,
were obtained from the Max Planck Institute of Biochemistry data
portal https://www.bgc-jena.mpg.de/geodb/projects/FileDetails.php
(last accessed 24 August 2023). The processed data are available via
Zenodo archive under accession code at https://doi.org/10.5281/
zenodo.12195416.

Code availability
The data were analysed using CDO51 and Python. The code for repro-
ducing the main plots of the manuscript are available via Code Ocean
at https://doi.org/10.24433/CO.6574998.v1.
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