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E(n)-Equivariant cartesian tensor message
passing interatomic potential
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Jiuyang Shi1, Hui-Tian Wang 1, Dingyu Xing1 & Jian Sun 1

Machine learning potential (MLP) has been a popular topic in recent years for
its capability to replace expensive first-principles calculations in some large
systems. Meanwhile, message passing networks have gained significant
attention due to their remarkable accuracy, and a wave of message passing
networks based on Cartesian coordinates has emerged. However, the infor-
mation of the node in thesemodels is usually limited to scalars, and vectors. In
this work, we propose High-order Tensor message Passing interatomic
Potential (HotPP), an E(n) equivariant message passing neural network that
extends the node embedding and message to an arbitrary order tensor. By
performing some basic equivariant operations, high order tensors can be
coupled very simply and thus the model can make direct predictions of high-
order tensors such as dipole moments and polarizabilities without any mod-
ifications. The tests in several datasets show that HotPP not only achieves high
accuracy in predicting target properties, but also successfully performs tasks
such as calculating phonon spectra, infrared spectra, and Raman spectra,
demonstrating its potential as a tool for future research.

Molecular dynamics (MD) is a powerful computational technique
allowing for the exploration of various physical and chemical phe-
nomena at the atomic level and the study of the behavior ofmolecules
and materials over time. It bridges the gap between theoretical pre-
dictions and experimental observations, enabling researchers to gain a
comprehensive understanding of the behavior, properties, and inter-
actions of molecules and materials. With sufficient computational
resources, first principles calculations based on Density Functional
Theory (DFT)1 can simulate systems with hundreds or even thousands
of atoms. However, it struggles when it comes to larger systems.
Another approach to computing atomic interactions is empirical force
fields, providing much quicker calculations and the ability to handle
significantly larger systems. Nevertheless, many of these force fields
rely on empirical observations, limiting their applicability to specific
ranges and lacking universality and transferability. The machine
learning potential (MLP)2–8, which aim to accurately describe the
potential energy surface of atomic configurations, combines the

advantages of both DFT and empirical force fields. A well-trained
machine learning force field can achieve accuracy close to DFT and
even beyond DFT9,10, and perform very large-scale, long-time simula-
tions, offering a glimpse into the future of research in studying com-
plex dynamical problems.

Most existing machine learning potentials are based on the fra-
mework proposed by Behler2, which fits the total energy as a sum of
atomic energies E =

P
Ei, and the atomic energies are determined by

the atomic environment within a certain cutoff radius. This format
ensures the scalability of the potential, allowing the network to be
trained on small systems and extrapolated to larger systems. The
quality of such a model is highly dependent on the choice of
descriptors that describe the atomic environments11. A reasonable
descriptor should first possess invariance to rotations, translations,
and atom permutation; thus, the same atomic environment yields the
same atomic energy. A common approach is to construct a series of
symmetric functions based on interatomic distances and angles
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between atoms since these two quantities are naturally invariant under
rotations and translations. Depending on the number of atoms
involved, a series of so-called two-body and three-body descriptors
can be obtained, such as atom-centered symmetry functions
(ACSF)2,12,13, the NEP descriptor7,14–16, the smooth overlap of atomic
positions (SOAP)17, the DeePMD descriptor5,18. However, these
descriptors are not complete19, as different atomic environments can
yield the same descriptor. Atomic cluster expansion (ACE)6,20 and
Moment Tensor Potential (MTP)4,21 have proposed complete descrip-
tors that can account for interactions of arbitrary order, but the
number of descriptors can easily grow to tens of thousands as the
order increases. Another issue is that such descriptors are only
dependent on the coordinate information within the cutoff radius.
When dealing with long-range interactions, simply increasing the
cutoff radius would significantly raise computational complexity since
the number of atoms is proportional to the cube of cutoff radius.

Message passing network (MPN)22 can help address both of these
issues. In the context of MLP, MPN is used to represent molecule or
crystal structures as graphs, where atoms are nodes and bonds are
edges. The key idea behind MPN is the iterative passing of messages
between nodes, allowing information to be exchanged and aggre-
gated. Such message passing processes can, on one hand, lead to the
emergence of multiple atoms in the final descriptor (thus, resulting in
n-body symmetric functions). On the other hand, it allows information
from atoms beyond the cutoff radius to be transmitted to the current
atom. As a result, manymachine learning potentials based onmessage
passing networks have achievedhigh levels of accuracy8,23–31. It isworth
noting that as long as the energy (or other properties) obtained at the
end satisfies the symmetry requirements, the messages used in the
network do not necessarily have to be scalars24,32. For example,
NequIP8, BotNet30, and MACE31 utilize high-order tensors based on
spherical harmonics in the message passing, coupling them through
Clebsch-Gordon (CG) coefficients to construct equivariant networks.
These methods have shown significant improvements in accuracy
compared to approaches that only use scalar messages. Another
category of methods, including PaiNN26 and torchMD-Net28, directly
utilize vectors in Cartesian space as messages and obtain equivariant
results through a series of designed layers. This approach does not
require coupling through CG coefficients, but the vectors are only
equivalent to l = 1 tensors in the spherical harmonicsmethod. TeaNet33

can pass matrices information equivalent to l = 2 tensors, but this
introduces amultitudeof artificially designedduplications, resulting in
a highly intricate network structure that becomes challenging to
extend to higher order tensors. Machine learning potential that use
tensors of arbitrary orders as messages based on Cartesian coordi-
nates have not been proposed.

In this work, we propose High-order Tensor Passing Potential
(HotPP), which can utilize arbitrary order Cartesian tensors as mes-
sages. By combining some basic equivariant operations between
tensors, all the high-order tensors used in the network are E(n)-
equivariant, thus the output is consistent with the rotation of coor-
dinates. In other words, if the output is a scalar, it remains invariant
under rotations, while the vector output will rotate in accordance
with the rotation of the coordinates, and the matrix output will
transform as M 0 =RMRT . Therefore, the method can directly predict
high-order tensors such as dipolemoments and polarizability tensors
without any modifications. We validate HotPP in three prediction
tasks: the energies and forces of molecular dynamics trajectory of
small molecule; the energies, forces, and stresses of carbon with
periodic boundary conditions; and the dipole moments and polar-
izability tensors of small molecules with coupled cluster singles and
doubles (CCSD) accuracy. In these tests, our model achieves good
performance with fewer parameters comparable to other high-order
models, which provide a frame of equivariant network based on
Cartesian coordinates.

Results
Equivariant functions of Cartesian tensors
Cartesian tensors are the tensors that transform under rotations in
Euclidean space in a simple way. In other words, a Cartesian tensor is a
tensor whose components transform as a product of vectors and
covectors under rotations, without any additional factors that depend
on the rotationmatrix itself. Specifically, a n-th rank tensor transforms
under rotation as:

T i1i2 ���in !
R
T 0

i1i2 ���in = Ri1 j1

� �
Ri2 j2

� �
� � � Rinjn

� �
T j1 j2 ���jn ð1Þ

where R is an orthogonal matrix. Under this definition, it is easy to find
that since vi ! v0i =Rijvj , the vectors are first-order tensors, and the
dyadic product of two vectors is a second-order tensor
since ðuvÞi1i2 �!

R ðuvÞ0i1i2 = ðRi1 j1
ÞðRi2 j2

ÞðuvÞj1 j2 .
And equivariance is a property of functions or transformations

between two spaces, where the transformation preserves the rela-
tionships between the elements of those spaces. More formally, a
function ϕ : X ! Y is said to be equivariant with respect to a group G
acting on two sets X and Y if for all g 2 G and x 2 X, we have:

ϕ g°x
� �

= g°ϕ xð Þ ð2Þ

This means that applying a function ϕ to an object x and then
applying a group element g to the resulting object should give the
same result as first applying the group element to the object and then
applying the function. And the composition of equivariantmaps is also
equivariant:

ψ ϕ g°x
� �� �

=ψ g°ϕ xð Þ
� �

= g°ψ ϕ xð Þð Þ ð3Þ

Therefore, by providing some basic equivariant functions
between Cartesian tensors and combining them, we can obtain an
equivariant neural network. Here, we use the following three equiv-
ariant operations, whose equivariances are proven in the Supplemen-
tary Note 1:
1. Linear combinations of tensors with the same

order: f T 1,T2, � � � ,Tm

� �
=
P

ciTi.
2. Contraction of two tensors.

The contraction of tensors is a mathematical operation that
reduces the rank of tensors by summing over one or more pairs of
indices. For example, consider a 3-order tensor A and a 2-order tensor
B, the contraction of them canbe Cijk =AijlBkl , this will reduce the rank
of tensors by 2. More generally, if we sum over more than one pair of
indices between an x-order tensor T1 and a y-order tensor T2 such as:

ϕz T 1,T2

� �
a1 ���ax�zb1 ���by�z

=T 1a1 ���ax�z c1 ���cz � T2b1 ���by�zc1 ���cz ð4Þ

We can get a new tensor with x + y� 2z order, where
0≤ z ≤ minðx,yÞ.When z=0, noneof the indices are contracted and the
Eq. (4) becomes tensor product Ta1 ���axb1 ���by

=T 1a1 ���ax
� T2b1 ���by

.
3. Partial derivative with respect to another Cartesian ten-

sor: ∂
∂T j1 j2 ���jn

.

By the combination of these operations, we can get many equiv-
ariant functions. Many common operations frequently used in other
equivariant neural networks that operate on vectors, such as scaling of
vectors: s �~v, scalar products ~v1, ~v2

� �
, vector products ~v1 × ~v2 (the

upper triangle part of ~v1 � ~v2 � ~v2 � ~v1) can all be viewed as special
cases of these three operations. Some other more complex descrip-
tors, such as MTP descriptors4,21, can also be obtained through com-
binations of these operations as shown in the Supplementary Note 3.
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Equivariant message passing neural network
To obtain an end-to-end machine learning model for predicting
material properties, the input shouldbe thepositions frig and chemical
elements fZig of all atoms, and for periodic crystals, the lattice para-
meters should also be considered. To apply graph neural networks, we
first transform the crystal structure into a graph fni,eijg, where each
node ni corresponds to an atom i in the unit cell, and all atoms jwithin
a given cutoff distance rcut are considered connected to ni labeledwith
their relative positions rij. For periodic structures, since atom j and its
equivalent atom j’may both lie within the cutoff distance of atom i, ni

may have more than one edge connected to nj . To extract the infor-
mation of the nodes, we use the schemeofMPN. A normalMPN can be
described as:

mt + 1
i = �

j2NðiÞ
Mt ht

i ,h
t
j ,eij

� �
ð5Þ

ht + 1
i =Ut ht

i ,m
t + 1
i

� �
ð6Þ

where ht
i is the hidden feature of ni at layer t that captures its local

information, messages are then passed between nodes along edges,
with themessage at each edge eij being a functionMt of the features of
the nodes connected by that edge. The ⨁ is a differentiable and per-
mutation invariant function such as sum, mean or max to aggregate
the message at each node together to produce an updated message
mt + 1

i for that node, which in turn is used to update the hidden feature
with the function Ut for the next iteration.

A concrete example illustrating the principles ofMPN is presented
in Fig. 1. We first determine the connectivity of a structure based on a
given cutoff radius and convert it into a graph (quotient graph for
periodic structures). Then the messages on the nodes can be passed
through the edges by a two-body interaction. As the process of mes-
sage passing, the information fromatomsbeyond the cutoff radius can
also be conveyed to the central atom. As illustrated in Fig. 1b, the blue
arrows represent the first time of message passing, while the yellow
arrows denote the second. To be noticed, each layer of message pas-
sing is performed simultaneously on all atoms; here, we focus on a
specific atom ineach layer for easeof analysis.During the initial timeof
message passing, information of atom 1 is encoded into the hidden
information of atom 2. Subsequently, in the second time of message
passing, the information of atom 2 including some information of
atom 1 is collectively transmitted to atom 3, thereby achieving non-
local effects from atom 1 to atom 3. On the other hand, due to the
interaction between atom 4 and atom 2 in the second time of message
passing also containing the information from atom 1, the effective
interaction is elevated from a two-body interaction to a three-body

interaction. This indeed encapsulates the two advantages of the
message-passing architecture.

However, the scalar hidden feature, message, and edge informa-
tion (always relatively distance between two atoms) here will limit the
expressive capacity and may cause the incompleteness of atomic
structure representations. As shown in Fig. 2a and d, if we only use
scalar information hi, hj , and dij to pass the message in Eq. (5) and
update the feature in Eq. (6), all nodes will always produce the same
embedding information. As a result, the network will be unable to
distinguish between these two structures and give the same total
energy. Even if the 3-body message includes angles αijk are taken into
consideration, some structures with only 4 atoms cannot be
distinguished26, as shown in Fig. 2b and e. Due to the identical atomic
environments within the truncation radius, no matter how many
message passing iterations are performed, these two different struc-
tures will only yield the same result. To alleviate this problem, a series
of models that use high-order geometric tensors during the message
passing have been proposed. For example, allowing vectors in the
message passing process can differentiate Fig. 2b and e, but in the case
of Fig. 2c and f which have different α, the summation in Eq. (5) would
cause the network to confuse these two structures (a more detailed
explanation can be seen in the Supplementary Note 5). It can be
anticipated that increasing the order of tensors in message passing
would enhance the expressive power of the network. Previously, the
order of high-order tensor networks based on Cartesian space was
typically limited to 233,34, while our method can work with any order
Cartesian tensors. In the following, we use lht

i to represent the l-order
Cartesian tensor features of node i in the t-th layer, and r�n to repre-
sent tensor product of a vector r for n times: r⊗r⊗⋯⊗r. In particular,
for n = 0 we define this to a learnable function of jjrjj : r�0 = fðjjrjjÞ.

Initialize of node features. The scalar features in the first layer 0h0
i

should be invariant to rotation, translation, and permutation of the
atoms with the same chemical species. This is also the requirement for
most descriptors used in machine learning potentials, so these
descriptors suchas ACSF, SOAP, ACE,MTP, etc., can be useddirectly to
expedite the process of feature extraction. Here, we used the trainable
chemical embedding similar to SchNet23 to minimize human-designed
elements asmuchaspossible. Specifically, the atomic numbers arefirst
encoded by one-hot and then multiplied by a learnable weight matrix,
resulting in a learnable embedding for each element Zi. For high-order
features lh0

i with l > 0, we set them all to 0 at the beginning.

Message and aggregate. To combine the information of neighboring
nodes, we need to design a message passing function Mt in Eq. (5).
Considering that the hidden feature liht

i ,
ljht

j , the bond info eij , and the
targetmessage loutmt + 1

ij canbe tensors of arbitraryorder. Therefore, we
need to find an equivariant way to compose the two tensors to a new

(a) (b)

1

2

3

3 2 1

4

4

Fig. 1 | The schematic diagramofmessage-passing networks. a the origin structure; b the graph corresponding (a). The blue arrows represent the first time ofmessage
passing of the atom 2, while the yellow arrows denote the second time of the atom 3.
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tensor with different order, and Eq. (4) is such an operation. In our
model, we write Mt in Eq. (5) as:

li ,lr

lomt
ij =Mt ht

i ,h
t
j ,eij

� �
= ftlr dij

� �
� liht

ja1 ���ali�lc
c1 ���clc

� u
N

lr
ij

� 	
c1 ���clc b1 ���blr�lc

ð7Þ

Where dij = jjrijjj is the relative distance between atom i and atom j,
uij =

rij
dij

is the direction vector, 0 ≤ lc ≤ minðli,lrÞ is the number of the
indices summing up during the contraction. f tlr dij

� �
is the radial

function, which is a learnable multi-layer perceptron of radial basis
functions such as Bessel basis and Chebyshev basis. The result is a
Cartesian tensor with order lo = jli + lr � 2lcj, which is between jli � lr j
and li + lr . Since lr can be chosen arbitrarily, we can obtain an
equivariant tensor of order from 0 to any arbitrary order.

Weuse a summationoperation as the aggregation function for the
messages in Eq. (5), that is, directly adding all the messages obtained
from neighboring nodes. For tensors of the same order obtained from
different ðli,lrÞ, we add them together with different coefficients. Due
to the arbitrariness of lo and lr , we need to specify their maximum
values. With given ltomax, l

t
rmax, we sum up all possible ðli,lrÞ:

lomt + 1
i =

X
lr ≤ l

t
rmax

X
li

clo ,lr ,li
X
j2N ið Þ

f lr dij

� �
� liht

ja1 ���ali�lc
c1 ���clc

� u
N

lr
ij

� 	
c1 ���clc b1 ���blr�lc

ð8Þ
Update. For scalarmessage 0mt + 1

i , we feed it to a fully connected layer
followedby a non-linear activation function to extract the information,
and update the hidden feature with residual neural networks:

0ht + 1
i = 0ht

i +σ
0Wtð0mt + 1

i Þ
� �

ð9Þ

Where σ is the nonlinear activation function, 0Wt is a linear layer with
bias in the t layer for the scalar message. However, for the tensors
above 0 order, both the bias and the activation function will break the
equivariance (Supplementary Note 2). Therefore, we only apply bias
when l = 0.

For the high-order activation function, as shown in Eq. (3), tensor
multiplication by a scalar is equivariant. Hence, we need to find a
mapping from an n-order tensor to a scalar. One simple idea is to use
the squared norm of the tensor jjT jj2 =Pi1 ���ilT

2
i1 ���il since it is invariant

by definition. Therefore, for l >0, wewrite the element-wise non-linear

function as:

lσ Tð Þi1 ���il =σ
0 lWðjjT jj2Þ
� �

� T i1 ���il ð10Þ

It should be noted that different notations σ and σ' were used for
the activation function in Eqs. (9) and (10), as the choice of activation
function may vary for scalar and high-order tensors. Take the SiLU
function σ xð Þ= x � sigmoidðxÞ for example and suppose lW is the
identity function. For scalar, SiLU maps x to x itself when x≫0. How-
ever, for higher-order tensors, Eq. (10) will map T i1 ���il to jjT jj2 � T i1 ���il
instead of T i1 ���il when T i1 ���il≫0. This is because if we apply the formula
for higher-order tensors to a scalar, which is yi = σ WðxiÞ

� � � xi, an extra
xi is multiplied. Therefore, if we use SiLU function for σ, we should use
Sigmoid function for σ0. Other activation functions can be handled
using a similar approach, and hence the update function for high-order
tensors is:

lht + 1
i = lht

i +
lσ lWtðlmt + 1

i Þ
� �

ð11Þ

Readout. For a targetn-orderproperty, weutilize a two-layer nonlinear
MLP to operate on the n-order tensor at the last hidden layer. For the
same reason, bias and element-wise nonlinear functions cannot be
used in the high-order tensor.

loi =
lW2

l
�
σ lW1ðlht

i Þ
� �

ð12Þ

Performance of HotPP
We validate the accuracy of ourmethod on a diverse range of systems,
including small organic molecules, periodic structures, and predic-
tions of dipole moments and polarizability tensors. For each system,
we trained the HotPP model on the commonly used dataset and
compared the results with other models. To demonstrate the robust-
ness of our model, most models were trained using the same network
architecture shown in Fig. 3 and similar hyperparameters. More
training details can be seen in Methods section.

Small organic molecule. We first test our model on molecular
dynamics trajectories of small organic molecules. The ANI-1x
dataset35,36 contains DFT calculations for approximately five million
diverse molecular conformations obtained through an active learning
algorithm. To evaluate the extrapolation capability of HotPP, we train
our model with 70% data from the ANI-1x dataset and test on the

(a) (b) (c)

(d) (e) (f)

α

β

α

β

Fig. 2 | Some structures that cannot be distinguished by message passing
networks that do not utilize high-order tensor information. a, d cannot be
distinguished by using two-body scalar information; b, e cannot be distinguished

by using three-body scalar information26; and c, f cannot be distinguished by using
two-body vector information. c, f have different α and β, so they have the same
center of mass but different moment of inertia.
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COmprehensive Machine-learning Potential (COMP6) benchmark35,
which samples the chemical space of molecules larger than those
included in the training set. The results are shown inTable 1. Compared
to ani-1x, our model has demonstrated superior performance across
the majority of prediction tasks.

Periodic systems. After testing HotPP on small molecule datasets
without periodicity, we evaluated its performance on periodic sys-
tems. We selected the carbon system with various phases as the
example37. It is a complicated dataset with a wide range of structures
containing structural snapshots from ab initio MD and iteratively
extended from GAP-driven simulations, and randomly distorted unit
cells of the crystalline allotropes, diamond, and graphite. We show the
results in Table 2. Clearly, our model with about 150k parameters
demonstrates advantages in predicting forces and virials compared to
most models and can achieve accuracy close to l = 3 NequIP model
with around 2 million parameters. And when the parameters are
expanded to 600k, HotPP achieves the best results on this dataset.

Next, we verify the accuracy of our potential in calculating pho-
non dispersions of diamond, which was not well-predicted in some of
the previous models for carbon38. We can obtain the force constant
matrix of the structure directly through automatic differentiation
∂2E

∂riα∂rjβ
. We used Phonopy Python package39,40 to calculate the phonon

spectrum of diamond and compared it with the results from DFT in

Fig. 4. The results show that HotPP can describe the vibrational
behavior well. Although there are relatively large errors in the high-
frequency part at the gamma point, this could be attributed to the
inaccuracy of the DFT calculations within the training dataset. We
retrained the model using a more accurate dataset38, and the newly
calculated phonon spectrum almost perfectly matches the results
from DFT, which demonstrates the reliability of our model.

Dipole moment and polarizability tensor. Since our model can
directly output vectors andmatrices, we attempted to directly predict
the dipolemoments and polarizability tensors of structures in the final
section. We consider the water systems including water monomer,
water dimer, Zundel cation, and liquid water bulk41. The dipole and
polarizability of the aperiodic systemswere calculated by CCSD theory
and those of liquidwaterwere calculatedbyDFT. Each systemcontains
1000 structures andweuse70%of themasa training set and the rest as
a testing set.We calculate the RMSEs relative to the standard deviation
of the testing samples to compare with previous results obtained by
othermodels41–43 as shown inTable 3 Inmost cases,HotPPgets thebest
results except for the polarizability tensor of the water monomer.
Compared to T-EANN42 and REANN43, HotPP performs particularly well
in the case of the dipole moment of liquid water. This may be because

they fit the dipole moment by learning qi and calculating μ=
PN
i = 1

qiri,

which is inappropriate for periodic systems. In contrast, the output
results of our model are all obtained through relative coordinates and
thus we can get rid of the selecting of reference point.

Since now we can obtain the dipole moment and polarizability by
HotPP, we can calculate the infrared (IR) absorption spectrum and
Raman spectrum for liquid water. We separately trained a machine
learning potential to learn the energy, forces, and stresses of liquid
water to assist us in conducting dynamic simulations. With this
potential, we perform a classical MD simulation under ambient con-
ditions (300K, 1 bar) for 100ps and calculate the dipole moment and
the polarizability tensor every 1 fs. Thenwe compute the IR and Raman
spectra by Fourier transforming the autocorrelation function (ACF) of
them and the results are compared to the experiment data44,45 as
shown in Fig. 5. We can observe that both HotPP model and DeePMD

Embedding

Readout

PropagateFilter PropagateFilter

PropagateFilter PropagateFilter

PropagateFilter PropagateFilter

PropagateFilter PropagateFilter

RBFGraph 
Convolution

W· +b W·
W· +b W·

W· +b W·

∑ ∑

Fig. 3 | The architecture of HotPP. After embedding atomic information into
scalars, vectors, and tensors, 4 propagation layers are used to further extract
information and outputs the target properties. For higher-order tensors or addi-
tional propagation layers, the frame remains similar. The inputs to the network are
the atomic numbers Zi and relative displacements between atoms rij. After
Embedding layer, the scalar node embedding 0h0 are initialized based on Zi and the
higher order embeddings are set to zero. In each Propagate layer, the inputs are the

node embeddings linh and the filter tensors lr fij obtained by the Filter layer as
f lr dij

� �
� u�lr

ij , where dij is the relative distance and uij is the unit vector of rij. The
output messages loutmi are transformed through a linear layer and activated by the
nonlinear function σ or σ0, dependent on the order of the message tensors. In the
Readout layer, the node embeddings are transformed and summed up to get the
target properties lo, such as 0o for energy, and 1o for dipole.

Table 1 | Test results on COMP6 dataset

ANI-
MD

DrugBank GDB7-
9

GDB10-
13

s66x8 Tripeptides

HotPP E 1155 534 209 332 231 311

F 61 62 61 92 32 51

Ani-1x35 E 2249 597 56 134 568 563

F 249 174 108 170 136 149

The upper and lower portions of each row in the table correspond to energy (with the legend E)
and forces (with the legend F) mean absolute errors in meV and meV/Å, and each column
represents to a benchmark set of the COmprehensive Machine-learning Potential (COMP6)
benchmarks35.
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model46,47 can closely approximate the experimental IR spectra. Our
results accurately fit the first three peaks, corresponding to the hin-
dered translation, libration, and H-O-H bending respectively, but there
is a long tail in comparison to the experimental data for the O-H
stretching mode. This discrepancy may arise from not accounting for
quantum effects in our classical molecule dynamic simulation. And for
Raman spectra, our model also gives the result in agreement with
experimental data.

Discussion
In thiswork,we introduceHotPP, anE(n) equivariant high-order tensor
message passing network based directly on Cartesian space. Com-
pared to other Cartesian-space based high-order tensor networks,

HotPP can utilize tensors of arbitrary order, providing enhanced
expressive power. In contrast to high-order tensor networks based on
spherical harmonics and coupled with CG coefficients, HotPP employs
simple tensor contraction operations, resulting in a reduced number
of parameters and better computational efficiency for small l (Sup-
plementary Note 6). Moreover, the network’s output can be any-order
tensor, enabling convenient prediction of vector or tensor properties.
With its ability to achieve high accuracy while saving substantial
computational time compared to first-principles calculations, HotPP
holds great promise in scenarios such as molecular dynamics simula-
tions and structure optimizations, where exploration of potential
energy landscapes is essential. In future work, we would investigate
approaches to eliminate redundancies in high-order Cartesian tensors
to further enhance accuracy. Additionally, due to its E(n) equivariance
(rather than E(3)), HotPP can be explored for high-dimensional struc-
ture optimization48 to expedite potential energy surface exploration. It
can also serve as a foundation for generating models to directly gen-
erate structures or predict wave functions. Overall, HotPP is a pro-
mising neural network that we believe can facilitate further
explorations in physical chemistry, biology, and related fields.

Methods
Software
All experiments were run with the HotPP software available at https://
gitlab.com/bigd4/hotpp, git commit be36dae6c2b35148ba214d5626-
f9960a8eaf5a07. In addition, the Pytorch version was 2.0.1+cu117,
PyTorch Lightning under version 2.0.7, and Python under ver-
sion 3.9.17.

Datasets
Ani-1x: The ANI-1x dataset35,36 contains approximately five million
diverse molecular conformations obtained through an active learning
algorithm. We use 70% data of ani1x.h5 dataset downloaded from
https://doi.org/10.6084/m9.figshare.c.4712477.v1 to train the model,
and then test on the COmprehensive Machine-learning Potential
(COMP6) benchmark34. The reference energies are extracted from
“wb97x_dz.energy” label, and forces from “wb97x_dz.forces” label.

Carbon: The GAP-17 dataset37 consists of a training set comprising
4080 structures and a test set comprising 450 structures. The refer-
ence data are got by single-point DFT-LDA computations with dense
reciprocal-space meshes. The GAP-20 dataset38 contains 6088 struc-
tures and are calculated with the optB88-vdW dispersion inclusive
exchange–correlation functional. We use 70% of the data as the
training set.

Water: This dataset includeswatermonomer, water dimer, Zundel
cation, and liquid water bulk41, each systems contains 1000 config-
urations, 70% of which are used for training. The water monomer,
water dimer, and Zundel cation are calculated at (CCSD)/d-aug-cc-
pVTZ level, and the liquid water bulk at the DFT/PBE-USPP level.

Training details
The tensor of the out layer ltomax and the tensor product of the relative
coordinates ltrmax in themodels are both set to 2 and a discussion about
the effect of these values can be seen in the Supplementary Note 4.

Table 2 | Test results on Carbon

GAP7 DP7 MTP7 REANN7 NEP7 NequIP (l = 1) NequIP (l = 2) NequIP (l = 3) HotPP
(153k para)

HotPP
(602k para)

E 46 44 35 31 42 67 23 17 22 16

F 1100 800 630 640 690 746 507 431 439 395

W - 170 200 - 160 - - - 64 56

E, F, andWareRMSEof energy, forces, and virial inmeV/atom,meV/Å, andmeV/atom respectively. ForMTP, REANN, andNEP,we only show themodels that can deliver the best results (se2+se3 for
DP, 5 Å cutoff for MTP, 4 Å cutoff for MTP, and 4.2 Å cutoff for NEP). More details of training parameters can be found in Fan’s previous work7.

G X W K G L U W L K0

5

10

15

20

25

30

35

40

Fr
eq

ue
nc

y(
TH

z)

DFT
HotPP1
HotPP2

U X

Fig. 4 | Phonon spectrumof diamond. Phonon dispersion relation for diamond as
predicted by HotPP1 (blue dotted) and HotPP2 (red dotted) with comparison to
DFT reference data (black solid). The HotPP1 was trained with the dataset
GAP201737, and the HotPP2 was trained with GAP202038. Source data are provided
as a Source Data file.

Table 3 | Comparison the results obtained by SA-GPR,
T-EANN, REANN and HotPP in different water systems

SA-GPR41 T-EANN42 REANN43 HotPP

H2O ~0.11 0.02 0.05 0.02

~0.02/0.12 0.02 0.06 0.05

(H2O)2 ~5.3 6.6 3.0 2.36

~6.4/7.8 4.2 1.6 0.99

H5O2
+ ~2.4 1.3 0.4 0.15

~3.8/0.97 0.3 0.1 0.09

Liquid water - 16 15 0.70

~5.8/19 2.2 2.1 0.48

In each system, the first line represents the relative root mean square error (RMSE) of the dipole
moment, while the second line indicates the relative RMSE of the polarizability tensor. For SA-
GPR, isotropic and anisotropic terms are learned separately, and the values of liquid water are
used for the qualitative comparison only as mentioned in the work of REANN43.
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The number of chemical embedding channels and features of node
messages is 64. The radial function is a 3 layer MLP of dimensions [64,
64, 64] with SiLU nonlinearity and the basis function is 8 trainable
Bessel functions similar to NequIP8. The readout layer is a 2 layer MLP
of dimensions [64, 64] and SiLU nonlinearity. Themodels were trained
with the Adam optimizer49 in PyTorch with default parameters. We
used a learning rate of 0.01 and the learning rate was reduced using an
on-plateau scheduler based on the validation loss with a decay-
factor of 0.8.

Ani-1x: We used 5 propagation layers, a radial cutoff of 4.5 Å, a
batchsize of 128, and the following loss functionwith λE =0.1 and λf = 1:

L=
λE
N

Ê � E



 





 


2 + λf
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Where N, E, Ê, Fiα denote the number of atoms, target energies, pre-
dicted energies, and the force of atom i on direction α.

Carbon: The cell is multiplied by a unit matrix S before calcula-
tions. We used 5 propagation layers, the difference between the
models with different parameters is that, for the model with more
parameters, we updated both node information and edge information
in the propagation layers. We used a radial cutoff of 3 Å, a batchsize of
16, and the following loss function with λE =0.5, λf = 1, and λv =0:2:
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Where Vαβ, sαβ denotes the α,β component of the virial and the unit
matrix S.

The NequIP model was trained on the same dataset with NVIDIA
GeForce RTX 4090 24GB. We used 4 layers with 64 channels for even
and odd parity for both l = 1, l = 2, and l = 3. Radial features are gener-
ated using 8 trainable Bessel basis functions and a polynomial envel-
ope for the cutoff with p = 6, the numbers of invariant layers and
neurons were set to 2 and 64. Such hyperparameter settings result in
model parameter quantities of 389k, 971k, and 1,970k respectively.
Modelswere trainedwithAdamoptimizerwith default parameters.We
initialized the learning rate to 0.01 and used an on-plateau scheduler
based on the validation loss with a patience of 100 and a decay factor
of 0.8. We used an exponential moving average with weight 0.99.

Water: We used 4 propagation layers, a radial cutoff of 4 Å, a
batchsize of 4, and the following loss functions:

L= bP� P



 





 


2

L= bα � α


 



 

2

Where P, P̂,α, α̂ are target dipoles, predicted dipoles, target polariza-
tions, predicted polarizations.

Molecluar dynamics simulations
We constructed the PES of liquid water using HotPP with the dataset
provided by DeePMD50, including 1888 structures computed with the
strongly constrained and appropriately normed (SCAN) functional51.
Our model gives the RMSE of 2meV/atom for the per atom energy,
49meV/ Å for forces, and 11meV/atom for per atom virials.

Next we used LAMMPS52 to perform theMLMDwith the system of
512 water molecules in a cubic≈24.8Å supercell to make sure the
density close to 1 g cm�3. The system was equilibrated at ambient
conditions using Nosé-Hoover chain thermostat53,54 for 200 ps. 10 sta-
tistically independent initial conditions were then sampled from the
last 100ps simulation to initialize NVE trajectories of 200ps length
using a time step of 0.5 fs. The initial and final configurations of these
10 simulations can be found in Supplementary Data 1. The dipole
moment and polarizability tensor were calculated every 1 fs.

Calculation of infrared absorption spectrum and Raman
spectrum
We can get different types of vibrational spectra by Fourier trans-
forming the time autocorrelation functions (ACF) of different physical
properties with a trajectory sampled by molecule dynamics. For IR
absorption, it can be computed by the ACF of the dipole moment as:

IðωÞ / ω2
Z +1

�1
e�iωt μ 0ð Þ � μ tð Þ� �

dt

Where μ is dipole moment, ω is the vibrational frequency, and the
bracket is the average over the time origin.

And for Raman spectrum, the isotropic components can be cal-
culated by:

RisoðωÞ / ω tanhð _ω
2kT

Þ
Z +1

�1
e�iωt αiso 0ð Þ � αiso tð Þ� �

dt

Where αiso � TrðαÞ=3 is the isotropic components of the polarizability
tensor. And,

RanisoðωÞ / ω tanhð _ω
2kT

Þ
Z +1

�1
e�iωtTr β 0ð Þ � β tð Þ� �

dt

Where β is the anisotropic traceless tensor β=α � αisoI.
The IR spectrum and Raman spectrum are scaled to make the

maximum values consistent with the experimental data.
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Fig. 5 | Experimental and simulated infrared absorption spectrum and reduced
anisotorpic Raman spectra of liquid water under ambient condition. a The
comparasion of the infrared abosption spectrum b The comparasion of the
reduced anisotropic Ramanspectra. Theblack circles are the experimental data44,45,
and the lines are calculated with molecular dynamics trajectories performed by
HotPP, MB-pol56, DeePMD46,47, and T-EANN42. Source data are provided as a Source
Data file.
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Data availability
The datasets used in this paper (ANI-1x, carbon, andwater) are publicly
available (see “Method”). Source data are provided with this paper.

Code availability
TheHotPP codeused in the current study is available atGitLab (https://
gitlab.com/bigd4/hotpp) and Zenodo (https://doi.org/10.5281/
zenodo.12952612), ref. 55.
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