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In recent years, predictive machine learning models have gained prominence
across various scientific domains. However, their black-box nature necessi-
tates establishing trust in them before accepting their predictions as accurate.
One promising strategy involves employing explanation techniques that elu-
cidate the rationale behind a model’s predictions in a way that humans can
understand. However, assessing the degree of human interpretability of these
explanations is a nontrivial challenge. In this work, we introduce interpretation
entropy as a universal solution for evaluating the human interpretability of any
linear model. Using this concept and drawing inspiration from classical ther-
modynamics, we present Thermodynamics-inspired Explainable Representa-
tions of Al and other black-box Paradigms, a method for generating optimally
human-interpretable explanations in a model-agnostic manner. We demon-
strate the wide-ranging applicability of this method by explaining predictions
from various black-box model architectures across diverse domains, including

molecular simulations, text, and image classification.

Performing predictions based on observed data is a general problem
of interest in a wide range of scientific disciplines. Traditionally, sci-
entists have tackled this problem by developing mathematical models
that connect observations with predictions using their knowledge of
the underlying physical processes. However, in many practical situa-
tions, constructing such explicit models is unfeasible due to a lack of
system-specific information’. In recent years, an alternative class of
purely data-driven approaches involving Artificial Intelligence (Al) has
emerged with remarkable success®’. These methods are often referred
to as black-box models, as they don’t rely on a deep understanding of
the system’s inner workings and are designed to extract patterns
directly from data. However, when it comes to making informed
decisions and policies based on these models, this lack of under-
standing raises concerns.

Recently there has been significant progress in addressing this
issue and the proposed approaches can be classified into two cate-
gories: (1) Al models that are inherently explainable (e.g., decision
trees providing understandable decision paths'®, scoring
mechanisms™"?, generalized additive models, etc.*'*), or (2) post-hoc
explanation schemes for Al models that are not inherently

explainable called XAl (e.g., gradient-based methods: layer-wise
relevance propagation (LRP)“, guided back-propagation’, inte-
grated gradients”; tree'®, or linear surrogate models approximating
black-box behavior; approaches based on game theory®, etc.).
Although there has been a recent push toward the former class of
methods due to certain limitations of XAI*, most of the existing
black-box Al are not inherently explainable. Consequently, XAl has
been widely adopted for generating human comprehensible ratio-
nale for black-box Al predictions?. Under the XAl paradigm, the
developed methods can be black-box model-specific, or model-
agnostic that generate global or locally valid explanations in the form
of visual or feature importance attributions* .

In this work, we focus on model-agnostic XAl approaches, i.e., a
specific class of methods that work by accessing only the input and
output layers of a black-box model. Recently, there has been a trend
where more and more ML models are being released only for inference
purposes at the user level while the model architecture and trained
parameters are reserved for commercial purposes. To assess the
trustworthiness of such ML models, model-agnostic XAl is one of the
few effective choices.
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One of the earliest and most influential model-agnostic explana-
tion methods is the Partial Dependence Plot (PDP)*. PDPs visualize the
relationship between a subset of features and the prediction while
holding all other features constant. Much later, in 2016, a significant
breakthrough in model-agnostic explanations came with the intro-
duction of Local Interpretable Model-agnostic Explanations (LIME) by
Ribeiro et al.”” LIME constructs a linear surrogate model that locally
approximates the behavior of a black-box model. Coefficients asso-
ciated with each feature of the constructed linear model are then used
to attribute local feature importance. Due to its ease of use, LIME has
become one of the most widely adopted model-agnostic explanation
methods. In a subsequent work in 2018, Ribeiro et al. introduced
Anchors”, a method that aims to identify sufficient if-then conditions
as explanations that preserve a prediction when the feature values are
changed. Since then, other researchers have worked on extending the
applicability of LIME, e.g., Zhang et al.?® investigated potential uncer-
tainties that can arise in LIME due to the randomized neighborhood
sampling procedure, incorrect similarity measurement, lack of
robustness, etc., and proposed a set of tests for trusting the explana-
tions themselves.

SHapley Additive exPlanations (SHAP)*, introduced by Lundberg
and Lee in 2017, further advanced the field by integrating cooperative
game theory concepts with model-agnostic explanation methods.
SHAP values offer a comprehensive metric for feature importance by
evaluating each feature’s contribution to the prediction by taking into
account all the possible sets of feature combinations. A key advantage
of SHAP is its ability to detect non-linear dependencies among fea-
tures. Furthermore, SHAP is capable of providing both local and global
explanations for black-box predictions.

Although these methods have been developed to rationalize Al
predictions, there is a potential issue ensuring high human inter-
pretability. The challenge is that there are no established methods
that directly quantify the degree of human interpretability of the
generated explanations. This is a major concern in assessing Al model
trustworthiness but is often overlooked. For instance, when ratio-
nalization involves a high number of correlated features, achieving
high human interpretability and, consequently, establishing trust can
be challenging. Research progress in this direction so far includes
methods that construct linear models to approximate Al models and
take the number of model parameters as a proxy for human inter-
pretability (similar to some established methods in other mathema-
tical domains, e.g., in Akaike information criterion” or Bayesian
information criterion®).

One of the primary motivations behind our work is the recog-
nition that model complexity can be an insufficient descriptor of
human interpretability, as shown in Fig. 1. In this case, if model
complexity is used as a proxy for human interpretability, then both
linear models shown in Fig. 1a, b will be assigned the same value as
they both have the same number of model parameters. Indeed,
previous studies®>* have revealed constraints in human cognition
arising from a bottleneck in information processing capacity when
subjected to different stimuli. Thus, we ground ourselves in the
information-theoretic definition of entropy** and adopt a metho-
dology that views linear model weights as a probability distribution.
This allows us to assess differences in human interpretability among
the different linear models by calculating a quantity similar to
Shannon entropy. As illustrated in Fig. 1, it is evident that model 2 is
significantly more understandable to humans compared to model 1.
If both models exhibit equal accuracy, then a selection of model 2
over 1 is desirable, since it provides fewer actionable strategies. We
solve this problem in the existing methods by introducing the con-
cept of interpretation entropy for assessing the degree of human
interpretability of any linear model. We show that under simple
conditions, our definition of interpretation entropy addresses the
shortcomings of complexity-based quantification.

Furthermore, we view the overall problem of Al model explana-
tion from the lens of classical thermodynamics®. It is known in ther-
modynamics that the equilibrium state of a system is characterized by
a minimum in its Helmholtz Free Energy (T, V) := U~ TS.Here Uand S
represent the internal energy and entropy, respectively, of a system
with a fixed number of particles N at constant temperature 7 and
volume V. Similarly, we set up a formalism in this work where the
optimality of an explanation ({) is assessed as a trade-off between its
unfaithfulness (/) to the underlying ground truth, and interpretation
entropy (S). Similar to U and S in classical thermodynamics, in our
formalism ¢/ and S depend monotonically on each other. The strength
of this trade-off can be tuned to identify the most stable explanation
using a parameter 6, which plays a role similar to thermodynamic
temperature T. For any choice of 8 > 0, { is then guaranteed to have
exactly one minimum characterized by a pair of values {i/,S} under
certain conditions.

We call our approach Thermodynamics-inspired Explainable
Representations of Al and other black-box Paradigms (TERP), which
takes inspiration from LIME and constructs local, linear surrogate
models for generating black-box explanations. However, as opposed
to the methods in existing literature, TERP focuses on directly quan-
tifying the degree of human interpretability using the concept of
interpretation entropy introduced in this work to generate a unique
explanation. Owing to its model-agnostic implementation, TERP can
be used for explaining predictions from any Al classifier. We demon-
strate this generality by explaining predictions from the following
black-box models in this work: (1) autoencoder-based VAMPnets*® for
tabular molecular data, (2) self-attention-based vision transformers for
images® and, (3) attention-based bidirectional long short-term mem-
ory (Att-BLSTM) for text®® classification. In particular, the first class of
models belongs to an area of research undergoing rapid progress
involving molecular dynamics (MD) simulations®'. As researchers
with a keen interest in MD simulations, we have observed that the
application of Al explanation tools to Al models in this field has been
very limited. Consequently, we believe that our proposed method,
TERP, will prove valuable to the broader scientific community focused
on this subject.

Results

Interpretation unfaithfulness (/) for surrogate model
construction

Our starting point is some given dataset X’ and corresponding pre-
dictions g coming from a black-box model. For a particular element
X € X, we seek explanations that are as human-interpretable as pos-
sible while also being as faithful as possible to g in the vicinity of x. We
aim to address this problem of explaining g by developing a linear
approximation instead, which is more interpretable due to its linear
construction. Specifically, we formulate F as a linear combination of an
ordered set of representative features, s ={s;, S5, ..., S,}. Typically, these
features are domain-dependent, e.g., one-hot encoded superpixels for
an image, keywords for text, and standardized values for tabular data.
We demonstrate this in Equation (1) below, where F represents the
linear approximation, fy is a constant, and f; comes from an ordered
set of feature coefficients, f={f}, f5, ..., fu}.

F=fo+Xi_y fiSi 6]

Let’s consider a specific problem where Xq is a high-dimensional
instance, and g(xe) is a black-box model prediction, for which an
explanationis needed. Wefirst generate aneighborhood {x;, X, V4, Xn}
of N samples by randomly perturbing the high-dimensional input
space”. A detailed discussion of neighborhood generation is
provided in “Methods.” Afterward, the black-box predictions
{g(x1), g(x2), ..., g(xn)} associated with each sample in the neighbor-
hood are obtained. Subsequently, a local surrogate model is
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Fig. 1| Model complexity is not a good descriptor for human interpretability.
a lllustrative input feature coefficients for linear model 1. b Coefficients for linear
model 2. Both models have the same number of model parameters (six). However,
model 2 is significantly more human-interpretable than model 1, where two of the
six features stand out as most relevant for predictions.

constructed by employing linear regression using the loss function
defined in Equation (2).

c=min, SN - (Y0 fisi)]| @
i=1

Here I1,(Xo,X;) = e~9®oX)’/0" is a Gaussian similarity measure, where d is
the distance between the explanation instance Xo and a neighborhood
sample x;. In previous surrogate model construction approaches®,
Euclidean distance in the continuous input feature space has been the
typical choice for d. However, if the input space has several correlated
or redundant features, a similarity measure based on Euclidean dis-
tance can be misleading®>*>. TERP addresses this problem by com-
puting a one-dimensional (1-d) projection of the neighborhood using
linear discriminant analysis®* (LDA), which removes redundancy and
produces more accurate similarity. Such a projection encourages the
formation of two clusters in a 1-d space, corresponding to in-class and
not in-class data points, respectively, by minimizing within-class
variance and maximizing between-class distances. Since the projected
space is one-dimensional, there is no need to tune the hyperparameter,
o in I;(Xg,X;) = e~dx)’/7* 35 might be necessary in established
methods, and we can set o = 1. We demonstrate the advantages of LDA-
based similarity for practical problems by performing experiments in a
subsequent subsection.

Next, we introduce a meaningful unfaithfulness measure (/) of
the generated interpretation, computed from the correlation coeffi-
cient C between linear, surrogate model predictions (F) obtained using
Equation (1) and black-box predictions (g). For any interpretation,
C(F, g) €[ - 1, + 1], and thus interpretation unfaithfulness is bounded,
e, Uec[0]]

U=1-C(F.8) 3)
Using these definitions, we implement a forward feature selection
scheme™*° by first constructing n linear models, each with j=1 non-zero
coefficients. We use Equation (3) to identify the feature responsible for
the lowest ¢#=1. Here, the superscript j = 1 highlights that ¢/ was
calculated for a model with j=1non-zero coefficients. We will follow this
notation for other relevant quantities throughout this manuscript.

Afterward, the selected feature is propagated to identify the best
set of two features resulting in the lowest /=2, and the scheme is
continued until /=" is computed. Since a model with j + 1 non-zero
coefficients will be less or at best equally unfaithful as a model with j
non-zero coefficients as defined in Equation (1), it can be observed that
U monotonically decreases with j. The overall scheme generates n
distinct interpretations as j goes from 1 to n.

Interpretation entropy (S) for model selection

After identifying n interpretations, our goal is to determine the optimal
interpretation from this family of models. At this point, we introduce
the definition of interpretation entropy S for quantifying the degree of
human interpretability of any linear model. Given a linear model with
an ordered set of feature coefficients {f;, f5, ..., f,} among which are

non-zero, we can define {p;, p,, ..., p,}, where p; : = Z‘"fk‘lf-\' Inter-
pretation entropy is then defined as: =1
) n
§/= =" pilogpil{logp, =0V p, =0} “4)

k=1

Here the superscript j indicates that S is calculated for a model
with j non-zero coefficients. It is easy to see that py satisfies the
properties of a probability distribution. Specifically, py = 0
and Y¢_pr =1

Similar to the concept of self-information/surprisal in information
theory, the negative logarithm of p, from a fitted linear model can be
defined as the self-interpretability penalty of that feature. Interpreta-
tion entropy is then computed as the expectation value of self-
interpretability penalty of all the features, as shown in Equation (5).
Using Jensen’s inequality, it can be shown that S has an upper limit of
log n and we can normalize the definition so that S is bounded between
[0, 1].

n

sl @;m logp, = @E{— logp] 5)
This functional form of interpretation entropy (S), i.e., interpretability
penalty, encourages low values for a sharply peaked distribution of
fitted weights, indicating high human interpretability and vice versa.
Furthermore, if the features are independent, S has two interesting
properties expressed in the theorems below. The corresponding
proofs are provided in Supplementary Notes 1 and 2 of the Supple-
mentary Information (SI).

Theorem 1. §/ is a monotonically increasing function of the number of
features (j).

Theorem 2. S monotonically increases as I/ decreases (Supplemen-
tary Fig. S1).

Free energy ({) for optimal explanation
For an interpretation with j non-zero coefficients, we now define free
energy {’ as a trade-off between 2/, and S tunable by a parameter 6 >
0, as shown in Fig. 2 and Equation (6).
JfO=ul+6s 6)
By writing an expression shown in Equation (7) for the stationary value,
AL =" - V= 0, we can define characteristic temperatures 6 at each
j €1, n-1]. Essentially, 6/ = — % is a measure of change in unfaith-
fulness per unit change in interpretation entropy for a model with j
non-zero coefficients. This closely resembles the definition of
thermodynamic temperature which is defined as the derivative of
internal energy with respect to entropy. Afterward, we identify the
interpretation with (j + 1) non-zero coefficients that minimizes (6/*' —
6/)= — _(Algjﬂ - ﬁ?“_’f) as the optimal interpretation since it is guaranteed
that ¢’" will preserve the lowest minimum among the set
{C% 3 ..., T, ..., T} within the widest range of temperatures. Finally,
we calculate optimal temperature, 6°= M (any value within
0/ < 6 < 6/ is equally valid since the optimal interpretation itself
does not change) and generate the explanation as weights of this
model. All { vs. j plots shown in this manuscript are created using this

Nature Communications | (2024)15:7859


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-024-51970-x

zZ DD D
=
S a0 0

Cj

3

VI vs. j

b,

0

1
1 :

5 10
89 vs. j

5 .
J

Fig. 2 | lllustrative example highlighting properties of free energy {’, unfaith-
fulness 1/, and interpretation entropy S/. a Strength of S/ contribution to {’ can
be tuned using 6. {’ vs. j plots for three different 6 =9, 6, 4 are shown, resulting in

H~ OO

— 8
6
6
110

minimums at j = 2, 3, 4, respectively. bi{/ vs. j remains unaffected by 6. c6S” vs.j
plot shows that the strength of the trade-off can be tuned by 6.

10

definition of optimal temperature.

g o= W -uh eI - 8
A({‘ = AL +OAS’ @
0’ = -4 AT By setting A’ = 0]
Thus,
. AU .
=+ <_A_$j|A('f_0>Sj ®)

This is again reminiscent of classical thermodynamics, where a sys-
tem’s equilibrium configuration will, in general, vary with temperature,
but the coarse-grained metastable state description remains robust
over a well-defined range of temperatures (Supplementary Note 3). In
our framework, when 6 =0, { is minimized atj = n interpretation or the
model that maximizes unfaithfulness and completely ignores entropy.
As @ is increased from zero, interpretation entropy contributes more
to {’. Here, (67! - 6/) is a measure of the stability of the j non-zero
coefficient interpretation. The complete TERP protocol is summarized
as an algorithm in Fig. 3.

Application to Al-augmented MD: VAMPnets

Variational approach for Markov processes (VAMPnets) is a popular
technique for analyzing molecular dynamics (MD) trajectories®.
VAMPnets can be used to featurize, transform inputs to a lower-
dimensional representation, and construct a Markov state model* in
an automated manner by maximizing the so-called VAMP score.
Additional details involving the implementation of VAMPnets are
provided in “Methods.”

In this work, we trained a VAMPnets model on a standard toy
system: alanine dipeptide in vacuum. An 8-dimensional input space
with sines and cosines of all the dihedral angles ¢, ¢, 6, ® was con-
structed and passed to VAMPnets. VAMPnets was able to identify three
metastable states I, II, and Il as shown in Fig. 4b, c.

To explain VAMPnets model predictions using TERP, we picked
713 different configurations, some of which are near different transi-
tion states. To quantify data points as being a transition state, we use
the criterion that the prediction probability for both classes should be
higher than a threshold of 0.4. From a physics perspective, the

Generate neighborhood data by perturbing input fea-
tures. Obtain associated black-box predictions.
Normalize, and then compute the similarity of the
neighborhood samples using linear discriminant analysis
(LDA).

Using ridge regression”” construct linear, surrogate mod-
els for all possible combinations of features at a specific
J-

Implement forward feature selection by choosing the
model with the lowest U7 at a specific 7.

Compute §? corresponding to all the chosen J{0 < j <
n} interpretations

Obtain the optimal explanation by computing character-
istic 67 of the models and identifying minimum (67! —67).

56

ot

Fig. 3 | TERP algorithm. Describes the protocol to generate the optimal TERP
explanation corresponding to a black-box model prediction.

behavior of such molecular systems near the transition states is a very
pertinent question. Additionally, class prediction probability is the
most sensitive at the transition state, and if our method generates a
meaningful local neighborhood, it should include a broad distribution
of probabilities resulting in highly accurate approximations to the
black-box behavior. Thus, a correct analysis of the transition state
ensemble will validate our similarity metric and overall neighborhood
generation scheme.

We generated 5000 neighborhood samples for each configura-
tion and performed TERP by following the algorithm in Fig. 3. In
Fig. 4b, c, we highlight the first, and second most dominant features
using colored stars (x) identified by TERP for all the 713 configurations.
The generated explanations are robust and TERP identified various
regions where different dihedral angles are relevant to predictions.
The results are in agreement with existing literature, e.g., the relevance
of 0 dihedral angle at the transition state between I and Ill as reported
by Chandler et al.’®. Also, the results intuitively make sense, e.g., we see
the VAMPnets state definitions change rapidly near ¢ = 0, and TERP
learned that ¢ is the most dominant feature in that region. This shows
that VAMPnets worked here for the correct reasons and can be trusted.
In Fig. 4d-g, we show TERP results for a specific configuration
(¢ =0.084, =0.007, 6=0.237, w = 2.990 radians) for whichj =2 non-
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Fig. 4 | Using TERP to explain VAMPnets for molecular dynamics simulations of
alanine dipeptide in vacuum. a Representative conformational states of alanine
dipeptide labeled I, I1, III. b, ¢ Projected converged states are highlighted in three
different colors as obtained by VAMPnets along (¢, ¢) dihedral angles. 713 different
configurations are chosen for TERP. The first and second dominant features are
highlighted using colored () in (b) and (c), respectively. di/ vs. j, es/ vs. j, f67vs.j,
and g{’ vs. j plots for a specific black-box prediction with configuration ¢ = 0.084,
¢ =0.007,0=0.237, w = 2.990 radians, showing optimal interpretation occurring at
J = 2. h High-dimensional neighborhood data projected onto 1-d using LDA for
improved similarity measure. Binarizing the class prediction probabilities of the
neighborhood using a threshold of 0.5 results in explanation and not explanation

classes, respectively. The LDA projection separates the two regimes of prediction
probability, showing meaningful projection. Average similarity error, AlT defined in
Equation (9) per datapoint for i Euclidean, and j LDA-based similarity, respectively.
Comparison between (i) and (j) shows minimal error for LDA-based similarity,
specifically demonstrated for an input space constructed from the four dihedral
angles plus one pure noise, four pure noise, and four correlated features with
partial noise, respectively. The input space for no actual data and four pure noise
features in (i) establishes a baseline, showing that the Euclidean similarity will
include significant error even when one redundant feature is included. All the
calculations were performed in 100 independent trials to appropriately examine
the effects.

zero model resulted in optimal interpretation with p, = 0.82, and
Do =0.18. Figure 4f clearly shows that (6/*' - 6) is minimized atj= 2 and
the average of 6/, and 6j is taken as the optimal temperature 0 ° for
calculating {’ using Equation (8). Additional implementation details
are provided in “Methods.”

In this section, we demonstrated the applicability of TERP for
probing black-box models designed to analyze time-series data com-
ing from MD simulations. In addition to assigning confidence to these
models, TERP can be used to extract valuable insights (relevant
degrees of freedom) learned by the model. In the future, we expect an
increased adoption of TERP-like methods in the domain of Al-
enhanced MD simulations for investigating conformational dynam-
ics, nucleation, target-drug interactions, and other relevant molecular
phenomena®~",

Dimensionality reduction (LDA) significantly improves neigh-
borhood similarity

As discussed in the first subsection, neighborhood similarity evaluated
using Euclidean distance can be incorrect and may lead to poor
explanations. Here, we perform experiments to demonstrate the
advantages of LDA-based similarity measure. Figure 4h shows that the
LDA projection successfully generated two clusters of data points
belonging to the in-explanation (predicted class of the instance
requiring explanation) and not in-explanation classes (all other classes
except predicted class) respectively. These well-separated clusters
help in computing meaningful and improved distance measure d. In
Fig. 4i, j, we illustrate the robustness of an LDA implementation against

noisy and correlated features and compare results with Euclidean
similarity implementation. We generate pure white noise by drawing
samples from a normal distribution A/(0,1) and generate correlated
data by taking a;x; + bA/(0,1) (e.g., a; = 1.0, b = 0.2), where x; are stan-
dardized features from the actual data. As shown in Fig. 4i, j, we con-
struct synthetic neighborhoods by combining actual data from the
four dihedral angles and adding one pure noise, four pure noise, and
four correlated features, respectively. Since the synthetic features do
not contain any information, their addition should not change simi-
larity. Thus, we can compare the robustness of a measure by com-
puting the average change in similarity per datapoint squared, which
we call similarity error, 4/7 € [0, 1], as shown in Equation (9).

N
A= > (17 - ) ©)
i=1

Here, the superscripts o and s represent similarities corresponding to
the original and synthetic data points, respectively. We can see that
LDA-based similarity performs significantly better in 100 independent
trials compared to Euclidean similarity. On the other hand, the addition
of one pure noise introduces a significant similarity error for the
Euclidean measure. Thus we conclude that adopting LDA over Euclidean
similarity measure produced a significantly improved explanation.

=Z|

Application to image classification: vision transformers (ViTs)
Transformers are a type of machine learning model characterized by
the presence of self-attention layers and are commonly used in natural
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Fig. 5 | Using TERP to explain and check the reliability of a ViT trained on
CelebA dataset. a ViT predicts the presence of 'Eyeglasses' in this image with a
probability of 0.998. b Superpixel definitions for the test image following the

16 x 16 pixel definition of ViT patches. TERP results showcasing c2¢/, dS/, e8’, and
7/ as functions of j, g corresponding TERP explanation. We can see the maximal
drop in 6/ happens when going fromj = 2 to j = 3. By defining the optimal tem-
perature 6° = w as discussed in the “Results” section, a minimum in ¢’ is
observed atj = 3. Panels h-j show sanity checks®, i.e., the result of an Al explanation

e s
il

scheme should be sensitive under model parameter randomization (h), (i) and data
randomization (j). k Saliency map results as baseline explanation for ‘Eyeglasses’
prediction. Red color highlights pixels with high absolute values of the class
probability gradient across RGB channels. The high gradient at pixels not relevant
to ‘Eyeglasses’ shows the limitation of the saliency map explanation. I TERP, and
m saliency map explanations for the class ‘Male’. 2/, 8/, ¢/, and 6/ as functions of j
for (I, m) are provided in the SI.

language processing (NLP) tasks™. The more recently proposed Vision
transformers (ViTs)”’ aim to directly apply the transformer archi-
tecture to image data, eliminating the need for convolutional layers,
and have become a popular choice in computer vision. Per construc-
tion, ViTs are black-box models, and because of their practical usage, it
is desirable to employ an explanation scheme to validate their pre-
dictions before deploying them.

ViTs operate by segmenting input images into smaller patches,
treating each patch as a token similar to words in NLP. These patches
are then embedded (patch-embeddings) and passed to the transfor-
mer layers conducting self-attention and feedforward operations.
Such a design allows ViTs to capture long-range spatial dependencies
within images and learn meaningful representations. Interestingly,
ViTs are known to perform poorly with limited training data, but with
sufficiently large datasets, ViTs have been shown to outperform con-
volutional layer-based models. Thus a typical ViT implementation
includes two stages: first a large dataset is used to learn meaningful
representation and pre-train a transferable model, followed by fine-
tuning for specific tasks.

In this work, we employ a ViT pre-trained on the ImageNet-21k
dataset from the authors**>' and then fine-tune the model for pre-
dicting human facial attributes by training on the publicly available
Large-scale CelebFaces Attributes (CelebA)®* dataset. CelebA is a large
collection of 202,599 human facial images and each image is labeled
with 40 different attributes (e.g., ‘Smiling’, ‘Eyeglasses’, ‘Male’, etc.).
During training, input images are converted into 16 x 16 pixel patches
resulting in a total of 196 patches for each CelebA image (224 x 224
pixel) depicted in Fig. 5b. Other details of the architecture and training
procedure are provided in “Methods.”

To explain the ViT prediction ‘Eyeglasses’ (prediction probability
of 0.998) for the image shown in Fig. 5a using TERP, we first construct
human-understandable representative features by dividing the image
into 196 superpixels (collection of pixels) corresponding to the 196 ViT
patches as shown in Fig. 5b. Afterward, a neighborhood of perturbed
images was generated by averaging the RGB color of randomly chosen
superpixels following the neighborhood generation scheme outlined
in “Methods.” Figure 5c-f shows 14/, &/, 8/, and {’ as functions of j after

implementing the TERP protocol (Fig. 3). Thus, TERP explanation
enables us to conclude that the ViT prediction of ‘Eyeglasses’ was made
for the correct reasons. The optimal TERP explanation shown in Fig. 5g
appears atj = 3, due to the maximal decrease in 6 as j is increased from
2 to 3. Using Equations (7) and (8), { is calculated, and a minimum
occurs atj = 3.

Data and model parameter randomization experiments show
TERP explanations are sensitive

To establish that TERP indeed takes both the input data and the black-
box model into account when generating explanations, we subject our
protocol to the sanity tests developed by Adebayo et al.*>. We achieve
this by taking the fine-tuned ViT model and randomizing the model
parameters in a top-to-bottom cascading fashion following their work
and obtaining corrupted models. Specifically, we randomize all para-
meters of ViT blocks 11 - 9 and blocks 11 - 3, respectively, to obtain two
corrupt models. TERP explanations for ‘Eyeglasses’ for these two
models are shown in Fig. Sh-i. Plots showing ¢/, &/, ¢/, and 6’ as
functions of j for these models are provided in the SI (Supplementary
Fig. S2). Here, the idea is that, due to randomization, the explanation
will not match the ground truth. However, a good Al explanation
scheme should be sensitive to this randomization test and produce
different explanations from the fully trained model. Similarly, we
implemented the data randomization test (Fig. 5j) proposed in the
same work, where the labels of the training data are randomized prior
to training, and a new ViT is obtained (training details provided in
the SI) using the corrupted data. Again, the results of an Al explanation
method should be sensitive to this randomization. From the corre-
sponding TERP explanations shown in Fig. 5h—j, we conclude TERP
passes both randomization tests.

Baseline benchmark against saliency map shows TERP expla-
nations are reliable

To understand the validity, robustness, and human interpretability of
the explanations, we benchmarked TERP against saliency map, LIME,
and SHAP, respectively. In this section, we first show that TERP
explanations are significantly better, and reasonable compared to a
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c ‘Eyeglasses’, d, and ‘Male’ prediction respectively. Consistency of these results
with explanations shown in Fig. 5 validates TERP.

baseline method, i.e., a simple gradient-based saliency map (additional
details in “Methods”) for ‘Eyeglasses’ prediction using the previously
trained ViT. Comparison with more advanced methods (LIME, and
SHAP) to demonstrate how our work contributes to the existing field is
discussed in the next subsection.

From Fig. 5k, we see the limitations of the saliency explanation,
e.g., a lot of pixels irrelevant to ‘Eyeglasses’ are detected to have high
absolute values of the probability gradient across the RGB channels.
This is not surprising since saliency maps are known to detect color
changes, object edges, and other high-level features instead of learning
a relationship between model inputs and class prediction®®. We also
generated TERP and saliency map explanations for the label ‘Male’ as
shown in Fig. 51, m (further details in the SI). Again, the saliency map
explanation includes pixels that should be irrelevant for this predicted
class. Contrarily, TERP explanations involve pixels that should be
relevant to the respective classes demonstrating the validity of the
results.

Comparison with advanced methods demonstrates TERP
explanations are unique

In this subsection, we compare TERP with state-of-the-art methods for
generating unique and highly human-interpretable explanations. To
ensure a fair comparison, we focus on other widely used model-
agnostic, post-hoc explanation schemes (LIME", and SHAP?) that
work only on the input and output layers of a black-box model.

LIME generates local, linear approximation (f) to black-box pre-
dictions (g) by minimizing: £(x)=argminfL(g f,m,)+Q(f), where L is
a fidelity function (typically root-mean-squared error), 7, is neigh-
borhood similarity, and Q is the complexity measure of the surrogate
linear model. In practice, LIME is implemented by first performing
weighted linear regression and then either (1) selecting the top j fea-
tures with extreme coefficients, or (2) by directly implementing Lasso

regression with L1 regularization® for constructing sparse models,
where the degree of sparsity can be tuned by a hyperparameter a. Both
Jj and a typically depend on the instance under investigation and will
need to be set to a reasonable value by the user. Thus, an accurate
human interpretability-based mechanism for generating unique
explanations is missing in LIME, and when analyzing a large number
of black-box predictions, significant testing/human intervention
becomes necessary.

While both TERP and LIME use similar fidelity functions, the main
difference is that TERP does not use model complexity or simplicity as
a proxy for human interpretability. As discussed in the “Introduction”,
such metrics can be misleading, and TERP directly computes the
degree of human interpretability by introducing the concept of
interpretation entropy. Afterward, a unique explanation is generated
by identifying the set of features causing the highest decrease in
unfaithfulness per unit increase in entropy.

We applied LIME to explain the ViT prediction for ‘Eyeglasses’, and
in Fig. 6a, the top 10 features contributing to the prediction are shown.
We also implemented the second approach in LIME, i.e., Lasso
regression for sparse models for 10 different values of a. As a is
increased, the number of selected features in the explanation
decreases, as shown in Fig. 6b. While the relevant superpixels identi-
fied by LIME are reasonable and overlap with the superpixels identified
by TERP (Fig. 5g), LIME involves hyperparameter selection/human
intervention which can be unfeasible for high-throughput experi-
ments, e.g., when analyzing MD data.

After LIME, we implemented another widely used state-of-the-art
method, SHAP, for explaining ‘Eyeglasses’, and ‘Male’ predictions as
shown in Fig. 6c, d. A feature associated with an extreme SHAP value
indicates a high contribution to black-box prediction. Specifically, the
SHAP value associated with a feature j can be obtained using:
@ = S BN (S U { j}) — w(S)). Here, the prefactor represents the
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weight of the marginal contribution (enclosed in []) of feature j to S
where S, |S|, and N represent a specific set of features (coalition),
number of features in that specific coalition, and total number of
features, respectively. The marginal contribution is evaluated by sub-
tracting the effects of the feature in predictions whenjj is present and
absent in the coalitions respectively. After obtaining SHAP values for
all the features, a sparse explanation is typically obtained by taking the
top J (j is user-defined) features with the most extreme SHAP values.
Thus, similar to LIME, SHAP explanations are also not unique. By
comparing SHAP results with TERP (Fig. 5g, 1), we again see that the
relevant features overlap, which validates TERP explanation.

In this section, we compared TERP with two widely used state-of-
the-art model-agnostic, post-hoc approaches and demonstrated the
validity of TERP explanations. Furthermore, by employing the theory
developed in this work, TERP successfully generated highly human-
interpretable, unique explanations, unlike the established methods.
Implementation details of LIME and SHAP are provided in “Methods.”

Application to text classification: attention-based bidirectional
long short-term memory (Att-BLSTM)
Classification tasks in natural language processing (NLP) involve
identifying semantic relations between units appearing at distant
locations in a block of text. This challenging problem is known as
relation classification, and models based on long short-term memory
(LSTM)®, gated recurrent unit (GRU)®, and transformers®® have been
very successful in addressing such problems. In this work, we look at
the widely used attention-based bidirectional long short-term
memory*® (Att-BLSTM) classifier and apply TERP to explain its
predictions.

First, we trained an Att-BLSTM model on Antonio Gulli’s (AG’s)
news corpus®, which is a large collection of more than 1 million news
articles curated from more than 2000 news sources. The labels

associated with each news article in the dataset indicate the section of
the news source (e.g., World, Sports, Business, or Science and tech-
nology) that the news was published in. Afterward, we employed the
trained model and obtained prediction for a story titled “Al predicts
protein structures,” published in ‘Nature’s biggest news stories of
20228,

To implement TERP for probing a black-box prediction involving
text input (sequence of sentences), first, the text is passed through a
tokenizer (nltk®®) which generates a dictionary of words/phrases con-
tained in that text. These words are the representative features to be
used in TERP. Afterward, a neighborhood of the perturbed text is
generated by randomly choosing and removing all instances of dif-
ferent words from the text. TERP processes the neighborhood as
numerical values for linear model construction by creating a one-hot-
encoded matrix where the columns represent the presence or absence
of the different words in the perturbed text.

As a specific instance, the Att-BLSTM classifier predicted that the
story titled “Al predicts protein structures” is about Science and
Technology, and we implemented TERP to generate the optimal
explanation behind this prediction as shown in Fig. 7. Here, the max-
imum decrease in 67 occurs when going fromj =1toj = 2 and thus, {’
has a minimum atj = 2. The most influential keywords were identified
to be ‘species’, and ‘science’ with p; = 0.47, and 0.53 respectively. This
gives confidence that the Att-BLSTM model was able to classify the
news story for the correct reasons.

Discussion

The widespread adoption of Al-based black-box models has become a
standard practice across various fields due to their ability to be
deployed without requiring an in-depth understanding of the under-
lying processes. However, this advantage also poses challenges
regarding trustworthiness and the explanation of Al models. In this
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study, we introduce a thermodynamics-inspired framework to create
interpretable representations of complex black-box models. Our
objective was to find representations that minimize discrepancies
from the true model while remaining highly interpretable to humans
using a concept similar to the energy-entropy trade-off. Furthermore,
the concept of interpretation entropy introduced in this work has the
potential to be useful in general human interpretability-based model
selection beyond ML. In future work, efficient optimization algorithms
can be developed for general-purpose linear regression that uses
Equation (4) as a regularization to directly construct human-
interpretable models.

We showcased the effectiveness of this approach in various Al
applications, including image classification, text analysis, and mole-
cular simulations. While several methods"”**’°”" have been proposed
to address Al interpretability in the past, only a handful, such as refs.
72-77, have been utilized to elucidate molecular simulations. Impor-
tantly, our work marks one of the pioneering applications of inter-
pretability techniques in the rapidly evolving field of Al-enhanced
molecular dynamics.

Recent applications of our framework (TERP), have been instru-
mental in uncovering key mechanisms behind crystal nucleation’® and
hydrophobic ligand dissociation”. Given the critical role of molecular
sciences in uncovering chemical reaction pathways®°, understanding
disease mechanisms®, designing effective drugs®, and numerous
other vital areas, it is crucial to ensure accurate analysis, as errors in
black-box models can have significant financial and public health
implications. TERP should provide practitioners of molecular
sciences a way to explain these black-box models on a footing made
rigorous through simple yet powerful parallels with the field of
thermodynamics.

Methods
Neighborhood generation
We take inspiration from the work of Ribeiro et al.”” and generate a
single instance of the perturbed sample around the neighborhood of
an instance x with n features by first drawing n numbers from a uni-
form distribution, {t;, t,, ..., t;} € [0, 1]. The ith feature is perturbed if ¢; >
0.5; otherwise, the feature is kept unchanged. Once a feature is chosen
for perturbation, the specific scheme for obtaining perturbed values
depends on the corresponding data type.

For tabular data, if a feature x; is continuous, it is updated by
X; = X; + €0; where ¢; is the standard deviation of the feature in the
training data and € is a small noise drawn from a Gaussian distribution.
For categorical data, feature value x; is updated by x; =x/, where x7 is
sampled from the training data. For text, an instance is first converted
into tokens®?, which are considered as features. If a token is chosen for
perturbation by following the scheme described above, it is replaced
by a new token sampled from training data. For images, superpixels are
defined and, if chosen for perturbation, are updated by averaging the
colors of all the pixels within that particular superpixel. If the input
data contains a high number of features, a strategy discussed in Sup-
plementary Note 4 can be adopted for an efficient implementation
of TERP.

Al-augmented MD method: VAMPnets
The molecular system for alanine dipeptide in vacuum was para-
metrized using the forcefield CHARMM36m® and prepared using
CHARMM-GUI®*, A 100 ns MD simulation of alanine dipeptide in
vacuum at 450 K temperature and 1 atm pressure was performed using
Nose-Hoover thermostat and Parrinello-Rahman barostat®*® in
GROMACS*®,

A VAMPnets* deep neural network was constructed from two
identical artificial neural network lobes, that take trajectory order
parameters (OPs) at time steps ¢ and ¢ + 7, respectively, as inputs. The

input data was passed through several layers of neurons, and finally, a
VAMP-2 score was calculated by merging results from the outputs of
both lobes. The neural network model parameters were tuned in
successive iterations that maximize the VAMP-2 score (Supplementary
Fig. S3). In this way, a Markov state model at a specific lagtime 7 can be
learned that describes the slow processes of interest.

In this work, the VAMPnets implementation was performed using
the PyEMMA®® 2.5 and Deeptime’® 0.4.2 Python libraries by con-
structing the neural network architecture depicted in Supplementary
Fig. S4. Other training hyperparameters are: 7 = 0.05ps, learning
rate = 0.0005, epochs = 50.

Image classification: vision transformers (ViTs)

Large-scale CelebFaces Attributes (CelebA) Dataset®” contains 202,599
celebrity images, each annotated with 40 binary attributes. CelebA
offers the dataset in two different formats: (1) actual raw images and (2)
processed data with aligned facial images. In this work, we employed
the latter and divided the dataset into training, validation sets with a
ratio of 50: 50. The training data was then used to train a ViT model.

The model was trained until validation metrics (f1 score) did not
improve for 5 consecutive epochs using a learning rate of 0.00001.
The model with the highest validation metric was saved as the trained
model (Supplementary Fig. S5).

Training and inference using ViT was implemented using PyTorch-
lightning 1.5 and Python 3.9. The pre-trained ViT model was pulled
from the timm Python library. For saliency analysis, the absolute values
of the gradients of prediction probabilities with respect to input pixels
were calculated using the backward() method of PyTorch during a
backward pass.

The authors affirm that human research participants provided
informed consent for publication of the images in Figs. 5 and 6.

Implementation details for LIME, and SHAP

Both LIME (0.2.0.1) and SHAP (0.46.0) were implemented in Python.
The chosen hyperparameters for LIME: number of samples = 5000,
LASSO(maximum iterations) = 1000, and SHAP number of evaluations
=1000. LIME was implemented by using the same superpixel defini-
tions that were used for TERP explanation to ensure a fair comparison.
To generate a perturbed image in SHAP, patches of 14 x 14 pixels were
systematically blurred for various coalitions.

Text classification: attention-based bidirectional long short-
term memory (Att-BLSTM)

In this work, we employed Python implementation of Att-BLSTM?*®
obtained from github.com/Renovamen/Text-Classification with pre-
trained GloVe word embedding. Att-BLSTM model was trained on
Antonio Gulli's (AG’s) news corpus® for 10 epochs, finally reaching a
validation accuracy of 92.0%.

Data availability

The data that support the findings of this study are openly available.
The AG’s news corpus dataset was obtained from ref. 67, and CelebA
dataset from ref. 62 in accordance with the Terms of Service of the
respective web resources. The molecular dynamics trajectory of ala-
nine dipeptide and the trained black-box models used in this study
have been deposited in the Figshare database under accession code
https://figshare.com/articles/dataset/Black-box_models_for TERP_
interpretation/24475003%. Underlying data for all the plots/graphs are
provided in a Source Data file. Source data are provided with
this paper.

Code availability
Python implementation of TERP for explaining black-box predictions
is available at github.com/tiwarylab/TERP??,
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