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Avian perching maneuvers are one of the most frequent and agile flight sce-
narios, where highly optimized flight trajectories, produced by rapid wing and
tail morphing that generate high angular rates and accelerations, reduce
kinetic energy at impact. While the behavioral, anatomical, and aerodynamic
factors involved in these maneuvers are well described, the underlying control
strategies are poorly understood. Here, we use optimal control methods on an
avian-inspired drone with morphing wing and tail to test a recent hypothesis
derived from perching maneuver experiments of Harris’ hawks that birds
minimize the distance flown at high angles of attack to dissipate kinetic energy
before impact. The resulting drone flight trajectories, morphing sequence, and
kinetic energy distribution resemble those measured in birds. Furthermore,
experimental manipulation of the wings that would be difficult or unethical
with animals reveals the morphing factors that are critical for optimal perching

maneuver performance of birds and morphing-wing drones.

Birds of prey are capable of agile maneuvers that are unmatched by
winged drones of similar size and mass“ They can dynamically adjust
the sweep, area, and inclination of their wings and tail to adapt to
momentary aerodynamic demands>*. Researchers have conducted
anatomical, aerodynamic, and behavioral observations to better
understand the underpinning morphological and control strategies.
Anatomical studies have shown that the majority of wing shape
alterations are achieved by coupled actuation of elbow and wrist joints
in the wing®, which results in variations of wing sweep that allows the
bird to both shift and enlarge the lifting surface. Wind tunnel experi-
ments on gull wings and aerodynamic modeling of peregrine falcons
during pullout maneuvers revealed that these birds employ sweeping
motion to shift the aerodynamic center forward. This change reduces
static pitch stability, which is desirable for agile flight because the
effects of control actions are magnified®’. Furthermore, sweeping the
wings enlarges the lifting surface and in turn increases the aero-
dynamic forces and moments®’, allowing birds to rapidly change their
orientation and flight direction. This ability to rapidly change orien-
tation and flight direction epitomizes agility, defined in our context as
the ability to rapidly change linear and angular velocities’. Both wing

and tail contribute to the bird’s overall lift'>". In slow, aggressive flight,
birds spread their tail to produce substantial lift and drag forces to
maneuver their flight path*™ In addition to producing pitch moments
with their wings, birds also tilt their tail upwards to increase the
positive pitching moment and change orientation more rapidly'?;
however, this action reduces lift forces. To balance the costs and
benefits of such actions, birds display complex control strategies to
swiftly transition between diverse morphological configurations to
meet flight demands®.

Understanding avian control strategies requires the examination
of dynamic flight trajectories. Field studies of birds in free flight can
provide useful insights into the rapid morphological changes that
underpin agile flight maneuvers. For instance, observations of the
perching maneuver by the Steppe eagle revealed that the bird starts
with a fast pitch-up action by raising the tail and sweeping the wings
forward, allowing it to reach a high angle of attack in less than 0.2 s. At
this point, it fully extends its wings and tail to reduce speed and finally
tilts the tail downwards to stop pitch rotation® and increase deceler-
ating forces. Such studies, however, offer a limited understanding of
avian control objectives and are constrained by observational
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Fig. 1| The perching maneuver by Harris’ hawks and avian-inspired drone.

a Schematic overview of a typical perching maneuver consisting of a dive phase
(light blue line) and of an agile climb phase (blue line) (see also Supplementary
Movie 1, adapted from ref. 26); the illustrated bird shows the optimal control
strategies displayed by the Harris' hawk (light brown) and by the avian-inspired
drone (black/blue). b Comparison of Harris' hawks of the study* and the avian-
inspired LisEagle drone”. We indicate the wing and tail sweep joints in red and list
the mass, wing area, and wing span of the two.

uncertainties and other factors that may affect their natural behavior in
the field".

Avian-inspired robots can serve as models to systematically
investigate the three factors of anatomical and kinematic motion
ability of wing and tail morphing, their aerodynamic impact on static
and dynamic flight conditions, and the optimal control strategies
under a variety of well-defined flight behaviors"”'**°, For example, a
drone with partly folding wings made of artificial feathers was used to
show increased maneuverability via wing expansion and reduced drag
via wing folding®, similarly to birds*. Additionally, researchers added a
sweeping mechanism to a fixed-wing drone to show that it could pitch
up rapidly to reduce its flight speed”. However, the drone did not
incorporate wing area changes as seen on birds, the influence of the
sweeping on the maneuver was not studied, and no analogies to birds
were drawn. Studies with avian-inspired drones revealed the aero-
dynamic impact of synergistic wing and tail morphing on agility,
maneuverability, pitch stability, and energetic efficiency at diverse
flight speeds’. It was shown that wing twisting is more effective for
rolling than asymmetric wing morphing when flying at moderate
angles of attack, typical of cruising flight”. Research on a feathered
robotic wing shed light on the wing morphing of pigeons to explain
how underactuated wing-sweep kinematics and passively interlocking
feathers' enable rapid and robust sweeping to initiate turning
maneuvers'’. Additionally, a biomimetic feathered robotic jackdaw
wing was employed in wind tunnel experiments, exploring a range of
flapping and morphing patterns and frequencies to reveal the ener-
getic benefits in force generation these birds achieve by folding their
wings during the upstroke?.

Birds exhibit complex control strategies that require the con-
sideration of the interplay of the three previously mentioned factors to
balance costs and benefits by swiftly changing morphological config-
urations. The drones described above, on the other hand, have been

steered through comparatively simple maneuvers by either manual
teleoperation®*”" or reactive scheduled Proportional-Integral
controllers>. To fully investigate and leverage the potential of
morphing wing and tail during more complex and agile avian-like flight
maneuvers, it becomes crucial to achieve high angular acceleration
and high aerodynamic forces*. However, these demands require
opposing actuator inputs. For example, producing high angular
acceleration would demand the tail to be inclined upwards, whereas
producing a high lift force would require it to be deflected
downwards’. Therefore, an understanding of the underlying control
objective and foresight into upcoming aerodynamic conditions are
important to reconcile these conflicting aerodynamic needs. The
importance of such anticipatory control strategies becomes even
more pronounced when operating near the robot’s actuation limits
where the actuation bandwidth is severely limited”**.

In this context, the perching maneuver displayed by birds of prey
is a remarkable example of an agile flight maneuver, which is char-
acterized by a dive phase and a climb phase, demanding flight across a
diverse aerodynamic spectrum to achieve and balance high angular
acceleration and high aerodynamic forces®. The perching maneuver
allows the birds to dissipate kinetic energy within a short distance in
preparation for the impact and grasp™. A recent laboratory study? of
Harris hawks’ engaged in perching maneuvers revealed that birds
initiate the maneuver with a powered dive that slightly increases
kinetic energy (light blue line in Fig. 1a). Once the lowest point is
reached, birds fly upwards towards the perching target in an unpow-
ered climb (blue line in Fig. 1a). In this agile phase of the maneuver,
they swiftly modify wing sweep, tail sweep, and tail incidence to
transition from gliding flight to high-angle-of-attack flight for energy
dissipation and a soft landing"”. The authors hypothesized that besides
reducing the impact energy, the bird’s control strategy aims at mini-
mizing the distance flown at high angle of attack, where the bird has
little control authority, rather than minimizing either flight time or
energy consumed for propulsion. Birds commonly do this for migra-
tion and commuting” and this is also done in robotic implementations
of autonomous perching maneuver control™*,

Here, we test this hypothesis using optimization methods in
aerodynamically grounded simulations of an avian-inspired drone with
morphing wing and tail (Fig. 2) to study the dive and climb phase of the
perching maneuver (excluding the physical grasping). Specifically, we
compute flight trajectories to obtain control strategies for an avian-
inspired drone minimizing the objective of impact energy and distance
flown at high angle of attack in experimental conditions similar to
those used with birds of prey*. The simulation results indicate that
the optimal flight path and aerodynamic key characteristics of the
flown horizontal distance, as well as relative kinetic energy at impact,
match those measured in the Harris’ hawks. Systematically limiting the
range of wing and tail sweep led to a deterioration in aerodynamic
performance, emphasizing the importance of the wing kinematics and
the anatomical ability to morph. Furthermore, we show that the
morphing control strategy that leads to these optimal trajectories
matches qualitative observations of wing and tail morphing reported
in the literature on perching maneuvers of birds of prey'>”, Finally, we
validate the optimal control strategy on the physical drone and show
that its flight path and kinematic morphing actuation closely match the
video footage of Harris’ hawks measured in laboratory conditions.
Systematically limiting the range of wing and tail sweep led to a
deterioration in aerodynamic performance, emphasizing the impor-
tance of the wing kinematics and the anatomical ability to morph.
These results corroborate the hypothesis that birds of prey develop
optimal perching maneuver strategies to reduce kinetic energy and
minimize flight duration at unstable flight conditions and show how
quantitative descriptions of bird behaviors can be used to derive
optimal control strategies to both study avian flight and achieve avian
agility on non-biological fliers.
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Fig. 2 | Avian-inspired drone. a The avian-inspired drone, LisEagle, used in this
work. b Illustration of its eight degrees of freedom. This study focuses on long-
itudinal motion, which is affected by symmetric sweeping of left and right wing, tail
incidence, tail sweep, and thrust. The control of these degrees of freedom is given
to the trajectory optimization method. Instead, lateral displacements induced by
mechanical asymmetries of the drone feathers and actuator responses are stabi-
lized by reactive Proportional-Derivative (PD) controllers where tail yaw correct
yaw motion and asymmetric left and right wing twist correct roll motion.

Results

The drone used in this study (code-named LisEagle, Figs. 1b, 2a) is
endowed with feathered wings and tail with controllable sweep and
incidence angles observed in birds of prey during agile maneuvers, and
a frontal propeller to generate thrust’”. The drone’s weight (695 g)
falls within the range of the four Harris” hawks (620-874 g) observed in
the animal study, and its nominal wing area (0.224 m?) is only slightly
larger than that of the birds (0.190-0.210 m?).

For the sake of simplicity, we study optimal control of the aerial
surfaces along the vertical plane that connects the starting and target
points. The drone can use the same wing and tail motion observed in
birds during rapid pitch-up maneuvers"”, namely wing sweep, tail
sweep, and tail incidence (Fig. 2a, b, Supplementary Movie 2), to
control its longitudinal motion. Wing and tail sweeping increases lift-
ing surfaces, thus producing larger aerodynamic moments and forces.
Sweeping the wings forward also changes the relative position of the
center of lift with respect to the center of gravity® (collapsed: -1.4 cm,
extended: 7.2 cm, see Supplementary Table 1, Supplementary Note 9),
thus reducing longitudinal stability and increasing agility. These two
aerodynamic effects of wing and tail sweeping enable the drone to
rapidly rotate upwards and generate large aerodynamic forces*. While
birds of prey primarily utilize flapping for thrust generation during the
powered dive phase prior to perching?, in this study we use a propeller
to generate thrust and focus on identifying wing and tail control
strategies during the agile, unpowered climb phase when large birds
tend not to flap®. When validating the optimal perching maneuver
control strategies on the real drone, we employ gain scheduled
Proportional-Derivative (PD) control of the tail yaw angle and asym-
metric actuation of the wing twist (Fig. 2a, b, Supplementary Movie 2)
to laterally stabilize the drone in terms of yaw and roll respectively
(details in “Methods”).

We derived an aerodynamically grounded model for our drone
using wind tunnel measurements at varying wind speeds, angles of
attack, and wing and tail configurations (see “Methods”) and also took
actuator limitations into account. This model enabled us to conduct
trajectory optimization experiments of the agile climb phase of a
perching maneuver in simulation. During this phase, a bird starts from

a glide and dissipates significant energy before reaching its target
point*. We recreate a similar scenario to obtain trajectories that allow
a comparative assessment of the resulting control strategy. To com-
pare the performance of our results to the Harris’ hawk, we evaluate
the perching maneuver performance in terms of relative impact
energy (a measure of kinetic energy reduction to the means of reduced
impact) and required distance (a measure to compare flight path and
space requirements). We further qualitatively compare the wing and
tail actuation sequence leading to the trajectory with the wing and tail
motion observed in birds>"**,

We used trajectory optimization criteria identified in studies of
similarly sized birds of prey engaged in the perching maneuver>*
with the goal of testing the hypothesis that birds minimize the distance
flown at high angle of attack and of studying the role of morphing
strategies in perching maneuver trajectories and performance. For
example, Harris" hawks were permitted to fly from a start point to a
perch point positioned at an equal elevation at distances between 5
and 12 m*. These birds commenced their flight with a powered dive.
Similarly, Steppe eagles flying in their natural habitat” were reported
to display a diving behavior to a depth of 1 m below their perching
target. This behavior was also described in Harris" hawk experiments
with a 12 m distance between start and perch points*. Consequently, in
our trajectory optimization experiments, we considered a range of
distances centered around 12 m (9-15 m in 1 m increments), initialized
the drone in a straight flight condition at the nominal speed of the
drone of 10 ms™, and limited the maximum downward movement to 1
m, as observed in birds.

In summary, the trajectory optimization is formulated as a non-
linear program?, characterized by the dynamics of our avian-inspired
drone, where we minimize the impact energy and distance flown at
high angle of attack with the constraint of an initial horizontal distance
between 9 and 15 m, an initial forward velocity of 10 ms™, and a max-
imum downward vertical distance of 1m, while upward movement
remains unrestricted (Fig. 3a). As a control experiment, we also per-
formed two sets of trajectory optimization experiments where we
minimize the total flight time and required propulsion energy,
respectively, instead of the distance flown at high angles of attack. To
solve the optimization problem, we employ the Interior Point OPTi-
mizer (Ipopt) method*® (further details in Methods).

Optimal perching trajectories display dive and climb

The optimal flight trajectories showcase a distinct and consistent
swooping pattern, which can be broken down into two main phases:
the dive and the climb phase (see Supplementary Movie 3). These are
separated by the transition state, marked by the lowest point of the
trajectory, as illustrated in (Fig. 3a, b)*. During the dive phase, the
drone engages in a powered glide, descending with slight acceleration.
This maneuver takes place within the allowed vertical space of 1 m,
where its wings are straight and the tail is semi-extended and angled
slightly upward. The climb phase represents the more agile part of the
maneuver. Here, the drone performs an unpowered climb towards the
target, while it pitches upwards to increase its angle of attack and
rapidly reduces speed (Fig. 3b).

Optimal perching maneuvers redistribute kinetic energy prior
to impact

In the short distance covered during the climb phase, birds dissipate
most kinetic energy to minimize the impact that must be absorbed to
stop their motion™*'. Consequently, we analyzed the impact energy,
i.e., the remaining kinetic energy, of optimal drone trajectories during
the climb phase and compared them to those of birds. The bird’s
posture and ability to extend its legs forward enable it to touch the
perching pole before the body reaches the pole. We estimated this
effective distance at 0.5 m by analyzing video footage of Harris’ hawk
experiments (detailed in Supplementary Fig. 1, Supplementary Note 1).
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Fig. 3 | Perching optimization in simulation. a Visualization of the simulation
experiment constraints. The drone is initialized in a straight flight condition at a
velocity (brown arrow) of 10 ms™ and varying distance from the target point (brown
cross). The drone is required to reach the target point and is allowed to use up to
1m of space downward, while its motion upwards is not restricted. The transition
state is defined at the lowest point of the trajectory, where all the energy is kinetic.
b Perching flight trajectories that result from the optimization algorithm with the
objective of minimizing distance flown at high angle of attack®. Starting points are
in the range of 9-15m, spaced in intervals of 1 m and are shown by an arrow. The
climb phase is indicated by the shaded area, on the right of which, we show kinetic,
potential, and dissipated energy at the target point. ¢ Effect of a limited range of

motion in wing and tail sweep on flight path and key characteristic metrics. The
central panel shows the resulting flight paths, the left panel (E kinetic) displays the
relative kinetic energy on impact, and the right panel (distance required) indicates
the horizontal distance required for the perching maneuver (both surfaces linearly
interpolated between experiments, indicated by black dots). d Drone trajectory
during the climb phase in the morphological space defined by tail incidence, wing
sweep, and tail sweep. The prominent 3-dimensional line shows the actuation
sequence, with color change indicating time flow. The lighter lines depict the
2-dimensional projections on each parameter plane. The time scale at the bottom
highlights the three distinct configurations of the drone during the climb phase.
Source data are provided as a Source Data file.

Considering the absence of leg extension in the drone, energy mea-
surements were conducted when the drone reached a distance of
0.5 m from the perching target. Lastly, we excluded trajectories that do
not utilize the full 1-meter vertical space, as these would not accurately
reflect the necessary horizontal distance required for an optimal
perching maneuver or the comparative energy redistribution.

Starting from the maximum kinetic energy at the transition state
(defined by the lowest point in the dive), we measure the remaining
kinetic energy at impact, the potential energy gained by increasing
altitude, and the dissipated energy. The flights from the Harris’ hawk
study reveal that when birds impact the perching point after a 4.2 m
distance from the transition state, they dissipated 54% of the initial
kinetic energy, converted 32% into potential energy, and remained
with only 14% kinetic energy. Similarly, the simulated drone covered
4.1 m and dissipated 66% of the initial kinetic energy, converted 16%
into potential energy, and remained with only 18% kinetic
energy (Fig. 3b).

In contrast, the optimal flight trajectories found in control
experiments with minimization of total flight time or required

propulsion energy display a distinctly different path where the tran-
sition to the climbing phase occurs later (3.0 m and 3.1m from the
perching point, respectively) (see Supplementary Fig. 2 Supplemen-
tary Note 2 for details).

Wing and tail morphing results in higher kinetic energy
dissipation

To assess the role of the morphing wing and tail in the perching
maneuver, we gradually restricted the range of motion of wing and tail
sweep to their center position (similar to the configuration at the
transition state) and applied the trajectory optimization method in the
same experimental conditions of the morphing-wing drone. In the
condition where wing and tail sweep motions are blocked, only the
propeller thrust and tail incidence can control longitudinal motion.
This limited configuration most closely resembles that of a fixed-wing
drone (Fig. 3¢, orange trajectory) and serves as a control condition to
understand the contribution of wing and tail sweep to the perching
maneuver. Under those fixed-wing conditions, the drone covered a
longer distance (6.6 m) during the climb phase than the morphing-
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tective net for recovery. b The planned optimal trajectory, the trajectories from the
12 LisEagle flights, and the 537 Harris' Hawks flights*. We align the optimal
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sponding point of the optimized drone trajectory. Beyond the impact point, each of
the trajectories is shown in a faded color. ¢ Energy ratios at impact of the simulated
drone, the real drone, and Harris' hawks. Source data are provided as a Source
Data file.

wing drone (4.1 m) (Fig. 3¢, b). Notably, despite this increased distance,
the fixed-wing model dissipated only 54% of its kinetic energy com-
pared to 66% of energy dissipated by the morphing-wing drone. As a
result, the kinetic energy 0.5 m before the target point was higher in
the fixed-wing model and lead to an increase from 18% to 33% com-
pared to the configuration where area morphing is allowed. To dissect
the impact of the tail and wing adjustments separately, we analyzed
how the required climbing distance and residual kinetic energy varied
when their motion range was incrementally restricted (Fig. 3c). Both
limitations raised the distance needed and the kinetic energy upon
impact, but wing sweep lead to a much more pronounced effect than
limitations in tail sweep.

Wing morphing sequence matches bird’s behavior

Next, we asked whether the wing and tail actuation strategies used in
the optimized drone trajectories correspond to those displayed by
birds of prey. Studies on the climb phase of perching maneuvers in
birds, notably in Steppe eagles' and white backed vultures®, revealed
transitions through three distinct configurations. Video footage of
Harris’ hawks in laboratory settings displayed a similar actuation
sequence®, Firstly, the bird glides with extended wings and a straight
tail. Secondly, it sweeps the wings forward and elevates its tail. Finally,
it flies at a high angle of attack with forward-swept wings and a
downward inclined, fully extended tail.

The actuation sequence of the drone (Fig. 3d) performing the
optimal trajectories described above displays a striking resemblance
to that observed in the three bird species (see Supplementary
Movie 4). The drone starts at the transition state with the wing
extended at its middle angle between tucked and fully extended and
the medium extended tail at a straight angle. It then sweeps the wings
forward and increases the tail incidence angle (although, differently
from birds, it reduces the tail size, which in our simulation leads to a
higher pitch-up moment of 0.07 Nm, than an extended tail -0.55 Nm at
this stage of the maneuver), producing a high pitch acceleration that
increases the drone’s angle of attack. Finally, when approaching the
perching point, the drone keeps the wings swept forward and extends
and lowers the tail similarly to birds. This final configuration results in
high lift and drag forces that act similar to a cross-parachute to
decelerate the drone”.

Validation on the physical drone

Lastly, we validated the optimal control strategy of the climb phase on
the real LisEagle drone. For sake of experimental simplification, we
forego the use of a propeller as we focus exclusively on the unpowered
climb phase®. The experiments were conducted in aroom equipped with
motion-tracking cameras (Fig. 4a) guaranteeing millimeter-level accurate
state estimation (details of estimation and control integration in Sup-
plementary Fig. 3 and Supplementary Note 3). The drone was positioned
on an electronically-controlled launcher that accelerated the drone to a
speed of 11.6 + 0.3 ms™ into the transition state obtained from the opti-
mal trajectory (further details in “Methods”). A protective net was posi-
tioned at the perching distance to ensure the safe recovery of the drone.

Preliminary tests showed that time delays, minor model mis-
matches, and external disturbances can lead to deviations from the
drone trajectory that we precomputed in simulation, necessitating a
controller to guide the drone’s flight path and ensure adherence to the
trajectory. Smith Compensation® takes into account time delays and
the Nonlinear Model Predictive Control (NMPC) plans actuator com-
mands from the current state of the drone (position, velocity, orien-
tation, angular velocity, and estimated actuator positions) to follow
the pre-computed trajectory and correct deviations from the long-
itudinal direction. This approach enables us to account for actuator
limits and address the nonlinear dynamics encountered during the
climb phase (further elaborated in Methods). Discrepancies along the
lateral direction of motion are compensated with gain-scheduled
Proportional-Derivative control of asymmetric wing twist for roll and
of tail yaw angle for yaw compensation (see “Methods”).

Across twelve consecutive launches (Fig. 4b, Supplementary
Movie 5), the drone consistently replicated the climbing maneuver
observed in simulation experiments and matched the flight trajec-
tories of 537 flights of similarly sized Harris’ hawks that started at a
distance of 12 m from the perching target®.

The total distance covered during the climb phase of the LisEagle
can be measured by aligning the flown trajectories with the optimal
trajectory to obtain the distance to the impact point assumed at its
peak. While the Harris’ hawks and simulated drone cover a similar
distance (4.2 m and 4.1 m, respectively), the LisEagle covers a slightly
longer distance (4.6 m) and impacts at a slightly higher altitude (see
Discussion). Regarding the horizontal distance required, the
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Fig. 5 | Qualitative comparison of the perching maneuver of the drone, simu-
lation, and bird. a Perched flight trajectory of the drone. b Simulation of the
optimal trajectory highlighting the three configurations of the climb phase (also
shown with the same color scheme in Fig. 3d). On the top, the sequence is shown
observed from a virtual camera at an angle matching the camera’s angle used to
record the drone’s flight trajectory and at the bottom, from a virtual camera at an
angle matching (c) the Harris' hawk flight recording®. Each overlayed image in the
sequence was captured 0.15 s apart.

simulation and mean of the LisEagle flights are within the distribution
of Harris” hawk flights. In fact, they are less than one standard deviation
from the mean required horizontal distance of the bird’s flights (0.75
and -0.03 standard deviations away from the Harris’ hawk mean,
respectively, commonly referred to as z-score, see Supplementary
Note 4 and Supplementary Fig. 4 for details).

The simulation indicates that only 18.4% of the kinetic energy is
retained. The twelve LisEagle flights display a similar behavior with an
average of 12.5% + 0.7% of kinetic energy retained. Harris’ hawks’ flights
display 14.3% + 5.1% retention of kinetic energy that closely matches data
of simulated flights (z-score of —0.56) and drone flights (z-score of —0.33).

Discussion

Although the trajectory generation method used optimization criteria
derived from bird studies, it did not explicitly aim at imitating flight
paths or actuation sequences displayed by birds'>*?. The similarity of
the resulting drone trajectories and actuation strategies with those
displayed by birds during the agile climb phase, along with the similar
distribution of kinetic energy components, strongly corroborates the
hypothesis that birds of prey aim at reducing kinetic energy and dis-
tance flown at high angles of attack prior to impact with a perching
point. These results are further strengthened by the similarity in the
distance covered by birds and drones during the climb phase when

minimizing the distance flown at high angles of attack, but not when
minimizing the total flight time or required propulsion energy. In
addition, our results show that active morphing of wing and tail plays
an important role in the climb phase of the perching maneuver.
Although drones that could not modify the surface of the wing and tail
could produce a perching trajectory, they required a ~-50% longer
distance in the climb phase and impacted the perching point with
almost double the kinetic energy ratio. While we discovered that both
tail and wing sweep contribute to enabling this behavior in the drone,
performance degradation is more significantly impacted by limitations
in wing morphing. Finally, qualitative observations of the morphing
sequence of the real drone in the climb phase display a striking
resemblance to the actuation sequence and timing of the Harris’ hawks
filmed in laboratory experiments (Fig. 5).

Although the resulting trajectories and control strategies were vali-
dated also on a real drone with similar mass and size to the Harris” hawks,
those results revealed small trajectory discrepancies with the simulated
drone. While discrepancies due to electro-mechanical imperfections
could be characterized and compensated for, aerodynamic phenomena
that are exacerbated at high angular rates and accelerations, such as
dynamic stall®, pitch damping, and aeroelastic effects*, are difficult to
accurately model® and measure (see Methods). We speculate that these
remaining differences could be addressed by data-driven models. For
example, approaches such as Gaussian Processes™ applied to quadrotor
dynamics models have been shown to capture aerodynamic effects that
appear during agile maneuvers from sparse data and have also been
recently used for aerodynamic modeling of a morphing-wing drone that
can transition from hovering to forward flight”.

The kinetic energy atimpact on the physical drone closely mirrors
that of birds (12.5% LisEagle, 14.3% Harris’ hawk). We believe that the
slightly higher value observed in simulation experiments (18.4%) can
be accredited to the aforementioned modeling limitation and under-
score the need for validation on the physical drone.

Overall, the results described here suggest that avian-inspired
drones can bridge the gap between observation and systematic analysis
of animal behaviors, and serve as an additional tool to unravel the
complex interplay of biomechanics, aerodynamics, and control strate-
gies underpinning birds’ agile flight behaviors. Notably, this approach
can offer a pragmatic alternative to live bird experiments. It simplifies
experimental design by reducing the number of experiments that are
required by inter-individual differences of complex animals like
birds?**. Furthermore, robotic models enable experimental manipula-
tions that could be impossible or unethical in animal studies, such as the
locking of articulations that were used here to study the role of wing
morphing in the perching maneuver. The method described here could
also be applied to other types of perching maneuvers that birds and
drones may use, such as initiating the maneuver from different altitudes
relative to the perching point (for preliminary results, see Supplemen-
tary Fig. 5 and Supplementary Note 5).

We note, however, that while our drone possesses similar physical
characteristics in terms of wing area and weight, differences do exist.
The wing span of our drone is ~1.5 times larger and, for ethical con-
siderations, the drone is equipped with synthetic feathers instead of
bird feathers. These artificial feathers differ from natural feathers in
that they lack the interlocking mechanism, potentially resulting in a
decrease in lift efficiency'®. Furthermore, this study focused on the 2.5-
dimensional trajectory space of the perching maneuver and was
restricted to the optimal control space of wing sweep, tail sweep, and
tail incidence. Birds of prey also utilize their alula—a small feathered
structure on the leading edge of the wing - as a high-lift device to
enhance control in challenging flight regimes, such as post-stall and
deep-stall situations®. They employ tail rotation'>* and adjust wing
camber to control roll while maintaining lift'. While birds eventually
grasp onto the perching surface®, this mechanical action was not the
focus of our study. The method described here could, however, be
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extended to this final mechanical phase of a perch by means of a drone
with grasping appendages'® and employing other relevant morpho-
logical features in order to test other hypotheses and shed new light on
agile flight in 3-dimensional space.

Lastly, the method described could also be used to generate
control strategies for a new generation of adaptive flying machines
that display optimal agility and energetic efficiency for predefined
environmental conditions, such as flying over large distances in windy
conditions or maneuvering through confined spaces.

Methods

Dynamics model

We developed the drone’s aerodynamics model building on the theory
described in*, which uses non-dimensionalized aerodynamic coeffi-
cients that are based on stability and control derivatives. We expand on
this idea to capture the increased number of degrees of freedom and
obtain the derivatives at the expected operation range as described in’
with a measurement setup consisting of an open-jet wind tunnel
(WindShape, Switzerland) that provides a 1.92 m x1.68 m x 1.5 m test
volume and sub—1% turbulence intensity, with a wind speed set at
10 ms™ (Reynolds number: 146,396). The drone is mounted on an ATI
Nano25 force and torque balance, interfaced with a National Instru-
ments NI-DAQmx 9.5.1 logger recording at 1 kHz and averaging over
five samples. This setup is fixed to the end of a 0.7 m long cylindrical
steel tube (external diameter: 0.025m, internal diameter: 0.02 m),
which is connected to a Staubli TX-90 robotic arm that ensures central
positioning in front of the wind tunnel. For the static aerodynamic
coefficients, the robotic arm systematically varies the drone’s angle of
attack (in steps of 4 in the range of [-8°, 40] and steps of 10 in the
range of [40°, 907]) relative to the wind tunnel flow. We applied the
forced oscillation method, where controlled oscillations are applied to
study dynamic aerodynamic coefficients**** at -8, 07, 12’, and 24-.
Here, the range of —8° to 12 angles of attack is intended to capture the
angles of attack commonly adopted by birds and winged drones,
whereas 24 is chosen to capture the post-stall angle of attack adopted
for a short time during the perching maneuver (we observed little
change of dynamic coefficients for larger angles of attack of our
drone). The forced oscillation experiments are performed at rates of
30° s’ and 60 s* with oscillation amplitudes of +4°. While these rates
are lower than those typically encountered in flight, the assumption of
a linear proportional relationship between dynamic coefficients and
angular rates, enabled a close replication of the Harris hawk’s flight
performance during a perching maneuver. The flexibility of the drone’s
wings led to strong aeroelastic effects at angular rates higher than 60° s’
! leading to noisy dynamic coefficients data. Consequently, we extra-
polated our findings by assuming linear proportional relationships
between dynamic coefficients and angular rates for our experimental
conditions**. The robotic arm could maintain a maximum angle error
of less than 0.1, while the drone’s actuator positions are adjusted to
three discrete positions (min, central, and max position of the values
provided in Fig. 2) for tail and wing sweep and tail pitch for each static
and dynamic wind tunnel experiment. The tail deflects more upwards
than downwards. To accurately capture the aerodynamic forces and
moments when the tail is in a straight position, aligned with the body,
we take additional measurements under these conditions. Following
the procedure of ref. 17, we obtain non-dimensional coefficients for the
aerodynamic effects at each angle of attack, angular rate, and for all
actuator positions, allowing us to calculate the aerodynamic forces
and moment through linear interpolation. Considering the angle of
attack a = tan(w/u), the upward pitch rate g, and the normalized
actuator positions a = [ays, ais, aii, inl (aws indicates wing sweep, a
tail sweep, ay; tail incidence, and ay, thrust, each parameter normalized
between 0 and 1) we employ linear interpolation to obtain the non-
dimensional coefficients for the lift C;(a, g, a), drag Cp(a, g, a), and
pitch moment C,(a, g, a) (visualized in Supplementary Fig. 7). Given

the drone speed V = v u? +v2, the coefficients allow the calculation of
lift force f;, drag force fp, and pitch moment m,,.

1
fi= 3 P V2 SC(a,q,a) @
fD=§PV SCp(a,q,a) 2
1 2
my=>p V2ScC,y(a,q,a) 3

Since these forces can be rotated to be body frame and «a and V are
functions of u and w, we can summarize the aerodynamic forces in the
forward f, and downward f; direction with respect to the body and the
moment about the y-axis as m, as

[frorfzr )" = Foero(t, w, g, 2) )

We define the system dynamics as a 2-dimensional single-body system
where the external force and moment are defined by the aerodynamics
model and gravity. Additionally, we assume quasi-static inertia
properties. Specifically, we take the shift in center of mass and change
of moment of inertia caused by sweeping the wings into account. Data
for the shift in center of gravity and moment of inertia at minimum,
maximum, and central wing positions are extracted from a CAD model.
Linear interpolation of these values at each time step provides a quasi-
static approximation for our system dynamics model, reflecting their
change due to wing sweep.

Trajectory optimization method
As we focus on longitudinal motion of the drone, we define the tra-
jectory state X and trajectory input Uy;

xtraj = [X, zuw, 6' q]T (5)
utraj =a (6)

where x, z are the forward and downward position in the world frame,
u, w forward and downward velocity in the body frame, 6 the upward
pitch angle, and g is the upward pitch rate, following conventions in
fixed-wing literature*.

The system is discretized at times ¢, = At k, such that the drone
states Xrqj« are defined at nodes k € [0, N] and the inputs U« at
nodes k € [0, N - 1], with N=100. We define the trajectory optimization
problem using multiple shooting, therefore the decision variables X
€ONtain Xraj 4 and Uy 4 Of the complete trajectory. Furthermore, X also
contains At to allow variable time discretization, since the duration of
the trajectory is not a priori fixed.

We formulate the trajectory optimization problem based on* to
find the trajectory X' minimizing the cost function L(X) for X € R",
subject to equality constraints g(X) and inequality constraints h(X) as

X* = argmin L(X) 7
X

subject to g(X)=0&h(X)<0 8)
The equality constraints g(X) contain the system dynamics, initial
conditions, and final constraints of the system. We enforce the system

dynamics through constraints

xtraj,k+1 = xtraj,k +AL- fRK4(xtraj,k'utraj,k) (9)
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where frea(Xirajr Uiraji) is the fourth-order Runge-Kutta (RK4)
integration method of the nonlinear system dynamics. The initial state
is defined by a horizontally aligned body with initial forward velocity
Xiraj0 = [d,0,u,,0,0,0]", where d is the horizontal distance to the target
and the initial forward velocity uo, while the initial control input is
defined by the central position of the actuators
Urqj0=1[0.5, 0.5, 0.5, 0.5]". The final state is only constrained by the
target position such that the drone trajectory passes through the
target point [0, O]".

The inequality constraints h(X) contain four parts: the actuator
limitations, a positivity constraint on time, and the maximal vertical
displacement. The actuator limitations constrain the range of motion,
actuator velocity, and acceleration according to measurements we
conducted in a motion-tracking system while sending step commands
to the actuators. The time positivity constraint enforces At to be
positive. Finally, we limit the vertical displacement to maximally 1 m
downward from its starting point, similar to observations in the study
on Harris’ hawks and described in Results.

In the study on Harris’ hawks, the final speed is enforced to be
equal to that observed in birds in order to define the kinetic energy on
impact. However, as the final kinetic energy of the drone is unknown a
priori, we include a cost on the final kinetic energy Ly alongside the
objective described in the study, namely the distance traveled at a high
angle of attack [a_k, in the cost function L(X) as a weighted sum as

N

LOO=we Ley+we Y Loy
k=1

10)

We first set wr and then increased w, by a factor of ten up until we
observed that the drone did not reach the stall angle anymore,
resulting in wg = 0.0063 and w, = 0.01. We implement the trajectory
optimization using CasADi*® with the Ipopt solver®’, which is a non-
linear solver that is widely employed for trajectory optimization. As
Ipopt requires L(X) to be twice continuously differentiable we enforce
a smooth cost function, where

- 1 o —a 1
L=V, At (Etanh (%) + 7) (11)

2

1
Ley= 5m V2 12)

where V denotes the speed and f_a’k is a differentiable approximation
of a step function with value VAt if a; > as.;. We choose €=2" and
define the angle of attack at step k as a; = wy/uy and the stall angle of
attack ag,=16°, which we obtain from the drop-off in the lift curve
with actuators at the center position®’.

The implementation in CasADi allows us to compute a trajectory
of Fig. 3b within 6.65 s + 0.40 s on an Apple M2 processor, which is an
eight-core CPU clocked at 2.42-3.48 GHz.

Trajectory tracking of the physical drone

Agile trajectory tracking control of an avian-inspired drone poses three
main challenges. Firstly, actuator limitations play an important role
since the system dynamics are fast relative to the actuation dynamics,
i.e., the system has a rapid transient response, requiring them along-
side delays to be considered in the control system. Secondly, while a
large amount of control systems assume linear system dynamics, agile
flight requires high pitch rates and flight at high angles of attack
causing highly nonlinear aerodynamic effects*’. Lastly, the actuation is
coupled, for example, the effect of tail incidence on the drone’s pitch
rate also depends on the tail sweep. We tackle these challenges with a
model-aware control approach using Smith Compensation (SC) and
NMPC, allowing us to compensate delays (with SC) and consider

actuation limits while regulating highly nonlinear system dynamics
(with NMPC).

Modeling the actuators by limiting their acceleration, velocity,
and position was sufficient in the trajectory optimization. However, on
the real drone, we need to account for the discrepancy between the
desired actuator position that is sent to the servo and the true actuator
position. As a result, a more detailed actuator model is needed, which
we design as a PD-controlled second-order system with limited accel-
eration and velocity (further details in Supplementary Note 6). This
necessitate incorporation of a and a to the system state Xy, allowing
us to define the control inputs un,c as the desired actuator positions a,
such that

Xmpe =%, z,u,w,0,9,a", ul 13)

Uppe = a (14)

We used the recorded data from actuator step functions to determine
the model parameters. To address the delay compensation, we mea-
sure the compound transmission and actuation delay and add the
NMPC computation delay, resulting in a total delay Atgeay of 0.09 s. To
compensate for this delay, we rely on Smith Compensation, i.e.,
starting from the currently measured state we simulate the system
forward in time using the delayed control inputs (details in Supple-
mentary Note 7). This simulation is carried out for a duration of Atgelay,
resulting in a prediction of the system state Xmpc pred at the time when
the control inputs will be affecting the system.

We reduce delays by minimizing the computation time of the
NMPC by formulating the trajectory tracking problem as a Sequential
Quadratic Program (SQP) and utilizing acados, a high-performance
embedded optimal control problem solver*. We define the trajectory
tracking SQP for the avian-inspired drone as

Y= arg‘;nin meC(Y) (15)

subject t0 g, (Y)=0&hy, (Y)<0 16)
Where Y contains the system state Xmpc over the horizon of
M =20 steps.

The equality constraints defined by gmpc(Y) enforce the system
dynamics described above and set the initial condition, such that
X0 =Xmpcpred- The inequality constraints hmp(Y) contain only the
previously mentioned actuator limitations. The cost is defined as the
deviation from the precomputed trajectory X', which we obtained by
first finding the point closest t0 Xmpcpred, from where we sample M
points along the trajectory at 30 Hz. We then define the trajectory
following cost as

M
JON = 11X — Xergjullg 17)
k=1

where Q is the state cost weight matrix Q = diag(1000, 1000,

10, 10, 10, 1) x 10° that weighs the importance of position x, y, velocity
u, w, pitch 6, and pitch rate g, obtained through tuning.

Lateral stabilization of the physical drone

The physical drone can display small lateral trajectory deviations due
to lateral asymmetries of the wing and tail hardware. To ensure lateral
stabilization of the physical drone, we employ gain scheduled
Proportional-Derivative (PD) controllers to stabilize roll and yaw with
asymmetric wing twisting and tail yaw deflection respectively. Since
aerodynamic moments scale = 12, we schedule the PD gains for both
controllers with 1/12 if V>0.5ms™ and set them to their central
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position otherwise. Using the Ziegler-Nichols method*’ to tune the
controller, the resulting gains were Kpon=240, Kqron=30,
Kp,yaw =219, K4 ron = 38, assuming normalized actuator output between
[0, 1] for actuation ranges shown in Results.

Drone launcher

To ensure comparable initial speed, position, and attitude over mul-
tiple trials before the climb phase, the drone is deployed by a custom-
built launcher (design inspired from ref. 40, details in Supplementary
Fig. 6, Supplementary Note 8). Over a 1.8 m distance, the launcher
propels the drone into horizontal flight. With a constant acceleration,
the launcher speeds the drone up at 37.4 ms, equating to 3.8 g forces,
to a final speed of 1.6+ 0.3 ms™. Upon reaching the end of the
launcher, the drone is passively released and flies in a horizontal flight
condition with an upward pitch angle of 2.9+ 0.4".

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The experimental raw data generated in this study have been depos-
ited on Zenodo under accession code 10283445 and is also available
in the Supplementary Data 1. Source data are provided with this paper.

Code availability

The code that supports the findings of this study and allows the
creation of the figures from the raw data can be obtained on Zenodo
under accession code 10283445 and is also available in the Supple-
mentary Data 1.
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