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Ozone trends and their sensitivity in global
megacities under the warming climate

Jairo Vazquez Santiago 1 , Hiroo Hata 1, Edgar J. Martinez-Noriega2 &
Kazuya Inoue 1

Tropospheric ozone formation depends on the emissions of volatile organic
compounds (VOC) and nitrogen oxides (NOx). In megacities, abundant VOC
andNOx sources cause relentlessly highozone episodes, affecting a large share
of the global population. This study uses data from the Ozone Monitoring
Instrument for formaldehyde (HCHO) and nitrogen dioxide (NO2) as proxy
data for VOC and NOx emissions, respectively, with their ratio serving as an
indicator of ozone sensitivity. Ground-level ozone (O3) reanalysis from the
Copernicus Atmosphere Monitoring is used to assess the O3 trends. We eval-
uate changes from 2005 to 2019 and their relationship with the warming
environment in 41 megacities worldwide, applying seasonal Mann-Kendall,
trend decomposition methods, and Pearson correlation analysis. We reveal
significant increases in global HCHO (0.1 to 0.31 × 1015 mol cm−2 year−1) and
regionally varying NO2 (−0.22 to 0.07 × 1015 mol cm−2 year−1). O3 trends range
from −0.31 to 0.70 ppb year−1, highlighting the relevance of precursor abun-
dance on O3 levels. The strong correlation between precursor emissions and
increasing temperature suggests thatO3will continue to rise as climate change
persists.

Urban agglomerations have increased significantly over the last two
decades. In 2016, 54% of the global population lived in urban areas1,
and by 2022, 10% of the urban population was concentrated in 44
megacities2. Projections indicate that the number of urban residents
will continue to increase in the coming years2. One undesirable effect
of urban growth is the deterioration of air quality. Megacities are often
characterisedbyhigh levels of air pollution and are especially critical in
developing economies3. Simultaneously, the rising urban population
puts more people at risk of exposure to deteriorating air quality,
increasing morbidity and mortality attributable to ambient air
pollution4,5.

Ground-level ozone (O3) is responsible for increased premature
deaths and hospital admissions owing to cardiovascular and respira-
tory diseases6. In 2019, chronic O3 exposure led to 147,100 deaths in
urban areas worldwide, with a population exceeding 50,0007. The
adverse effects of O3 on crops, ecosystems, and materials have been

well-documented8–10. O3 also poses a threat to biodiversity11,12 and acts
as a greenhousegas, contributing to climate change13. Although efforts
to improve air quality in cities of developed economies have reduced
the concentration of primary pollutants, high concentrations of sec-
ondary air pollutants, such as O3, remain concerning. Between 2000
and 2019, summertime O3 daily maximum 8-hour values (MDA8)
increased in 74%of urban areasworldwide. In cities under VOC-limited
conditions, mean O3 concentrations also increased owing to reduced
nitrogen oxides (NOx) emissions, resulting in less titration of O3

by NO14. In remote areas, O3 levels rose owing to increased NOx

emissions and transport of O3 and its precursor from urban areas15–17.
Furthermore, nocturnal O3 pollution, which is historically considered
to be low and unthreatening, is of rising concern in several regions,
such as the United States and China, owing to reduced NOx emissions
without similar reductions in the volatile organic compound (VOC)
emissions18.
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Ozone in the troposphere is formedby a series of reactions driven
by the emission of NOx and VOC induced by solar radiation19. Owing to
its secondary origins, monitoring and controlling the emissions of the
main precursors, VOC and NOx, is crucial. The amount of O3 formed
depends on the relative ratio of the precursors. When NOx emissions
are abundant, VOC are the limiting species for O3 formation (VOC-
limited regime).Meanwhile, NOx emissions governO3 formation (NOx-
limited regime) at low NOx concentrations20,21. However, the O3 pro-
duction process is influenced by several other factors, such as the
competition between VOCs and NOx through HOx chemistry, resulting
in a nonlinear relationship between O3 formation and precursor
emissions.

Formaldehyde (HCHO) is a secondary product of VOC oxidation,
and nitrogen dioxide (NO2) is closely related to NOx owing to the rapid
oxidation of NO to NO2

22. Therefore, HCHO and NO2 have been widely
used as proxies for VOC and NOx emissions, respectively, and the
HCHO toNO2 ratio (FNR) has beenused as an indicatorofO3 formation
sensitivity23. Different FNR threshold values have been proposed to
establish sensitivity regimes, and themethods presented by Duncan et
al.24 are among themost commonly used; O3 formation is VOC-limited
at FNR < 1, transitional at 1 < FNR <2, and NOx-limited at FNR > 2.
However, the threshold values for regime classification are spatially
and temporally dependent25,26. Thus, other studies have proposed
different threshold values for the transitional regime ranging from
1.5–2.3 to 3–427,28.

With the development of European Global Ozone Monitoring
(GOME-1) in 1995, remote sensing began to provide global coverage of
HCHO and NO2 column densities in the atmosphere29. In addition, the
Ozone Monitoring Instrument (OMI), launched in 2004, was an
improvement because of its finer resolution and daily global
coverage30. Since then, several researchers have assessedO3 sensitivity
using the HCHO and NO2 column densities from the OMI24,25,31–34,
revealing considerable regional differences and necessitating com-
prehensive analyses to better assess global trends. Nonetheless, most
studies have focused on regions in northern latitudes; therefore, stu-
dies ofmegacities in the tropics and the global south are relatively few,
highlighting the need for an extensive analysis to address this dis-
parity, more sowhen the projections indicate that by 2030,megacities
will be concentrated in the less developed regions or the global south1.

This study uses 15 years of daily OMI observations to analyse the
HCHO, NO2, and FNR inmajor urban agglomerations globally and four
remote areas with fewer anthropogenic emissions. Monthly O3 rea-
nalysis data from the Copernicus Atmosphere Monitoring Service
(CAMS) is used to evaluate O3 trend changes during the same period.
Considering that O3 represents a significant global concern16,35,
understanding its long-term changes and those from its precursor
emissions is essential for assessing the burden of emission-driven O3

on the increased global budget. Correlations amongprecursor column
densities, temperature, and short-wave radiation (SWR) evaluate the
influenceof climate change on these trends. Therefore, this study aims
to provide a synoptic evaluation by performing a robust analysis that
integrates several tools for trend estimation. The findings inform the
observed changes in areas with the most significant sources of pre-
cursors andhighest levels ofO3 pollution globally, whichhave yet to be
achieved, and serve as support for establishingO3mitigation strategies
on a global scale.

Results and discussion
Global overview of HCHO, NO2, FNR, and O3

Figure 1 shows the global distributions of HCHO, NO2, and FNR in
2005, 2012, and 2019. Changes in the spatial distribution and magni-
tude of the emissions were evident. The HCHO column densities
(Fig. 1a, d, g) showed an apparent increase in the tropics. As biogenic
emissions are the primary VOC source globally22, densely forested
regions, such as the Amazon and Congo rainforests, have the highest

upturns in HCHO. Furthermore, an expansion of high HCHO emission
areas in the subtropical and temperate zones was observed, particu-
larly in the northern U.S., Canada, northern Europe, and Russia.

In contrast, the spatial distribution of NO2 showed less variability,
but significant differences were observed in its magnitude (Fig. 1b, e,
h). As shown in Fig. 1, three hotspots were identified: North America,
Europe, and East Asia. Moreover, changes in the trends were evident
among these regions. North America and Europe exhibited remarkable
reductions during the comparisonperiod. However, the regions inEast
Asia did not show significant changes, and increased levels were
observed in the Indian subcontinent. The NO2 emissions in South
America andAfrica also increased. The FNR alsohighlights the location
of polluted areas (Fig. 1c, f, i). Low-FNR regions translate into high NO2

emissions, whereas high-FNR regions translate into lower NO2 emis-
sions. TheU.S. and Europe showed a significant reduction in areas with
low FNR owing to significant reductions in NOx emissions. In contrast,
the East Asian region still sustains considerable areas with low FNR.
The exploratory spatial data analysis (ESDA) showed a strong positive
spatial correlation with both HCHO and NO2 (Supplementary Fig. 1),
indicating that regions with similar emissions were spatially clustered,
with some differences in local distributions.

The O3 levels between 2005 and 2019 showed a significant global
increase (Fig. 2). The yearly average anomaly for the 50th percentile
revealed that concentrations were higher in 2019 than the long-term
average (Fig. 2c), with certain areas reporting an increase of up to 5
ppb. Europe, the Middle East, East Asia, and Southeast Asia are among
the regions with the most substantial O3 differences, which aligns with
these regions having the highest emissions of precursors.

Trend analysis in global megacities and four remote areas
Figure 3 and Supplementary Table 1 show the locations and coordi-
nates of the analysed area for each of the 45 sites. The results of the
Mann–Kendall test for trend detection and Sen’s slope test for the
magnitude of change between 2005−2019 are shown in Table 1 for
HCHO, NO2, and O3. The data were grouped according to the geo-
graphical location in the megacities, and the four remote areas were
grouped together.

The HCHO column densities increased significantly in all 45 ana-
lysed areas (p <0.05); the deseasonalised trends are shown in Sup-
plementary Fig. 2. Sen’s slope was greater in megacities in South
America (Lima, São Paulo, and Rio de Janeiro) and Asia (Chengdu,
Tehran, and Xi’an). Dhaka, Bengaluru, Ho Chi Minh, and Jakarta were
also among the regions with prominent increases. Most of these
megacities are located in the tropics. The Amazon and Congo rain-
forests also exhibited significant surges. Megacities located in tem-
perate zones, such as New York, London, Moscow, and Tokyo, also
showed increased HCHO levels; however, the magnitude of these
changes was lower than that in other regions. None of the areas
exhibited a decreasing trend.

Based on the NO2 column densities, the increasing, decreasing,
and no-trend regions were identified. These differences indicate that
megacities in developed economies have significantly reduced NO2

emissions. The most prominent decreases were observed in Los
Angeles, Osaka, Tokyo, and London, followed by New York, Moscow,
and Paris, as observed in Table 1. In contrast, megacities in developing
economies were among the regions with the most significant upturns,
namely, Dhaka, Lahore, Tehran, and Kolkata. Remarkably, all mega-
cities with the highest increases were in Asia.

Most regions in China did not display a significant trend, except
for the Pearl River Delta and Zhengzhou, which showed decreasing
values, and Xi’an, which showed a significant increase. Latin American
megacities exhibited mixed trends. Mexico City, São Paulo, Rio de
Janeiro, and Buenos Aires decreased their NO2 emissions, but it
increased in Lima and a non-significant trend was observed in Bogotá.
The remote areas showed increasing trends in all cases, with the
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Amazon and Congo rainforests having the steepest slopes compared
with the desert areas of the Sahara andGreat Victoria Deserts. The NO2

deseasonalised trend plots for each site are shown in Supplemen-
tary Fig. 3.

Descriptive statistics for the FNR from 2005 to 2019 for the 41
megacities are presented in Fig. 4. A clear distinction was observed
between megacities in the most industrialised regions, which had the
lowest FNRs, and those in developing economies with higher FNRs.
Minima (towards VOC-limited) were observed in the U.S., European,
and East Asian megacities. Intermediate levels (transitional/NOx-lim-
ited) were observed in megacities in Latin American and Western and
South Asia. The highest FNR values (strongly NOx-limited) were
observed in African and Southeast Asian megacities. The variability
was alsohighest in these regions, possibly becauseof the higherHCHO
observed.

Nonetheless, the Mann-Kendall analysis of FNR (Supplementary
Table 2) indicates that ozone sensitive trends are shifting towards
transitional/NOx-limited conditions in most of the compared sites,
primarily owing to the generalised increase in HCHO trends. The
greatest magnitude changes were observed in megacities in the
tropics and the global south, such as Jakarta and Sao Paulo, owing
to their significant elevations in HCHO and decreasing trends in NO2.
Megacities in developed economies are also moving towards higher
FNR values but at a slower pace. Dhaka and Lagos were the only
megacities with significant reductions in their FNR, coinciding with
being the megacities with the most significant increases in NO2.

Supplementary Fig. 4 shows the deseasonalised trends for FNR in all
the analysed sites.

Consistent with the precursor emission trends, theMann–Kendall
test results for O3 in Table 1 revealed increasing O3 in 35 of the
45 studied areas, although the trends were significant in only 25 sites.
Interestingly,O3 inmostmegacities inChinadecreased throughout the
analysis period. However, the O3 seasonal trend decomposition ana-
lysis in Supplementary Fig. 5 displays two periods at several sites:
2005–2011 and 2012–2019. Supplementary Table 3 presents the trend
and magnitude changes (ppb year−1) for 2005–2011 and 2012–2019.

From 2005 to 2011, O3 remained relatively stable in several
megacities, such as LosAngeles, London, Paris,MexicoCity, and Seoul,
but decreased in most megacities in China. However, from 2012 to
2019, a significant increase was observed at 29 of the analysed sites,
with the greatest changes observed in megacities in Asia, such as
Tehran, Seoul, and Jakarta. Chinese megacities transitioned from
decreasing during 2005–2011 to a significant increasing trend from
2012, with Wuhan and the megacity clusters of the Pearl River Delta
and Yangtze River Delta showing the most marked changes. Similarly,
megacities in India showed decreasing values from 2005 to 2011 but
significant increasing trends from 2012 to 2019.

The four remote areas also showed increased O3 levels from 2012,
with the increase being significant only in the Amazon and Congo
rainforests, possibly owing to higher biogenic sources of ozone pre-
cursors than in the desert areas of the Sahara and the Great Victoria
Desert.

Fig. 1 | Global distribution of yearly averaged column densities from OMI for
formaldehyde (HCHO), nitrogen dioxide (NO2), and the HCHO/NO2 ratios
(FNR). The maps show data in 2005 (a–c), 2012 (d–f), and 2019 (g–i) at a spatial
resolution of 0.25° × 0.25°.Masks (white areas) for land–ocean, HCHOvalues below

7 × 1015 mol cm–2, NO2 values below 1 × 1015 mol cm–2, and FNR values above 6 were
applied to facilitate data visualisation. Units for HCHO and NO2 are ×1015 mol cm−2,
and FNR is dimensionless. Thin black lines represent country boundaries or
shorelines.
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Clustering analysis
The elbow criterion determined that four was themost adequate K for
the clustering analysis (Supplementary Fig. 6). When considering only
the HCHO and NO2 mean column densities, the algorithm clustered
the sites into four relationships (Supplementary Fig. 7 and Supple-
mentary Table 4): highest-NO2/mid-HCHO (Cluster 3), high-NO2/mid-
HCHO (Cluster 0), lower-NO2/low-HCHO (Cluster 2), and lower-NO2/
high-HCHO (Cluster 1). When the FNR was added as a third clustering
variable, the algorithm regrouped the sites based on FNR similarities.
Due to the inherent spatial and temporal variability of the FNR values
that define ozone sensitivity regimes, the analysis did not aim to

provide a single universal threshold for each site. However, by clus-
tering regions with similar HCHO, NO2, and FNR, it was possible to
identify areas with similar ozone sensitivities. In the clusters, sites
displaying the lowest FNR were considered to have VOC-limited con-
ditions, sites with intermediate FNR were considered to have transi-
tional/NOx-limited conditions, and sites with the highest FNR were
considered NOx-limited regions.

As shown in Fig. 5, in the upper extreme, the remote areas in the
Amazon and Congo rainforests were in Cluster 1, showing the highest
FNR (NOx-limited) owing to the highest HCHO and lowest NO2 emis-
sions. At the lower end, megacities with the lowest FNR (VOC-limited)
were grouped in Cluster 3 owing to their maximum NO2 emissions.
Cluster 0 included megacities with FNR values towards transitional/
NOx-limited regimes, while Cluster 2 grouped regions under strong
NOx-limited conditions, owing to a higher FNR.

Supplementary Table 5 shows the mean HCHO, NO2, and FNR at
each site used in the clustering analysis from 2005 to 2019. When
comparing the FNR at each site with the threshold values established
by Jin et al. (2020)27 for regime classification, where the transitional
regime was at FNR 3-4, it was observed that all sites in cluster 3 would
be under VOC-limited conditions, while the rest were under transi-
tional or NOx-limited conditions. Although this classification can
provide some insights into the regime of each site, it should be inter-
preted with caution because of the high uncertainty associated with it
due to the spatial and temporal dependency of the established
thresholds. In the case of Jin et al.27, the values were determined spe-
cifically for urban areas in the US.

Despite the clustered sites having similar FNRs, the NO2 emission
trends differed among the grouped megacities. The Seasonal trend
decomposition using LOESS (STL) analysis showed significant differ-
ences (Supplementary Fig. 3). NO2 trends in megacities towards VOC-
limited conditions (Cluster 3) can be divided into those with sharply
decreasing NO2 emissions, such as Tokyo (KTO), and those without a
clear trend, such as the Beijing–Tianjin (BJN) megacity cluster. Cluster
0, which grouped regions with FNRs towards transitional/NOx-limited
regimes, included megacities with decreasing trends, such as Los
Angeles (LAX), and those with increasing levels, such as Dhaka (DHK).
The Indianmegacities of Chennai (CHN), Kolkata (KOL), andBengaluru
(BAN), which were also assigned to this cluster, showed increased NO2

levels. Cluster 2 included megacities with the highest FNRs, indicating
strong NOx-limited conditions; all megacities in this group showed
increasing NO2 trends.

Through categorising the sites based on their ozone sensitivity,
it is possible to find areas that could share similar approaches in their
O3 regulations. The regions with the highest O3 levels fell within
the same group owing to their similar FNR, which indicates that
joint efforts to control air pollution among these regions could be
an effective approach to address the issue. Additionally, the clusters
highlighted that economic development influences O3 sensitivity;
O3 formation is more dependent on the VOC emissions in developed
and industrialised economies. Furthermore, their increasing FNR
indicates that O3 sensitivity would vary at different levels of develop-
ment. Thus, the air quality management and policy measures of
megacities in developed regions could serve as an example for those
in developing economies, which are in transitional/NOx-limited
regimes.

Meteorology trends and their correlation with precursor
emissions
Figure 6 shows the temperature and SWRanomalies in 2019, relative to
the average for 2005–2019. Temperatures increased between
0.5–1.5 °C in most of the planet, and according to NOAA and NASA,
2019 was the second warmest year since records, and the period
spanning 2005 to 2019 held nine of the tenwarmest years in records36,
evidencing the increasing global temperatures due to climate change.
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Fig. 2 | Global surface ozone anomalies of the 50th percentile relative to the
average for 2005-2019. The maps show anomalies in 2005 (a), 2012 (b), and
2019 (c). The yearly averages were derived from the monthly reanalysis datasets
provided by the Copernicus Atmosphere Monitoring Service, which were regrid-
ded to a spatial resolution of 0.25° × 0.25°. Units are ppb. The maps show regions
with positive andnegativeO3 anomalies relative to the long-termmean.White areas
represent water bodies, and thin black lines represent country boundaries or
shorelines.
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SWR showed the most significant increments in the tropics and
Southern Hemisphere.

Locally, in the 45 areas, the trend analysis in Table 2 shows that the
temperature increase was statistically significant in most regions, with
Istanbul, Tehran, and Paris exhibiting the most significant increase.
Supplementary Fig. 8 shows the deseasonalised trend of temperatures
at the 45 sites; an increasing trend was observed at most of the ana-
lysed sites. In contrast, the SWR displayed heterogeneous trends,
increasing in some megacities and decreasing in others, as shown in
Table 2. Bengaluru, Chennai, and Cairo were the megacities with the
most significant increases. Remarkably, the SWR in all megacities in
China showed significant declining trends, possibly associated with
high levels of particulate matter pollution37.

Theprecursor columndensities andmeteorological datasetswere
grouped according to the clustered sites, and a correlation analysis
was performed within the clusters using the yearly values of HCHO,
NO2, temperature, and SWR. Figure 7 shows the results of the analysis.

In all cases, HCHO showed a strong positive correlation with
temperature. The strong correlation observed in Cluster 1, which only
included the two remote sites in the Amazon and Congo rainforests,
indicates a significant influence of thewarming environment on higher
biogenicVOC (BVOC) emissions,which is oneof the controlling factors
of increased HCHO in the Amazon38. Furthermore, under dry condi-
tions, BVOC emissions from soils in the Amazon are known to be
comparable in magnitude to those of canopy emissions39, and these
BVOC emissions may become even more significant in future years
because of more frequent drought episodes.

In the most polluted regions (Clusters 0 and 3), temperature was
strongly correlatedwithHCHO. Anthropogenic emissions are themain

source of VOCs in polluted environments, and efforts have beenmade
to reduce theseemissions and thus improve air quality.However, these
efforts are being offset by increasing biogenic emissions and their
greater ozone formationpotential, as has beenprovenbyother studies
in megacities40,41. The strongest correlation between HCHO and tem-
perature was observed in Cluster 2, which mainly included tropical
megacities in less-developed economies in Africa and Southeast Asia.
This implies that tropical megacities with fewer regulations for
anthropogenic VOC emissions, which also correlate positively with
temperature42,43, will see the greatest increases due to the increasing
apportionment from biogenic sources caused by climate change. In all
cases, SWR showed an insignificant or low correlation with HCHO.

The correlation analysis between NO2 and temperature showed
evident differences between the clusters. The remote areas in Cluster
1 showed the strongest positive correlation, suggesting that increasing
global temperatures are causing an increase in NOx emissions in non-
polluted environments. Considering that biogenic emissions from
soils are the most significant source of NOx in remote areas44, the
increasing temperatures are causing increased NOx emissions
from biogenic sources, whose contribution to the global budget
has been demonstrated to be ~15%45. Cluster 2, which grouped cities in
less developed economies with lower NO2 emissions but increasing
trends, displayed a strong positive correlation, indicating that these
NOx increases are attributable to biogenic and anthropogenic
contributions.

Clusters 0 and 3, which comprise megacities in developed and
rapidly developing economies, showed a negative correlation between
NO2 and temperature. The strongest negative coefficientwas observed
for Cluster 3, which included megacities with the most prominent
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Fig. 3 | The forty-one megacities and four remote areas selected for the trend
analysis of ozone and its precursors. The red areas outline the extension of the
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longitude is provided in Supplementary Table 1. Thin black lines represent country
boundaries or shorelines. The abbreviations assigned to the sites are as follows: Los
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Sao Paulo (SAO), Rio de Janeiro (RIO), Buenos Aires (BAS), Paris (PAR), London
(LON), Moscow (MOS), Istanbul (IST), Cairo (CAI), Lagos (LAG), Kinshasa (KSA),

Luanda (LUA), Johannesburg (JHB), Tehran (THR), Lahore (LHR), Karachi (KAR),
Delhi (DLH), Mumbai (MUM), Bengaluru (BAN), Chennai (CHN), Kolkata (KOL),
Dhaka (DHK), Chengdu (CDU), Chongqing (CQG), Xi’an (XIA), Zhengzhou (ZZU),
Beijing–Tianjin (BJN), Wuhan (WHN), Yangtze River Delta (YRD), Pearl River Delta
(PRD), Bangkok (BKK), Ho Chi Minh City (HCM), Manila (MNL), Jakarta (JKT), Seoul
(SEO), Osaka (OSK), Tokyo (KTO). The abbreviations for the remote areas are
AmazonRainforest (AMZ), CongoRainforest (CNG), SaharaDesert (SAH), andGreat
Victoria Desert (GVD).

Article https://doi.org/10.1038/s41467-024-54490-w

Nature Communications |        (2024) 15:10236 5

www.nature.com/naturecommunications


Table 1 | Mann–Kendall and Sen’s slope test results for the formaldehyde (HCHO), nitrogen dioxide (NO2), and O3 in the 45
analysed regions for 2005–2019

Site HCHO NO2 O3

The Americas Tau Sen’s P Tau Sen’s P Tau Sen’s P

New York City 0.52 0.16 <0.05 −0.60 −0.15 <0.05 0.56 0.72 <0.05

Los Angeles 0.49 0.13 <0.05 −0.68 −0.10 <0.05 0.26 0.27 <0.05

Mexico City 0.16 0.08 <0.05 −0.49 −0.08 <0.05 0.24 0.17 <0.05

Bogotá 0.17 0.09 <0.05 0.05 0.00 >0.05 0.51 0.19 <0.05

Lima 0.43 0.24 <0.05 0.20 0.02 <0.05 0.02 0.00 >0.05

São Paulo 0.51 0.29 <0.05 0.04 −0.01 >0.05 0.27 0.21 <0.05

Rio de Janeiro 0.44 0.23 <0.05 −0.13 −0.02 >0.05 0.28 0.22 <0.05

Buenos Aires 0.47 0.21 <0.05 −0.35 −0.05 <0.05 0.28 0.18 <0.05

Europe

Paris 0.43 0.18 <0.05 −0.48 −0.12 <0.05 0.34 0.30 <0.05

London 0.43 0.16 <0.05 −0.57 −0.21 <0.05 0.47 0.53 <0.05

Moscow 0.39 0.13 <0.05 −0.38 −0.13 <0.05 0.15 0.10 <0.05

Istanbul 0.57 0.12 <0.05 0.29 0.01 <0.05 0.02 0.01 >0.05

Africa

Cairo 0.47 0.10 <0.05 0.08 0.01 >0.05 0.07 0.10 >0.05

Lagos 0.26 0.10 <0.05 0.42 0.02 <0.05 0.14 0.10 <0.05

Kinshasa 0.36 0.15 <0.05 0.13 0.00 <0.05 0.11 0.05 >0.05

Luanda 0.40 0.15 <0.05 0.21 0.01 <0.05 0.18 0.11 <0.05

Johannesburg 0.40 0.16 <0.05 −0.12 −0.03 <0.05 0.25 0.16 <0.05

Asia

Tehran 0.56 0.24 <0.05 0.21 0.04 <0.05 0.08 0.16 >0.05

Lahore 0.56 0.21 <0.05 0.20 0.05 <0.05 0.11 0.08 <0.05

Karachi 0.42 0.10 <0.05 0.07 0.01 >0.05 0.07 0.03 >0.05

Delhi 0.47 0.18 <0.05 -0.19 -0.05 >0.05 −0.02 −0.02 >0.05

Mumbai 0.43 0.11 <0.05 0.16 0.01 <0.05 0.00 0.00 >0.05

Bengaluru 0.47 0.18 <0.05 0.33 0.02 >0.05 0.18 0.11 <0.05

Chennai 0.48 0.14 <0.05 0.13 0.01 <0.05 0.12 0.12 <0.05

Kolkata 0.56 0.16 <0.05 0.34 0.03 <0.05 0.11 0.08 >0.05

Dhaka 0.51 0.18 <0.05 0.45 0.07 <0.05 0.13 0.10 <0.05

Chengdu 0.49 0.31 <0.05 0.07 0.01 >0.05 −0.25 −0.31 <0.05

Chongqing 0.45 0.22 <0.05 0.03 0.01 >0.05 −0.17 −0.15 <0.05

Xi’an 0.62 0.24 <0.05 0.20 0.04 <0.05 −0.17 −0.15 <0.05

Zhengzhou 0.54 0.20 <0.05 −0.23 −0.11 <0.05 −0.10 −0.14 >0.05

Beijing - Tianjin 0.69 0.20 <0.05 −0.07 −0.02 >0.05 −0.20 −0.22 <0.05

Wuhan 0.31 0.11 <0.05 0.04 0.01 >0.05 −0.20 −0.25 <0.05

Yangtze River Delta 0.47 0.12 <0.05 −0.02 0.00 >0.05 −0.17 −0.19 <0.05

Pearl River Delta 0.31 0.11 <0.05 −0.40 −0.08 <0.05 −0.17 −0.24 <0.05

Bangkok 0.35 0.13 <0.05 0.20 0.01 <0.05 0.14 0.09 <0.05

Ho Chi Minh City 0.46 0.18 <0.05 0.27 0.02 <0.05 0.24 0.16 <0.05

Manila 0.24 0.18 <0.05 −0.04 0.00 >0.05 0.26 0.22 <0.05

Jakarta 0.39 0.17 <0.05 −0.27 −0.05 <0.05 −0.11 −0.16 <0.05

Seoul 0.52 0.14 <0.05 −0.20 −0.06 <0.05 0.35 0.37 <0.05

Osaka 0.38 0.13 <0.05 −0.55 −0.22 <0.05 0.49 0.58 <0.05

Tokyo 0.47 0.12 <0.05 −0.57 −0.21 <0.05 0.62 0.72 <0.05

Remote Areas

Amazon Rainforest 0.57 0.16 <0.05 0.36 0.01 <0.05 0.21 0.06 <0.05

Congo Rainforest 0.64 0.17 <0.05 0.53 0.01 <0.05 0.10 0.04 >0.05

Sahara Desert 0.62 0.09 <0.05 0.46 0.01 <0.05 −0.06 −0.03 >0.05

Great Victoria Desert 0.59 0.15 <0.05 0.17 0.00 <0.05 0.15 0.09 <0.05

HCHO and NO2 units are ×1015 molecules cm−2. The units for O3 are ppb. Sen’s slopes represent the yearly changes.
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decreases in NO2. Anthropogenic activities are themain source of NOx

in these areas, so the strong negative correlations result from the
significant reductions in NO2 achieved by some of these megacities.
However, it is noteworthy that soil emissions are also relevant in

regions such as the North China Plain46, which encompasses mega-
cities with the highest current NO2 levels in our analysis. Cluster 0
displayed a moderate negative correlation between NO2 and tem-
perature, attributable to themixedNO2 trends in themegacities in this
cluster, including cities with significantly decreased NO2, such as Los
Angeles, and megacities with increasing levels, such as Dhaka.

Furthermore, in addition to influencing the precursor emissions,
the warming environment also influences the reaction rates of the
photochemical processes controlling O3 formation. Globally, rising
temperatures lead to increased BVOC emissions as well as higher O3

formation rates owing to increased recycling of NOx from isoprene
nitrates formed from BVOC oxidation, as demonstrated by Ito et al.
(2009)47. Coates et al. (2016)48 conducted a modelling study that
evaluated the effects of temperature on O3 under different NOx con-
ditions, finding that increased VOC oxidation reaction rates and
increased peroxy nitrate decomposition rates led to higher O3 pro-
duction as temperature increased. Similarly, Meng et al. (2023)49 ana-
lysed the O3 formation under extreme temperature events in urban
areas of China, combining observations with simulated data. Their
findings showed that radical cycling is more effective at high tem-
peratures. Therefore, the rate of HO2 +NO significantly increases with
temperature, leading toNO removalwithoutO3 consumption, which is
a major factor in causing a net O3 accumulation. Moreover, they
reported that O3 production duration is longer under extreme heat
temperatures than under cold weather.

Overall, the warming climate is causing increased emissions of
ozone precursors from biogenic sources while enhancing the photo-
chemical processes that result in O3 production. The above empha-
sises the need to consider the direct and indirect effects of increasing
temperatures in a continuously warming environment where extreme
temperature events are expected to rise.

Differences among regions
VOC and NOx emission sources in the Earth’s atmosphere differ sig-
nificantly. Globally, BVOC accounts for approximately 90% of the total
VOC50, and anthropogenic NOx contributes 77% to the global budget51.
High HCHO emissions indicate reactive VOC emissions owing to their
faster oxidation. Because isoprene (of biogenic origin) is the most
abundant reactive VOC globally, the highest differences in HCHO

Fig. 5 | Clustering analysis of the 45 analysed sites basedon their formaldehyde
(HCHO) andnitrogendioxide (NO2) columndensities fromOMI and theHCHO/
NO2 ratios (FNR). Units for HCHO and NO2 are ×1015 mol cm−2, and FNR is
dimensionless. Each point represents a site. Sites are grouped into distinct clusters
using the K-means algorithm. Colour coding highlights the different clusters, with
clusters indicating regions with similar ozone sensitivities due to similar FNR. The
sites assigned to each cluster are as follows: Cluster 0:Mexico City, Jakarta, Buenos
Aires, São Paulo, Los Angeles, Dhaka, Mumbai, Kolkata, Karachi, Bengaluru,
Chengdu, Istanbul, Chongqing, Rio de Janeiro, Chennai, and Lima. Cluster 1: Ama-
zon rainforest and Congo rainforest. Cluster 2: Lagos, Kinshasa, Bogotá, Sahara
Desert, Manila, Bangkok,HoChiMinh, Luanda, andGreat Victoria Desert. Cluster 3:
NewYorkCity, Pearl River Delta, Tokyo, Delhi, Johannesburg, Seoul, Cairo, Yangtze
River Delta, Beijing–Tianjin, Moscow, Osaka, Lahore, Tehran, Xi’an, Paris, Zhengz-
hou, London, and Wuhan.

Fig. 4 | Descriptive statistics of the formaldehyde to nitrogen dioxide ratios
(FNR) over 2005 to 2019 in the 41 analysed megacities. Box plots show the
median (horizontal line), 25th and 75th percentiles (boxes), and minimum and
maximum (whiskers). The abbreviations assigned to megacities are as follows: Los
Angeles (LAX),NewYorkCity (NYC),MexicoCity (MXC), Bogotá (BOG), Lima (LIM),
Sao Paulo (SAO), Rio de Janeiro (RIO), Buenos Aires (BAS), Paris (PAR), London
(LON), Moscow (MOS), Istanbul (IST), Cairo (CAI), Lagos (LAG), Kinshasa (KSA),

Luanda (LUA), Johannesburg (JHB), Tehran (THR), Lahore (LHR), Karachi (KAR),
Delhi (DLH), Mumbai (MUM), Bengaluru (BAN), Chennai (CHN), Kolkata (KOL),
Dhaka (DHK), Chengdu (CDU), Chongqing (CQG), Xi’an (XIA), Zhengzhou (ZZU),
Beijing–Tianjin (BJN), Wuhan (WHN), Yangtze River Delta (YRD), Pearl River Delta
(PRD), Bangkok (BKK), Ho Chi Minh City (HCM), Manila (MNL), Jakarta (JKT), Seoul
(SEO), Osaka (OSK), Tokyo (KTO).
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distribution were observed in remote forested areas of South America
and Africa. Conversely, the NO2 spatial distribution indicates locations
where anthropogenic activity is the primary source of air pollutants.
Consequently, NO2 hotspots are located in the most industrialised
regions or areas undergoing rapid economic growth.

Clusteredmegacities with the lowest FNRs (VOC-limited) not only
included regions with the most significant NO2 emissions globally but
also those with the sharpest NO2 decrease. However, NOx reduction is
ineffective in decreasing O3 under VOC-limited conditions, even more
so when VOC emissions are also increasing, as indicated by the
increasing HCHO trends. Additionally, the O3 issue might worsen in

megacities under VOC-limited conditions owing to future vehicle
electrification, which will cause a decrease in NOx but increased O3

levels caused by reduced titration52,53. Although significant reductions
in NOx emissions could lead to O3 reductions after a shift from VOC-
limited to NOx-limited conditions, time and investment in new tech-
nologies are required to reach the necessary NOx cuts54. Therefore,
focusing on VOC emission control is recommended to decrease the O3

levels inmegacitieswith lowFNRs. Owing to the increased relevanceof
BVOC emissions, choosing the right species for green urban infra-
structure should be one of the strategies for decreasing VOC in urban
areas under VOC-limited conditions55.
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Fig. 6 | Global anomalies in 2019 mean temperature (T) and short-wave radia-
tion (SWR) relative to the average for 2005-2019. The maps show anomalies for
T (a) and SWR (b). The anomalies were derived from the GLDAS reanalysis data at
0.25° × 0.25° resolution. Units are Celsius (°C) for T and watts per square metre

(Wm−2) for SWR. The maps depict regions with positive and negative anomalies
compared to the long-term average. The white areas represent water bodies, and
the thin black lines represent country boundaries or shorelines.

Article https://doi.org/10.1038/s41467-024-54490-w

Nature Communications |        (2024) 15:10236 8

www.nature.com/naturecommunications


The most significant increase in NO2 levels was observed in
Cluster 2, which grouped areas under transitional/NOx-limited regime.
In particular, Dhaka and Bengaluru showed the highest relative dif-
ferences between 2005 and 2019 (Supplementary Table 6). Similarly,
Cluster 3 of megacities with the highest FNRs (strong NOx-limited
conditions) displayed increasing NOx trends.

In alignment with the spatial distribution of precursor emissions,
themegacitieswith thehighestO3 levels are also thosewith thehighest
precursor emissions, indicating that emission-driven O3 constitutes
themost relevant source of O3 inmegacities globally and will continue
to do somainly because of increased VOC and reduced NOx emissions
in VOC-limited regions and increasing NOx emissions in regions under
transitional/NOx-limited conditions.

Drivers of the observed trends
The trends in precursor emissions can be attributed to different rea-
sons. Globally, the predominant source of NOx emissions is the use of
fossil fuels for energy generation, with power plants and vehicles being
the most significant sources. Furthermore, the contributions of motor
vehicles and power plants are greater in developed economies than in
developing economies51. Thus, megacities in developed and indus-
trialised economies have the highest global NOx emissions owing to
their higher energy demand56, causing them to be under VOC-limited
conditions.

NOx emissions follow a typical environmental Kuznets curve,
increasing during the first stage of development and decreasing after
reaching a certain point57. Megacities in developing economies have
shown increasingNO2 trends, likely due to their ongoingdevelopment,
which has not yet reached the turning point of decreasing51. Therefore,
their VOC-to-NOx emission ratios remain high. However, they are at
risk of moving towards VOC-limited conditions if the increasing NOx

emission trends continue and their ratio exceeds those of VOC emis-
sions as observed in Dhaka and Lagos in the FNR analysis.

Temperature is strongly correlated with HCHO emissions. All the
analysed sites showed increasing HCHO trends. The magnitude of the
change was higher in megacities in the tropics and comparable to that
in the Amazon and Congo rainforests. In tropical megacities, higher
VOC emissions result from both biogenic and anthropogenic sources,
partly due to the lack of regulations for the latter. In contrast, efforts
to reduce VOC emissions in developed economies are based
on anthropogenic sources. However, as global warming continues,
biogenic emissions will increase and become more relevant in the O3

formation cycle.
Although global O3 trends indicate a generalised increase, regio-

nal differences are apparent and are influenced by different factors.
The analysis of precursor emissions and their ratios helps explain these
differences. NO2 column densities in China increased from 2005 to
2012but have sincedecreased,whichhas also been confirmedbyother
studies58–60. In contrast, O3 decreased from 2005 to 2011 and increased
significantly from 2012 onwards. Nonetheless, the coarse resolution of
thedata used inour analysis limits theobservation of local variations in
Chinese megacity clusters. Li et al. (2022)60 reported a continuous
increase from 2006 to 2019 of the O3 50

th percentile in the Pearl River
Delta urban sites, however a significant decrease in regional sites was
observed. Due to the spatial resolution limitations, this study cannot
resolve these local variations.

The FNR in megacities in China is among the lowest in the ana-
lysed regions, and the increase in O3 as NOx decreases is evidence of
VOC-limited conditions. However, the FNR showed increasing trends
due to reducedNO2 and increasedHCHO,whichwill likely cause a shift
towards transitional/ NOx-limited conditions in the coming years.
Other studies have reported this change in the ozone sensitivity
regime in several regions of China25,61.

Table 2 | Mann–Kendall and Sen’s slope test results for tem-
perature (T) and short-wave radiation (SWR) in the 45 ana-
lysed regions

Site T SWR

The Americas Tau Sen’s P Tau Sen’s P

New York City 0.05 0.02 >0.05 −0.10 −0.30 >0.05

Los Angeles 0.21 0.10 <0.05 −0.10 −0.33 >0.05

Mexico City 0.48 0.10 <0.05 0.10 0.54 >0.05

Bogotá −0.01 0.00 >0.05 0.10 0.53 >0.05

Lima −0.05 −0.15 <0.05 0.07 0.30 >0.05

Sao Paulo 0.30 0.09 <0.05 0.04 0.28 >0.05

Rio de Janeiro 0.22 0.08 <0.05 0.00 −0.01 >0.05

Buenos Aires 0.20 0.07 <0.05 −0.16 −0.79 <0.05

Europe

Paris 0.19 0.20 <0.05 −0.09 −0.32 >0.05

London 0.10 0.05 <0.05 −0.18 −0.46 <0.05

Moscow 0.02 0.01 >0.05 −0.18 −0.32 <0.05

Istanbul 0.40 0.21 <0.05 0.04 0.07 >0.05

Africa

Cairo 0.34 0.13 <0.05 0.22 0.51 >0.05

Lagos 0.59 0.11 <0.05 −0.04 −0.10 >0.05

Kinshasa 0.40 0.10 <0.05 0.08 0.31 >0.05

Luanda 0.03 0.01 <0.05 −0.08 −0.37 >0.05

Johannesburg 0.41 0.17 <0.05 0.11 0.44 <0.05

Asia

Tehran 0.38 0.20 <0.05 0.08 0.22 >0.05

Lahore 0.30 0.13 <0.05 −0.06 −0.24 >0.05

Karachi 0.15 0.05 <0.05 −0.18 −0.52 <0.05

Delhi 0.29 0.13 <0.05 0.01 0.02 >0.05

Mumbai 0.34 0.09 <0.05 0.01 0.06 >0.05

Bengaluru 0.50 0.11 <0.05 0.35 1.57 <0.05

Chennai 0.25 0.05 <0.05 0.21 0.99 <0.05

Kolkata 0.39 0.13 <0.05 0.03 0.13 >0.05

Dhaka 0.43 0.13 <0.05 −0.03 −0.10 >0.05

Chengdu 0.22 0.11 <0.05 −0.24 −1.10 <0.05

Chongqing 0.07 0.03 <0.05 −0.31 −1.13 <0.05

Xi’an 0.18 0.08 <0.05 −0.27 −1.26 <0.05

Zhengzhou 0.21 0.11 <0.05 −0.23 −0.99 <0.05

Beijing–Tianijn 0.19 0.08 <0.05 −0.16 −0.52 <0.05

Wuhan 0.15 0.06 <0.05 −0.21 −0.95 <0.05

Yangtze
River Delta

0.18 0.07 <0.05 −0.07 −0.33 >0.05

Pearl River Delta 0.35 0.11 <0.05 −0.06 −0.03 >0.05

Bangkok 0.44 0.15 <0.05 0.07 0.36 >0.05

Ho Chi Minh City 0.41 0.11 <0.05 0.11 0.58 <0.05

Manila 0.62 0.16 <0.05 −0.03 −0.14 >0.05

Jakarta 0.63 0.17 <0.05 −0.22 −1.10 <0.05

Seoul 0.26 0.11 <0.05 −0.01 −0.04 >0.05

Osaka 0.33 0.12 <0.05 −0.04 −0.15 >0.05

Tokyo 0.48 0.18 <0.05 0.01 0.02 >0.05

Remote Areas

Amazon
Rainforest

0.48 0.09 <0.05 0.11 0.43 >0.05

Congo Rainforest 0.58 0.14 <0.05 0.18 0.70 <0.05

Sahara Desert 0.48 0.21 <0.05 0.17 0.35 <0.05

Great Victoria
Desert

0.27 0.11 <0.05 0.11 0.45 >0.05

The unit for temperature is degrees Celsius (°C), and the unit for SWR is watts per square metre
(Wm−2). The Sen’s slopes represent the yearly changes.
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In contrast, the high FNR (towards NOx-limited conditions)
observed in tropical megacities in Africa and Southeast Asia indicates
that the significant increase in O3 trends is caused by increased NOx

emissions. Megacities in the Indian region have been increasing their
NOx emissions and O3 levels significantly since 2012, indicating a NOx-
limited chemical regime from the later period.

In certain analysed megacities such as Los Angeles, Mexico City,
Paris, London, Seoul, and Osaka, non-significant changes were
observed during 2005–2011 inO3 levels. However, a steep increase has
been observed since 2015, which is possibly associated with higher
temperatures. According to NOAA, between 2015 and 2019, five of
the warmest years on record occurred36. This temperature increase
during the later years might exacerbate O3 levels due to increased
emissions of precursors of biogenic origin, particularly in areas where
the potential to reduce anthropogenic emissions is decreasing62.
Additionally, regional transport has influenced the increase in O3

levels, particularly in East and Southeast Asia63,64. Furthermore,
vertical transport has been reported to be a relevant factor for per-
sistently high O3 levels in this region, which is also influenced by
temperature65,66.

The increased O3 in remote and rural areas has been attributed to
increased NOx emissions driven by soil microbes67. The four remote
areas analysed showed a positive correlation between temperature
and NOx emissions. Hence, because O3 formation in remote areas is
strongly NOx-limited, O3 continues to increase with temperature.

OMI data are susceptible to bias caused by factors such as
instrument aging. In particular, HCHO retrieval has become noisier
over time. Although this issue has been addressed in the latest version
of the retrieval algorithm68, it might influence the results presented in

this study. Similarly, the reported bias in the CAMS EAC4 reanalysis
data69 could influence the O3 trend analysis of megacities in the
northern latitudes. Additionally, although the CAMS EAC4 reanalysis
dataset provided valuable insights into the regional ozone trends and
their precursors across the sites analysed, the inherent spatial resolu-
tion was insufficient to resolve the fine-scale spatial heterogeneity
observed in extensive urban areas fully. Therefore, caution is war-
ranted when using reanalysis data for site-specific interpretations.
Future studies should consider integrating higher-resolution datasets
to complement the regional insights provided by reanalysis.

Lastly, satellite and reanalysis datasets comprehensively view
atmospheric conditions over large areas. However, they may not fully
replicate the detailed variability captured by ground-based observa-
tions. Thus, improving the monitoring infrastructure in developing
regions is essential for obtaining a better-integrated analysis, which
would help validate the accuracy of satellite-based and reanalysis
datasets at global scales.

Implications
The analysis showed that O3 increased in global megacities from 2005
to 2019 owing to different trends in precursor emissions and the
warming environment. Megacities in most developed economies
remain in areas with saturated NOx emissions (towards VOC-limited
conditions). Therefore, the increasing VOC and decreasing NOx

stagnated or increased the O3 levels. In contrast, megacities experi-
encing rapid development, located mainly in the tropics, show the
most significant increase in NOx emissions. Owing to its transitional/
NOx-limited conditions, O3 will likely continue to rise in the
coming years.

Fig. 7 | Pearson correlation analysis among formaldehyde (HCHO), nitrogen
dioxide (NO2), temperature (T), and short-wave radiation (SWR) across the 45
analysed sites clustered into four groups. The colour intensity indicates the
strength and direction of the correlation. Darker colours represent stronger posi-
tive correlations, and lighter colours indicate negative correlations. Sites assigned
to each cluster are as follows: Cluster 0: Mexico City, Jakarta, Buenos Aires, São
Paulo, Los Angeles, Dhaka, Mumbai, Kolkata, Karachi, Bengaluru, Chengdu,

Istanbul, Chongqing, Rio de Janeiro, Chennai, and Lima. Cluster 1: Amazon rain-
forest and Congo rainforest. Cluster 2: Lagos, Kinshasa, Bogotá, Sahara Desert,
Manila, Bangkok, Ho Chi Minh, Luanda, and Great Victoria Desert. Cluster 3: New
York City, Pearl River Delta, Tokyo, Delhi, Johannesburg, Seoul, Cairo, Yangtze
River Delta, Beijing–Tianjin, Moscow, Osaka, Lahore, Tehran, Xi’an, Paris, Zhengz-
hou, London, and Wuhan.
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Increasing temperatures are associated with rising precursor
emissions in urban and remote environments. In addition to anthro-
pogenic sources of precursors contributing to O3 formation, biogenic
sources will continue to increase their apportionment to the emission-
driven O3 formation. Thus, effective regulation requires the con-
sideration of non-anthropogenic sources, which might be challenging
but will increase their relevance in a continuously warming
environment.

Urban populations are at higher risk of exposure to unhealthy O3

levels. Although less extensive urban areas are desired, projections
indicate that megacities will continue to grow, especially in fast-
developing economies in the tropics and the global south. Without
effectivemitigation efforts,O3will continue tobe a critical issue for the
public health of inhabitants in the largest urban agglomerations
globally, along with the adverse effects of increasing global
temperatures.

Given that O3 pollution in megacities has local and global con-
sequences, reducing it will positively impact the health of inhabitants
and support greenhouse gas reduction. The results of this analysis
support the selection of adequate strategies for reducing O3 based on
the long-term trends of its precursor, as inferred from satellite
observations.

Methods
Data products
The OMI onboard NASA’s Aura satellite measures backscattered sun-
light at UV-visible wavelengths (264–504 nm) with a 2600 km swath.
The column densities of trace gases, including HCHO and NO2, were
retrieved from the measured irradiances available at four processing
levels: Level 0 (L0), Level 1B (L1), Level 2 (L2), and Level 3 (L3). L0 is the
raw sensor count, L1 and L2 are time-referenced orbital swaths that
include ancillary information such as radiometric counts and geo-
metric calibration coefficients, and L3 products, originating from the
extensive screening of L2 data for quality assurance, are allocated in
time intervals (monthly or daily) over a latitude–longitude grid cov-
ering the entire Earth30,70.

HCHO L3 OMI OMHCHOd products71 were used for analysis. The
OMI OMHCHOd data produced by the Harvard and Smithsonian
Astrophysical Observatory68 provide global, daily averaged, and
quality-controlled total columns at a resolution of 0.1° × 0.1°. Toderive
the HCHO L3 datasets, L2 retrievals were screened to exclude pixels
with cloud fractions >30%, high solar zenith angles (>70°), and pixels
affected by OMI row anomalies. Validation of the OMI HCHO products
showed a strong spatial correlation with aircraft observations. How-
ever, a negative bias under high-HCHO conditions and a positive bias
under low-HCHO conditions have been reported72,73.

For the analysis of NO2, L3 OMNO2d74 was used. The OMNO2d
products generated using the v4.0OMINO2 algorithm

75 provided daily
averaged tropospheric columns at a resolution of 0.25°. Orbital swaths
in L2 were mapped onto a latitude–longitude grid to generate L3. The
screening criteria for generating OMNO2d products included pixels
with cloud fraction <30% and solar zenith angle <85° and excluded
pixels affected by row anomalies. Previous studies have shown good
agreement among OMI, ground-based, and aircraft observations, with
correlation factors of >0.776.

Filtering, infilling, and spatiotemporal averaging procedures were
applied to the daily HCHO and NO2 products to reduce the noise and
discontinuity. For HCHO, grids with column densities in the range of
−0.5 ×1016 mol cm–2 to 10 ×1016 mol cm–2 were used77. The weighted
average of the daily products was used to calculate the monthly mean
global values. The monthly datasets were filled through bilinear
interpolation using eight neighbouring cells. For NO2, following the
recommendations in the documentation of the L3 OMNO2d v4, all
daily values were included in the averaging procedure, regardless of

their sign75. NO2 daily retrievals were used to calculate the monthly
mean global values using the same method as with HCHO. Data were
processed using the nctoolkit Python package v0.978.

The generatedmonthly datasets were used to calculate the global
FNR. The HCHOproducts were re-gridded to 0.25° × 0.25° to equal the
resolution between the datasets. Considering that the FNR threshold
values for regime classification are spatially and temporally depen-
dent, this study focused on analysing the FNR trends instead of
establishing a regime classification. Therefore, the results and discus-
sion emphasise the moving FNR trend, either towards VOC-limited
conditions for megacities with the lowest FNRs, transitional/NOx-lim-
ited conditions for areas with intermediate FNRs, or a strong NOx-
limited regime for megacities with the highest FNRs. When mapping
the data, masks for land–ocean, HCHO values below 7 ×1015 mol cm–2,
NO2 values below 1 ×1015 mol cm–2, and FNR values above 6 were
applied to facilitate data visualisation and for driving attention to
polluted areas. Maps with non-masked values are shown in Supple-
mentary Fig. 9 for comparative purposes. All mapping was performed
using the Python module for the Generic Mapping Tools version 679.

TheCopernicus AtmosphereMonitoring Service (CAMS)provides
reanalysis data of atmospheric composition (AC) for different chemi-
cal species, including ozone80. The fourth-generation datasets (EAC4)
cover 2003 to 2023, providing information in a globally 3-dimensional
time-consistent grid with a horizontal spatial resolution of 0.75° at
different vertical levels and temporal resolutions. For this analysis,
globalmonthly averageddata at the ground level81 were retrieved from
2005 to 2019. A regridding process was applied to the datasets to
equal the grid size to that for HCHO and NO2 (0.25° × 0.25°) using
bilinear interpolation. The annual global averages were calculated
from themonthly datasets. The validation of EAC4 by comparisonwith
Global Atmosphere Watch data showed improvement compared with
the previous versions of the reanalysis, with reported overestimations
within 30%, particularly in northern latitudes69.

NASA’s Global Land Data Assimilation System (GLDAS) generates
optimal fields for land surface states and fluxes by integrating satellite
and ground-based observational data with numericalmodels82. GLDAS
is a global, high-resolution, offline terrestrial modelling system that
provides Level 4 global products of surface air temperature and SWR
fluxes, among other climate variables. Previous studies have shown
that GLDAS products for surface air temperature and SWR accurately
estimate variables and correctly reproduce spatial and temporal
changes83–85 Monthly spatially and temporally continuous products at
a spatial grid resolution of 0.25° from 2005 to 2019 were retrieved86

from the GES-DISC NASA website, and annual global averages were
calculated from the monthly datasets.

Study sites
The annual averages for HCHO, NO2, and FNR from 2005 to 2019
were mapped to qualitatively evaluate the global changes in the vari-
ables. Thereafter, 45 sites were selected for comparison. These chosen
sites comprised all urban areas globally, exceeding a population of
10 million (based on Demographia1) and four remote regions. The 41
megacities included three megacity clusters spread across all con-
tinents except Oceania. The four remote areas included the Amazon
and Congo rainforests, two of the most extensive tropical forests, and
two desertic regions in the Sahara and Great Victoria Deserts. The
extent of the analysed urban sites was determined based on built-up
surface data produced by the Global Human Settlement Layer project
of the European Commission’s Joint Research Centre87. The countries
of the 41 megacities were categorised as developed and developing
based on the World Bank income classification system88. In this study,
megacities in high-income countries are considered developed, and
those in upper-middle, middle-low, and low-income countries are
considered developing (Supplementary Table 7).
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Statistical methods
For quantitative analysis, yearly HCHO, NO2, and FNR values were used
to evaluate global distributions through exploratory spatial data
analysis using the Moran’s Index. At the local level, at the 45 selected
sites, trends were assessed using time-series data of monthly values
(50th percentile). Missing data in the time series were estimated using
linear interpolation. The statistics are described in the following
sections.

Moran’s index evaluates spatial autocorrelation in global HCHO
and NO2 yearly data, quantitatively measuring whether data are dis-
persed, clustered, or randomly distributed through a correlation ana-
lysis between a variable and its neighbouring values89. This is
calculated as follows:

I =
n

ΣiΣijwij

ΣiΣijwijðxi � �xÞðxj � �xÞ
Σiðxi � �xÞ ð1Þ

where n corresponds to the number of spatial units indexed by i j, x is
the variable of interest, �x is the global mean, and wij is the spatial
weight between i j: The contiguity criterion was applied to create the
weighting matrix used to calculate the spatial lags. Moran’s index can
take values between –1 and 1. A positive spatial autocorrelation indi-
cates that observations with similar values are clustered, whereas a
negative spatial autocorrelation indicates that dissimilar values are
close to each other. The local Moran’s index was used to identify local
clusters in the global data90. Local analysis indicates the extent of
significant spatial clustering by grouping the data according to their
similarity to their neighbours. Thus, high–high regions indicate high
values clustered around high values, and low–low areas indicate low
values neighbouring low values.

The Seasonal Mann–Kendall (SK) and Sens slope tests were
applied for trend detection using the monthly time series of all vari-
ables at the 45 sites. The SK test is a non-parametric statistic that
considers data seasonality byperforming aMann–Kendall test for each
evaluated season (monthly in this study) and then comparing the
results for the same seasons91. The relative magnitudes of each value
were comparedwith those of all subsequent values. TheMann–Kendall
test was performed as follows:

S=
Xn�1

i = 1

Xn

j = i + 1

sgnðyj � yiÞ ð2Þ

wheren is the sample size and y are the data points at times j and i. The
test was performed with an alpha of 0.05. Positive S values indicate an
increasing trend and low negative S indicates a decreasing trend.
Kendall’s tau, which measures the correlation between rankings, was
used as an indicator of slope monotony (positive when increasing and
negative when decreasing). The Theil-Sen estimator, calculated as the
median of all slopes between data pairs, was used to measure the
magnitude of change (the more significant the slope, the greater the
change)92.

Seasonal trend decompositions using LOESS (STL)was performed
to complement the SK test. This is a robust method for analysing time-
series data with recurring temporal patterns. Themethod proposed in
Cleveland et al. (1990)93 decomposes the time-series data yt into three
main components as follows:

yt = Tt +
XI

i= 1

SðiÞt +Rt ð3Þ

whereTt is the changing trend, S
ið Þ
t is the seasonal component, andRt is

the remaining component. This method uses multivariate locally
weighted regression (Loess)94 for smoothing operations. STL analysis
was performed using the monthly 50th percentile of all variables at the
45 sites using the Statsmodels module in Python95.

The 45 analysed sites were categorised using K-means clustering
analysis based on Lloyd’s algorithm96. The ideal number of clusters (K)
is determined as the inflection point in the plot of K values as a func-
tion of the square of the distance between the points (elbowmethod).
The algorithm minimises the group variance by assigning centroids
that group observations with the shortest distance to their mean by
optimising the following function57:

J =
Xk

j = 1

X

i2Cj

k xi � cjk2 ð4Þ

where J is the criterion function, xi is the observed variable, Cj is the
cluster centre, and k is the number of clusters97. The Scikit-learn
Python package98 was used for the analysis, with the K-means ++99

initialisation scheme assigning the centroids. The mean values from
2005 to 2019 for each variable were used for the analysis.

Pearson’s correlation analysis was used to measure the relation-
ship between precursor emissions and themeteorological variables of
temperature and SWR. The data were grouped according to the clus-
ters identified by the K-means analysis. The correlations between all
variables were evaluated using the annualmean from 2005 to 2019 for
the 45 selected sites.

Data availability
All datasets used in this analysis are publicly available. Formaldehyde71,
nitrogen dioxide74, temperature86, and short-wave radiation86 data are
provided by the Goddard Earth Sciences Data and Information Ser-
vices Center of NASA and are available for download at https://disc.
gsfc.nasa.gov/. The ground-level ozone reanalysis data81 are provided
by the Copernicus Atmosphere Monitoring Service and are available
for download at https://ads.atmosphere.copernicus.eu/datasets/cams-
global-reanalysis-eac4-monthly?tab=download.

Code availability
All analyses and visualisations in this study were conducted using
Python, with information on the used libraries detailed in themethods
and the codes for the data processing included as supplementary
materials.
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