
Article https://doi.org/10.1038/s41467-024-54721-0

Bidirectional relationship between
epigenetic age and stroke, dementia, and
late-life depression

Cyprien A. Rivier 1,2 , Natalia Szejko3,4, Daniela Renedo1,2,
Santiago Clocchiatti-Tuozzo1,2, Shufan Huo1,2, Adam de Havenon1,2,
Hongyu Zhao 5,6, Thomas M. Gill 7, Kevin N. Sheth 1,2,8 &
Guido J. Falcone 1,2

Chronological age is an imperfect estimate ofmolecular aging. Epigenetic age,
derived from DNAmethylation data, provides a more nuanced representation
of aging-related biological processes. We examine the bidirectional relation-
ship between epigenetic age and brain health events (stroke, dementia, late-
life depression) using data from 4,018 participants. Participants with a prior
brain health event are 4% epigenetically older (β = 0.04, SE = 0.01), indicating
these conditions are associated with accelerated aging beyond that captured
by chronological age. Additionally, a one standard deviation increase in epi-
genetic age is associated with 70% higher odds of experiencing a brain health
event in the next four years (OR = 1.70, 95% CI = 1.16–2.50), suggesting epige-
netic age acceleration is not just a consequence but also a predictor of poor
brain health. Mendelian Randomization analyses replicate these findings,
supporting their causal nature. Our results support using epigenetic age as a
biomarker to evaluate interventions aimed at preventing and promoting
recovery after brain health events.

Age remains the principal risk factor for neurodegenerative
conditions1 and the most substantial non-modifiable determinant for
cerebrovascular disease, posing significant challenges to under-
standing the complex interplay of biological and molecular aging
processes with disease risk2. Despite chronological age serving as a
conventional marker, recent advancements have introduced more
sophisticated measures of aging. Central to these innovations are
epigenetic clocks, an approach based on the analysis of DNA methy-
lation patterns at CpG sites3. This methylation process chemically
alters DNA molecules, thereby modulating gene expression without
changing the DNA sequence. In contrast to the DNA sequence, which
remains largely unchanged throughout life, DNA methylation exhibits

a degree of plasticity, allowing for changes in response to diverse
lifestyle and environmental exposures, including established cardio-
vascular risk factors4.

Epigenetic clocks, derived from weighted aggregation of methy-
lation across select CpG sites, echo the principles of polygenic risk
scores, offering a quantifiablemeasure of biological age5. The selection
of CpG sites and their integration into a singular biological age metric
is informed by robust statistical models trained on specific outcomes,
ranging from chronological age to more complex phenotypes asso-
ciated with health span and lifespan. This approach has led to the
development of various epigenetic clocks. Initially, these clocks were
calibrated on chronological age6–10, but subsequent iterations have
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focused on broader phenotypes, such as time-to-death11 or clinical
parameters linked to morbidity and mortality3. Notably, some epige-
netic clocks, such as the PhenoAge3, GrimAge11, and Zhang12 clocks
have demonstrated a superior ability to predict mortality and various
health outcomes, significantly surpassing the predictive power of
chronological age.

The pursuit of health and longevity is fundamentally tied to the
preservation of a healthy brain. In the context of an aging global
population, the imperative to sustain brain health becomes para-
mount, especially given the increased prevalence and incidence of
neurological disorders, now the leading cause of disability-adjusted
life years worldwide13. Among aging-related brain diseases, stroke,
dementia, and late-life depression have the highest prevalence and
incidence14, significantly impacting global brain health due to their
disruptive effects on normal brain function. These conditions are
closely related, sharing risk factors such as smoking, diet, physical
activity, and socio-economic health determinants15–19, which are also
known to influence epigenetic clocks4. Furthermore, stroke, dementia,
and late-life depression can act as risk factors for each other, creating a
complex web of interacting health problems20,21. Finally, the occur-
rence of late-life depression has been shown to be associated with
cerebral small vessel disease, aligning itwith stroke anddementia from
a pathophysiological perspective22,23. This intricate relationship has
given rise to the view that these conditions should not be treated as
isolated outcomes, but as interconnected components of a broader
aging process that requires a comprehensive approach24,25. To pro-
mote healthy aging, it is thus necessary to deepen our understanding
of the relationship between brain health and the systemic manifesta-
tions of the aging process.

Given the growing interest in understanding the aging process
beyond chronological age and growing importance of brain health as a
determinant of healthy aging, we test the hypothesis that brain health
events accelerate epigenetic aging, and conversely, that accelerated
epigenetic aging increases the risk of brain health events. Given that
the study of DNA methylation in brain health is still in its early stages,
research in thisfield is limited andoften involves small sample sizes. To
address this, we conduct our analyses using theHealth and Retirement
Study, a large longitudinal study of older adults that is representative
of the U.S. population (Fig. 1). The collection of DNA methylation data
in 2016 provides an opportunity to assess the impact of past brain
health events as well as the future risk of such events in relation to
epigenetic age. To evaluate the hypothesized bidirectional relation-
ships, we use both traditional epidemiological associations and a
genetic mendelian randomization (MR) framework. By leveraging
genetic variants as instrumental variables, MR enable us to support the
causality of these associations with a higher level of evidence com-
pared to observational analyses alone26,27.

Results
Cohort characteristics
TheHRSenrolled42,233participants between 1992 and2016.Of these,
4018 provided blood samples in 2016 and were included in our ana-
lyses (Fig. 2). Comparison of baseline characteristics between the
complete HRS cohort and the subset with DNA methylation (DNAm)
data can be found in Supplementary Table 1. The baseline character-
istics of the studied population are presented in Table 1. The average
age at DNAm data acquisition was 70 years, 58% were females, 17%
were Blacks, and 5% were Hispanics, 64% had prevalent hypertension,
29% prevalent diabetes, 27% prevalent heart condition, mean BMI was
29, 11% were current smokers and 44% past smokers.

First stage: history of brain health events and epigenetic age
Of the 4,018 participants included in this cross-sectional analysis at the
time of blood sample collection in 2016, 342 (8.5%) had a stroke, 298
(7.4%) had dementia, and 322 (8.0%) already had a late-life major

depressive episode prior to DNAm acquisition. This resulted in 806
(20.1%) participants with a history of at least one brain health event,
including 127 (3.2%) with two events and 13 (0.3%)with all three events.
Epigenetic age was evaluated using 13 different epigenetic clocks. To
avoid selecting specific clocks a priori, we used their average con-
tribution after normalization as ourmainmeasure of epigenetic age. In
multivariable linear regression adjusting for age, sex, race/ethnicity,
cardiovascular risk factors (BMI, smoking status, hypertension, dia-
betes) and comorbidities (heart attack, coronary artery disease,
angina, congestive heart failure), brain health events were associated
with a 4% increase (beta = 0.04, SD = 0.01, p = 0.002) in mean epige-
netic age (Fig. 3 and Table 2). This association was strengthened when
only adjusting for age, sex and race/ethnicity, with an8% increase (beta
= 0.08, SD =0.01, p <0.001) in mean epigenetic age. When focusing
solely on the 4 more recent second-generation epigenetic clocks,
which were constructed using both chronological age and health-
related outcomes, we found that brain health events were associated
with a 9% increase in mean epigenetic age (beta = 0.09, SD = 0.02,
p <0.001) after adjusting for all covariates.

In secondary analyses that considered each brain health event
type separately, a history of strokewas associatedwith a 6% increase in
epigenetic age (beta = 0.06, SD =0.02, p =0.001 - Figure S2 and
Table S7) after adjusting for demographics, risk factors, and comor-
bidities. Similarly, a history of dementia was associated with a 4%
increase (beta = 0.04, SD = 0.02, p =0.035 - Figure S3 and Table S9). A
history of late-life major depressive disorder was not associated with
an increase in epigenetic age in the fully adjusted model (beta= 0.01,
SD =0.02, p =0.673 - Figure S4 and Table S11). Also, a history of either
stroke or dementia was associated with a 4% increase in mean epige-
netic age (beta= 0.04, SD = 0.01, p =0.003 - Figure S1 and Table S5).

First stage: sensitivity analyses
Given the existing variation in the age cutoff used to define late-life
depression, in sensitivity analyses we considered an age threshold of
60 instead of 65 at the first major depressive episode. Out of 4,018
participants, 583 (14.5%) had a late-life depression prior to DNAm
acquisition and 1014 (25.2%) had a history of at least one brain health
event. Inmultivariable linear regression adjusting for age, sex and race/
ethnicity, brainhealth eventswere associatedwith an8% increase (beta
= 0.08, SD =0.01, p <0.001) in mean normalized epigenetic age. After
adjusting for cardiovascular risk factors and comorbidities as well, a
history of brain health events was associatedwith a 5% increase (beta =
0.05, SD =0.01, p <0.001) in mean epigenetic age (Table S13).

First stage: Mendelian randomization analyses
Several different MR analyses (Fig. 4) confirmed a positive association
between genetically determined brain health events and accelerated
epigenetic aging. In the primary analysis using 985 independent
genetic instruments for brain health events and the inverse variance
weightedMRmethod, genetically determinedbrain health eventswere
associated with a 11% increase in mean epigenetic age (beta = 0.11,
SD =0.03, P < 0.001 – Table 3). The weighted median and MR-Egger
methods, more conservative analytical approaches that are more
robust tohorizontal pleiotropy, yielded similar results,with genetically
determined brain health events being associated, respectively, with 8%
(beta = 0.8, SD =0.04, P =0.052) and 10% (beta = 0.1, SD = 0.04,
P =0.01) increases in epigenetic age. The MR-PRESSO global test and
the MR-Egger Intercept did not suggest the presence of pleiotropy.

Second stage: epigenetic age and subsequent risk of brain
health events
Of the 4018 participants with DNAm data, 806 (20.1%) had a history of
brain health events before 2016 and 245 (6.1%) weremissing data after
the DNAm acquisition in 2016 (waves 14 and 15), including 116 (2.9%)
whodied and 129 (3.2%)whowere lost to follow-up (Fig. 2). Of the 2967
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Fig. 1 | Overview of study design and main results. 1st Stage: We evaluate the
association between a history of brain health events (stroke, dementia or late-life
depression) and epigenetic age acceleration using a cross-sectional study design.
Epigenetic age is derived fromDNAmethylation data collected from venous blood
in 2016. 2nd Stage: We evaluate the association between accelerated epigenetic age

and the risk of subsequent brainhealth events using a prospective studydesign.We
leverage Mendelian Randomization analyses to assess the causality of the asso-
ciations described in steps 1&2 using genetic variants as instruments. MR = Men-
delian Randomization. Created in BioRender. Falcone, G. (2024) BioRender.com/
c48z976.
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participants included in the prospective analysis, 81 (2.7%) developed a
stroke, 100 (3.4%) developed dementia and 95 (3.2%) developed a late-
life major depressive disorder. This resulted in 261 (8.8%) participants
developing at least one brain health event over the 4 years of follow-
up, including 15 (0.5%) developing two. In multivariable logistic

regression adjusting for demographics (age, sex and race/ethnicity),
one SD increase in epigenetic age was associated with a 70% increase
(OR = 1.70, 95%CI: 1.16–2.50) in the odds of brain health events (Fig. 3
andTable 2).When considering only the second-generation epigenetic
clocks, each standard deviation increase in mean epigenetic age was
associated with a 24% increase in the odds of brain health events
(OR = 1.24, 95% CI: 0.99–1.56).

Further adjustments for cardiovascular risk factors (BMI, smoking
status, hypertension, diabetes) and comorbidities (heart attack, cor-
onary artery disease, angina, and congestive heart failure) can be
considered depending on the objective of the analysis. These factors
are known to influence methylation changes and might already be
reflected in the estimation of epigenetic age3,28,29. From a biological
perspective, adjusting for these factors could result in overadjustment.
However, from a clinical perspective, these factors should be con-
sidered to validate the clinical utility of epigenetic age measurements.
Therefore, we also tested a model that included these factors, in
addition to demographics. It indicated that a one SD increase in epi-
genetic agewas still associatedwith a 48% increase in the odds of brain
health events (OR = 1.48, 95% CI: 0.99–2.21 – Table 2).

In secondary analyses, we observed that epigenetic age accelera-
tion was associated with an increased likelihood of experiencing a
combined outcome of stroke and dementia. This association was also
observed when stroke and dementia were analyzed separately. How-
ever, no such association was found with late-life depression. Specifi-
cally, we found a 112% increase in the odds of developing either stroke
or dementia (OR = 2.12, 95% CI: 1.35–3.32 – see Figure S1 and Table S6)
for each one SD increase in epigenetic age, after adjusting for demo-
graphics. Similar results were obtained when considering
stroke (OR= 2.12, 95% CI: 1.12–4.04 – see Figure S2 and Table S8) and
dementia (OR= 1.98, 95% CI: 1.10–3.56 – see Figure S3 and Table S10)
individually. However, for late-life depression, the association was
entirely non-significant (OR=0.80, 95% CI: 0.43–1.52 – see Figure S4
and Table S12).

42,406
HRS participants

4,018
with DNAm data

Stage 1 clinical
analyses

Stage 2 clinical
analyses

2,967
With DNAm &�

follow-up data and without
history of event

38,388
without DNAm data

1,051 excluded
- 806 with history of event
-116 died
- 129 lost to follow-up

Stage 1&2 genetic
association tests
(epigenetic age)

2,863
With genetic data

1,155
missing genetic data

Stage 1&2 genetic
association tests

(brain health events)

26,840
missing genetic data

15,566
With genetic data

Fig. 2 | Flowchart of Health and Retirement Study participants inclusion. The
effects of brain health events on epigenetic age (Stage 1) are studied in all partici-
pants with DNAm data. The effects of epigenetic age on subsequent brain health
events (Stage 2) are studied in participants with DNAm and follow-up data,

excluding those with a history of prior events. Genetic associations for epigenetic
age are conducted in participants with both genetic and DNAm data. Genetic
associations for brain health events are conducted in all participants with
genetic data.

Table 1 | Cohort characteristics

Variable Overall
(n = 4018)

Prevalent brain
health
events (n = 806)

Incident Brain
health
events (n = 261)

Demographics

Age (mean (SD)) 69.9 (9.6) 75.2 (10.1) 73.0 (9.3)

Male gender 1669 (41.5) 334 (41.4) 115 (44.1)

Race

White 3013 (75.0) 572 (71.0) 204 (78.2)

Black 674 (16.8) 170 (21.1) 40 (15.3)

Hispanic 207 (5.2) 42 (5.2) 12 (4.6)

Other 122 (3.0) 22 (2.7) 5 (1.9)

Cardiovascular Risk factors

Prevalent
hypertension

2559 (63.7) 604 (74.9) 186 (71.3)

Prevalent diabetes 1151 (28.6) 306 (38.0) 85 (32.6)

BMI (mean (SD)) 28.92 (6.30) 28.4 (6.4) 28.9 (6.1)

Smoking

Past 1776 (44.2) 399 (49.5) 118 (45.2)

Never 1764 (43.9) 307 (38.1) 113 (43.3)

Current 455 (11.3) 95 (11.8) 29 (11.1)

Prevalent heart
condition*

1098 (27.3) 356 (44.2) 80 (30.7)

*Heart conditions include: heart attack, coronary artery disease, angina, congestive heart failure
Note: The terms prevalent, respectively incident, refer to conditions having occurred before,
respectively, after, the epigenetic age estimation performed during the 2016 wave.
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Second stage: sensitivity analyses
We replicated the observational analyses with late-life depression
ascertainedusing an age threshold of 60 insteadof 65 at thefirstmajor
depressive episode. Out of the 2779 participants included in the pro-
spective analysis, 121 (4%) developed a late-life depressive disorder and
269 (10%) developed at least one brain health event over the 4 years of
follow-up. Inmultivariable logisticmodels adjusting fordemographics,
one SD increase in epigenetic age was associated with a 57% increase
(OR = 1.57, 95%CI: 1.07–2.31, Table S14) in the odds of brain health
events.

Additionally, we replicated the observational analyses excluding
those participants missing data for any of the waves 14 and 15, as
opposed to only excluding participants missing data for both of the
two waves. Of the 4018 participants with DNAm data, 804 (20%) had a
history of brain health event, 245 (6%) died and 394 (10%)weremissing

data for any of the waves 14 and 15, so this analysis included 2,573
participants. Of these, 79 (3%) developed a stroke, 75 developed
dementia (3%), and 78 (3%) developed a late-life major depressive
disorder. We observed a similar trend as in the primary analysis with a
1 SD increase in epigenetic age leading to a 78% (OR = 1.78, 95%CI:
1.16−2.72, Table S15) increase in the odds of brain health events after
accounting for demographics.

Second stage: Mendelian Randomization analyses
Several different MR approaches (Fig. 5) confirmed a positive asso-
ciation between genetically determined epigenetic age and higher
odds of brain health events. In the primary analysis using 777 inde-
pendent genetic instruments and the inverse variance weighted MR
method, one SD increase in genetically determined epigenetic age was
associated with 15% higher odds of brain health events (OR = 1.15, 95%

Fig. 3 | Associations between epigenetic age and brain health events (stroke,
dementia, late-life depression). A. Cross-sectional analysis: percentage of change
in epigenetic ages following a brain health event after adjusting for chronological
age, sex, race and ethnicity, hypertension, diabetes, smoking, BMI, history of heart
attack, coronary artery disease, angina, or congestive heart failure. N = 4018. Data
are presented as linear regression coefficients and 95% confidence intervals. Clocks
displayed in red belong to the second generation of epigenetic clocks.

B Longitudinal analysis: Odds Ratios of brain health events per one standard
deviation increase in epigenetic age adjusting for chronological age, sex, and race
and ethnicity. The second-generation epigenetic clocks are highlighted in red.
N = 2,967. Data are presented as odds ratios and 95% confidence intervals. Clocks
displayed in red belong to the second generation of epigenetic clocks. Source data
are provided as a Source Data file.

Table 2 | Multivariable regression results: changes in mean epigenetic age following a brain health event and odds ratios of
brain health events per one standard deviation increase in mean epigenetic age

1st stage 2nd stage

Outcome Change in mean epigenetic age as a function of prevalent brain
health events

Change in mean odds of incident brain health events
as a function per 1 standard deviation increase in
mean epigenetic age

Statistical model Linear regression Logistic regression

Covariates % change Beta (SE) P Odds Ratios (95% CI) P

Unadjusted Model 1 42% 0.42 (0.02) 2.42e-71 2.62 (2.10-3.25) 5.48e-18

Multivariable Model 2 8% 0.08 (0.01) 2.06e-08 1.70 (1.16-2.50) 0.007

Multivariable Model 3 4% 0.04 (0.01) 0.002 1.48 (0.99-2.21) 0.057

Model 2: Adjusted for age, sex and race/ethnicity
Model 3: Adjusted for age, sex, race/ethnicity, hypertension, diabetes, smoking, BMI, history of heart attack, coronary artery disease, angina, or congestive heart failure
P values provided are based on two-sided t-tests for the linear regression results and two-sided Wald tests for the logistic regression results.
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CI: 1.06–1.25 – Table 3). The weighted median method yielded similar
results (OR = 1.15, 95%CI: 1.00–1.31), as well as the MR Egger method
(OR = 1.15, 95%CI: 1.00–1.31). TheMR-PRESSO global test, as well as the
Egger intercept were not significant, indicating no substantial
pleiotropy.

Discussion
In this two-stage epigenetic study within the Health and Retirement
Study, we identified a significant bidirectional relationship between
epigenetic aging and brain health events. In the first stage, the cross-
sectional analysis revealed an association between a history of brain

GIGASTROKE (2022)
All-cause stroke GWAS
- 110,182 cases
- 1,503,898 controls

EADB (2022)
Alzheimer's disease GWAS

- 111,326 cases
- 677,663 controls

Mendelian randomization
- Inverse Variance weighted
- Weighted Median
- MR-PRESSO
- MR-Egger

D. Howard (2019)
Depression meta-GWAS

- 246,363 cases
- 561,190 controls

Clumping
p = 1e-5
r2 = 0.01

MAF >= 0.05

382 Variants
for Stroke

Clumping
p = 1e-5
r2 = 0.01

MAF >= 0.05

256 Variants
for AD

Clumping
p = 1e-5
r2 = 0.01

MAF >= 0.05

462 Variants
for Depression

1100
Pooled Variants

985
Instruments

115 variants excluded:
- 20 to ensure independence
- 75 not present in imputed data
- 20 palindromic variants

Instrument-exposure
associations (HRS):

- 5,552 brain health cases
- 10,014 controls

Instrument-outcome
associations (HRS):

- 2,863 participants with
epigenetic data

Fig. 4 | Flowchart of Stage 1 genetic analyses. Summary statistics from genome-
wide association studies (GWAS) of stroke, Alzheimer’s disease, and depression
were clumped to identify significant genetic variants, which were then pooled. The
pooled variants underwent further clumping to ensure their independence, with

palindromic variants excluded. The associations between these genetic instru-
ments and brain health outcomes, as well as epigenetic age, were analyzed in HRS
participants. Finally, Mendelian Randomization analyses were performed to esti-
mate the causal effect of brain health events on epigenetic age.

Table 3 | Mendelian Randomization analyses

Analytical approach for Mendelian Randomization
analyses

1st stageGeneticallymodeledexposure =Riskof
brain health events Outcome = Epigenetic age

2nd stage Genetically modeled exposure = Epigenetic
age Outcome = Risk of brain health events

Number of instruments Beta (SE) P Number of instruments OR (95% CI) P

Primary IVW MR 985 0.11 (0.03) 9e-6 777 1.15 (1.06 – 1.25) 9.17e-4

Weighted median MR 985 0.08 (0.04) 0.052 777 1.15 (1.00 – 1.31) 0.048

MR-Egger 985 0.10 (0.04) 0.01 777 1.15 (1.00 – 1.31) 0.047

IVW Inverse probability weighted; MR Mendelian Randomization; SE Standard error; CI confidence interval; OR odds ratio.
For IVW MR, p values are derived from two-sided Wald tests; for weighted median, p values are derived from two-sided Wald tests, based on bootstrap-adjusted standard errors; for MR-Egger,
p values are derived from two-sided t-tests.

Article https://doi.org/10.1038/s41467-024-54721-0

Nature Communications |         (2025) 16:1261 6

www.nature.com/naturecommunications


health events and accelerated epigenetic age. Specifically, patients
with a prior history of stroke, dementia, or late-life depression exhib-
ited a statistically significant increase in mean normalized epigenetic
age, findings that remained robust after adjusting for a range of cov-
ariates. This association was further confirmed through Mendelian
Randomization analyses, suggesting a causal linkage. In the second
stage, the prospective cohort analysis revealed that individuals with an
accelerated epigenetic age were at a substantially higher risk of
developing brain health events. This association persisted after
adjustments for confounders and was also observed in Mendelian
Randomization analyses, again providing evidence for a causal rela-
tionship. These findings underscore the reciprocal influence between
accelerated aging and the manifestation of brain health events,
enhancing our comprehension of this complex interplay.

Mounting evidence points to the importance of epigenetic age as
a more accurate indicator of true biological aging compared to
chronological age3,30. Numerous studies have established that DNA
methylation predicts all-cause mortality more accurately than chron-
ological age alone31–34. This predictive ability has been first studied
using epigenetic data from specific tissues, where methylation pat-
terns are closely linked to disease development. For instance, accel-
erated epigenetic aging in the dorsolateral prefrontal cortex is
associatedwith increased amyloid accumulation and cognitive decline
in Alzheimer’s disease35. Similarly, the progression of osteoarthritis
and obesity is reflected in the accelerated methylation patterns of
cartilage36 and liver tissues29, respectively. Given the challenges and
risks associated with tissue-specific sample collection, whole blood
samples have become increasingly utilized for determining epigenetic
age30. This approach has been validated, showing a high correlation
between epigenetic age derived from whole blood and that from
specific tissues, making it a reliable proxy for general epigenetic age

assessment3. Subsequently, blood-derived epigenetic age acceleration
has been linked to the occurrence of various conditions, including
cancer37–40, cardiovascular and coronary heart diseases3, Parkinson’s
disease41 and frailty42,43. In addition, key risk factors such as high blood
pressure28, BMI29, triglycerides3, and serum glucose levels3,28, as well as
smoking3 and low physical activity3,28 have been shown to accelerate
aging-related epigenetic modifications. These findings emphasize the
influence of environmental factors and the dynamic nature of DNA
methylation status. Additionally, they suggest that epigenetic clocks
could serve as a “surrogate” of an individual’s risk factor profile, cap-
turing DNA methylation changes resulting from the presence of car-
diovascular risk factors or comorbidities. For this reason, and to avoid
overadjustment, we did not adjust for these covariates in the second
stage of our observational analyses, but we included them in an
alternative model to assess the added clinical utility of epigenetic age.
Finally, at a cellular level, DNA methylation clocks have been con-
nected to three of the nine recognized hallmarks of aging44: nutrient
sensing, mitochondrial function, and stem cell composition, high-
lighting their integral role in characterizing the aging process45.

This study adds evidence to epigenetic aging research by focusing
on a broad observational outcome related to brain health. Stroke,
dementia, and late-life depression, the most common aging-related
brain conditions, are intricately linked. They share overlapping risk
factors, including smoking, diet, physical activity, and socio-emotional
health determinants, which contribute to the occurrence of all
three15–19 and a common small vessel disease pathophysiology22,23.
Furthermore, the occurrence of one condition markedly increases the
likelihood of developing the others: a history of depression heightens
the risk of stroke46 and dementia47–49; stroke raises the chances of
subsequent dementia21 or depression50; and dementia itself is a risk
factor for both hemorrhagic stroke51 and depression52. This intricate
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- 40,905 participants
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for GrimAge
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r2 = 0.01

MAF >= 0.05
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for Hannum
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p = 1e-5
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850
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777
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- 52 to ensure independence
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Instrument-exposure
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Fig. 5 | Flowchart of Stage 2 genetic analyses. Summary statistics from genome-
wide association studies (GWAS) of several epigenetic clocks were clumped to
identify significant genetic variants, which were then pooled. The pooled variants
underwent further clumping to ensure their independence, with palindromic

variants excluded. The associations between these genetic instruments and epi-
genetic age, as well as brain health outcomes were analyzed in HRS participants.
Finally, Mendelian Randomization analyses were performed to estimate the causal
effect of epigenetic age acceleration on the risk of brain health events.
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interplay has led to the perspective that these conditions shouldnot be
examined in isolation, but rather collectively, as distinct yet connected
manifestations of a broader brain health aging process24,25. Our find-
ings lend substantial support to this viewpoint. We demonstrate that
an acceleration in the body’s epigenetic aging process significantly
increases the risk of developing stroke or dementia, but not late-life
depression. Because the pace of epigenetic aging can be slowed by
lifestyle changes such as diet and exercise28, our results suggest that
taking care of our body as we get older is a potentially effective way of
preventing brain health events. Moreover, our study reveals that
stroke and dementia not only result from, but also contribute to, a
general acceleration of epigenetic aging, as evidenced by blood-
derived methylation changes. These results underscore the systemic
nature of these conditions, suggesting that they should be considered
comprehensively, rather than as pure neurological or psychiatric
disorders.

Our study also provides evidence suggesting that the association
between epigenetic aging and brain health are causal, as demonstrated
by the results of our MR analyses. MR is an epidemiological method
that leverages DNA sequence variants as instrumental variables,
offering a powerful means to deduce potential causal links between
exposures and outcomes26,27. By employing genetic variants that are
randomly assigned duringmeiosis and remain constant throughout an
individual’s life,MR effectively acts as a formof natural randomization.
This approach is particularly valuable as it helps to counteract con-
founding by environmental factors and reverse causation, which are
prevalent sources of bias in observational studies. Consequently, MR
serves as a valuable tool, complementing observational studies by
adding a layer of evidence to suggest the causal nature of observed
relationships53. However, it is important to acknowledge that MR does
not replace randomized controlled trials, which are still the gold
standard for establishing causal associations. MR provides a crucial
bridge in the hierarchy of scientific proof, particularly in scenarios
where conducting trials is impractical or unethical.

Our findings open up avenues for future research. First, while our
study highlights a relationship between epigenetic clocks and brain
health events, it does not elucidate the pathways mediating this
association. Each epigenetic clock we considered reflects the aggre-
gate contribution of multiple DNAm loci, and it is known that methy-
lation levels at some of these loci influence plasma protein levels11.
Follow-up studies could explore associations between plasma proteins
modulated by DNAm changes and brain health events, providing
insights into how epigenetic clocks impact the risk of these outcomes.
Furthermore, epigenetic clocks might aid in the early detection of
individuals at elevated risk of poor brain health. Currently, observa-
tional risk scores and polygenic risk scoring are widely recognized
methods for categorizing individuals into different risk groups54.While
our study suggests a potential role for epigenetic clocks in risk
assessment, further research is needed to validate their predictive
utility and determine how best to integrate them with existing risk
models. This combined approach could significantly facilitate early
intervention strategies. Finally, there is an emerging interest in ther-
apeutic interventions focused on modulating the epigenetic aging
process itself, with the goal of preventing aging-related observational
events. Recent research in mice has shown that DNA methylation
clocks can be reversed through epigenetic reprogramming, leading to
notable increases in life expectancy55. This underscores the significant
role of epigenetic modifications on the aging process as a whole. Such
findings may open up possibilities for the development of targeted
treatments that not onlymanage but also proactivelymitigate the risks
of aging-related neurological conditions by addressing their under-
lying epigenetic mechanisms. However, the translation of these find-
ings to humans remains uncertain, and it is not yet clear whether
targeting epigenetic markers will be truly relevant or effective in clin-
ical settings.

The primary strength of our study is the utilization of the Health
and Retirement Study, which is among the largest and best-
characterized cohorts with DNA methylation data to date. Acquiring
DNA methylation data is often a costly endeavor, leading to smaller
datasets that typically require integration with other datasets to reach
sufficient power11. The Health and Retirement Study’s substantial size,
combined with its demographic representativeness of the US popu-
lation, significantly bolsters the generalizability of ourfindings to older
Americans. Additionally, the application of MR analyses enabled us to
strengthen our observational results, providing a more compelling
argument for the causal nature of the relationships we identified.
However, our study is not without limitations. First, while our study
included several cardiovascular risk factors and comorbidities, the
absence of certain measurements (e.g., blood pressure medications)
limited our ability to adjust for comprehensive clinical risk scores like
the Framingham score, and we cannot rule out the possibility that
unaccounted risk factorsmay be influencing the observed acceleration
in epigenetic agingor the increased risk of brainhealth events. Second,
our cross-sectional observational analysis is likely influenced by sur-
vival bias. It’s reasonable to assume that survivors of brain health
events are generally healthier and may demonstrate slower epigenetic
aging compared to non-survivors. This factor could potentially skew
our results towards the null hypothesis.

In conclusion, ourfindings usinghigh-quality data fromtheHealth
and Retirement Study cohort establish bidirectional associations
between epigenetic aging and brain health events. We have demon-
strated that a history of stroke, dementia, or late-life depression is not
only associated with accelerated epigenetic aging but also that an
advanced epigenetic age increases the likelihood of these conditions.
Through Mendelian Randomization analyses, we provide evidence
supporting the potential causal nature of these associations.While our
study contributes to the understanding of aging-related brain health
and underscores the possible role of epigenetic factors, further
research is warranted to confirm these associations and explore their
practical implications. Overall, our work suggests opportunities for
future research, particularly in early risk assessment and intervention
strategies, and highlights the promising potential of epigenetic clocks
in advancing brain health outcomes.

Methods
Ethics approval
This study was approved by the institutional review board of Yale
University School of Medicine (protocol number: 2000038837). Ethi-
cal approval for the Health and Retirement Study was obtained from
the University of Michigan Institutional Review Board (protocol num-
ber: HUM00061128). All participants gave informed written consent.
HRS offers financial payments as tokens of appreciation to respon-
dents for participating, but these were not intended as compensation.

Study design
We conducted a 2-stage observational and genetic study nestedwithin
the HRS (Fig. 1). Our goal was to investigate two different hypotheses:
first, that persons who have survived brain health events, including
stroke, dementia, and late-life depression, exhibit epigenetic age
acceleration; and second, that those with accelerated epigenetic aging
are at an elevated risk for subsequent brain health events. Both
hypotheses were examined through a combination of observational
and genetic analyses. To investigate thefirst hypothesis, we performed
anested cross-sectional analysis onHRSparticipantswhohadavailable
DNA Methylation data. This allowed us to assess the association
between survival from brain health events and epigenetic aging. To
test the second hypothesis, we implemented a prospective cohort
design using the sameHRSgroupwith availablemethylation data. This
design enabled us to observe whether individuals with accelerated
epigenetic aging were more likely to experience subsequent brain
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health events. The genetic analyses for both stages were conducted
using one-sample Mendelian randomizations within the HRS cohort.

The health and retirement study
The HRS is an ongoing, longitudinal study that is nationally repre-
sentative of older adults in the United States. Its primary aim is to
provide a comprehensive understanding of the health and economic
circumstances associatedwith aging at both individual and population
levels. The HRS sample was compiled through multiple phases of
recruitment and data collection. The inaugural cohort, enrolled in
1992, included individuals born between 1931 and 1941 (whowere then
aged 51–61), along with their spouses of any age. Subsequently, a dis-
tinct study named “Asset andHealth Dynamics Among the Oldest Old”
(AHEAD) was conducted, focusing on the cohort born between 1890
and 1923 (who were then aged 70 and above). In 1998, these two
samples were merged and supplemented with the addition of two
more cohorts: the “Children of the Depression” (CODA, born
1924–1930) and the “War Babies” (born 1942–1947). This was done to
ensure the sample accurately represented the U.S. population over the
age of 50. Later, the “Early Baby Boomers” (EBB, born 1948–1953) and
the “Mid Baby Boomers” (MBB, born 1954–1959) were added in 2004
and 2010, respectively. The most recent addition was the “Late Baby
Boomers” (LBB, born 1960–1965) in 201656. As of now, the HRS has
successfully enrolled over 40,000 participants. Among these, nearly
20,000 have provided DNA samples, and DNA Methylation (DNAm)
data has been obtained from 4018 participants. The study conducts
biennial interviews with participants, covering a broad range of vari-
ables such as income, employment, disability, physical health and
functioning, and cognitive functioning. Further details about the HRS
and its survey design can be found elsewhere57.

Analytic sample
The present study utilized a subset of participants from the HRS who
had available DNAMethylation data. DNAm assays were conducted on
a non-random subsample of 4018 individuals who took part in the
Health and Retirement 2016 Venous Blood Study58. The sample is
predominantly female (54.3%) with a median age of 66 years, and ages
ranging from 50 to 100 years. The sample exhibits racial diversity with
10.0% being non-Hispanic Black, 8.9%Hispanic and 81.1% non-Hispanic
White and others. The sample is also socioeconomically diverse as
indicated by the educational distribution: less than high school
(14.0%), high school/GED (29.9%), some college (25.8%), and college+
(30.3%). More than a third of the sample is obese (44.5%), 11.0% are
current smokers, and 44.2% are former smokers. The sample has been
weighted to ensure it is representative of the broader U.S.
population58.

DNA methylation data
Detailed information on the 2016 Venous Blood Study is provided in
the VBS 2016 Data Description58. Blood samples were obtained from
willing respondents during in-home phlebotomy visits, ideally sched-
uled within four weeks of the 2016 HRS core interview. Although
fasting was suggested, it was not required. Methylation was assessed
using the Infinium Methylation EPIC BeadChip. To ensure a balanced
representation of key demographic variables (such as age, cohort, sex,
education, and race/ethnicity), samples were randomized across
plates, including 40 pairs of blinded duplicates. The correlation for all
CpG sites was found to be greater than 0.97 when duplicate samples
were analyzed. Data preprocessing and quality control were per-
formed using theminfi package in R. A total of 3.4% of themethylation
probes (equivalent to 29,431 out of 866,091) were excluded from the
final dataset due to subpar performance, as determined by a detection
p-value threshold of 0.01. Following the removal of these probes,
samples that failed the detection p-value analysis were identified and
removed using a 5% cut-off (minfi), resulting in the exclusion of 58

samples. Any samples that mismatched in sex and any controls
(including cell lines and blinded duplicates) were also removed. High-
quality methylation data were retained for 97.9% of the samples
(n = 4018). Anymissing betamethylation valueswere replacedwith the
mean beta methylation value of the respective probe across all sam-
ples before the construction of DNAm age measures.

Epigenetic clocks
Thirteen epigenetic clocks were evaluated centrally by the HRS team
using the HRS DNAm data. Since these clocks were originally devel-
oped using independent datasets, our study serves as a validation of
their predictive accuracy for brain health outcomes. These clocks were
calculated as a weighted sum of aging-related CpGs, typically ranging
from 100 to 500, with weights determined using a penalized regres-
sionmodel. Thesemethylation clocks, which represent epigenetic age,
aremeasured in epigenetic years,with the premise that each tickof the
clock signifies aging. Among these thirteen clocks, nine are classified as
first-generation clocks, calibrated based on age6–10,40,59–61, while the
remaining four are second-generation clocks, calibrated on health-
related outcomes, namely Zhang12, PhenoAge3, GrimAge11, and
MPOA62. These clocks exhibit significant variability in their mean
values, ranges, and minimum and maximum ages. Some of the clocks,
when expressed in years, have extremely high maximum ages (for
example, Lin at 133 and Weidner at 148), while others have very low
minimum ages (for example, Lin at 1.9). To create a composite value
representing epigenetic age without any a priori selection of the
clocks, we standardized them to approximate a normal distribution
and took the average of these standardized clocks as our primary
measure of epigenetic age. We also report results corresponding to
each individual clock.

Genetic data
Thegenotyping for this studywas carried out by theCenter for Inherited
Disease Research in the years 2011, 2012, and 2015. Detailed information
regarding quality control can be accessed in the online Quality Control
Report63. Genotype data was collected from over 15,000 HRS partici-
pants using the Illumina HumanOmni2.5 BeadChips (HumanOmni2.5-
4v1, HumanOmni2.5-8v1), which measures approximately 2.4 million
Single Nucleotide Polymorphisms (SNPs). The Genetics Coordinating
Center at the University of Washington, Seattle, WA, performed the
genotyping quality control. Criteria for removal included individuals
with missing call rates exceeding 2%, SNPs with call rates less than 98%,
Hardy-Weinberg Equilibrium p value less than 0.0001, chromosomal
anomalies, and first-degree relatives in the HRS. Imputation to the 1000
Genomes Project Phase I v3 (releasedMarch 2012) was conducted using
SHAPEIT2 and IMPUTE2. A worldwide reference panel consisting of all
1092 samples from the Phase I integrated variant set was utilized. The
Genetics Coordinating Center at the University of Washington, Seattle,
WA, performed and documented these imputation analyses. All posi-
tions and names are aligned to the GRCh37/hg19 build.

Genetic instruments
We utilized genetic instruments derived from external genome-wide
association studies (GWASes) to represent the exposure variables:
brain health events for the first stage and epigenetic age for the
second stage.

1st stage. Our selection of genetic instruments involved the following
sources for stroke, dementia and depression, respectively: the GIGA-
STROKE consortium’s GWAS of all-cause stroke64, the European Alz-
heimer & Dementia Biobank consortium’s GWAS of Alzheimer’s
disease65, and a meta-analysis of the three largest GWASes of
depression66. From each of these studies, we selected SNPs that were
biallelic, common (minor allele frequency greater than 5%) and asso-
ciated with the respective trait (p < 1e-5). To ensure the independence
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of these SNPs, we filtered out variants with an r2 (a measure of cor-
relation between twogenetic variants) greater than0.1. This resulted in
382 SNPs for stroke, 256 for Alzheimer’s disease, and 462 for depres-
sion. These SNPs were combined to yield 1100 instruments associated
with either stroke, Alzheimer’s disease, or depression. From this pool,
20 variants were excluded to ensure independence, 75 were not pre-
sent in the imputed HRS genetic data, and 20 palindromic SNPs were
excluded, resulting in a final list of 985 instruments.We then estimated
the effect of the genetic instruments on the epigenetic age and on the
brain health composite by conducting single-SNP association tests in
HRS (Fig. 4). The effect estimates corresponding to epigenetic age
were obtained in HRS participants with DNAm and genetic data and
theones corresponding to brainhealth eventswereobtained in all HRS
participants with genetic data (Fig. 2).

2nd stage. For the second stage, we selected genetic instruments by
combining data from multi-ethnic GWASes67 of six epigenetic clocks:
GrimAge11, Hannum8, PhenoAge3, Horvath9, PAI-111, and Gran3,11,41. From
each of these GWASes, we selected common SNPs (minor allele fre-
quency >5%) associated with the respective epigenetic clock (p < 1e-5).
To ensure the independence of these SNPs, we filtered out variants
with an r2 greater than 0.1. This yielded 81 SNPs for the GrimAge clock,
84 for the Hannum clock, 104 for the PhenoAge clock, 103 for the
Horvath clock, 75 for the PAI-1 clock, and 403 for the Gran clock. These
SNPs were combined to obtain a pooled list of 850 SNPs associated
with any of the six epigenetic clocks. From this pool, 52 variants were
excluded to ensure independence, 6 were not present in the imputed
HRS genetic data, and 15 palindromic SNPs were excluded, resulting in
a final list of 777 instruments. We then estimated the effect of the
genetic instruments on the epigenetic age and on the brain health
composite by conducting single-SNP association tests in HRS (Fig. 5).

Ascertainment of brain health events
Stroke. Stroke events were identified as the first instance of stroke in a
dedicated variable evaluated throughout the study period
(1992–2020), based on self-reported or proxy-reported doctor’s
diagnosis (Has a doctor ever told you that you had a stroke?). In cases
where participants were unable to be directly interviewed (e.g.,
deceased), health care proxies were interviewed. Transient ischemic
attacks were not systematically assessed and were not classified as
strokes, and information on stroke subtypewas not available. Previous
studies using HRS data have demonstrated that associations between
known risk factors and self-reported stroke incidence in the HRS align
well with associations in studies using observationally verified
strokes68. Moreover, self-reported strokes in the HRS corresponded
well with strokes coded according to the International Classification of
Diseases in the Centers for Medicare and Medicaid Services records,
with a sensitivity of 74% and a specificity of 93%69.

Dementia. The ascertainment of all-cause dementia among self-
respondents was carried out at each wave using the modified version
of the Telephone Interview for Cognitive Status (TICS): a 27-point
cognitive scale that encompasses immediate and delayed 10-noun free
recall tests (each with a range of 0–10 points), a serial seven subtrac-
tion test (range: 0–5 points), and a backward count from 20 test
(range: 0–2 points)70,71. Based on their continuous score, we categor-
ized cognitive status into two groups—those with and without
dementia—using observationally verified cutpoints from the Aging,
Demographics, andMemory Study (ADAMS). A supplemental study of
the HRS, ADAMS involves in-home neuropsychological and observa-
tional assessments combined with expert clinician adjudication to
obtain a gold-standard diagnosis of cognitive status70,72. Respondents
with scores ranging from 12 to 27 were classified as non-impaired;
those with scores from 7 to 11 were identified as having cognitive
impairment but no dementia; and those with scores from 0 to 6 were

classified as having dementia. For the purposes of this paper, we
focused solely on participants with dementia. A small percentage of
respondents (0.8%–3.1%) declined to participate in tests of immediate
and delayed recall and serial 7 s. To address this, HRShas developed an
imputation strategy for cognitive variables across all waves73.

Late-life depression. Following a common definition from the
literature74–77, we defined late-life depression as a major depressive
episode occurring after the age of 65 in an individual with no history of
depressive episodes prior to this age. Depressive symptoms were
evaluated using the validated, modified 8-item version of the Center
for Epidemiologic Studies-Depression (CES-D) scale78,79. During each
biennial questionnaire, participants were asked to indicate (yes/no)
whether they had experienced any of the 8 symptoms in the preceding
week. A summary score (ranging from 0 to 8) was compiled by adding
the number of affirmative responses across the 8 items, with two
positively framed items being reverse-coded78. Major depressive epi-
sodes were identified using dichotomized CES-D summary scores for
each wave, with a cutoff of ≥4 symptoms. This threshold has been
previously validated and is considered equivalent to the 16-symptom
cut-off of thewell-validated 20-itemCES-D scale76,78,80. In our sensitivity
analyses, we explored an alternative definition of late-life depression
found in the literature, characterized by a lower age cutoff of 60 years,
instead of 6581–83.

Covariates ascertainment
We collected self-reported demographic and socioeconomic variables
at the onset of the Venous Blood Study58, including age (continuous),
sex (male or female), and race and ethnicity (non-HispanicWhite, non-
Hispanic Black, Hispanic or other). Additionally, we gathered self-
reported measures of health behaviors and health conditions at
baseline, such as body mass index (continuous, kg/m2 derived from
self-reported height and weight), and cigarette smoking status (non-
smoker, former smoker, current smoker). Health conditions were
determined based on responses (yes/no) to the question “Has a doctor
ever told you that you had a (health condition)?” for heart disease,
diabetes, and hypertension. Previous studies using HRS data have
shown that self-reported health conditions align substantially with
medical records data, and that the self-reported health behavioral
measures have strong external validity68,84–87.

Statistical analyses
We describe discrete data as counts (percentages) and continuous
data as mean (standard deviation) or median (interquartile range), as
appropriate. In the first stage of the study, which examined the asso-
ciation between a history of brain health events (exposure) and epi-
genetic age (outcome), a history of brain health events was defined as
having experienced a stroke, dementia, or late-life depression episode
ascertained in waves 1 (1992) to 13 (2016). In the second stage of the
study, which examined the association between epigenetic age
(exposure) and the onset of new brain health events (outcomes), these
events were defined as a stroke, dementia, or late-life depressive epi-
sode ascertained in waves 14 (2018) or 15 (2020). Participants who did
not participate in both of these waves, due to loss to follow-up or
death, were excluded from this analysis. Additionally, participants who
had experienced brain health events between waves 1 and 13 were also
excluded from this phase of the analysis.

In the first stage of our study, we explored the association
between a history of brain health events and epigenetic age using
multivariable linear regression models. These models were either
unadjusted (Model 1), adjusted for potential demographic con-
founders such as age, sex, and race/ethnicity (Model 2), or adjusted for
these demographic factors and cardiovascular risk factors (hyperten-
sion, diabetes, smoking, and body mass index), and comorbidities
(history of heart events including heart attack, coronary arterydisease,
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angina, and congestive heart failure, Model 3). In the second stage, we
investigated the association between epigenetic age and the risk of
newbrain health events usingmultivariable logistic regressionmodels.
These models were either unadjusted (Model 1) or adjusted for the
same sets of confounders as in the first stage (Model 2 and 3).

Mendelian randomization. In both stages, our primary MR analyses
used the inverse variance weighted (IVW) method. In secondary ana-
lyses, we tested for horizontal pleiotropy (the possibility that the effect
of the instrument on the outcome of interest is exerted through a
pathway other than the exposure) using theMendelian Randomization
Pleiotropy Residual Sum and Outlier (MR-PRESSO88) global test with
10,000 simulations and the MR-Egger intercept term89. To account for
this possible phenomenon, we implemented the weighted median
method, a robust alternative to the IVW method that allows for up to
50% of the genetic variants used to be invalid instrumental variables
without biasing the causal effect estimate90. Additionally, the weighted
median approach is less sensitive to outliers than the IVW method,
which can be useful in the presence of genetic variants with extreme
effect estimates26.

Secondary and sensitivity analyses. In our secondary analyses, we
repeated the epidemiological analyses for both stages, considering
each brain health outcome individually (stroke, dementia, and
depression), as well as a composite outcome that included only stroke
and dementia. In addition to our main measure, the mean epigenetic
age, we also report the association results for each epigenetic clock.
We also considered the average of the second-generation clocks,
rather than all epigenetic clocks, as an alternative measure of epige-
netic age. In our sensitivity analyses, we: (1) tested the association
between epigenetic age and the risk of new brain health events,
excluding only participantsmissing data forwaves 14 or 15, as opposed
to excluding participantsmissing bothwaves; (2) repeated both stages
using an age cutoff of 60 to ascertain late-life depression.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study is available in Supplementary
Tables S3-S15. Source data for Fig. 3 and Supplementary Figs. S1-S4 are
provided with this paper.

The HRS longitudinal individual level data are available from HRS
and the RANDCenter for the Study of Aging (https://hrsdata.isr.umich.
edu/data-products/rand). The HRS genome-wide data are available
through the database of Genotypes and Phenotypes (dbGaP), acces-
sion number phs000428.v2.p2. The HRS DNA methylation data are
available by applying for access at https://hrs.isr.umich.edu/data-
products/restricted-data. Source data are provided with this paper.

Code availability
Observational analyses and plotting were performed using available
packages in R 4.2.191: dplyr, stats, ggplot2, ggforestplot, tableone.
Genetic analyses including clumping, association testing and all Men-
delian Randomization analyses were performed using the Genal 0.992

package in Python 3.9.193. The Genal package and associated code
examples are publicly available at https://github.com/CypRiv/genal.
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