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Multivariate stochastic modeling for
transcriptional dynamics with cell-specific
latent time using SDEvelo

Xu Liao 1,2,11, Lican Kang3,4,11, Yihao Peng1, Xiaoran Chai5, Peng Xie 6,
Chengqi Lin 7, Hongkai Ji 8, Yuling Jiao 9,10 & Jin Liu 1

Recently, RNA velocity has driven a paradigmatic change in single-cell RNA
sequencing (scRNA-seq) studies, allowing the reconstruction andpredictionof
directed trajectories in cell differentiation and state transitions. Most existing
methods of dynamic modeling use ordinary differential equations (ODE) for
individual genes without applying multivariate approaches. However, this
modeling strategy inadequately captures the intrinsically stochastic nature of
transcriptional dynamics governed by a cell-specific latent time across multi-
ple genes, potentially leading to erroneous results. Here, wepresent SDEvelo, a
generative approach to inferring RNA velocity by modeling the dynamics of
unspliced and spliced RNAs via multivariate stochastic differential equations
(SDE). Uniquely, SDEvelo explicitly models inherent uncertainty in transcrip-
tional dynamics while estimating a cell-specific latent time across genes. Using
both simulated and four scRNA-seq and spatial transcriptomics datasets, we
show that SDEvelo can model the random dynamic patterns of mature-state
cells while accurately detecting carcinogenesis. Additionally, the estimated
gene-shared latent time can facilitate many downstream analyses for biologi-
cal discovery. We demonstrate that SDEvelo is computationally scalable and
applicable to both scRNA-seq and sequencing-based spatial tran-
scriptomics data.

The advent of single-cell RNA sequencing (scRNA-seq) has revolutio-
nized our understanding of molecular and cellular processes. It offers
unprecedented opportunities to explore gene expression profiles at
the single-cell resolution, identify rare cell (sub)types, track cell
lineages, etc., which were not achievable with bulk RNA-seq1,2. Using
scRNA-seq data for a population of cells at different stages of a
developmental process, trajectory inference methods aim to

reconstruct the developmental paths of individual cells over time3–6.
Recently, spatial transcriptomics technologies have emerged that
preserve information on physical spatial locations7,8. For instance, in
situ sequencing-based spatial transcriptomics analyzes the transcripts
within discrete “spots” on histological tissue sections9. A major chal-
lenge in trajectory inference is the destructive nature of these tech-
nologies, which captures only a static snapshot of the transcriptome
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related to cellular states at the moment of measurement. Therefore,
conventional trajectory inference methods require enough cells to be
profiled from all intermediate states to enable the reconstruction of
continuous trajectories10, and prior knowledge is needed to specify the
progenitor cells and determine the inferred direction3,11–13, which lar-
gely limits the applicability of these methods when datasets do not
contain cells from all states and/or the cell fates are unknown.

Transitioning from trajectory models of the descriptive states of
cells to predictive models of cell dynamics, RNA velocity recovers
dynamic information by modeling the cellular transcription process
between unspliced pre-mRNAs and spliced mRNAs14,15. Using the
kinetics of the transcription of pre-mRNAs, their conversion into
spliced mRNAs, and eventual degradation, RNA velocity can be infer-
red. A positive velocity indicates a gene being up-regulated in spliced
transcripts whilst a negative velocity indicates down-regulation.
Assuming that the transcriptional phases of the induction and
repression of gene expression last sufficiently long enough to reach an
equilibrium between transcription and steady state, La Manno et al.14

first used physics-informed ordinary differential equations (ODE) to
model the biological/causal mechanisms in the transcription of
molecules. Since then, the field of RNA velocity has rapidly evolved
with various variants and applications emerging15–26. However, non-
negligible limitations and potential pitfalls still underly the core of
these methods27,28.

An ideal RNA velocity method should be capable of tackling the
following three tasks: (1) establish a collaborative system across mul-
tiple genes with a cell-specific latent time for each cell/spot; (2) char-
acterize the stochastic nature of dynamic transcriptional kinetics by
utilizing stochastic differential equations (SDE), especially in the con-
text of biochemical processes such as transcriptionwhere randomness
and uncertainty are intrinsic29,30; and (3) show robustness to tran-
scriptomics data from different sequencing technologies. Most exist-
ing RNA velocity methods only consider the univariate model for each
single gene, neglecting the shared informationbetweenmultiplegenes
in the same cell/spot, which potentially leads to false fate direction
identification in steady-state cells14,18,27. Moreover, most methods have
been developed based on deterministic ODE models, with incorpor-
ating extrinsic noise for measurement errors but without considering
the intrinsic stochastic noise and uncertainty that occur during the
transcription process14–17,19,21. Recent approaches have made progress
in incorporating stochasticity, notably scVelo15, which computes
higher-order moments to capture local stochasticity among neigh-
boring cells, and VelvetSDE31, which utilizes a neural SDE framework
for a more accurate approximation of the underlying stochastic pro-
cess dynamics. However, these models do not explicitly estimate the
SDE parameters (transcription, splicing, and degradation rates)
necessary for biophysical interpretability. More recently, PhyloVelo
was proposed as a way to characterize stochastic variation during cell
division via the diffusion process, but it requires dedicated experi-
ments to delineate the phylogenetic tree in the data, which is largely
inapplicable to human samples24. Finally, because of the complex
structure and low sequencing depth of spatial transcriptomics data, it
is challenging to apply existing RNA velocity methods32.

To address the challenges presented by RNA velocity and facil-
itate downstream analyses by integrating inferred latent time and
velocity, we propose the use of SDE-informed RNA velocity, SDEvelo,
which collaboratively estimates multivariate RNA velocity across
multiple genes governed by a cell-specific latent time, accounts for the
inherent stochastic nature of kinetics during the transcription process,
and infers a cell-specific latent time across genes, accurately revealing
the progression of cell differentiation. In SDEvelo, we propose a
computational framework that uses a generative model with adver-
sarial learning. As a result, SDEvelo can uniquely obtain the multi-
variate RNA velocity governed by a cell-specific latent time in cells/
spots, while capturing underlying stochastic process dynamics

through an SDE framework; achieve excellent visualizations, such as
velocity streamline plots and latent-time heatmaps; be applicable to
both scRNA-seq and in situ sequencing-based spatial transcriptomics
data; and facilitate downstream analyses by leveraging the estimated
velocity and latent time for biological discoveries.

Results
An overview of SDEvelo
Conventional RNA velocity methods primarily use coupled differential
equations to delineate the gene transcription/splicing/degradation
kinetics with a physics-informed mechanism (Fig. 1a, left panel).
Instead of sequentially applying ODE to individual genes, SDEvelo
uniquely applies multivariate SDE in combination with a nonlinear and
differentiable sigmoid function for the transcription rate underlying
each cell-specific latent time to characterize both the intrinsic and
extrinsic noises attributed to the transcription process and measure-
ment errors, respectively (see “Methods”; Fig. 1a, right panel; b),

dUðtÞ = ðαðtÞ � β� UðtÞÞdt +σ1dBðtÞ,
dSðtÞ = ðβ� UðtÞ � γ � SðtÞÞdt +σ2dBðtÞ,

ð1Þ

where U(t) and S(t) are normalized vectors for unspliced and spliced
mRNA reads across p genes, respectively, with the transcriptional
dynamicsmodulated by vectors of transcription rate α(t), splicing rate
β, and degradation rate γ, and accounting for randomness using a
Wiener processB(t) over a common latent time t for allp genes,with σ1
and σ2 used for noise levels.

The innovations provided by the generative model SDEvelo come
from the following perspectives (Fig. 1c). First, unlike the deterministic
cell trajectories generated by ODE-based methods, SDEvelo estimates
the transcriptional dynamics associated with a cell-specific latent time
with a stochastic component via adversarial learning (Fig. 1b), providing
a more robust and realistic framework of transcriptional dynamics and
effectively avoiding erroneous directions in terminal cell states. More-
over, the use of sigmoid functions for the transcription rate α(t) (see
“Methods”) allows SDEvelo to identify gradual and smooth expression
changes to better model the biological processes of gene expression
regulation that involve multiple interactions between transcription fac-
tors, enhancers, and silencers33,34. Strikingly, SDEvelo leverages data on
multiple genes simultaneously to infer the transcriptional dynamics with
a cell-specific latent time that is shared across genes for a single cell/
spot, which is achieved by a multivariate SDE framework with explicitly
interpretable parameters. This consideration can potentially capture
candidate genes involved in co-interactions and co-regulation, which is
crucial in understanding complex biological processes35,36. Furthermore,
by incorporating intrinsic noise through a multivariate SDE, SDEvelo
achieves superior accuracy in velocity and latent time estimation, as
demonstrated in our simulated experiments section. Notably, this
modeling enables SDEvelo to effectively distinguish between actively
transitioning cells andmature populations, which avoids reports of false
transitions in mature cells where RNA velocity vector flows should be
random on visualization.

We illustrated the benefits of SDEvelo’s ability to correctly identify
cell lineage/transcription dynamics using both scRNA-seq and
sequencing-based spatial transcriptomics data, especially its ability to
resolve the erroneous fate direction detected in datasets of most
mature-state cells using existingmethods.Moreover, with the inferred
latent time and velocity, SDEvelo can facilitate many downstream
tasks, as depicted in Fig. 1d. First, users can visualize streamline plots
with inferred RNA velocity, latent time heatmaps, etc. Second, by
correlating gene expression with the estimated latent time from SDE-
velo, we can identify cancer driver genes, allowing us to examine the
dynamics of carcinogenesis, delineate the boundaries between tumor
and non-tumor regions, and construct protein interaction networks.
Third, by combining the inferred velocity and latent time fromSDEvelo

Article https://doi.org/10.1038/s41467-024-55146-5

Nature Communications |        (2024) 15:10849 2

www.nature.com/naturecommunications


with gene expression data, we can detect cell states and delineate a
global map of cell fates.

Validation using simulated data
We performed comprehensive simulations to evaluate the perfor-
mance of SDEvelo and compare it with that of several other methods.

To achieve this, we considered the following eight RNA velocity
methods: Velocyto14, scVelo (stc)15, scVelo (dyn)15, UniTVelo19,
DeepVelo26, VeloVI21, Dynamo37 and VeloVAE17. The simulation details
are provided in the “Methods” section. Briefly, we performed simula-
tions for unspliced and spliced mRNAs with both deterministic27

(Supplementary Fig. S1a, left panel) and stochastic (Eqn. (1);
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Supplementary Fig. S1a, right panel) settings using ODE and SDE,
respectively (see “Methods”). Note that in the ODE setting, extrinsic
noise was added. In both settings, SDEvelo accurately inferred the
velocity of streamline plots and correctly estimated latent time that
alignedwell with the underlying truth (Fig. 1e; Supplementary Fig. S1b),
while scVelo failed to provide consistent directions or accurate latent
times (Fig. 1e; Supplementary Fig. S1c).

The estimation of the steady-state ratio between unspliced and
spliced mRNAs determines the accuracy of a model in calculating the
RNA velocity14,15. To quantify the performance of the models in esti-
mating this ratio, we calculated the absolute relative errors between
the estimated ratios and the underlying truths. In both the ODE and
SDE settings, SDEvelo achieved the best performance in all methods,
had the smallest ratio errors, and presented robustness to various
numbers of genes (Fig. 1f, upper panel). Using a constant value for the
steady-state ratio in the ODE setting, we compared the distributions of
estimated errors in all methods (Supplementary Fig. S2a), and the
distribution of estimated errors using SDEvelo aligned well with the
underlying truth. However, those of other methods exhibited biased
estimations, and those of Velocyto and scVelo (stc), particularly,
showed bimodal distributions. We further investigated the models’
ability to estimating the switch time points that separate the induction
and repression phases. Compared to scVelo (dyn), SDEvelo accurately
estimated the marginal distribution of the underlying switch time
points (Supplementary Fig. S2b).

Unlike other methods, SDEvelo models velocities for multiple
genes with a cell-specific latent time. We thus evaluated the perfor-
mance of SDEvelo’s latent time estimation. We first estimated the
latent time with all methods and calculated the Pearson’s correlation
between the estimated latent time and the underlying truth. SDEvelo
notably outperformed all other methods, providing the highest Pear-
son’s correlation across different numbers of genes (Fig. 1f, lower
panel). Using joint kernel density estimation (KDE) plots, the latent
time inferred using SDEvelo aligned well with the underlying truth,
while those from other methods exhibited substantial deviations from
the true values (Fig. 1e, left panel; Supplementary Fig. S2c).

Furthermore, we exhibit SDEvelo’s ability to identify branching
trajectories in another simulated dataset (see “Methods”). SDEvelo
accurately identified the correct velocities in the streamline plots, even
with as few as 100 genes, while scVelo showed some inconsistencies
(Supplementary Fig. S3a). In the latent time estimation, SDEvelo, along
with Dynamo and UniTVelo, closely aligned with the true latent times,
outperforming the other methods which displayed notable incon-
sistencies (Supplementary Fig. S3b). Among a range of gene numbers
(100 to 1000), SDEvelo consistently demonstrated superior perfor-
mance in both steady-state ratio estimation and latent time prediction
(Supplementary Fig. S3c). These results underscore SDEvelo’s robust
performance in identifying complex branching trajectories, even in

scenarios with limited gene numbers, highlighting its potential for
accurate velocity estimation and trajectory inference in diverse bio-
logical contexts.

Negative controls of transcriptional dynamics in mature-state
cell populations
We applied SDEvelo and othermethods to the analysis of four datasets
obtained from scRNA-seq or spatial transriptomics (see “Methods”). By
obtaining both the inferred velocity and latent time from SDEvelo, we
could perform various downstream analyses. Here, to better under-
stand the differentiation process, we showcase the CellRank analysis
used to detect cell fate decisions and prioritize genes related to the
terminal fates38,39, the gene enrichment analysis used for latent-time-
associated genes, and the cell-cell communication analysis used for
genes related to latent time40,41.

We first applied SDEvelo and other methods to analyze a dataset
for peripheral blood mononuclear cells (PBMCs) in the mature state
consisting of 65, 877 cells and 33, 939 genes generated using the 10x
platform. After quality control (QC), we applied RNA velocity analysis
to the remaining 601 genes (see “Methods”). Ideally, cells sampled
from steady-state/mature-state populations should lack dynamic
information, as the mRNA levels of these cells have already equili-
brated (Fig. 2a). By collaborativemodeling acrossmultiple genes while
taking into account the noise levels in SDE, SDEvelo detected random
directions betweenmost cell types (Fig. 2b). Whereas scVelo and other
methods detected strong but arbitrary directional patterns, a phe-
nomenon pointed out by other authors27,28 (Fig. 2b; Supplementary
Fig. S4a, upper panel). Using simulated datasets27, we further demon-
strated that SDEvelo could successfully detect the random directions
of cells in nondynamic states, while scVelo and the other methods
estimated strong but erroneous directions (Fig. 2c; Supplementary
Fig. S4b). The heatmap of the inferred latent time from SDEvelo shows
thatmost cells were close to the end of their differentiation, consistent
with the terminal cell types seen among PBMCs (Fig. 2d, left panel).
However, those generated using scVelo and DeepVelo erroneously
show that most cells were at an early stage (Fig. 2d, right panel; Sup-
plementary Fig. S4a, lower panel).

To test if SDEvelo can reduce the number of false-positives for
genes that drive transcription dynamics, we focused on driver genes
identified by scVelo (dyn), includingMYL6, APOBEC3G, and HLA-DRB1.
As most PBMC cells are in steady or mature states, induction and
repression phases are not expected. The projected spliced and
unspliced abundance of these genes showed no clear patterns (Sup-
plementary Fig. S4c), further suggesting there were no strong direc-
tion dynamics in these genes. ScVelo (dyn), however, identified strong
dynamic kinetics with clear trajectories generated from its ODEmodel
between these genes (Fig. 2e, upper panel), while the generated tra-
jectories along latent time by SDEvelo displayed randomness (Fig. 2e,

Fig. 1 | Overview of SDEvelo. a Left panel: the continuous RNA transcription-
splicing-degradation process, illustrating the conversion of DNA transcripts to pre-
mature mRNA u(t) (with transcription rate α(t)), pre-mature mRNA u(t) to mature
mRNA s(t) (splicing rate β), and the eventual degradation (degradation rate γ).
Right panel: a comparison of abundance over time between the deterministic ODE
model and the stochastic SDE model, demonstrating the SDE model’s capability to
capture stochasticity. b Input (upper left): unspliced and spliced matrices are
provided as real data. Generation (lower middle): a nonlinear multivariate SDE
model generates simulated data. Training process (right): the SDE model para-
meters are updated by minimizing the distributional divergence between real and
generated data. Output (lower left): the trained SDE model produces estimated
velocity and cell-specific latent time. c Chart comparing SDEvelo with other
methods, focusing on aspects that include the nonlinearity of transcriptional
dynamic model, the use of a multivariate model to collaboratively consider mul-
tiple genes, modeling with SDE, and robustness to spatial transcriptomics data.

d SDEvelo is capable of visualizing streamline plots with estimated velocity and
latent time heatmapplots. Additionally, SDEvelo can guaranteenegative controls in
mature-state populations, delineate stromal and tumor/normal epithelium (TNE)
boundaries, identify carcinogenesis-related candidate genes, integrate with Cell-
Rank and analyze cell-cell communication. e Comparison between SDEvelo and
scVelo (dyn) in terms of estimated latent time, including KDE scatter plots with the
ground truth line between the estimated and true latent time (left panel) and a
latent time heatmap on the projected PCA space. The arrow indicates the correct
direction along the true latent time, and the circle highlights the inconsistent part
estimated by scVelo (dyn). f For each setting with gene numbers from 100 to 1000,
performance was evaluated using absolute relative ratio errors and Pearson cor-
relation coefficients with ten-fold cross-validation (n = 10 cross-validation repli-
cates per group). Bar plots show mean ± standard deviation (SD) with individual
points. Box plots show median, quartiles, and 1.5 times interquartile range. Source
data are provided as a Source Data file.
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lower panel). We also observed a strong clustered cell-type pattern in
the abundanceof splicedmRNAs along the latent timeestimation from
scVelo (Fig. 2f, upper panel), but this was randomly distributed along
the estimated latent time by SDEvelo (Fig. 2f, lower panel), effectively
preventing the detection of erroneous trajectories inmature-state cell
populations.

Although SDEvelo identified no transitions between most cell
types, a notable within-group trajectory was observed for CD8+ cyto-
toxic T and CD56+ NK cells, potentially driven by cell-cycle mechan-
isms.To investigate this hypothesis,we analyzed the expressionof cell-
cycle genes. The heatmap revealed consistent areas of high expression
in these cell types (Supplementary Fig. S5a), corresponding to velocity
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trajectories. A one-tailed t-test further confirmed the significantly
higher expression of most cell-cycle genes in CD8+ cytotoxic T and
CD56+NKcells compared to other cell types (Supplementary Fig. S5b).
When we divided the cell-cycle genes into subsets and obtained a
heatmap of expression along the inferred latent time (Supplementary
Fig. S5c), we observed a clear pattern of expressional changes along
the latent time estimated by SDEvelo, supporting the presence of a
cell-cycle-driven trajectory within these populations.

SDEvelo correctly infers the dynamics of carcinogenesis in
hepatocellular carcinoma spatial transcriptomcis
We further studied the carcinogenesis dynamics of hepatocellular
carcinoma (HCC) using SDEvelo. The dataset contained two sections
from tumor tissues (HCC1-2) and two from tumor-adjacent tissues
(HCC3-4) generated using the 10x Visium platform, with 2982, 1334,
2732, and 2764 spots, respectively. We applied SDEvelo and other
methods to each of the four sections. The histology images with
manual annotations for tumor/normal epithelium (TNE) and stroma
provided by a pathologist can be seen in Fig. 3a on the first and third
rows. In all sections, the latent time estimated by SDEvelo presented a
pattern similar to the manual annotations, with early stages identified
in the stroma but late stages in the TNE (Fig. 3a, second& fourth rows).
However, the latent time estimated by scVelo and the other methods
presented either no clear patterns or provided reverse latent time data
for TNE and stromal regions (Fig. 3a, second & fourth rows; Supple-
mentary Fig. S6a). Interestingly, using PRECAST group labels42, SDE-
velo correctly detected all carcinogenic transitions from stromal to
TNE clusters in four HCC sections (Fig. 3b). In contrast, scVelo and the
other methods incorrectly detected reverse transitions from the TNE
regions to stromal regions, except UniTVelo for HCC1 and VeloVAE for
HCC2 (Supplementary Figs. S7, S8). To quantitatively evaluate the
correctness of the inferred transitions, we employed cross-boundary
direction correctness (CBDir) for velocity assessment, and the area
under the receiver operating characteristic curve (AUC) and the area
under the precision-recall curve (AUPR) ratio for transition probability
evaluation (see “Methods”). SDEvelo achieved the highest values
across allmetrics (CBDir, AUC, andAUPR ratio), as shown in Fig. 3c and
Supplementary Fig. S9a, b. For the latent time evaluation, weused rank
correlation, for which SDEvelo demonstrated superior performance
across all four HCC sections (Fig. 3d; Supplementary Fig. S9a).

To detect cancer-driver genes, we further correlated the esti-
mated latent time with gene expression. In total, we detected 562
genes with adjusted p-values of less than 0.05 (Benjamini-Hochberg
procedure), many of which were apolipoprotein (APO) genes (Sup-
plementary Data 1). Many APO genes ranked top in positive correla-
tions with latent time (Supplementary Fig. S10a). After visualizing the
expression levels of the top correlated APO genes, we observed sharp
transitions in the tumor-adjacent tissues (HCC3-4), but smooth
expression changes in the tumor tissues (HCC1-2) (Supplementary
Fig. S10b), suggesting these genes have essential roles in carcinogen-
esis dynamics. Using an empirical cut-off value of 0.3 for HCC3-4
(Supplementary Fig. S10b), we observed a substantial number of spots
with estimated latent time between 0.275 and 0.325 that were located

within the boundaries of the annotated stromal and TNE regions
(Fig. 3e), suggesting these detected driver genes potentially play
important roles in carcinogenesis.

Using PINA v3.0, we further constructed a protein-protein inter-
action (PPI) network for the detected cancer driver genes43 (Fig. 3f). A
heatmapof the correlation coefficients between all pairs of interacting
proteins across all cancer types in the Cancer Genome Atlas (TCGA)
dataset44 suggested the strong enrichment of these genes in two
cancers (Supplementary Fig. S10c), liver hepatocellular carcinoma
(LIHC) and cholangiocarcinoma (CHOL), the latter of which occurs
along the biliary tree and is sometimes classified as a type of liver
cancer45. This provides evidence for co-regulation and interactomics
between genes detected in liver-related cancers.

SDEvelo predicts cell fates in mouse embryonic
reprogramming data
To investigate the reprogramming process involved in mouse
embryonic fibroblast (MEF) trajectory toward induced endoderm
progenitors (iEPs), we applied SDEvelo and othermethods to analyze a
mouse reprogramming dataset, consisting of 85, 010 cells and 22, 630
genes, obtained using the 10x Genomics and the Drop-seq platform46.
After QC, we analyzed a total of 2000 highly variable genes. The ori-
ginal studyprovided information on cell annotations that allowedus to
quantitatively evaluate the latent time estimation. We visualized the
days of reprogramming in the cells using two components of PCA for
expression counts (Fig. 4a). The heatmap of the estimated latent time
from SDEvelo closely matched the reprogramming days recorded in
the experiment (Fig. 4b), while those from other methods showed
several velocity transitions or latent time directions thatwere reversed
compared to the reprogramming days (Fig. 4a, right panel; Supple-
mentary Fig. S11a, b). To quantitatively evaluate the performance of
latent time estimation, we calculated Pearson’s correlation coefficients
between the estimated latent time by SDEvelo and othermethodswith
the reprogramming day using five-fold cross-validation. As shown in
Fig. 4c, SDEvelo outperformed the other methods in evaluating the
correctness of the inferred transitions, achieving the highest Pearson’s
correlation coefficients with the smallest variations (upper panel) and
the highest AUC metrics (lower panel). We also estimated the pseu-
dotime using Monocle3,5 and compared it with the reprogramming
days. The aligned heatmap of pseudo-time, latent time, and repro-
gramming days shows that SDEvelo exhibited better performance than
Monocle and scVelo, and had the highest Pearson’s correlation coef-
ficient for the recorded reprogramming days compared with esti-
mated latent time (Fig. 4d).

With annotations from t-SNE clusters, Biddy et al.47 revealed
two distinct trajectories, with one leading to successfully repro-
grammed cells (Clusters 2 → 6 → 1) and the other leading to a
dead-end state (Clusters 8 → 4 → 3). SDEvelo correctly detected
these two distinct trajectories (Fig. 4e, Supplementary Fig. S12a),
in which the expression of MEF and iEP marker genes Col1a2 and
Apoa1 aligned well with the streamline plots for the subsets in the
dead-end and successfully reprogrammed trajectories, respec-
tively (Fig. 4e, left top and bottom panels). By combining gene

Fig. 2 | Negative controls of transcriptional dynamics in mature-state cell
populations (n = 65,877 cells). a Scatter plots of unspliced and splicedmRNAdata,
colored by cell type, for noisy/mature genes in PBMCs. b Streamline plots gener-
ated by SDEvelo and other methods, including scVelo (dyn), VeloVI, and UniTVelo.
SDEvelo displayed random velocities for most cell types, while other methods
identified strong transitions among mature cells. c Upper panel: scatter plots of
simulated noisy/mature genes between unspliced and spliced mRNA data. Lower
panel: streamline plots of velocity estimated by SDEvelo and other methods,
including scVelo (dyn), VeloVI, VeloAE, and DeepVelo. SDEvelo exhibited random
velocities among cells, whereas other methods identified strong, erroneous
directions. d Latent time heatmap for SDEvelo (left panel) and scVelo (dyn) (right

panel). The latent time estimated by SDEvelo was closer to the terminal state than
that by scVelo (dyn), and aligned more consistently with the mature states within
PBMC data. eGenerated deterministic trajectories from scVelo (dyn) (upper panel)
and the stochastic trajectories generated by SDEvelo, colored by the estimated
latent time (lower panel), forMYL6, APOBEC3G, and HLA-DRB1. The color scheme
for cell type and estimated latent time is the same as in (a) and (d), respectively.
f Scatter plots of estimated latent time and spliced abundance from scVelo (dyn)
(upper panel) andSDEvelo (lower panel), colored by cell type. Color scheme for cell
type is the same as in (a). ScVelo (dyn) identified erroneous cell type clusters along
the estimated latent time.
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expression data with inferred velocity and latent time, we
detected the cell macrostates and created a global map of esti-
mated fate potentials for each cell using CellRank38,39 (Supple-
mentary Fig. S12b). The six detected macrostates included two
terminal states (Cluster 1 for successfully reprogrammed cells and
Cluster 3 for a dead-end state; Fig. 4e, right middle panel). A

violin plot of latent time showed the temporal order of the
terminal macrostates (Supplementary Fig. S12c). Using CellRank,
we also detected driver genes that regulate fate decision in the
differentiation of from MEFs to iEPs and accurately predicted
both dead-end and successfully reprogrammed lineages (Fig. 4e,
right top/bottom panel; Supplementary Fig. S12d, e). These genes
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included the MEF marker Col1a2 (Supplementary Fig. S12d) and
the iEP marker Apoa1 (Fig. 4e, right bottom panel).

SDEvelo accurately recognized known transitions between cell
subtypes in mouse erythroid data
We analyzed a mouse gastrulation erythroid dataset generated using
the 10x Genomics platform48 consisting of 9815 cells and 53,801 genes.
Using UMAP, Pijuan-Sala et al.48 identified sub-clusters of blood pro-
genitors 1 and 2 (BP1 and BP2) and erythroids 1-3 (Ery1-Ery3) and
revealed the transitions between these cell subtypes, allowing us to
evaluate the performance of the detected directionality by taking the
annotated transitions as ground truth. We first drew up the stratified
histograms of the unspliced and spliced transcripts for each cell type
for the selected genes after QC (Supplementary Fig. S13a), and
observed correlated patterns between the transcript abundances and
cell types throughout erythroid differentiation. For each method, we
summarized the velocity-based streamlines and latent time heatmaps
along erythroid differentiation and visualized them on embeddings
from UMAP (Fig. 5a, b; Supplementary Figs. S13b; S14a). The resulting
SDEvelo streamlines showed the differentiation of blood progenitors
into terminal erythroid states and were smoother and more coherent
across these cell subtypes than the streamlines of other methods
(Fig. 5a; Supplementary Fig. S13b). Strikingly, using the estimated
latent time, SDEvelo recovered accurate transitional patterns using a
smooth sigmoid function for the transcription rate (Fig. 5b). In con-
trast, scVelo identified erroneous directions in the transcriptional
dynamics because of its inability to account for the expression boost
problem possibly induced by a change in transcription rate27,49.

As a generative model that uses sigmoid functions for the tran-
scription rates and a cell-specific latent time, SDEvelo is capable of
generatingflexible andgeneralizable trajectories for a specific gene. As
shown in Fig. 5c, SDEvelo generated trajectories when transcriptional
boost or a reversed direction was present along the estimated latent
time for thedifferentiationprogression.Heatmapsof expression levels
showed that Redrum and Svbp were highly expressed in Ery1-Ery3
(Fig. 5d), while Prtg and Runx1 were highly expressed in BP1 and BP2
(Fig. 5d), consistent with the abundance results generated by SDEvelo.

To reveal the progress of erythroid differentiation, we further
applied SDEvelo to prioritize genes related to the estimated latent
time. The expression levels of the top genes correlated to the SDEvelo-
solved dynamics showed clear transitional patterns along the esti-
mated latent time (Fig. 5e). Among these genes were Ezh2, which
regulates cell proliferation and differentiation via histone
methylation50; the transcription factorTead2, whichplays a pivotal role
in cell differentiation, proliferation, and development51; and Hells,
which is involved in chromatin remodeling, a process essential for the
transcriptional regulation of genes during differentiation52. Further
analysis showed that these genes were significantly enriched in many
pathways related to erythroid differentiation (Fig. 5f; Supplementary
Fig. S14b), such as the positive regulation of cell population pro-
liferation and erythrocyte differentiation.

We alsoperformed a cell-cell communication (CCC) analysis40,41 of
these prioritized genes and detected important ligand-receptor

interaction pairs. Specifically, we identified BP1-2 cells as the senders
and Ery1-3 cells as the receivers in the following key ligand-receptor
interactions: Tgfb1-Itgb1, Mdk-Sdc1/Ncl, and Lgals1-Itgb1 (Fig. 5g; Sup-
plementary Fig. S15a). Among these were Tgfb1-Itgb1, which plays a
role in modulating cell adhesion and migration53,54, and the growth
factor Mdk, which interacts with Sdc1 and Ncl, indicating their invol-
vement in cell growth and migration processes55. Visualizing the
expression levels of the pairs of interacting ligand-receptors, we
observed synchronous variation within the pairs along the estimated
latent time (Supplementary Fig. S15b). Summarizing the overall inter-
action intensity indicated the directed of the interactions was from
BP1-2 to Ery1-3 (Fig. 5h; Supplementary Fig. S14c), providing insights
into the interactions relevant to erythroid maturation.

Discussion
As a result of our work, we propose the use of SDEvelo for quantifying
RNA velocity for multiple genes simultaneously in a manner governed
by cell-specific latent times. Unlike methods that model the RNA
velocity of each gene with gene-specific latent time using univariate
ODE, SDEvelo explicitly models the RNA velocity of multiple genes
governedby the cell-specific latent timewhile considering the inherent
stochastic nature of the dynamics that account for the randomness of
biological processes during transcription using SDE. Moreover, SDE-
velo uses nonlinear but differentiable sigmoid functions for the tran-
scription rate to gradually and smoothly model expression changes,
instead of using indicator functions that show instant changes. All
these considerations mean SDEvelo provides reliable and robust
velocity and latent time estimations.

Conventionally, solving SDE requires temporal information for
each data point, which is largelymissing from sequencing data. Taking
advantage of the successes of both deep generative models and
adversarial learning, SDEvelo infers all parameters via a strategy that
minimizes the divergence between the real input data and the data
generated by the SDE model. In the data-generation steps, the Euler-
Maruyama method is used to discretize the continuous SDE process
and generate trajectories based on the current model.

With a PBMC dataset and simulations, we demonstrated that
SDEvelo can mitigate the long-standing problem of the erroneous
directions inferred by existingmethods formature-state cells. In cells
sampled from populations in mature states, we expect to observe a
noisy velocity field without a clear direction. Among the PBMC and
simulated datasets, only SDEvelo estimated a noisy, directionless
velocity field, while the others erroneously inferred particular
directions within the t-SNE representation. Additionally, SDEvelo is
applicable to datasets generated using various sequencing-based
technologies, including sequencing-based spatial transcriptomics
data of low depth. From a dataset of four HCC sections generated
using 10x Visium, SDEvelo correctly estimated the velocity directions
and latent times in both tumor and tumor-adjacent tissues, facil-
itating the detection of cancer driver genes in HCC, as well as con-
structing a PPI network. Further analysis of pairwise correlations
between these genes suggested their strong enrichment in liver-
related cancers.

Fig. 3 | Analysis of HCC data with spatial transcriptomics (n = 9, 812 spots).
a First and third rows: H& E images and manual annotations by a pathologist of
tumor and tumor-adjacent tissue sections. Second and fourth rows: estimated
latent time heatmap for SDEvelo and scVelo (dyn). SDEvelo identified clear gradual
latent time transitions from stroma to TNE, while scVelo failed to obtain a clear and
correct pattern thatmatched the annotations.b PCA-projected streamline plots for
four human HCC samples. Clusters 1-5 represent TNE regions and clusters 6–9 are
stromal regions. c Boxplots of cross-boundary direction correctness (CBDir) and
AUC used to compare SDEvelo with other methods (n = 4 HCC sections biological
replicates). Higher CBDir and AUC indicate better performance in terms of velocity
estimatesmore consistent with the biological transitions. In the boxplot, the center

line, box lines and whiskers represent the median, upper, and lower quartiles, and
1.5 times interquartile range, respectively. Source data are provided as a Source
Data file. d Heatmaps of rank correlation across four HCC sections to benchmark
the performance of all methods. A higher Spearman rank correlation suggests that
the estimated latent time is more consistent with the true transitions. Source data
are provided as a Source Data file. e Estimated latent time heatmap for SDEvelo in
tumor-adjacent tissue sections, with spots whose latent time values are between
0.275 and 0.325 highlighted. The highlighted spots delineate a clear boundary
between the stromal and TNE regions. f PPI network among TTR, APOC1, APOA1,
APOE, APOC3, and C3, in which the connections represent significant interactions
between the corresponding proteins.
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SDEvelo provides a systematic solution for the rapidly
developing area of RNA velocity. First, although SDEvelo can be
applied to spatial transcriptomics data, it does not model spatial
information explicitly. The desired velocity method should
account for both spatial locations and various spatial resolutions.
Secondly, it would be interesting to apply the computational

framework of SDEvelo to the integration of other modality data
within single-cell genomics with a time-dependent transcription
rate. Thirdly, a robust computational framework for RNA velocity
that accounts for batch effects is needed, particularly when ana-
lyzing a vast number of cells originating from multiple hetero-
geneous batches.
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Methods
Modeling Stochastic Kinetics with SDEvelo
As in conventional RNA velocity analyses, the transcriptional kinetics
for each gene were modeled by a deterministic and gene-gene-
independent ODE system,

duðtÞ
dt

=αðtÞ � βuðtÞ, dsðtÞ
dt

=βuðtÞ � γsðtÞ: ð2Þ

TheODE systemdelineates the dynamics of unspliced transcripts, u(t),
and spliced transcripts, s(t), over time. The transcription rate, denoted
by α(t), is commonly approximated by a step-wise indicator
function14,15. β and γ represent the scalar parameters for the rates of
splicing and degradation, respectively. However, this ODE-based
model has three limitations: (1) It delineates a deterministic process
that cannot capture the intrinsic randomness of transcriptional
dynamics; (2) The step-wise transcription function is non-
differentiable and suggests an intermediate transition between
induction and repression phases; and (3) The univariate system of
ODE equations models the transcriptional dynamics for each gene
independently, without consideration of the interactive regulatory
pathways acting across multiple genes.

Here, we present a model overview of SDEvelo, and further details
are available in the Supplementary Notes. Consider the multivariate
state variables U(t) and S(t) in all p genes, which represent the dynamics
for unspliced and spliced transcripts, respectively, over a cell-specific
latent time t. With p genes, we assume the corresponding p-dimensional
vectors for transcription rates, splicing rates, and degradation rates
αðtÞ= ðαðtÞ1, . . . ,αðtÞpÞ>, β = ðβ1, . . . ,βpÞ>, and γ = ðγ1, . . . , γpÞ>. SDE-
velo employs a multivariate SDE model across multiple genes collec-
tively, with this modeling governed by a unified cell-specific latent time.
Without loss of generality, we assume t∈ [0, 1] describes a finite period,
and SDEvelo models the unspliced and spliced transcripts, U(t) and S(t),
respectively, as in Eq. (1), with a Wiener process that accounts for both
the intrinsic and extrinsic noises of unspliced and spliced transcripts.
Within the SDE framework, SDEvelo is a stochastic model that incor-
porates intrinsic noise into the velocity estimation. In contrast, other
methods use deterministic ODE without accounting for this intrinsic
noise. From a mathematical perspective, the key difference lies in the
velocity calculation, where other methods use deterministic ODE, SDE-
velo employs SDEs with an additional stochastic term to account for the
random nature of transcriptional dynamics.

For transcription functionα(t),we consider differentiable sigmoid
functions to avoid describing intermediate transitional states between
two phases,

αðtÞi =
ci

1 + expfbðt � aiÞg
, i= 1, . . . ,p, ð3Þ

where a= ða1, . . . ,apÞ> is a vector of the switch time points,
c = ðc1, . . . , cpÞ> is a vector of the transcription rates of all p genes, and
b is the hyperparameter used to tune the shape of the sigmoid
function.

Adversarial learning parameters
In practice, resolving multivariate ODE/SDE remains challenging. Most
univariate ODE-basedmethods utilize the EM algorithm to infermodel
parameters, for which the explicit solutions of ODE are essentially
required during iterations15,17,22. However, for nonlinearly coupled
multivariate SDE, it is difficult to obtain explicit solutions. SDEvelo
estimates the model parameters by adversarially comparing real and
generated data from the SDE, and the Euler-Maruyama method56,57 is
used to discretize the continuous SDE process and generate trajec-
tories from the current iteration. The parameters are updated by sto-
chastic gradient descent, minimizing divergence loss with the
incorporation of the transcription/splicing/degradation rate, as well as
the noise levels that characterize both the extrinsic and intrinsic
stochasticity.

The flowchart for estimating the parameters in SDEvelo is dis-
played in Fig. 1b. SDEvelo adversarially estimates the parameters for
the combination of stochastic gradient descent and generative
modeling by minimizing the divergence between the distributions
obtained from real data and those from SDE-generated data using the
maximummean discrepancy (MMD)58,59, for which the core functions
of SDEvelo are in line with the generative adversarial networks of
deep learning60.

To generate trajectories from SDE, we used the Euler-Maruyama
method56,57 to obtain the discretized observations from the continuous
diffusion process as

Uðt +ΔtÞ = UðtÞ+ c
1 + expðb�ðt�aÞÞ � β� UðtÞ

� �
Δt +σ1

ffiffiffiffiffiffi
Δt

p
Z 1,

Sðt +ΔtÞ = SðtÞ+ ðβ� UðtÞ � γ � SðtÞÞΔt +σ2

ffiffiffiffiffiffi
Δt

p
Z2,

ð4Þ

whereZ 1,Z2 � N ð0, 1Þ. We denoted the set of unknown parameters as
Θ= a, c,β, γ,σ1,σ2

� �
, which dominates the generated trajectories of

the transaction process. We estimated Θ by minimizing the empirical
MMD objective with the kernel trick58,59,

LMMD2 ðΘÞ = 1

Ng
2

XNg

i= 1

XNg

i0 = 1

k giðΘÞ,gi0 ðΘÞ� �� 2
NgNr

XNg

i= 1

XNr

j = 1

k giðΘÞ, rj
� �

+
1

Nr
2

XNr

j = 1

XNr

j0 = 1

k rj, rj0
� �

:

ð5Þ

The divergence measures the discrepancy between two datasets: the
first consists of Ng cell samples, GðΘÞ= fgiðΘÞgNg

i = 1, generated from SDE
trajectories; the second comprises Nr real cell samples, R= frjgNr

j = 1,
where each gi 2 R2p is a concatenated vector of unspliced and spliced
data for p genes in cell i, and each rj 2 R2p represents the real data for

Fig. 4 | Analysis of mouse embryonic reprogramming data (n = 85, 010 cells).
a Streamline plots from SDEvelo and scVelo (dyn) on projected PCA space, with
each cell colored according to reprogramming days, ranging from 0 to 28.
b Heatmap of the estimated latent time by SDEvelo on projected PCA space,
showing consistency with reprogramming days. c Bar plots comparing SDEvelo
with other methods (n = 5 cross-validation replicates). Upper panel: Pearson cor-
relation coefficients between estimated latent time and reprogramming days. Bar
plots show mean± standard deviation (SD) with individual points. Lower panel:
mean and standard deviations of AUC values quantifying the correctness of infer-
red transitions. Source data are provided as a Source Data file. d Comparative
alignment heatmap of time estimates scaled from 0 to 1: latent time estimated by
SDEvelo, true reprogramming days, Monocle’s estimated pseudotime, and latent
time estimated by scVelo (dyn). Pearson correlation coefficients are calculated
between each method’s time estimate and the true reprogramming days. eMiddle
left panel: overall streamline plot from SDEvelo in PCA space, visualized using a

subset of 5000 cells for improved clarity. Top left panel: subset streamline plot
illustrating SDEvelo’s identification of a dead-end trajectory spanning from Cluster
8 to 4 to 3,marked by the expression of theMEFmarker gene Col1a2. The heatmap
of estimated latent times on the PCAmanifold illustrates the temporal progression
within identified trajectories. Bottom left panel: subset streamline plot focusing on
clusters 1, 2, and 6 within the PCA space and showcasing SDEvelo’s tracing of a
reprogramming trajectory fromCluster 2 to 6 to 1, characterized by the expression
of the iEPmarker geneApoa1. The corresponding heatmapof estimated latent time
provides a visualizationof temporal dynamics of the PCAmanifold for the specified
cluster subset. Right panel: After integrating the latent time and velocity estimated
by SDEvelo with gene expression analyzed by CellRank, clusters 3 and 1 were
identified as terminal states. The gene expression heatmap for top genes associated
with the dead-end and reprogramming trajectories. The color scheme for latent
time is the same as that used in (b).
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the corresponding cell. In the kernel trick, we chose the Gaussian
kernel k x, x0ð Þ= PK

q= 1 exp � 1
2wq

∣x � x0∣2
� �

, combining different band-
width parameters wq. Since the MMD loss (5) is differentiable, we
applied stochastic gradient descent tominimize the loss of function (5)
and estimate parameters Θ61,62. Thus, the computational framework is
scalable and applicable to both CPU and GPU platforms.

With the proposed optimization strategy, the overall computa-
tional framework of SDEvelo is illustrated in Fig. 1b, consisting of four
main steps. The process begins with the input of unspliced and spliced
gene profiles, which serve as the real data during the training process.
In the generation step, the nonlinearmultivariate SDEmodel produces
simulated data by numerically integrating the SDE using the Euler-

Article https://doi.org/10.1038/s41467-024-55146-5

Nature Communications |        (2024) 15:10849 11

www.nature.com/naturecommunications


Maruyamamethodwith the current parameter estimatesΘ. During the
training process, the SDE model parameters Θ are updated by mini-
mizing the distributional divergence between the real and generated
data. Specifically, we compute the MMD objective function (5) to
quantify the distributional discrepancy between the two data sources.
Finally, with the trained parameters, SDEvelo outputs the estimated
velocities and the cell-specific latent time. Through this iterative pro-
cedure, SDEvelo can accurately capture the underlying transcriptional
dynamics by continuously updating its parameters to match the
observed data. Further details on the implementation are provided in
the Supplementary Notes.

Estimation of latent time
To infer latent time in SDEvelo, we used the estimated SDE with these
generatedpoints. Indetail, wefirst generated trajectories from the SDE
with the inferred parameters. Then, using the idea of optimal
transport63,64, we matched the generated trajectories with the real
observed data.

We used G(Θ) to denote the trajectories generated from SDEvelo
using the inferred parameters Θ, with R for the observed data.
Assuming that each point gi(Θ) ∈ G(Θ) is governed by a time ti in
SDEvelo, we aimed to identify a bijection ϕ: G(Θ) → R that minimizes
the total cost of transportation. Formally, this can be defined as fol-
lows:

ϕ* = argmin
ϕ:GðΘÞ!R

XNg

i = 1

∣giðΘÞ �ϕðgiðΘÞÞ∣2, ð6Þ

where ∣�∣2 denotes a squared Euclidean distance. After obtaining the
optimal bijectionϕ* with Sinkhorn-Knoppmatrix scaling algorithm65,66,
each observed point ri = ϕ(gi(Θ)) was assigned a latent time ti from its
corresponding generated point gi(Θ). By estimating the cell-specific
latent time across multiple genes, SDEvelo can reveal the temporal
progression of cell differentiation processes.

Downstream analyses
GOenrichment analysis. We conducted GO enrichment analysis of
each gene set selected by SDEvelo using the GOATOOLS library in
Python67. This enrichment analysis, based on Fisher’s exact test
complemented by the Benjamini-Hochberg method for multiple
test correction, aimed to identify significant GO terms within the
gene set, with the significance threshold set at 0.05. The ontology
analysis was implemented within the context of biological pro-
cess (BP), cellular component (CC), and molecular function (MF),
providing insights into the functional characteristics of the input
gene set.

CellRank analysis. We utilized CellRank implemented in the Python
package cellrank to combine the estimated RNA velocity and latent

time fromSDEvelo with RNA expression in high-dimensional space38,39.
To be specific, this multi-faceted information was integrated into the
kernel-induced cell-cell transition matrix with equal weighting. Cell-
Rank coarse-grained the cell-level information to the macrostate level
using the generalized perron cluster cluster analysis (GPCCA) algo-
rithm with function cr.estimators.GPCCA(). We further used
predict_terminal_states() to identify the terminal states. With
simulated random walks, the fate probabilities on the Markov chain
were computed with function compute_fate_probabilities() to
predict the cellular fates. Finally, we prioritized driver genes by cor-
relating the calculated fate probabilities with gene profiles with func-
tion compute_lineage_drivers().

Cell-cell communication analysis. After prioritizing the genes asso-
ciated with inferred latent time from SDEvelo, we performed cell-cell
communication analyseswith LIANAusing the Python lianapackage to
infer the ligand-receptor interactions41. Specifically, we utilized Cell-
PhoneDB method40 to calculate the ligand-receptor scores with
cellphonedb() and resource_name='mouseconsensus' func-
tional settings. The permutation-based p-values were used to ascertain
the interaction specificity, with a significance threshold of 0.05.

Protein-protein interaction analysis. We further investigated the
protein-protein interactions within the putative driver genes on the
protein interaction network analysis (PINA) platform43,68,69 of https://
omics.bjcancer.org/pina/. We used the network construction func-
tion to explore known interactions. Then, we conducted network
analysis to calculate the Spearman correlation coefficients for
expression between proteins pairs across cancer types from TCGA
dataset44.

Comparisons of methods
We performed extensive comparisons between the performance of
SDEvelo and existing methods in both simulated and real data
analyses.

To evaluate the performance of SDEvelo, we used the following
RNA velocity methods as benchmarks: (1) Velocyto14 implemented in
the Python package scvelo15 utilizing the scvelo.tl.velocity()
function with the mode='deterministic' on default settings; (2)
scVelo (stc)15 implemented in the Python package scvelo and applying
the scvelo.tl.velocity() function with mode=‘stochastic’ on
default settings; (3) scVelo (dyn)15 implemented in the Python pack-
age scvelo (0.2.5) utilizing the scvelo.tl.velocity() function
with the mode=‘dynamical’ and the scvelo.tl.recov-
er_dynamics() on default settings from https://scvelo.
readthedocs.io/en/stable/index.html; (4) VeloAE16 implemented in
the Python module veloproj, employing the function main_AE() on
default settings from https://github.com/qiaochen/VeloAE/tree/
main; (5) UniTVelo19 implemented in the Python package unitvelo
(0.2.5.2) and applying the function utv.run_model() with the

Fig. 5 | Analysis of mouse gastrulation erythroid data (n = 9, 815 cells).
a Streamline plots of SDEvelo and scVelo (dyn) on the projected UMAP. SDEvelo
successfully identified the correct transitions, while scVelo (dyn) estimated messy
directions. b Heatmap of the estimated latent time for SDEvelo and scVelo (dyn).
SDEvelo accurately estimated latent times that matched the differentiation pro-
gression, whereas scVelo (dyn) estimated reversed latent times. c Scatter plots of
unspliced and spliced data with trajectories generated by SDEvelo, colored by
estimated latent times from SDEvelo. Left panel shows genes with transcriptional
boosts, and right panel shows genes with reversed directionality. d Gene expres-
sion heatmaps in UMAP space for selected genes. e Expression heatmaps along the
estimated latent time from SDEvelo for prioritized genes. The color scheme for the
cell type and estimated latent time is the same as in (a) and (b), respectively.
f Bubble plot of Gene Ontology (GO) enrichment analysis within the contexts of
biological process (BP), cellular component (CC), and molecular function (MF).

Bubble size represents the number of genes in each GO term, and gray shadows
indicate insignificant GO terms. The enrichment analysis was performed using two-
tailed Fisher’s exact test, with p-values adjusted for multiple testing using the
Benjamini-Hochberg false discovery rate (FDR) method. Source data are provided
as a Source Data file. g Dot heatmap of ligand-receptor interactions from cell-cell
communication (CCC) analysis. The size of each dot indicates themagnitude of the
interaction, and the color of the dots represents permutation-based p-values. Sta-
tistical significance was assessed using one-tailed permutation tests (P = 1000
permutations) based on aggregated expression values (using Tuckey’s TriMean),
with p-values calculated as the fraction of permuted values exceeding the observed
values. Source data are provided as a Source Data file. h Chord chart summarizing
the number of interactions between different cell subtypes, with connections
between blood progenitors and erythroids highlighted.
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default configuration file from https://github.com/StatBiomed/
UniTVelo; (6) DeepVelo26 implemented in the Python package deep-
velo, employing the function deepvelo.train() on default settings
from https://github.com/bowang-lab/DeepVelo; (7) VeloVI21 imple-
mented in the Python package velovi (0.2.0) and applying the func-
tion vae.train() with default settings from https://github.com/
YosefLab/velovi; (8) Dynamo37 implemented in the Python package
dynamo and applying the function dynamo.tl.dynamics() with
default settings from https://dynamo-release.readthedocs.io/en/
latest/index.html; (9) VeloVAE17 implemented in the Python module
velovae and employing the function velovae.vae.train() with
default settings from https://github.com/welch-lab/VeloVAE.

Evaluation metrics
We evaluated the performance of themethods’ ability to infer the RNA
velocity in both the simulated and the real datasets. For the simula-
tions, we directly compared the estimated parameters with the
underlying true ones via either ratio errors or their Pearson’s correla-
tion coefficients. In the real dataset, we quantified the resemblance of
the predicted flowdirectionswith relevant celltype lineage established
in biological studies using cross-boundary direction score, correct
directions, and in-cluster coherence.

Ratio errors For a given gene i, the steady-state ratio,
defined as the ratio of the degradation rate (γi) to the splicing rate
(βi), can be used to infer the velocity14,15,18. In simulations, the true
values of the degradation rate (γ) and the splicing rate (β) were
known. To quantify differences between the estimated steady-
state ratios and the underlying true ones, we used the metric of
ratio errors by evaluating the average absolute difference
between them, as follows:

Ratioerrors =
1
p

Xp
i = 1

γ̂i
β̂i

� γi
βi

					
					

					
					
1

,

where ∥ ⋅ ∥1 is the L1-norm, p is the number of genes, γi and βi are the
true degradation and splicing rates, and γ̂i and β̂i are their corre-
sponding estimates from the RNA velocity method. A lower value of
ratio errors suggests a better estimation of the steady-state ratios with
improved accuracy in RNA velocity.

Pearson’s correlation coefficients in latent time SDEvelo con-
siders and estimates a cell-specific latent time across multiple genes
for a single cell/spot.Wedenoted t*j 2 ½0, 1� as the estimated latent time
for cell j and t* = ðt*1, . . . , t*nÞ

>
as the estimated latent time vector for all

n cells/spots. In the simulations, we computed Pearson’s correlation
coefficients for the relationship between the estimated latent time and
the true ones. A larger value of Pearson’s correlation coefficient sug-
gested a better estimation of latent time.

Cross-boundary direction correctness score For real data, it is
not possible to compare the estimatedparameters and latent timewith
the ground truth. By taking the known transitions and established flow
directions among cell (sub)types as ground truth, we gauged the
accuracy of the inferred velocity via CBDir16,19. We denoted the set of K
known transitions between cell types as T = fðA1,B1Þ, . . . , ðAK ,BK Þg,
whereAk andBk represent a source and target cell cluster, respectively,
for the known transition k, and K as the total number of known tran-
sitions. The CBDir metric assesses the directional correctness of the
known cell-type transitions, as follows:

CBDir =
1
K
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where νj is the velocity vector of cell j, d j, j0 represents the low-manifold
difference in position vectors between cell j and its neighbor j0, and
N ðjÞ denotes the neighborhood of cell j. The higher the CBDir

measured, the better the performance in inferring anRNA velocity that
aligns with the given directions.

Simulation settings
Simulated data from ODE model In this scenario, we adopted the
ODE-based simulation settings from27. The simulation was carried out
using the scvelo.datasets.simulation function in the Python
module scvelo15. Specifically, the datasets were simulated with 500
cells, each containing 100, 500, and 1000 genes, and Gaussian noise
was added to mimic external variability. The parameters included
constant rates for transcription (α = 5), splicing (β = 0.3), and degra-
dation (γ=0.5). The population of unsplicedmRNAmolecules at time τ
(denoted u(τ)) is described by the following differential equation:

uðτÞ=u0e
�βτ +

α
β

1� e�βτ
� �

: ð8Þ

Here, u0 denotes the initial abundance of unspliced mRNA. The
population of spliced mRNA molecules at time τ (denoted s(τ)) is
modeled by:

sðτÞ= s0e�γτ +
α
γ

1� e�γτ
� �

+ c e�γτ � e�βτ
� �

, ð9Þ

where s0 is the initial abundance of spliced mRNA, and c= α�u0β
γ�β . The

time events are from a Poisson process, and switching time points are
obtained as fractions [0.1, 0.4, 0.7, 1] of the maximum time.

Simulated data from SDE model Gene-expression dynamics
within single cells are subject to intrinsic stochastic fluctuations and
inter-cellular heterogeneity. Therefore, we used SDE-based model to
simulate the temporal variations of gene profiles across multiple sto-
chastic trajectories.

The state of expression of each gene i in trajectory k at time t is
characterized by the levels of unspliced mRNA, Ui,k(t), and spliced
mRNA, Si,k(t). Given a time step Δt, the discretized versions of the
equations for Ui,k(t) and Si,k(t) at the m-th time step, tm, are:

U i, kðtm+ 1Þ=U i, kðtmÞ+
ci

1 + expð�bðtm � aiÞÞ
� βiU i, kðtmÞ

� �
Δt + σ1, i

ffiffiffiffiffiffi
Δt

p
ξ 1, i, kðmÞ,

ð10Þ

Si, kðtm+ 1Þ= Si, kðtmÞ+ βiU i, kðtmÞ � γiSi, kðtmÞ
� �

Δt + σ2, i

ffiffiffiffiffiffi
Δt

p
ξ2, i, kðmÞ,

ð11Þ
where ai and ci represents the switch point and transcription rate,
respectively; βi and γi are the gene-specific rates of splicing and
degradation, respectively; ξ1,i,k(m) and ξ2,i,k(m) are independent
samples drawn from a standard normal distribution and represent
the contribution of discretized noise contributions to the
unspliced and spliced mRNA dynamics, respectively, at the m-th
time step; and Δt is the discrete time step size used for the
numerical integration by the Euler-Maruyama method56,57. All
parameters were sampled from uniform distributions. More
detailed information regarding SDE and branching settings can
be found in the Supplementary Notes.

Datasets and preprocessing
We applied SDEvelo to four publicly available scRNA-seq and
spatial transcriptomics datasets, as detailed in the ‘Data avail-
ability’ section. These datasets included human HCC Visium
data42, human PBMCs15,27, mouse embryonic reprogramming38,
and mouse erythroid data15 collected using 10x technology. For
each dataset, we adhered to the default gene and cell filtering
steps15, employing scv.pp.filter_and_normalize(adata,
min_shared_counts=20, n_top_genes=2000) followed by
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scv.pp.moments(adata, n_neighbors=30, n_pcs=30) for
preprocessing from https://scvelo.readthedocs.io/en/stable/index.
html. Our SDEvelo software package sdevelo then builds upon this
preprocessed data for subsequent RNA velocity analysis.

Spatial transcriptomics datasets We used HCC datasets origi-
nating from four tissue sections of anHCCpatient. BAMfiles generated
by CellRanger using raw sequence reads were processed with the
velocyto run command to obtain spliced and unspliced read
counts14. Gene expression profiles, featuring 2, 000 highly variable
genes along with cluster annotations from42, were refined through fil-
tering, resulting in datasets with 2, 982, 1, 334, 2, 732, 2, 764 spots, and
1, 985genes, as input for all analyticalmethods. Visualizations included
streamline plots in PCA space and latent time heatmaps for physical
locations. Additionally, a pathologist manually annotated TNE and
stromal regions using Visium’s companion hematoxylin and eosin H&E
images for this dataset.

Single-cell transcriptomics datasets For the PBMC dataset,
publicly available unspliced and spliced counts of 65, 877 cells
and 33, 939 genes, respectively, were filtered, resulting in 601
highly variable genes being selected for analysis. We visualized
the data using a streamline plot on t-SNE. For the reprogramming
dataset, we selected cells with available ‘reprogramming_day’
information, resulting in a subset of 22, 630 genes across 85, 010
cells. After preprocessing, we extracted 2, 000 highly variable
genes for analysis. The data were visualized in PCA space. For the
mouse erythroid dataset, publicly available unspliced and spliced
counts of 9, 815 and 53, 801 were reduced to 9, 815 and 2, 000,
respectively, after the filtering procedure. We visualized these
data using a streamline plot on UMAP.

Statistics & reproducibility
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. The experiments were not rando-
mized. The Investigators were not blinded to allocation during
experiments and outcome assessment.

To reproduce the results presented in this paper, the demo code
with default parameters is available at our GitHub repository: https://
github.com/Liao-Xu/SDEvelo.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets utilized in this study are publicly accessible. The processed
PBMCs dataset15,27 is available through scv.datasets.pbmc68k().
The processed mouse embryonic reprogramming dataset38 can be
retrieved from cr.datasets.reprogramming_morris(). Access to
the processed mouse erythroid data15 is provided by scv.data-
sets.gastrulation_erythroid(). The raw FASTQ data for the
human HCC Visium datasets42 can be found at https://www.ncbi.nlm.
nih.gov/sra?linkname=bioproject_sra_all&from_uid=858545, while the
H&E images are accessible at https://doi.org/10.6084/m9.figshare.
21280569.v1 and https://doi.org/10.6084/m9.figshare.21061990.
v1. Source data are provided with this paper.

Code availability
SDEvelo70 is freely available as a Python package accessible at https://
github.com/Liao-Xu/SDEvelo(https://doi.org/10.5281/zenodo.
14038380) with detailed tutorials and documentation at https://
sdevelo.readthedocs.io/en/latest/. To facilitate replication of the fig-
ures and results presented in this paper, detailed workflows are pro-
vided as Jupyter notebooks within the GitHub repository and
documentation. Additionally, the latest version of SDEvelo is now
available on PyPI at https://pypi.org/project/sdevelo/.
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