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Topolectrical space-time circuits

Weixuan Zhang 1,2,3, Wenhui Cao1,2,3, Long Qian1,2,3, Hao Yuan1,2 &
Xiangdong Zhang 1,2

Topolectrical circuits have emerged as a pivotal platform for realizing static
topological states that are challenging to construct in other systems, facil-
itating the design of robust circuit devices. In addition to spatial dimension-
ality, synergistic engineering of both temporal and spatial degrees in circuit
networks holds tremendous potential across diverse technologies, such as
wireless communications, non-reciprocal electronics and dynamic signal
controls with exotic space-time topology. However, the realization of space-
timemodulated circuit networks is still lacking due to the necessity for flexible
modulation of node connections in both spatial and temporal domains. Here,
we propose a class of topolectrical circuits, referred to as topolectrical space-
time circuits, to bridge this gap. By designing and applying a time-varying
circuit element controlled by external voltages, we can construct circuit net-
works exhibiting discrete space-time translational symmetries in any dimen-
sionality, where the circuit dynamical equation is in the same form with time-
dependent Schrödinger equation. Through the implementation of topolec-
trical space-time circuits, three distinct types of topological space-time crys-
tals are experimentally demonstrated, including the (1 + 1)-dimensional
topological space-time crystal with midgap edge modes, (2 + 1)-dimensional
topological space-time crystal with chiral edge states, and (3 + 1)-dimensional
Weyl space-time semimetals. Our work establishes a solid foundation for the
exploration of intricate space-time topological phenomena and holds poten-
tial applications in thefieldof dynamicallymanipulating electronic signalswith
unique space-time topology.

Time-periodic driving is a powerful tool for controlling both
quantum and classical systems, offering the potential to facilitate
on-demand dynamical manipulation of material properties and
transcend certain physical limitations inherent in static systems. In
the past few years, significant progress has beenmade in elucidating
the unique properties of representative time-varying systems, such
as the discrete-time crystal1,2, topological pumping3, photonic time
crystals4–6, Floquet topological matters7–16 and others17–22. Recently,
there has been a proposal to extend the separated temporal and
spatial periodicities of crystals to encompass the general (1 + D)-
dimensional space-time translation symmetry23. The system with

discrete space-time translation symmetries corresponds to the
space-time crystal, including both spatial crystals and Floquet
crystals as special cases. Interestingly, it has been demonstrated
theoretically that diverse types of non-equilibrium topological
phases can exist in space-time crystals without spatial
periodicity24–27. For example, a recent theoretical study has sug-
gested a scheme for the realization of (1 + 1)- and (2 + 1)-dimensional
topological space-time crystals protected by ℤ2 and ℤ topological
invariants, where time-dependent drives resembling traveling
waves are introduced24. The constructed topological space-time
crystals exclusively involve a single orbital, distinguishing them
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from previously discovered static or Floquet topological phases
with crystalline structures that require at least two orbitals. Despite
the novel properties and potential applications of Floquet topolo-
gical states with intertwined space-time symmetries, significant
challenges persist in their experimental implementation due to the
intricate requirement of simultaneously modulating systematic
parameters for both spatial and temporal degrees. Thus, exploring
new strategies for addressing these challenges and experimentally
engineering space-time topologies in arbitrary dimensions remains
to be investigated.

On the other hand, building upon the consistency of circuit net-
works and tight-binding lattice models, topolectrical circuits have
emerged as a powerful platform for investigating topological
physics28–67. In contrast to quantum materials and classical-wave
metamaterials, electric circuits can exhibit nonlocal couplings inde-
pendent of spatial dimensions and node distances, enabling reliable
experimental explorations of high-dimensional40–42, non-Euclidean43–46

and non-Abelian47–49 topological states that are hard to be constructed
in other systems. Moreover, due to the availability of versatile circuit
elements such as operational amplifiers, memristive elements, and
multipliers, circuits offer flexible control over various physical prop-
erties that are either absent in natural materials or challenging to
engineer in other artificial structures. This enables the realization of
diverse topological phases with exotic non-Hermitian50–59 and
nonlinear60–64 properties. In addition to the spatial dimensionality,
introducing the temporal modulation into circuit networks can pro-
mote lots of intriguing phenomena that could be used in a range of
technologies, such as 5G wireless communications14,65, non-reciprocal
electronics18, synthetic dimensions66, and topological pumping67.
However, the simultaneous engineering of temporal and spatial
degrees in electric circuits has not yet been reported, leaving the
interplay between space-time symmetries and topological physics
largely unexplored in topolectrical circuits—particularly within
experimental investigations. It is worth noting that space-time-
modulated topolectrical circuits have the capability to manipulate
both the momentum and frequency of electronic signals, offering
space-time reconfigurable functionalities that surpass those of static
topolectrical circuits. Therefore, how to incorporate topological
space-time manipulations into electric circuit networks is a crucial
issue to be resolved.

In this work, we first extend the concept of topolectrical circuits
to the realm of topolectrical space-time circuits and experimentally
implement three types of Floquet topological states with distinct
space-time translational symmetries. Specifically, the midgap edge
modes protected by the generalized particle-hole symmetry have
been directly observed in (1 + 1)-dimensional topolectrical space-
time circuits. Moreover, by constructing two-dimensional circuit
networks with (2 + 1)-dimensional space-time translation symme-
tries, we experimentally observe the chiral propagation of topolo-
gical space-time edge states by measuring the voltage evolution.
Finally, we also theoretically propose the (3 + 1)-dimensional space-
time Weyl semimetal, and experimentally fulfill topological surface
states induced by space-time Weyl points by three-dimensional
topolectrical space-time circuits. Our work establishes a solid foun-
dation for investigating intricate space-time topological phenomena
and holds immense potential for future experimental simulations
involving diverse time-modulated Hamiltonians with exceptional
dynamical properties.

Results
(1+ 1)-Dimensional topolectrical space-time circuits with mid-
gap edge modes
We consider a time-varying one-dimensional latticemodel along the x-
direction, where the coupling strength between two adjacent sites is
dependent on both spatial position and time. The tight-binding

Hamiltonian of our model is written as

H1D x, tð Þ=
X

x2½1, L�
fi J0 + J x, tð Þ� �

ay
xax + 1 +H:c:g ð1Þ

where ay
x (ax) is the creation (annihilation) operator at position x with

lattice length being L. J0 is the time-independent hopping term and
J x, tð Þ=Δ cos½kδðx +0:5Þ �Ωt� corresponds to the time-varying hop-
ping term with a traveling wave profile. In this case, the lattice
Hamiltonian lacks spatial periodicity at any given moment in time.
Instead, the system exhibits a discrete space-time translation symmetry
H x, tð Þ=H x + 1, t + kδ=Ω

� �
, where space and time are coupled, along

with an additional discrete time translation symmetry
H x, tð Þ=H x, t � 2π=Ω

� �
. Thus, our model can be regarded as a (1 + 1)-

dimensional space-time crystal with two space-time translation vectors
Ti= 1, 2 = ðsi, τiÞ being T 1 = ð0, � 2π=ΩÞ and T2 = ð1, kδ=ΩÞ. The corre-
sponding reciprocal vectors Ki = 1, 2 = ðGi, ωiÞ in the momentum-energy
space are K1 = ðkδ ,ΩÞ and K2 = ð2π, 0Þ with si � Gj � τiωj =2πδij . It is
worth noting that our model (as well as the subsequent (2 + 1)- and
(3 + 1)-dimensional cases) represents a specific type of (D + 1)-dimen-
sional space-time crystals, where the system exhibits D discrete space-
time translation symmetries and discrete-time translation symmetry.
Importantly, this discrete-time translation symmetry ensures that only
one nonzero ωi exists in the reciprocal vectors ðGi, ωiÞ, being a
necessary condition for the existence of quasi-energy band gaps24.
Because, for any solution with (k,ω), if there are two nonzeroωi labeled
by ω1 and ω2 in the reciprocal vectors, all states of the form
ðk +nG1 +mG2,ω+nω1 +mω2Þ with n,m∈Z will also be valid solutions.
Sinceω1 andω2 are incommensurate, nω1 +mω2 can approach zero for
largevaluesof jnj and jmj, leading toagapless spectrumofquasi-energy.

By applying the generalized Floquet–Bloch theorem24, the
eigenstate labeled by quasi-momentum kx and quasi-energy ε of the
1D space-time crystal is in the form of ψkx , ε

x, tð Þ= ei kxx�εtð Þμkx , ε
ðx, tÞ

with μkx , ε
ðx, tÞ satisfying the same discrete space-time translation

symmetries to the crystal Hamiltonian. In this case, similar to the
conventional Floquet–Bloch system, the (1 + 1)-dimensional space-
time crystal can also be described by an energy-domain-enlarged
Floquet Hamiltonian in quasi-momentum space. It is noted that both
the enlarged Hamiltonian with respect to the quasi-energy ε=0:5Ω
labeled by Hε=0:5Ω kx

� �
and the low-energy effective Hamiltonian

Hef f kx

� �
of two neighboring Floquet sectors around ε=0:5Ω satisfy

the generalized particle-hole symmetry as ĈHε=0:5Ω kx

� �
Ĉ
�1

=
�Hε=0:5Ωð�kδ � kxÞ* and ĈeHef f kx

� �
Ĉe

�1
= � Hef f ð�kδ � kxÞ* (See

Supplementary Note 1 for details). It should be noted that the
enlarged Hamiltonian Hε =0:5Ω kð Þ is simply obtained by a trivial
energy shift from the original Floquet Hamiltonian H kð Þ, specifically
as H0:5Ω kð Þ=H kð Þ+0:5ΩI . This energy shift does not affect the sys-
tem’s symmetry, and thus, the classification of the space-time
Hamiltonian is independent of the reference energy. Hence,
according to Altland-Zirnbauer topological classification with
symmetries68, the proposed (1 + 1)-dimensional space-time crystal
with particle-hole symmetry belongs to the class D described by ℤ2

topological invariants and is expected to supportmidgap topological
states at ε= ð0:5 +nÞΩ with n =0, ± 1,…, even if the system is non-
crystalline with kδ being an irrational number or L being smaller than
the period with respect to kδ .

We calculate the eigenspectrum of the real-space Floquet
Hamiltonian for the (1 + 1)-dimensional space-time crystal with open
boundaries. Figure 1a presents the quasi-energy spectrum with
L = 31, and other parameters are taken as J0 =0:5Ω, Δ=0:5Ω, and
kδ =0:81π. The color map represents the quantity of
SðεÞ= P

x2edge jϕεðxÞj2=
P

x = ½1, L� jϕεðxÞj2, which characterizes the
strength of the edge localization for eigenmode ϕεðxÞ with quasi-
energy ε. It is clearly shown that the mid-gap topological states
with large-valued SðεÞ exist at ε= ±0:5Ω. The corresponding spatial
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profile is depicted in Fig. 1b, where the strong boundary localization
manifests the presence of topological edge states. To further illus-
trate the phase diagram of (1 + 1) topological space-time crystals, we
calculate the quasi-energy spectrum of the finite chain as a function
of kδ at fixed J0 =0:5Ω and Δ=0:5Ω, as shown in Fig. 1c. The results
show that the midgap space-time edge states emerge within the
range of kδ 2 ½0:59π, 1:41π�, indicating that topological phase tran-
sitions of (1 + 1)-dimensional space-time crystals occur at kδ =0:59π
and 1:41π.

It is noted that the tight-binding lattice model of the (1 + 1)-
dimensional topological space-time crystal only possesses one orbit,
which is different from the previous two-orbital minimal models for
static and Floquet counterparts. The one-orbit nature of the (1 + 1)-
dimensional topological space-time crystal arises from the unique
structure of its energy bands in the enlarged Hamiltonian within the
frequency domain. Specifically, across different Floquet sectors, the
diagonal energy bands of Hε =0:5Ω kx

� �
not only exhibit energy shifts

but also show momentum differences in multiples of kδ . As a result,
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Fig. 1 | Theoretical and experimental results of (1 + 1)-dimensional topolectrical
space-time circuits. a Numerical results of the quasi-energy spectrum for the
(1 + 1)-dimensional topolectrical space-time crystal with J0 =0:5Ω, Δ=0:5Ω,
kδ =0:81π, and L = 31. The colormap quantifies the boundary localization of all
eigenmodes. b The spatial profile of a midgap space-time topological boundary
state at ε=0:5Ω. c The quasi-energy spectra of the finite chains as a function of kδ .
Other parameters are the same as that used in (a).d The schematic diagram for the
implementation of a time-varying INIC connecting two adjacent circuit nodes,
where the external voltage V tð Þ is used to manipulate the detailed time behavior.

e The scheme of the (1 + 1)-dimensional topolectrical space-time circuit. The
position-dependent initial phase φ xð Þ of the external voltage vx x, tð Þ is realized by
an array of signal generators. f The photograph image of the fabricated circuit
sample with L = 11. The inset presents an enlarged view around a single node.
g, hMeasured and simulated voltage waveforms of all nodes in the circuit with red
and black lines showing the results of edge and bulk nodes. i Black and red lines
show FT frequency spectra of measured voltages at boundary and bulk circuit
nodes. j, kMeasured spatial distributions of FT ½V x tð Þ� at f = 267Hz for a bulk mode
and 133.5 Hz for the midgap topological boundary mode.
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two diagonal energy bands of the same orbit from adjacent Floquet
sectors can intersect at specific k-points. When these bands are
effectively coupled through time modulation, a topological band gap
canopen. In contrast, for conventional Floquet systemswith separated
space and time translational symmetry, i.e., kδ =0, diagonal energy
bands from adjacent Floquet sectors do not intersect, preventing the
formationof a topological bandgap. Toopen a topologicalbandgap in
conventional Floquet–Bloch systems, at least two orbits are required.
In this case, bands fromdifferent orbits in adjacent Floquet sectors can
intersect, allowing the off-diagonal block to couple these intersecting
bands and open a topological band gap. The physical origin of one-
orbit (1 + 1)-dimensional topological space-time crystals can be exten-
ded to one-orbit (D + 1)-dimensional topological space-time crystals.

To experimentally realize the topological space-time crystal,
modulating the intricate site couplings in both spatial and temporal
domains is required, which is difficult in either quantum or classical-
wave materials. Motivated by the experimental breakthrough in rea-
lizing topological phases by circuit networks28–67, in the following, we
explore the construction of (1 + 1)-dimensional topological space-time
crystals by topolectrical space-time circuits.

For this purpose, we start to introduce the design of a fundamental
circuit element to achieve effective space-time-modulated coupling.
Figure 1ddisplays the schematicdiagram illustrating the implementation
of a time-varying impedance converter through current inversion (INIC)
connecting two circuit nodes. The corresponding Laplacian matrix is
expressed as (See Supplementary Note 2 for the detailed derivation)

Ia
Ib

� �
=
V tð Þ
20R

1 �1

1 �1

� �
Va

Vb

� �
ð2Þ

where Va and Ia (Vb and Ib) represent the voltage and current at the
circuit node labeled by a (b). V tð Þ=V0 cosðω0t +φÞ is the external
voltage being injected into two analog multipliers, where the transfer
function of the multiplier is Vout tð Þ=Va=b*

V tð Þ
10V with Vout tð Þ being the

output voltage of the multiplier. It is shown that the currents do not
fulfill the reciprocity condition of Ia =�Ib, indicating that our designed
circuit element connecting two nodes can act as a time-varying INIC
controlled by the external voltage.

By utilizing this time-varying circuit element, we can design an
electric circuit (L = 11) to implement the (1 + 1)-dimensional space-time
lattice model of Eq.1, as depicted in Fig. 1e. The voltage Vx can be
mapped to the probability amplitude of the lattice site at position x.
The space-time-invariant hopping can be easily realized by conven-
tional INICs ± 1

R0
, and the space-time-modulated hopping is able to be

fulfilled by time-varying INICs ± vx x, tð Þ
20Rx

, where the external voltages
vx x, tð Þ=V0 cos½ω0t +φ xð Þ� across all circuit nodes possess the same
driving frequency but position-dependent initial phases
φ xð Þ= kδðx +0:5Þ, as presented by the color map in Fig. 1e. In the
experimental implementation, the space-time coupling terms are
controlled by external voltage vx x, tð Þ fed into one port of each mul-
tiplier for the time-varying INIC. Specifically, an array of synchronized
signal generators produces external voltage signals with identical
frequencies and required initial phases. Then, using voltage-con-
trolled, high-time-resolution switches, the external signals vx x, tð Þ and
the initial voltages at each circuit node Vxðt =0Þ are simultaneously
applied to the circuit. In this case, the external voltage of each multi-
plier precisely aligns with the theoretical requirement. This setup
allows us to simulate discrete-time and space-time translation sym-
metries within the experimental circuit system (see “Methods” for
details). Specifically, after a specific time period t =2π=ω0, the cou-
pling strengths across the entire system return to their initial values,
demonstrating a periodic reset of the system. Thus, while the circuit
couplings are continuously modulated, the system returns to its ori-
ginal configuration after each interval of t =2π=ω0, signifying the
discrete-time translational symmetry. Furthermore, the time-varying

circuit couplings also remain invariant under a combination of the
discrete space and time translations. After a time interval t = kδ=ω0,
and shifting all nodes with x ! x � 1, the circuit connection returns to
its initial state, confirming that the system exhibits discrete a space-
time translational symmetry. Moreover, each circuit node is also
grounded with a capacitor C and connects to outputs of adjacent
analog multipliers to ensure the time-invariant onsite potential. In this
case, the voltage dynamical equation of our designed (1 + 1)-dimen-
sional topolectrical space-time circuit can be written as (see Supple-
mentary Note 2 for the detailed derivation)

i
d
dt

Vx = i
vxðx, tÞ
20CRx

+
1

CR0

� 	
Vx + 1 � i

vxðx � 1, tÞ
20CRx

+
1

CR0

� 	
Vx�1 ð3Þ

It is shown that Eq3. possesses the same form as the Schrödinger
equation of (1 + 1)-dimensional topological space-time crystal
i d
dtϕðxÞ= i½J x, tð Þ+ J0�ϕðx + 1Þ � i½J x, tð Þ+ J0�ϕðx � 1Þ, where the voltage
Vx is analogous to the wave function ϕðxÞ. Moreover, the correspon-
dence between tight-binding parameters and circuit elements is deno-
ted by vx x, tð Þ

20CRx
=ω0 = J x, tð Þ=Ω and 1

CR0
=ω0 = J0=Ω. In this case, quasi-

energies of the topological space-time crystal are directly mapped to
quasi-frequencies fð Þ of the topolectrical space-time circuit with
2πf
ω0

= ε
Ω. Consequently, our designed electric circuit can serve as a

practical platform for studying (1 + 1)-dimensional topological space-
time crystals. It is also important to note that the parameter selection
for the designed topolectrical space-time circuit is based on two pri-
mary considerations. Firstly, the parameters must ensure a correspon-
dence between the voltage dynamical equation of the circuit and the
tight-binding Schrödinger equation of the target lattice model. This
informs the choice of capacitance, resistance, position-dependent
phase factor kδ , and external driving frequency, ensuring that the cir-
cuit’s effective coupling parameters mirror those of the theoretical
lattice model. Secondly, the selected parameters must meet the
operational constraints of the active components (such as operational
amplifiers andmultipliers) used in the circuit, specifically their working
frequency ranges and output voltage limits.

We fabricate the designed topolectrical space-time circuit with
C =200nF , R0 =6kΩ, Rx = 1:5kΩ, kδ =0:81π and L = 11, as shown in
Fig. 1f, where white dash blocks enclose couplings between adjacent
nodes. The inset provides an enlarged view of circuit elements con-
nected to two nearby nodes, where a conventional INIC and a time-
varying INIC are applied to fulfill time-invariant and time-varying
couplings. Two AD633 analog multipliers are applied to construct the
time-varying INIC, where the external voltage with a position-
dependent input phase is injected into one input port of each multi-
plier. The amplitude and angular frequency for external voltages are
equal to V0 = 5V and ω0 = 1:67kHz, respectively. In this case, quasi-
frequencies of our designed topolectrical space-time circuit and quasi-
energies (in Fig. 1a) of the topological space-time crystal satisfy the
relationship of 2πf

ω0
= ε

Ω with V0
20CRx

=ω0 =
Δ
Ω =0:5 and 1

CR0
=ω0 =

J0
Ω =0:5. It

should be noted that the tolerance of circuit elements is limited within
only 1% (0.1%) for capacitors (resistors) to prevent detuning of circuit
responses, and circuit parameters are set to be sufficiently large, ren-
dering any influence from parasitic capacitances and resistances in the
circuit sample negligible. Further details on the sample fabrication and
experimental setup can be found in Methods.

To observe (1 + 1)-dimensional topological space-time boundary
states, we first measure the voltage dynamics of all boundary and bulk
circuit nodes with an initial voltage of 2V at all nodes, as shown in
Fig. 1g by red and black lines. The corresponding simulation results by
LTSpice are presented in Fig. 1h. It is evident that voltage waveforms of
all circuit nodes align well with simulations, and the small damping of
experimental voltage signals can be attributed to the loss effect ori-
ginating fromnon-ideal performances of OpAmpandmultiplier. Then,
the Fourier transformation (FT) is performed on measured voltages,
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and the obtained frequency spectra (labeled by FT ½V x tð Þ�) are dis-
played in Fig. 1i. Notably, due to the correspondence between eigen-
equations of space-time crystals and circuits, each peak of FT fre-
quency spectra precisely corresponds to a quasi-mode of the (1 + 1)-
dimensional space-time crystal. In particular, the isolated frequency
peak at f = 0:5ω0

2π = 133.5Hz is matched to the in-gap topological
boundary state with ε=0:5Ω, while multiple frequency peaks ranging
from 0Hz to 61Hz and from 204.23Hz to 265.3 Hz are consistent with
quasi-energies of bulk modes from ε =0 to 0:23Ω and ε=0:77Ω to Ω.
Then, as presented in Fig. 1j, k, we further plot spatial distributions of
absolute values for FT ½V x tð Þ� at f = 267Hz (a bulk mode) and 133.5 Hz
(the midgap topological mode), respectively. We can see that the
spatial profile of FT ½V x tð Þ� shows a strong boundary localization at
f = 133.5 Hz, being consistent with the midgap topological boundary
state. The asymmetric boundary localization around two endpoints
arises from the non-crystalline nature of the space-time circuit. In
addition, the voltage is extended into the bulk region when f = 267Hz,
manifesting the profile of a trivial bulk state. These experimental
results clearly demonstrate the realization of (1 + 1)-dimensional
topological space-time boundary states by topolectrical space-time
circuits. Finally, it is worth noting that the conventional two-orbit
Floquet topological state with separated spatial and temporal trans-
lational symmetries can also be easily realized by setting the initial
phase of external voltage as φ xð Þ=πðx +0:5Þ for our designed topo-
lectrical space-time circuit.

(2+ 1)-Dimensional topolectrical space-time circuits with chiral
edge states
In this part, we extend the (1 + 1)-dimensional topological space-time
crystal to (2 + 1)-dimensional cases to explore the exotic space-time
topology through (2 + 1)-dimensional topolectrical space-time circuits.
The Hamiltonian of our considered (2 + 1)-dimensional topological
space-time crystal is formulated as

H2D x, y, tð Þ=
X

x, y2½1, L�
fi J0 + Jx x, y, tð Þ� �

ay
x, yax + 1, y

� i J0 + Jy x, y, tð Þ
h i

ay
x, yax, y+ 1 +H:c:g

ð4Þ

Here, J0 is the constant coupling strength along the x- and y-
axes. The time-varying coupling terms along x- and y-axes are
Jx x, y, tð Þ=Δ cos½kx

δ x +0:5ð Þ+ ky
δy�Ωt� and Jy x, y, tð Þ=Δ sin½kx

δx +
ky
δðy +0:5Þ �Ωt�. Thus, the Hamiltonian obey the discrete space-time

translation symmetries, defined as H x, y, tð Þ=H x, y, t � 2π=Ω
� �

,
H x, y, tð Þ=H x + 1, y, t + kx

δ=Ω
� �

and H x, y, tð Þ=H x, y+ 1, t + ky
δ=Ω

� �
. In

this case, similar to the (1 + 1)-dimensional space-time crystal, the
(2 + 1)-dimensional space-time crystal can also be described by an
energy-enlarged Floquet Hamiltonian in the 2D quasi-momentum
space. The enlarged Hamiltonian Hε=0:5Ω kx , ky


 �
with respect to

ε=0:5Ω and the low-energy effective Hamiltonian Hef f kx , ky


 �
of

two neighboring Floquet sectors around ε=0:5Ω are both in the class
A without time-reversal, particle-hole, and chiral symmetries68, and
can be characterized by an integer (ℤ) topological invariant (See
Supplementary Note 4 for details). Therefore, the chiral topological
boundary state is able to be constructed in the (2 + 1)-dimensional
space-time crystal with open boundary conditions. Figure 2a pre-
sents the calculated quasi-energy spectrum of the finite lattice model
with L = 15 and other systematic parameters are set as J0 =0:3Ω,
Δ=0:5Ω, and kx

δ = k
y
δ =0:81π. The colormap quantifies the boundary

localization SðεÞ of all eigenmodes. It is clearly shown that gapless
topological boundary states exist within the bulk gap around
ε=±0:5Ω, and the spatial profile of a topological state at ε=0:5Ω is
plotted in Fig. 2c, showing the strong boundary localization. In
addition, we note that the topological boundary states near ε=0:5Ω
and �0:5Ω result from the coupling of two distinct pairs of single-

orbit Floquet energy bands, which differ in both their quasi-energies
and quasi-momenta. To elaborate further, the calculated edge state
dispersion is shown in Fig. 2b, where the x-direction uses periodic
boundary conditions, and the y-direction uses an open boundary
condition with fifteen lattice sites. We find that there are two gapless
topological edge states within each band gap, corresponding to
boundary states localized at the top and bottom edges along the y-
axis. It is worth noting that, due to the space-time translation sym-
metries in the system, the gapless edge states across different Flo-
quet sectors exhibit not only an energy shift ε ! ε +Ω but also a
momentum shift kx ! kx + k

x
δ . This behavior distinguishes these

topological modes from those found in conventional Floquet–Bloch
topological insulators, which do not exhibit such momentum-
dependent shifts. In Supplementary Note 5, we perform numerical
calculations to investigate the temporal evolution of topological
boundary states in the (2 + 1)-dimensional topological space-time
crystal with different sizes. It is found that the chiral propagation of
topological edge states can exist in the system with only five units
along x- and y-directions (see Supplementary Fig. 2). Moreover, we
present the phase diagram of the (2 + 1)-dimensional topological
space-time crystal in (kx

δ , k
y
δ) space with J0 =0:3Ω and Δ=0:5Ω, as

shown in Fig. 2d. In this diagram, the space-time topological phase is
identified by the presence of gapless topological edge states, along
with topological band gaps exhibiting non-trivial Chern numbers for
the enlarged Hamiltonian in momentum space (see Supplementary
Fig. 3 in Supplementary Note 6 for details). Notably, the frequency-
domain formulation of topological invariants, based on the trun-
cated Floquet Hamiltonian69, for periodically driven systems with
separated spatial and temporal translational symmetries can also be
applied to describe topological space-time crystals24. Our results
reveal that the (2 + 1)-dimensional space-time topological states
occur in the region where the absolute values of kx

δ and ky
δ are

approaching π, as illustrated by blue blocks. While, the central
domain corresponds to the gapless region without any band gap.

Next, we turn to the design of a (2 + 1)-dimensional topolectrical
space-time circuit to implement the finite (2 + 1)-dimensional topolo-
gical space-time crystal with chiral edge states. Figure 2e illustrates the
schematic diagram of the (2 + 1)-dimensional topolectrical space-time
circuit. The space-time-invariant hopping is realized by conventional
INIC ± 1

R0
, and the space-time-modulated hopping along x- and y-axis

can be achieved by the external voltage-controlled INICs ± vx x, y, tð Þ
20CRx

and ±
vy x, y, tð Þ
20CRy

, as shown in the right-top inset. Specifically, the external

voltages injected into time-varying INICs along x- and y-axes are in the
form of vx x, y, tð Þ=V0 cos½ω0t +φx x, yð Þ� and vy x, y, tð Þ=V0 sin
½ω0t +φy x, yð Þ�, where the site-independent driving frequency and

amplitude are equal to ω0 = 1:67kHz and V0 = 5V . In addition, the site-
dependent initial phases are expressed as φx x, yð Þ = kx

δ x +0:5ð Þ+ ky
δy

andφy x, yð Þ = kx
δx + k

y
δ y+0:5ð Þ, as displayed by the colormap in Fig. 2e.

The right-bottom inset displays the values of all non-reciprocal and
reciprocal resistances applied in our circuit. In this case, the voltage
dynamical equation of the (2 + 1)-dimensional space-time topolectrical
circuit takes on the same form as that of the (2 + 1)-dimensional topo-

logical space-time crystal as vx x, y, tð Þ
20CRx

=ω0 = Jx x, y, tð Þ=Ω,
vy x, y, tð Þ
20CRy

=ω0 =

Jy x, y, tð Þ=Ω and 1
CR0

=ω0 = J0=Ω (see Supplementary Note 7 for details).

Figure 2f presents the image of the fabricated circuit with white dash
blocks enclosing nearby couplings between two nodes. The inset dis-
plays the enlarged view of the nearby coupling along the y-axis. The
circuit parameters are set as C =200nF, R0 = 10kΩ, Rx =Ry = 1:5kΩ,

kx
δ = k

y
δ =0:81π and L = 5, where the circuit quasi-frequency is related to

the quasi-energy presented in Fig. 2a as 2πf
ω0

= ε
Ωwith

V0
20CRx
ω0

=
V0

20CRy

ω0
= Δ

Ω =0:5

and 1
CR0

=ω0 = J0=Ω=0:3.
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Then, we conduct experimental measurements to detect the
chiral propagation of topological space-time boundary states. In this
setup, initial voltages of 2 Vwere applied to twonodes in the lower-left
and upper-right corners, while all other nodes were set to zero. By
exciting the circuit at these two spatially separated points, we can
effectively demonstrate the chiral propagation of topological states
along distinct boundary regions, with a reduced degree of bulk state
excitation compared to the single-point excitation. The spatial dis-
tributions measured jV x, y tð Þj at t = 0ms, 3.7ms, 6.3ms, and 9.4ms are

plotted in Fig. 2g–j. It is clearly shown that both input voltages on left-
bottom and right-top corner nodes primarily propagate along
boundary nodes in the clockwise direction, demonstrating the chiral
behavior of topological edge states. Meanwhile, small amplitude vol-
tages are observed in the bulk domain during the initial period. This
can be attributed to the relatively weak excitation of trivial bulk states
compared to the topological edge states under the initial voltage
conditions. As a result, the voltage dynamics areprimarily governed by
the chiral boundary propagation, with only minimal interference from

(2+1)-dimensional topolectrical space-time circuits 
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Fig. 2 | Theoretical and experimental results of (2 + 1)-dimensional topolec-
trical space-time circuits. a Numerical results of the quasi-energy spectrum for
the finite (2 + 1)-dimensional topological space-time crystal with J0 =0:3Ω,
Δ=0:5Ω, kx

δ =0:81π, k
y
δ =0:81π, and L = 15. The color map quantifies the boundary

localization of all eigenmodes. b The edge-state dispersion undermixed boundary
conditions, where the periodic boundary condition is applied in the x-direction,
while the open boundary condition with fifteen lattice sites is used in the y-direc-
tion. c The spatial profile of a chiral topological boundary state. d The phase
diagram of the (2 + 1)-dimensional topological space-time crystal in the (kx

δ , k
y
δ)

space. Other parameters are the same as that used in (a). e The schematic diagram
of the (2 + 1)-dimensional topological space-time circuit with L = 5. The right-top
inset presents the structure of the time-varying coupling element, where the color
mapquantifies the position-dependent initial phase of external voltages. The right-
bottom inset shows the values of various grounding INICs and resistors. f The
photograph image of the fabricated circuit sample. The inset displays an enlarged
view of a time-varying INIC along the y-axis. g–j Themeasured spatial distributions
of V x, y tð Þ at t =0, 3.7ms, 6.3ms, and 9.4ms.
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bulk signals. The good consistency between temporal measurements
and simulations of voltage waveforms (see Supplementary Fig. 4 in
Supplementary Note 8) clearly confirms the realization of (2 + 1)-
dimensional topolectrical space-time circuits. Moreover, we note that
our (2 + 1)-dimensional topolectrical space-time circuit can also be
used to directly implement the Floquet-version of Qi-Wu-Zhang
model70 with separated spatial and temporal translational symme-
tries by setting initial phases of the external voltage as
φx x, yð Þ =π x +0:5ð Þ+πy and φy x, yð Þ =πx +π y+0:5ð Þ.

(3+ 1)-Dimensional Weyl-semimetal topolectrical space-time
circuits
In the lastpart, weproposeand investigate the (3 + 1)-dimensional (x, y,
z, t) topological space-time crystal exhibiting Weyl-semimetal physics.
The corresponding Hamiltonian is expressed as

H3Dðx, y, z, tÞ=
X

x, y, z2½1, L�
fi Jxðx, y, z, tÞay

x, y, zax + 1, y, z

h

+ Jy x, y, z, tð Þay
x, y, zax, y+ 1, z + Jza

y
x, y, zax, y, z + 1

i
+H:c:g

ð5Þ

Here, Jz is the constant coupling along the z-axis. Time-varying
coupling terms along the x- and y-axes are in the form of
Jx x, y, z, tð Þ=Δ cos½kx

δ x +0:5ð Þ+ ky
δy+ k

z
δz �Ωt� and Jy x, y, z, tð Þ=

Δ sin½kx
δx + k

y
δðy +0:5Þ+ k

z
δz � Ωt�, which obey four discrete space-

time translation symmetries as Ji x, y, z, tð Þ= Ji x, y, z, t � 2π=Ω
� �

,
Ji x, y, z, tð Þ= Ji x + 1, y, z, t + kx

δ=Ω
� �

, Ji x, y, z, tð Þ= Ji x, y+ 1, z, t + ky
δ=Ω

� �
and Ji x, y, z, tð Þ= Ji x, y, z + 1, t + kz

δ=Ω
� �

with i / x, y: Similar to the
(1 + 1)- and (2 + 1)-dimensional topological space-time crystals, the
(3 + 1)-dimensional space-time crystal can also be described by an
energy-enlarged FloquetHamiltonianHðkx , ky, kz Þ (see Supplementary
Note 9). In this case, under the assumption with relatively weak time-
varying couplings, where the energy overlap only exists between
adjacent Floquet sectors, the low-energy physics around ε= � 0:5Ω
can be determined by the two-band effective Hamiltonian (see
Supplementary Note 9 for details)

where the analytical expression for the quasi-energies
are written as E ± = Jz ½sin kz

� �
+ sinðkz + k

z
δÞ�±

Δ sinðkx +0:5k
x
δÞ

� �2
+ Δ sinðky +0:5k

y
δÞ


 �2
+ Jz sin kz

� �� Jz sinðkz + k
z
δÞ+0:5Ω

� �2r
.

It is worth noting that the effective Hamiltonian Hef f ðkx , ky, kz Þ takes
the same form as the static Weyl Hamiltonian71. In this case, the space-
time Weyl points are expected to emerge in the quasi-momentum
space when the following equations are satisfied:
sinðkx +0:5k

x
δÞ= sinðky +0:5k

y
δÞ=0 and Jz sin kz

� �� Jz sin kz + k
z
δ

� �
+

0:5Ω=0. Specifically, eight Weyl points at E ± = 0 (corresponds to
ε= � 0:5Ω) can emerge in the quasi-momentum space

ðkx , ky, kzÞ= ð2ðnx + 1Þπ�kx
δ

2 ,
2ðny + 1Þπ�ky

δ
2 , 2ðnz + 1Þπ�kz

δ
2 Þ with nx, y, z =0 or 1, if

we set kz
δ = ð

ffiffiffi
3

p
� 1Þπ and Jz = � 0:274Ω.

To further illustrate the existence of space-time Weyl points in
the enlarged multi-band Floquet Hamiltonian Hðkx , ky, kz Þ, we cal-
culate its quasi-energy band structure in the ðkx , kyÞ plane for
kz =3:26 and kz =0:72, as shown in Fig. 3a. Other parameters are set
as Δ=0:5Ω, Jz = � 0:274Ω. kx

δ = k
y
δ =

ffiffi
5

p
�1
2 π and kz

δ = ð
ffiffiffi
3

p
� 1Þπ. We

observe that four space-timeWeyl points with ε= � 0:42Ω appear at
ðkx , ky, kzÞ= ð0:691π +nxπ, 0:691π +nyπ, 3:26Þ with nx, y =0 or 1.

Additionally, four other space-time Weyl points with ε= � 0:58Ω are
found at ðkx , ky, kz Þ= ð0:691π +nxπ, 0:691π +nyπ, 0:72Þwhere nx, y =0
or 1. Notably, the kx and ky values of these Weyl points match those
predicted by the low-energy effectiveHamiltonianof Eq.6, with slight
deviations in kz and energy. These deviations arise from the influence
of higher-energy bands. However, due to the robustness of the Weyl
points, eight Weyl points still persist in quasi-momentum space.
Furthermore, similar to the (1 + 1)- and (2 + 1)-dimensional cases, the
space-timeWeyl points in different Floquet sectors exhibit variations
in both energy and momentum. For example, the space-time Weyl
points with ε=0:58Ω appear at ðkx , ky, kzÞ=
ð0:691π +nxπ, 0:691π +nyπ, 3:26Þ+ kx

δ , k
y
δ , k

z
δ

� �
with nx, y =0 or 1, and

those with ε=0:42Ω appear at ðkx , ky, kzÞ=
ð0:691π +nxπ, 0:691π +nyπ, 0:72Þ+ kx

δ , k
y
δ , k

z
δ

� �
with nx, y =0 or 1, as

shown in Fig. 3b. This demonstrates the translations of space-time
Weyl points in adjacent Floquet sectors as ε ! ε+Ω
and ðkx , ky, kz Þ ! ðkx + k

x
δ , ky + k

y
δ , kz + k

z
δÞ.

In addition, it is well known that the presence of Weyl points can
induce the emergence of Weyl surface states in structures with open
boundaries. To examine this, we calculate the dispersion of surface
states for a supercell (see right inset of Fig. 3c), with periodic boundary
conditions being applied in the z and v= 1ffiffi

2
p ðx + yÞ directions, while the

u= 1ffiffi
2

p ðx � yÞ direction is treated with open boundary conditions with
fifteen sites. The energy dispersion of surface states with kz =π is dis-
played in Fig. 3c, with the colormapquantifying the strength of surface
localization of all eigenmodes. It is shown that topological surface
states emerge within the bandgap around ε= ±0:5Ω. Moreover, a key
manifestation of the topological nature of a Weyl system is the pre-
sence of topological surface states that form arcs connecting bulk
states with distinct topological characteristics. To illustrate this, we
calculate the Fermi arcs of the Weyl space-time crystal at ε= � 0:42Ω
in the (kv, kz) space, as shown in Fig. 3d. The results clearly reveal two
Weyl points at kz =3:26 (markedby the blue and reddotswith opposite
topological charges) and two closed circles of bulk states (marked by
the blue and red lines), which originate from two ε= � 0:58Ω Weyl
points at kz =0:72. These Fermi arcs connect theWeyl points and bulk-

state circles with opposite topological charges. To further clarify the
quasi-energy spectrum of the (3 + 1)-dimensional Weyl topological
space-time crystal, we calculate the eigen-spectrum of the finite (3 + 1)-
dimensional space-time crystal (L = 15) by cutting the xy-plane along v
and u directions, as shown in Fig. 3e. It is shown that the Weyl points-
induced surface states can appear within band gaps around ε=±0:5Ω.
The spatial profiles of a Weyl surface state at ε= � 0:497Ω, and a bulk
state around the Weyl point at ε = � 0:41Ω are plotted in Fig. 3f, g,
showing a strong boundary localization of the Weyl surface state and
the property with an extended spatial profile of the bulk state. In
addition, Weyl surface states of (3 + 1)-dimensional topological space-
time crystals can also exhibit the chiral propagation behavior along the
surface (See Supplementary Fig. 5 in Supplementary Note 10 for
simulations).

In the following, we focus on the experimental implementation of
our proposed (3 + 1)-dimensional Weyl topological space-time crystal.
It is worth noting that the experimental realization of 3D non-
equilibrium topological systems has never been reported up to now
due to the difficulty of the realization of 3D time-varying modulations.
Here, we design a 3D topolectrical space-time circuit (as shown in
Fig. 3h) to realize surface states of (3 + 1)-dimensionalWeyl topological

Hef f ðkx , ky, kzÞ=
2Jz sinðkzÞ+0:5Ω Δ sinðkx +0:5k

x
δÞ � iΔ sinðky +0:5k

y
δÞ

Δ sinðkx +0:5k
x
δÞ+ iΔ sinðky +0:5k

y
δÞ 2Jz sin kz + k

z
δ

� �� 0:5Ω

" #
ð6Þ
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Fig. 3 | Theoretical and experimental results of (3 + 1)-dimensional topolec-
trical space-time circuits. The quasi-energy band structure of the enlarged Flo-
quet HamiltonianHðkx , ky, kz Þ in the ðkx , kyÞ plane for kz = 3:26 and kz =0:72 in (a)
and kz = 3:26 + kz

δ and kz =0:72 + k
z
δ in (b). The parameters are set as Δ=0:5Ω,

Jz = � 0:274Ω. kx
δ = k

y
δ =

ffiffi
5

p
�1
2 π and kz

δ = ð
ffiffiffi
3

p
� 1Þπ. c The energy dispersion of

surface states with kz =π in the (3 + 1)-dimensional Weyl topological space-time
crystal, where periodic boundary conditions are applied in the~z and~v directions,
while the~u-direction is treated with open boundary condition with fifteen lattice
sites, as illustrated in the inset. d The result of Fermi arcs in the (3 + 1)-dimensional
Weyl space-time crystal at ε= � 0:42Ω. e The quasi-energy spectrum of the finite

(3 + 1)-dimensional Weyl topological space-time crystal, where the open boundary
conditions are applied by cutting the xy-plane along v and u directions. f, g The
spatial profile of aWeyl surface state and bulk state in the finite (3 + 1)-dimensional
space-time crystal. h The schematic diagram of the (3 + 1)-dimensional topolec-
trical space-time circuit. The right inset presents the time-invariant coupling along
the z-direction. The color map manifests the position-dependent initial phase of
external voltages. i The photograph image of the fabricated (3 + 1)-dimensional
topolectrical space-time circuits. Two insets present the circuit realizations of
couplings along the z- and x-axis. j–mMeasured spatial distributions ofV x, y, z tð Þ at
t = 0.6ms, 6.2ms, 10.6ms, and 14.9ms with the initial voltage at a corner node.
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space-timecrystal. The space-timemodulated hoppings in xy-plane are

achieved by time-varying INICs ± vx x, y, z, tð Þ
20CRx

and ±
vy x, y, z, tð Þ

20CRy
, where the

initial phases of external voltages vx x, y, z, tð Þ=V0 cos½ω0t +φx x, y, zð Þ�
and vy x, y, z, tð Þ=V0 sin½ω0t +φy x, y, zð Þ� take on the form of

φx x, y, zð Þ = kx
δ x +0:5ð Þ+ ky

δy + k
z
δz and φy x, y, zð Þ = kx

δx + k
y
δ y+0:5ð Þ+

kz
δz, as shown by the color map, respectively. The constant hopping

along the z-axis is realized by INICs ± 1
R0
, as illustrated in the right inset.

Furthermore, all circuit nodes are connected to outputs of adjacent
multipliers to ensure the time-invariant onsite potential. In this case,
the eigen-equation of our designed 3D topolectrical space-time circuit
takes on the same form with that of (3 + 1)-dimensional Weyl topolo-
gical space-time crystal, where the effective tight-binding parameters

are vx x, y, z, tð Þ
20CRx

=ω0 = Jx x, y, z, tð Þ=Ω,
vy x, y, z, tð Þ

20CRy
=ω0 = Jy x, y, z, tð Þ=Ω, and

� 1
CR0

=ω0 = Jz=Ω (see Supplementary Note 11 for details). Here, we set

circuit parameters as C =300nF, R0 = 14:6kΩ, Rx = 1kΩ, and Ry = 1kΩ.

The driving frequency and amplitude are equal to ω0 =0:833kHz and
V0 = 2:5V . Thus, the quasi-frequency of the circuit is related to the

quasi-energy in Fig. 3a as 2πf
ω0

= ε
Ω with V0

20CRx
=ω0 =

V0
20CRy

=ω0 =Δ=Ω=0:5,

and 1
CR0

=ω0 = Jz=Ω= � 0:2739.
Then, we fabricate the designed (3 + 1)-dimensional topolectrical

space-time circuit with seven units along the x/y-axis (four units along
~ν and~u directions) and three units along the z-axis, and the image of
the circuit sample is presented in Fig. 3i. Two insets present the circuit
realizations of time-invariant and time-varying couplings along z- and
x-axes, respectively. To detect the Weyl space-time surface state, we
measure the temporal evolution of voltage signals at all circuit nodes
in the Weyl space-time circuit with the initial voltage being 5 V at the
right-bottom corner node and 0V for other circuit nodes. The spatial
distributions of measured voltages jV x, y, z tð Þj at t =0.6ms, 6.2ms,
10.6ms, and 14.9ms areplotted in Fig. 3j–m. It is clearly shown that the
input voltage on the right-bottom corner primarily propagates along
surface nodes in the ~v = 1ffiffi

2
p ð~x +~yÞ direction and the extremely weak

voltage signals transport along the ~u = 1ffiffi
2

p ð~x �~yÞ axis. Such a chiral
propagation of Weyl surface states is consistent with simulations (see
Supplementary Fig. 6 in Supplementary Note 12). Thus, the above
experimental results clearly demonstrate the achievement of Weyl
surface states in (3 + 1)-dimensional topolectrical space-time circuits.

Discussion
In conclusion, we have reported the experimental implementation of
topological space-time crystals by constructing topolectrical space-
time circuits. We have directly observed midgap topological edge
modes protected by the generalized particle-hole symmetry in (1 + 1)-
dimensional topolectrical space-time circuits. In addition, by con-
structing time-modulated topolectrical circuits that sustain (2 + 1)-
dimensional discrete space-time translation symmetries, we have
experimentally realized topological space-time chiral edge states. The
chiral behavior of topological boundary propagation has been
observed through voltage dynamics. Finally, we have not only theo-
retically proposed the (3 + 1)-dimensional space-timeWeyl semimetals,
but also experimentally demonstrated Weyl surface states induced by
space-time Weyl points using three-dimensional topolectrical space-
time circuits.

It is worth noting thatour PCB-integrated topolectrical space-time
circuits can also be extended to CMOS chips operating in the micro-
wave region, with a wide range of potential applications anticipated in
thefields of 5 Gwireless systems and radar technology in the future14,65.
Furthermore, other artificial platforms capable of effective temporal
modulations, such as photonic waveguides with the propagation
direction acting as the time dimension12, ultra-cold bosonic atoms in
optical superlattice72, time-modulated acoustic cavities73 and light
propagation in coupled optical fiber74, are anticipated to enable the

engineering of classical and quantum wave systems integrated with
unique space-time topology. Our work establishes a foundation for
exploring intricate space-time topological matters and holds great
potential as a crucial component for experimental simulations invol-
ving diverse time-modulated Hamiltonians with extraordinary dyna-
mical properties.

Methods
Sample fabrications
We exploit electric circuits by using LCEDA program software, where
the PCB composition, stack-up layout, internal layer, and grounding
design are suitably engineered. The designed PCBs have six layers.
Except for the top and bottom two layers, there are two power layers
and two grounding layers. For the realization of the INIC, we use the
operational amplifier (OpAmp) of LT1363. In addition, two surface-
mounted resistors are used as the auxiliary resistors in the positive and
negative feedback loops of the OpAmp. The OpAmps and multiplier
(AD633JNZs) are supplied by external voltages of ± 15V. Besides, the
values of all circuit elements are large enough to ignore the influence
of effective resistances andparasitic capacitances in the circuit sample.

Experimental details
As for the time-domain voltagemeasurement, we initially establish the
system’s initial state by assigning an initial voltage to each lattice node.
In other words, at the initial moment, each lattice node is connected to
a DC voltage source or the ground (0 V). In this case, we use the relay
model and a DIP switch to connect all circuit nodes with respect to
corresponding DC voltage sources or the GND layer. Specifically, the
relaymodel is controlled by a voltage signal of 5 V through the switch.
With this setting, the required initial voltages can be applied to all
circuit nodes at the same time. In addition, it is worth noting that the
external driving voltages, which are injected into input ports of mul-
tipliers, also need to be calibrated with respect to the initial voltage on
circuit nodes. Hence, for this purpose, we use a few amounts of signal
generators (FY2300−12M) to create voltage signals with the same
frequency but different initial phases (matched to the requirement of
the position-dependent initial phase in topological space-time crystal).
Then, the external driving voltages are also controlled by the same
mechanical switch used for setting the initial state. As for the mea-
surement of voltage dynamics, we connect circuit nodes to a 4-channel
oscilloscope DSO7104B (Agilent Technologies) by coaxial cables and
measure the voltage signal after the switch is turned off.

Data availability
All data are displayed in themain text and Supplementary Information.

Code availability
The custom codes that support the results are available from the
corresponding authors upon request.
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