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Understanding how proteins discriminate between preferred and non-

preferred ligands (‘selectivity’) is essential for predicting biological function
and a central goal of protein engineering efforts, yet the biophysical
mechanisms underpinning selectivity remain poorly understood. Towards this
end, we study how variants of the promiscuous transcription factor (TF) MAX
(H. sapiens) alter DNA specificity and selectivity, yielding >1700 Kgs and >500
rate constants in complex with multiple DNA sequences. Twenty-two of the
240 assayed MAX point mutations enhance selectivity, yet none of these
mutations occur at residues that contact nucleotides in published structures.
By applying thermodynamic and kinetic models to these results and previous
observations for the highly similar yet far more selective TF Pho4 (S. cerevi-
siae), we find that these mutations enhance selectivity by altering partitioning
between or affinity within conformations with different intrinsic selectivity,
providing a mechanistic basis for allosteric modulation of ligand selectivity.

These results highlight the importance of conformational heterogeneity in
determining sequence selectivity and can guide future efforts to engineer

selective proteins.

The ability of proteins to accurately recognize cognate binding part-
ners amidst a landscape of chemically similar ligands is essential for
nearly all biological processes. Fully describing a binding landscape
requires considering not only specificity (which ligand is preferred)
and affinity (the absolute strength of the interaction), but also selec-
tivity (the quantitative difference in affinity between preferred and
non-preferred ligands). Highly selective proteins bind a limited set of
targets well above levels of background binding, while less selective
proteins promiscuously recognize a wider variety of ligands. An
enhanced understanding of how protein amino acid sequence encodes
selectivity is essential for deciphering signaling networks and ulti-
mately engineering protein interactions without off-target effects.
However, this remains challenging as the quantitative, systematic data
required for these investigations are scarce.

Transcription factor (TF) proteins provide an ideal model system for
investigating binding selectivity. TFs naturally bind specific regulatory
DNA sequences' across a range of affinities to control gene expression,
the absolute interaction affinities” of which have been dictated and tuned
by evolutionary pressures on both protein and DNA sequence. Differ-
ences in binding selectivity therefore have biological consequences: TF
paralogs with identical sequence specificity but different absolute affi-
nities for that sequence play non-interchangeable roles in development’,
and many closely related TFs bind the same high-affinity motifs but bind
alternate low-affinity sites*®. Underscoring the importance of interac-
tions spanning the entire landscape, low-affinity DNA sites are conserved
and important for gene regulation””'°, and many enhancers are evolved
for suboptimal affinities such that increasing affinity is pathogenic or
disrupts specific and properly timed gene expression'™.
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While previous attempts to understand the protein sequence
determinants of TF binding landscapes have focused on analyzing
structures of bound TF-DNA complexes'®”, this approach is compli-
cated by the structural plasticity of TFs. Some of the most abundant
structural classes of human TFs are enriched in intrinsically disordered
sequences’ that can drive promiscuous binding', only fold when
bound to DNA?*%, and adopt different conformations to facilitate
binding to different DNA sequences'®*?**. Therefore, understanding
selectivity requires data that systematically vary both protein and DNA
sequence across a range of affinities to map the full DNA binding
landscape.

Towards this goal, we investigate how TF sequence shapes DNA
binding landscapes by comparing binding landscapes for two basic
helix-loop-helix (0HLH) TFs: H. sapiens Myc-associated factor X (MAX)
and S. cerevisiae Pho4. While both TFs recognize the same CACGTG
E-box motif with nearly identical bound structures and are largely
unstructured in the absence of DNA?®?, Pho4 is highly selective for this
motif while MAX is more promiscuous®. To understand the origin of
this difference, we apply a recently developed microfluidic technique
(STAMMP, for Simultaneous Transcription Factor Affinity Measure-
ments via Microfluidic Protein arrays)* to interrogate how 240 single
amino acid substitutions impact MAX DNA binding affinities to 7 motif-
variant DNA sequences (>1700 K;s). In parallel, we develop and apply a
method for measuring kinetics (kogs) for hundreds of protein variants
(k-STAMMP), yielding >500 rate constants. Overall, ~10% of measured
MAX mutations increase binding selectivity (the difference by which
MAX prefers CACGTG over mutated motifs). Surprisingly, none of
these residue positions make base-specific DNA contacts in published
structures, instead contacting the phosphate backbone or facing the
solvent. Thermodynamic and kinetic models capable of explaining
observed measurements suggest that while Pho4 traverses a single
binding pathway (a classic folding-and-binding transition into a single
helical state), MAX can bind DNA through more than one pathway, one
of which is selective for CACGTG binding while the other binds DNA
promiscuously. Thus, consideration of multiple binding pathways with
different intrinsic binding selectivities for MAX—as well as the diverse
mechanisms by which mutations can perturb these states and path-
ways—enables a mechanistic understanding of how non-base-
contacting mutations can allosterically increase binding selectivity.
Together, these results establish that systematic and high-throughput
thermodynamic and kinetic measurements of combinatorial protein/
ligand mutations can provide information difficult to obtain via stan-
dard structural approaches and highlight a need to consider hetero-
geneous binding modes when understanding and engineering
selective binders.

Results

MAX and Pho4 are model systems for investigating selectivity
The DNA-binding domains (DBDs) of MAX and Pho4 are disordered in
solution, with their DNA-contacting regions folding only upon recog-
nition of a DNA binding site to assume highly similar structural con-
formations (RMSD=1519A, Fig. 1a)**®®. Both TFs possess similar
domain architectures comprised of a DNA-contacting basic region
followed by two helices separated by a flexible loop (Fig. 1a, b), make
identical base contacts via identical nucleotide-contacting residues
(Fig. 1c), and preferentially bind the same cognate CACGTG E-box
site as dimers (Fig. 1d). Despite these similarities, prior measurements
of WT Pho4 and MAX affinities for a library of 256 DNA sequences
containing mutations within an E-box half site revealed differences in
their binding energy landscapes (Fig. 1e)”. Single-nucleotide muta-
tions to the cognate sequence led to >9-fold higher reductions in
binding affinity for Pho4 than for MAX (85-fold versus 9-fold), with
Pho4 binding CACGTG more tightly and mutant motifs more weakly”
(Methods). This difference in selectivity can be conceptualized using
energy landscape diagrams® in which Pho4 binds its cognate E-box

with a deeper energetic well (Fig. le, f). These differences in binding
landscapes despite nearly identical DNA-binding interfaces motivated
us to probe how variation in non-contacting residues (Supplementary
Fig. 1) can shape binding landscapes.

STAMMP measures DNA binding for hundreds of MAX
mutations

Using the STAMMP microfluidic platform (Supplementary Figs. 2-3),
we previously quantified impacts of 210 single amino acid substitu-
tions within Pho4 on binding to 9 oligonucleotides®. Here, we applied
STAMMP to investigate how 240 single amino acid substitutions in and
around the MAX DBD (Supplementary Fig. 4) impact DNA binding
affinity and specificity. This mutant library included 156 alanine and
valine scanning mutants to probe protein sequence determinants of
DNA motif recognition, 10 mutations substituting orthologous amino
acids present in other bHLHs* to probe how evolutionary differences
alter landscapes, 30 mutants hypothesized to alter helicity and charge
to probe biophysical mechanisms contributing to recognition®*?, and
38 mutations from human allelic variants that were cataloged as
pathogenic mutations or variants of unknown significance (VUS)****
(Fig. 1g, h, Supplementary Table 1). C-terminally meGFP-tagged MAX
variants were expressed on-chip via in vitro transcription/translation
and recruited to anti-eGFP patterned device surfaces for purification
and subsequent measurements of concentration-dependent DNA
binding via STAMMP. Relative affinity measurements here for both WT
and mutated MAX agree well with prior work for constructs lacking a
meGFP tag (Supplementary Fig. 5)*%, suggesting the presence of a
fluorescent protein tag does not alter measured binding.

Substitutions throughout the MAX DBD alter DNA binding

To identify MAX residues involved in DNA recognition, we first mea-
sured impacts of each mutation on binding to the cognate 5-CACGTG-3’
motif. Of 240 mutants, 237 expressed consistently (Supplementary
Table 2, Supplementary Fig. 6). Measured Kjs fit from processed data
(Methods, Supplementary Figs. 7-8, Supplementary Table 3) were
highly consistent across device replicates (RMSE < 0.3 kcal/mol over a
3.5 kcal/mol dynamic range) (Fig. 2a, Supplementary Fig. 9) and inde-
pendent of immobilized TF-eGFP concentrations (as expected for TF
concentrations well below measured Kys) (Supplementary Fig. 10).
Subsequent analyses aggregated measurements (Supplementary Fig. 11)
for each variant with 3 or more replicates to report median Ky or AAG
value. Overall, 106 mutants significantly altered the affinity for the
consensus motif relative to WT (Bonferroni-corrected p < 0.05). Many
mutations strongly reduced DNA binding, including substitutions at
conserved nucleotide-contacting residues H28, E32, R35, and R36™
(Fig. 2b). Many pathogenic variants (18/31) and some (I7IN and R47W)
VUS significantly reduced binding as well (Supplementary Fig. 12). Allelic
variants yielded some of the largest changes in DNA binding affinity in
the library, with mutations at the dimerization interface either sig-
nificantly decreasing (e.g., L46, A67, and 171) or enhancing binding (e.g.,
M74L*) (Supplementary Fig. 12). Mutations to crystal structure-
predicted phosphoryl oxygen backbone-contacting residues increased
or decreased affinity depending on the substituted residue (Fig. 2b). Of
the 29 significant mutations that enhanced binding, 12 occurred at non-
contacting, solvent-facing residues in the basic region, confirming that
putative non-DNA contacting residues can have substantial impacts on
binding.

Comparable substitutions decrease affinity less in MAX

Just as the magnitude of changes in affinity upon DNA mutation was
smaller for MAX than for Pho4, comparable mutations at corre-
sponding residue positions also had smaller impacts in MAX (Wilcoxon
signed-rank test p=10°) (Figs. 2c and 1le). Substitutions altering
charged contacts with the DNA phosphate backbone yielded sub-
stantially larger reductions in binding affinity for Pho4 (Pho4 R252Q/
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Fig. 1| Amino acid sequence, structure, and DNA specificity of MAX and Pho4.
a Schematic of folding and binding pathway and structural alignment for Pho4
(orange, 1A0A) and MAX (teal, IHLO). b Domain architectures and sequence
alignment for MAX and Pho4 DNA binding domains alongside conservation across
bHLH TFs. ¢ Crystallographic contacts between the CACGTG consensus E-box and
MAX (teal) and Pho4 (orange). d PWMs for MAX (JASPAR MA0058.3) and Pho4
(JASPAR MA0357.1). e Distribution of binding affinities for all degenerate E-box
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motif variants® with most tightly bound sequences annotated (left); median affinity
as a function of Hamming distance away from the CACGTG cognate. f Cartoon
illustrating differential selectivity. g Classification of MAX mutations in this study.
h Microfluidic device and schematic of TFs immobilized on a surface with bioti-
nylated BSA (bBSA), neutravidin (NA), and anti-GFP antibody (left) along with
location and identity of MAX mutations studied here (right).

MAX R25Q, Pho4 K292A/MAX R60A) (Fig. 2c, Supplementary Fig. 13).
This trend held for mutations to residues that do not contact bound
DNA in published structures (Pho4 K251/MAX K24), where some ana-
logous substitutions even increased binding affinity for MAX (L31V)
while reducing it for Pho4 (A258V) (Fig. 2c, Supplementary Fig. 13).
These differences in ‘mutational sensitivity’ support prior
observations® that the strength of otherwise similar molecular con-
tacts is contextual and that only certain protein homologs can support
rheostat positions®.

MAX and Pho4 differ in folding and binding transitions

For TFs that are unstructured in the absence of DNA, altering helical
propensity*’ can commensurately change binding affinity by mod-
ulating folding entropic penalties'®”***°*!, Thus, the observation that
mutations to comparable solvent-facing residues have different
impacts on measured binding affinity for CACGTG in Pho4 and MAX
could indicate differing folding and binding transitions. To better
understand how changes in a coupled folding and binding pathway
impact measured Kys, we modeled equilibrium bHLH TF/DNA binding
in which: (1) unbound TFs can be either unfolded or helical, (2) only the
helical form can bind DNA, and (3) TF mutations alter the folding
equilibrium (Fig. 2d, Supplementary Fig. 14, Methods). The observed
DNA concentration at which half of the TF population is DNA-bound
(K4,apparent) €an then be expressed as a function of a Ky for the inter-
action between folded TF and free DNA, a folding equilibrium constant
Kioig (describing the partitioning between folded and unfolded

conformations of the unbound TF), and the total concentration of free
DNA and protein. Simulated binding isotherms revealed that the
magnitude by which mutations shift Kq apparenc depends on the WT
value of Kr,q (Supplementary Figs. 14-15) and provided a method to
infer Kgwr and Kgigwr from measured affinities of non-contacting
mutations.

Consistent with this simple folding and binding model, Pho4
mutations that altered helical propensity concomitantly shifted bind-
ing free energies relative to WT (AAGcacgre) (Pearson 2 =0.55) and
were well-fit by a model in which WT Pho4’s basic region is significantly
disordered (-81%) in the unbound state (Methods, Fig. 2e, Supple-
mentary Fig. 16), in agreement with NMR data®. By contrast, mutations
that alter the predicted helicity of the MAX basic region were less
correlated with changes in binding free energies (Pearson r’=0.20).
For this observation to be consistent with a 3-state model, MAX would
have to be primarily helical in solution (-1% disordered), at odds with
documented structural disorder in this region” and the observation
that many solvent-facing mutations strongly modulate binding affinity
(Methods, Fig. 2e, Supplementary Figs. 15-16). These results could
instead be consistent with a more complex model in which MAX can
adopt multiple conformations with different intrinsic affinities for
DNA. In this model, rather than altering the propensity to fold into a
single conformation, non-contacting mutations impact measured
affinity by altering partitioning between multiple conformations. This
model is consistent with previously identified bound state conforma-
tional heterogeneity within the MAX basic region®.
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Fig. 2 | MAX and Pho4 differ in folding-and-binding to CACGTG. a Binding iso-
therms for WT (teal, n =20) and R36A (red, n=3) MAX variants binding to cognate
DNA (left). Reproducibility of AAG measurements across two microfluidic devices
(right, median + SEM per device). Light gray markers indicate mutants un-
resolvable from background binding for which reported Kgs represent a lower limit.
b Affinities for MAX mutants binding CACGTG (median + SEM). Red markers
denote mutations to DNA-contacting residues, gray markers with red outlines
denote mutations to phosphate backbone-contacting residues, and arrows denote
Kq limits. ¢ Binding isotherms for WT MAX (n = 51), MAX L31V (n =10), WT Pho4, and
Pho4 A258V (left) and comparison of AAG measurements for aligned substitutions

to MAX and Pho4 (right); marker size indicates residue conservation across the
bHLH family (Methods). d Thermodynamic model for a three-state system such
that observable K4 depends on the folding equilibrium (K¢ q) and true binding
affinity (K4, «rue). € Measured change in cognate affinity (median + SEM) versus
changes in helical propensity® for mutations to non-DNA contacting basic region
residues in MAX (teal) and Pho4 (orange); dashed line indicates fitted thermo-
dynamic model with indicated fitted values of Kr,4 and Ky Replicate counts for all
K4 measurements are contained in Supplementary Data 1. Source data are provided
as a Source Data file.

Distal MAX mutations modulate affinity independent of motif
To understand how MAX mutations alter low-affinity binding and
therefore sequence specificity and selectivity, we also measured
binding to 5 low-affinity sequences containing mutations within core
nucleotide positions in the E-box consensus (AACGTG, CGCGTG,
CATGTG, CACGCG, and CACGTT) (Fig. 3a, b, Supplementary Table 4).
Across all replicates (Supplementary Data 1), expression (Supplemen-
tary Figs. 17-21) and K4 measurements remained highly reproducible
(Supplementary Figs. 22-26) and affinities were independent of
expression (Supplementary Fig. 27). Over 8-12 K4 replicate measure-
ments per MAX variant (Supplementary Fig. 28), single nucleotide
substitutions within the consensus E-box motif reduced WT MAX
binding by 2 to 5-fold, with the AACGTG mutation being most dele-
terious (Fig. 3b, Supplementary Fig. 29).

To identify TF mutations that modulate DNA-binding affinity (i.e.
alter binding to all DNA sequences equally by shifting the binding
energy landscape by a consistent free energy difference), we per-
formed bootstrapped equivalence testing to identify MAX mutations
that introduced similar changes in binding free energy across many
measured DNA sequences (Methods). The 14 identified “affinity-alter-
ing” mutations (Fig. 3c) were generally located within the loop region
or dimerization interface (Fig. 3d) and all weakened binding relative to
WT MAX. These affinity-altering mutations include cancer-associated
variants predicted to be either pathogenic (D23H and P51L) or VUS
(R47W) (Supplementary Table 5). PSIL uniformly decreased binding
affinity by >0.92 kcal/mol across DNA sequences (Fig. 3e), likely by
disrupting a key proline necessary for proper positioning of helix 17.
Leucine zipper substitutions also altered affinity equally across all DNA
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Fig. 3 | Dimer and loop mutations modulate MAX binding affinity. a Cartoon
illustrating double mutant cycles across the TF/DNA interface. b Histograms of Kgs
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projected on MAX structure (IHLO). Kgs (median + SEM) for all E-box sequences
(left), location of residues of interest (red) within MAX structure (IHLO, right) for
MAX PSIL (e) and N78K (f), with cartoon illustrating impact of mutations on DNA-
binding landscape (right). Replicate counts for all Ky measurements are contained
in Supplementary Data 1. Source data are provided as a Source Data file.

sequences, likely by altering dimerization. For example, substituting a
homotypically-stabilizing asparagine in the a’ position of the MAX
leucine zipper at position 78 for lysine uniformly disrupted binding
across all DNA sequences (median AAG =0.56 kcal/mol), consistent
with prior studies of leucine zipper coupling energies* (Fig. 3f).

Double mutant cycles reveal drivers of specificity

To systematically identify specificity- and selectivity-altering substitu-
tions, we performed biochemical double-mutant cycles* comparing
energetic impacts on binding from TF mutations and mutations to
cognate DNA (Fig. 4a, Supplementary Figs. 30-33). When visualized as
a scatter plot, additive mutations to non-interacting residues and
nucleotides lie along an additive line, while non-additive mutations to
interacting and/or epistatic residue and nucleotide pairs fall off-
diagonal (Fig. 4a). While most (150) mutations additively alter binding
to a low-affinity motif known to be preferentially bound by Myc/MAX
heterodimers in vivo (CACGCG)*, 34 of 81 mutants bind this motif with
a reduced energetic penalty relative to the additive expectation
(Fig. 4a, Supplementary Table 6). These include mutations to
structurally-predicted nucleotide contacts (e.g. E32, which contacts

the outer two nucleotide bases in the E-box) and residues that make
stabilizing salt bridges with these contacts (e.g. R35, which contacts
E32)**. Some epistatic mutations, such as E32A, even alter the
intrinsic sequence specificity of MAX to yield significantly (p < 0.05 via
independent t-test) tighter binding to CACGCG. 10 additional muta-
tions also bind most tightly to non-CACGTG E-box motifs, all of which
disrupt annotated DNA-contacting interactions (Supplementary
Fig. 34). Thus, this double-mutant cycle analysis recapitulates known
direct contacts within the crystal structure. Intriguingly, other muta-
tions non-additively bound CACGCG without an obvious structural
rationale, (e.g. solvent-facing D37 or H28, which canonically contacts
the 5’ guanine®) (Fig. 4a, b).

Selective mutations favor cognate or disfavor mutated motifs

Selectivity-altering substitutions change the energetic difference
between cognate site binding and binding to many or all non-cognate
sites. To identify such mutations, we computed residuals for each
pairwise comparison between a mutated E-box and the cognate
sequence and defined a “selectivity score” as the median of these resi-
dual Z-scores (Fig. 4c, Supplementary Fig. 35). Mutants with negative
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Fig. 4 | Mutations increase selectivity of MAX by enhancing cognate or weak-
ening mutant DNA binding. a Cartoon depicting additive and epistatic energetic
impacts for double mutants (top); pairwise comparisons between measured AAG
(median + SEM) relative to WT for all MAX mutants interacting with low-affinity 5-C
CACGCG A-3’ versus consensus 5-C CACGTG A-3'. Light gray markers indicate
mutations unresolvable from background for >1 DNA sequence; black markers
indicate known crystallographic contacts to mutated nucleotide bases; red marker
edges indicate non-additive binding; dashed black line indicates linear regression;
red dashed line indicates 1:1 identity line. b Mutants with epistatic energetic
impacts projected onto MAX structure (IHLO). ¢ Schematic illustrating calculation
of selectivity scores from double mutant cycles. d Selectivity scores vs. AAGcaccra

(median + SEM) for all MAX mutations. Light gray markers indicate mutations
unresolvable from background for >1 DNA sequence; dashed gray line indicates
thresholds for classifying mutations. e-h Relative affinities (left) and median

Kq4 % SEM (right) across all E-box variants for WT and selected MAX mutants, with
location of mutation highlighted on structure (IHLO and 5EYO). Replicate counts
for all Ky measurements are contained in Supplementary Data 1. i Cartoon depicting
double mutant cycle analysis to probe for energetic coupling between selective TF
mutations (left); AAG (median + SEM) for 2 combinations of selective mutations
(right), with expected additive and measured AAGs compared via independent ¢-
test (**p <0.001; **p < 0.01; *p < 0.05). Source data are provided as a Source

Data file.

selectivity scores decrease the energetic penalty for binding to mutant
motifs relative to the cognate (decreasing selectivity). As expected,
many mutations to nucleotide base-contacting residues reduce selec-
tivity in this way (e.g. H28, E32) (Fig. 4d). Mutants with positive values
putatively render MAX more selective. Strikingly, 22 MAX mutations
increase selectivity for CACGTG (Fig. 4d, Supplementary Fig. 36,

Methods), with nearly all selectivity-increasing mutations lying in the
DNA-contacting basic region or helix 1 (Supplementary Fig. 37). These
mutations are enriched in backbone-contacting residues (p=1x107 via
Chi-squared test) and solvent-facing basic region residues (p=8x107
via Chi-squared test), at odds with the expected result in which base
contacts determine selectivity through direct readout.
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Mutations that increase selectivity can do so by either enhancing
binding to the cognate motif and/or by decreasing binding to non-
cognate motifs. Comparing selectivity scores versus AAGcaccto
(Fig. 4d) reveals that some mutations increase affinity for the cognate
motif without altering affinity for mutated sequences (i.e. “deepening
the energetic well”; upper-left quadrant, Fig. 4e, f). For example, all
measured mutations at H27 increase affinity for the cognate sequence
(Supplementary Fig. 38) and to a lesser degree CATGTG (the only
mutated motif for which H28 mutations are additive) (Supplementary
Fig. 36, Supplementary Table 6), consistent with a model in which
substitutions at residue 27 better position or reduce competition for
protonation of H28 to promote selective E-box recognition. Similarly,
K40A does not directly contact DNA or DNA-contacting residues, but
mutations at this position may disrupt a polar contact with D37 visible
in the crystal structure®®. Our double-mutant cycle analysis suggests
D37 is epistatic with the outer 2 bases in the E-box, so disrupting the
K40/D37 interaction may increase affinity for all DNA sequences
without mutations to these bases (Fig. 4f, Supplementary Fig. 36). The
aligned position in Pho4 contains an alanine (Fig. 1b), possibly con-
tributing to Pho4’s selectivity via the same mechanism. Notably,
repeating this selectivity score analysis for Pho4 reveals that, unlike for
MAX, no Pho4 mutations increase selectivity for CACGTG (Supple-
mentary Fig. 39). Instead, comparable mutations that increase selec-
tivity in MAX by increasing affinity for CACGTG alone like H27A also
increase affinity for mutated E-box sequences in Pho4 and are there-
fore affinity-altering. This Pho4 behavior is again consistent with a
simple model of folding and binding where the same bound con-
formation recognizes all E-box variants and mutations therefore pro-
portionally change binding to all sequences.

MAX mutations in the upper middle of Fig. 4d increase selectivity
by decreasing binding to non-CACGTG sequences (i.e. “raising the
energetic wall” for non-cognate binding). For example, N29V (which
ablates a structurally predicted polar contact with the DNA phosphate
backbone*®) does not alter affinity for CACGTG but decreases affinity
for all measured mutated E-box sequences (Fig. 4g). Similarly, mutat-
ing residue A30 (which faces the solvent on DNA-bound structures and
is not adjacent to any other nucleotide base-contacting residues) to
glycine leaves CACGTG binding unaltered but decreases affinities for
all mutated E-boxes (Fig. 4h). Mutations that distinguish between
cognate and mutated motifs without any apparent sequence pre-
ference among mutated sequences suggest that the alternative con-
formations previously hypothesized for MAX may be selective and
promiscuous conformations, as explored below.

Double mutants of selective MAX variants are non-additive

To test if MAX mutants that allosterically enhance selectivity do so by
altering partitioning between selective and promiscuous conforma-
tions (as implicated by “wall-raising” selective mutations), we exam-
ined mutant cycles between two protein residue pairs*® binding to
many motifs (Fig. 4i, Supplementary Fig. 40). To exclude convolved
effects of nearby mutations, we restricted interpretation to TF mutant
pairs >15A apart in published structures (Supplementary Fig. 41). In
this analysis, additive changes to binding regardless of motif imply
independent perturbations, such as rearrangement of local contacts.
However, if MAX double mutants yield additive changes in binding to
some motifs but non-additive changes to others (such that any
resulting changes to overall binding selectivity are non-additive), this
provides corroborating evidence for a model in which MAX can bind
DNA with multiple distinct conformations or binding pathways with
different intrinsic selectivity.

Consistent with these expectations, the MAX H27V/K40A double
mutant yielded additive energetic impacts relative to the single TF
mutants for all measured E-box sequences (Fig. 4i), with both muta-
tions increasing selectivity by putatively rearranging local contacts to
independently enhance cognate binding. By contrast, the K4OA/A30G

double mutant yielded additive impacts for all motifs except for
CACGTG, where impacts were less than additive, like A30G alone
(Fig. 4i). This non-additivity suggests that some mutations, like A30G,
enhance motif selectivity by changing partitioning between multiple
conformations with distinct sequence preferences: one that selectively
binds CACGTG and another that promiscuously binds many mutated
E-box sequences.

Kinetic measurements provide insights into binding mechanism
Next, we asked if selective mutations caused changes in the MAX
bound conformational ensemble, unbound ensemble, or both. As
equilibrium binding measurements cannot resolve at which stages of
the folding and binding reaction selective mutations alter microscopic
transitions®, we developed a kinetic version of the STAMMP micro-
fluidic binding assay (k-STAMMP, derived from k-MITOMI”) (Supple-
mentary Fig. 42). Specifically, we measured macroscopic dissociation
rates (Kofr,macroscopic: hereon referred to as ko) (Fig. 5a) and inferred
apparent on-rates (inferred kon=kos/Kq4, calculated assuming a mac-
roscopic 2-state model in which TFs are either bound or not bound to
DNA)>? for Pho4 and MAX variants interacting with 7 motif-variant DNA
sequences®, totaling 561 total measured rate constants (Supplemen-
tary Figs. 43-48). Off-rates were well-fit by a single exponential for
both Pho4 and MAX (Fig. 5a), with measured rates typically varying by
~2-fold between devices.

Mutations to both Pho4 and MAX yielded larger changes to
inferred on-rates than measured off-rates (6.2/5.6-fold change differ-
ence between fastest and slowest off-rates and 28.9/36.7-fold for on-
rates for Pho4 and MAX respectively) (Fig. 5b, Supplementary Data 2),
consistent with recent work suggesting TF affinity and specificity is
primarily governed by variation in association rates®*. The subset of
mutations that significantly changed dissociation rates tended to
ablate or disrupt nucleotide (such as E32N), backbone, or dimer con-
tacts (Fig. 5¢), likely due to destabilization of the bound state(s).

A reduced affinity conformation is more stable in MAX

For a folding and binding reaction with a single binding conformation,
preformation of structure should increase k,, and decrease k.
Consistent with this model, increasing helical propensity in Pho4
increased Konapparent and decreased ko for cognate E-box bind-
ing (Fig. 5d). In contrast, increasing helical propensity in MAX slightly
decreased Kon apparent and had little impact on ko for cognate E-box
binding (Fig. 5d). This observation is again consistent with the exis-
tence of multiple unbound binding-competent states in MAX such that
the energetic impact of a mutation on cognate binding becomes
uncoupled with intrinsic changes to helicity and instead alters con-
formational partitioning. Moreover, the observation that putatively
helix-breaking mutations such as A30G speed up on-rate suggests that
a weaker binding conformation for CACGTG may be more stable. This
is also consistent with stopped-flow kinetics data that suggest a con-
formational change is the rate-limiting step for binding in MAX®>.

Selective mutations act via different microscopic mechanisms

By the Hammond postulate*®, on-rates are more impacted by changes
in the unbound state and off-rates by changes in the bound state.
Investigating the inverse relationship between k., and ko across
multiple DNA sequences (relative to WT) can therefore provide insight
into which microscopic transition(s) are impacted®>. MAX mutations to
phosphate backbone-contacting residues that enhanced selectivity by
weakening binding to non-cognate motifs (e.g. N29V, R60V; Fig. 4g)
primarily altered kog with little to no changes in inferred kon apparent
(Fig. 6a, Supplementary Fig. 49, Supplementary Data 3). Other muta-
tions to non-DNA-contacting, solvent-facing residues that enhanced
selectivity by increasing affinity for the consensus motif (e.g. H27V,
K40A) (Fig. 4e, f) primarily increased Kon,apparenc fOr only the cognate
motif (Fig. 6b, Supplementary Fig. 49) with little changes to off-rate
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Fig. 5 | Binding kinetics suggest MAX and Pho4 differ in folding and binding
transition. a Example dissociation traces for WT (gray) and E32N (red) variants of
MAX (top, n =S5 for all) and comparison of k¢ measurements (median + SEM)
across two devices and two DNA sequences (bottom). Dashed black line indicates
11 relationship. b Measured ko versus inferred ko, for all Pho4 (orange) and MAX
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WT values. ¢ Measured ko versus inferred ko, for all Pho4 (top) and MAX (bottom)
mutants interacting with cognate E-box (median + SEM); dashed lines denote WT
values. Marker color indicates mutations to known crystallographic DNA base

AAG Helical Propensity

contacts (red) or dimerization interface contacts (blue), also shown imposed on
Pho4 (1A0A) and MAX (IHLO) crystal structures. WT and variant k¢S were com-
pared via independent ¢-test, and WT-like k. values (p > 0.05) are indicated by light
gray markers. d Measured ko and inferred ko, (both median + SEM) versus change
in helical propensity* for non-DNA contacting basic region substitutions in MAX
(teal) and Pho4 (orange); dashed line indicates linear regression. Replicate counts
for all K4 and k. measurements are contained in Supplementary Data 2. Source
data are provided as a Source Data file.

across many measured motifs (Fig. 6b). This again implies that these
mutations may change the unbound ensemble to increase the rate of
initial MAX DNA association. Finally, some selective mutations to
solvent-facing residues (e.g. A30G) (Fig. 4h) altered both k. and
Kon,apparent (Fig. 6C, Supplementary Fig. 49), suggesting changes to
both bound and unbound states or to the transition state itself.

Modeling selective and promiscuous states reconstitutes data
To test our proposed multi-state model of MAX binding and the
microscopic origins of selective binding, we employed Gillespie
simulations to model binding for a single TF and DNA molecule via
multiple reaction schemes. For each reaction scheme, we sought to
identify which, if any, changes in microscopic rate constants altered
binding selectivity through similar kinetic and affinity pathways to
measured selective MAX mutations.

First, we examined a 3-state model in which TFs are either
unbound to DNA ("free"), non-specifically bound and "testing" to see if
a site underfoot represents the target site, or specifically "bound"”
(Fig. 6d), identical to a previously used TF binding scheme®. In this
model, the rate constant for transitioning between the free and testing
states is given by konmax, @ theoretical upper bound for the on-rate
when all non-specific TF-DNA interactions result in specific binding.
The rate constant for transitioning from the bound state to the testing
state is given by Ko, and the probability of transitioning to the bound
state depends on the likelihood of binding a given sequence (f,o.ir) and
the rate at which TFs transition from testing back to the free state

(fmortif X Kofr,m)- Similar to observations for Pho4, systematically varying
or co-varying rate constants globally shifted the binding landscape
without changing selectivity (Fig. 6e, Supplementary Fig. 50). Explicitly
modeling folding-and-binding transitions also did not change selec-
tivity (AAGt motif=0.99 - £motit=0.01) (Supplementary Figs. 51-52). These
results are consistent with previous experimental observations that
Pho4 mutations that alter helicity globally tune affinity (Supplemen-
tary Fig. 39) as well as our hypothesis that the mechanism by
which MAX mutations enhance selectivity can only be understood
by invoking an additional state.

Consistent with MAX observations, changes to microscopic rate
constants within a 5-state model with 2 binding-competent con-
formations with different intrinsic selectivities (Fig. 6f) yielded a vari-
ety of distinct affinity and selectivity effects (Fig. 6g, Supplementary
Figs. 53-57). In this model, proteins can transition to 2 different
helical®® testing states that either bind DNA specifically or pro-
miscuously. Transitions to and from the selective and promiscuous
testing states are described by Konmaxs: KoftMs Konmax,p aNd Kofrm,p.
Transitions to and from the selective and promiscuous bound states
are described by the microscopic rate constants fmocir X Kotrm,sr Koffy,ss
Kon,p, and Ko, p. Increasing Kofr,p Simultaneously increases obser-
vable macroscopic ko and decreases observable macroscopic Ko,
reconstituting measured changes in binding affinities and kinetics for
selective mutations hypothesized to disrupt phosphate backbone
contacts (e.g. N29V and R60V, Figs. 4e and 6g). Thus, we suggest these
mutations may increase selectivity by preferentially destabilizing
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Fig. 6 | Selective mutations change the binding landscape through different
microscopic mechanisms. a-c Inferred k,,, versus measured kog (both median +
SEM) for WT MAX and selective mutations across many E-box variants; dashed line
indicates linear fit minimizing error in x- and y-dimensions. Replicate counts for all
Kq and ko¢r measurements are contained in Supplementary Data 3. Source data are
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constants (left) and affinities (middle and right) for many fiorir Values with binding
model illustrated in (d). f Five-state model and associated microscopic rate con-
stants for TF binding with multiple unbound and bound conformations with dif-
ferent intrinsic selectivities. g, h Simulated rate constants (left) and affinities
(middle and right) for many fi,ouif Values with binding model illustrated in ().

i Cartoon model illustrating idealized energetic landscapes for Pho4 (orange), MAX
(teal), and three MAX mutations.

promiscuously bound conformations. Similarly, increasing Konmaxs
reconstitutes measured changes in binding affinities and kinetics for
selective mutations like H27V and K40A, increasing observable ko,
while leaving observable k. relatively unchanged (Figs. 4f and 6h).
Consequently, these mutations may increase selectivity by changing
the unbound ensemble to “preconfigure” certain conformations with
side-chains positioned for specific recognition. Combinations of

changes to microscopic rate constants can also recapitulate more
complex behaviors, such as those observed for A30G (Supplementary
Fig. 58). While we find that models with two differentially selective
states (and not models with a single binding conformation) are con-
sistent with selective MAX mutant data, this toy model likely approx-
imates two “macrostates” that are each the sum of some large number
of microstates in which residues at the DNA interface are differentially
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positioned within the folding landscape (Fig. 6i). We conclude that
consideration of multiple states with different intrinsic selectivity for
the same set of sequences is necessary to explain kinetic and ther-
modynamic data for MAX.

Discussion

Understanding the protein sequence determinants of selectivity—the
quantitative difference in binding energy between preferred and non-
preferred ligands—remains an unsolved biophysical challenge, with
applications to binding generally beyond TF-nucleic acid interactions.
Many bioengineering” and gene therapy*® objectives require highly
selective binding, yet mitigating off-target events remains
challenging. Thus, an enhanced understanding of the protein binding
landscapes will also enhance the ability to engineer therapeutically
useful protein-DNA interactions®°,

Here, we investigated how mutations to MAX, a promiscuous
bHLH TF, alter binding to motif-variant DNA sequences in comparison
to the structurally similar yet highly selective TF, Pho4. These mea-
surements revealed putative non-contacting mutations in MAX that
increased selectivity for the cognate motif via diverse molecular
mechanisms. While some mutations likely stabilize selective micro-
states prior to binding (similar to mechanisms thought to drive anti-
body affinity maturation®), others change partitioning between
different macroscopic conformations possessing different selectivities
(Fig. 6i). Pho4, in contrast, lacks evidence of appreciable alternate
binding states, suggesting highly selective binding may be achieved
with narrow folding funnels (lacking ability to access alternate con-
formations or rearrangements) (Fig. 6i). Overall, our results demon-
strate that high-throughput measurements of mutational impacts on
binding affinities and kinetics can reveal important properties about
conformational ensembles difficult to resolve via other methods, and
that these properties can dramatically impact the selectivity of
otherwise highly similar proteins.

The observed selectivity differences between Pho4 and MAX
might represent distinct evolutionary pressures that stem from their
different biological roles and speed/specificity tradeoffs within differ-
ent genome sizes®’. Pho4 initiates transcription in response to phos-
phate stress®, while MAX acts as a heterodimerization node to control
cell proliferation in concert with other TFs®. Previous observations—
both that Pho4 binding is enriched at fewer genomic locations as a
function of Hamming distance away from the cognate sequence when
compared to other closely related yeast TFs® and that MAX dimers
are enriched in non-canonical E-box binding**’—suggest that the bio-
chemical differences in selectivity investigated here may have in vivo
relevance. Moreover, the observed decreased mutational sensitivity of
MAX compared to Pho4 (Fig. 2c) may result from a need to preserve a
wide variety of existing functions and reflect the fact that mutations in
promiscuous binders may be more likely to yield functional binding
proteins®7.,

This work is aligned with many other investigations linking con-
formational ensembles to TF specificity, from bispecific binding to
divergent motifs'>*”>7* to structural characterization of selective and
promiscuous complexes™ 7%, These selective and promiscuous con-
formations are not just static bound states; TFs undergo conforma-
tional rearrangements between these complexes with varying degrees
of selectivity as part of the binding pathway**”*°, Moreover, the ability
to access different conformations—and therefore bind increasingly
diverse sites—can originate from decreased global fold stability” or
differing degrees of frustration®. Currently, many structure-based
binding algorithms cannot capture this information. We predict that
incorporating conformational heterogeneity will be essential for
properly predicting and engineering molecular specificity and selec-
tivity. Our work suggests that prediction and design of selective bin-
ders (beyond TF-DNA interactions) will necessitate consideration of
energy landscapes that govern both folding and recognition, fueled by

systematic measurements of protein/ligand affinity, specificity, and
selectivity.

Methods

Fabrication of microfluidic molds and devices

Flow and control molds were fabricated as described previously
and all design files are available on the Fordyce Lab website (http://
www.fordycelab.com/microfluidic-design-files).

We fabricated two-layer MITOMI devices from these molds using
polydimethylsiloxane (PDMS) polymer (RS Hughes, RTV615) in the
Stanford Microfluidics Foundry. To fabricate the control layer, we
combined 55 g of PDMS (L:5 ratio of cross-linker to base), mixed and
degassed the components within a centrifugal mixer at 2000 (THINKY
ARE-250, 11.2 g) and/or 2200 rpm (THINKY ARE-310, 17.g) for 3 min. We
then poured the mixture onto the molds, degassed them in a vacuum
chamber for 45 min under house vacuum, and baked them in an 80 °C
convection oven for 40 min. We then cut control layers for individual
devices from the cast PDMS and punched fluid inlet lines using a drill
press (Technical Innovations) with a mounted catheter hole punch
(SYNEO, CR0350255N20R4).

To fabricate the flow layer, we combined PDMS at a 1:20 ratio
(cross-linker to base) and mixed and degassed the components within
a centrifugal mixer at 2000 (THINKY ARE-250, 11.2 g) and/or 2200 rpm
(THINKY ARE-310, 17.g) for 3 min. We then spin-cast the PDMS onto
molds for 10 s at 500 rpm followed by 1850 rpm for 75s. Spin-cast
layers were allowed to relax on a flat surface at room temperature for
5min before baking at 80 °C for 40 min. We then manually aligned
individual control layers to the partially cured flow layer and baked the
aligned devices for an additional 40 min at 80 °C. Bonded two-layer
devices were cut from the flow mold with a scalpel and the flow-layer
fluid inlet lines were punched as described above.

65,82

QuikChange mutagenesis for MAX mutant library

We generated a MAX plasmid carrying the full sequence of the MAX
transcription factor with a c-terminal monomeric eGFP tag® separated
from the MAX coding sequence via a gly-ser linker (GGSGGGGS). We
used Gibson assembly to clone the MAX-eGFP fusion into a purified,
linearized PURExpress vector with ampicillin resistance. The construct
was sequenced validated using Sanger sequencing prior to generating
mutants.

Primers encoding mutants were generated as described
previously’*** using a custom-made program, available at (https://
github.com/FordyceLab/designQuikChangePrimers). Briefly, the pro-
gram takes as input the DNA sequence encoding the MAX ORF
sequence and a list of desired mutants (e.g., “A67D” for Ala 67 to Asp
mutation), generates a set of candidate primers for each mutant, and
returns suggested mutagenic primer pairs scored according to criteria
previously published in the QuikChange manual. Primers were ordered
in a 96-well plate format from IDT (Integrated DNA Technologies) at
the 10nmol synthesis scale with standard desalting purification; the
forward and reverse primers for each mutant were premixed in each
well. For library design, pathogenic mutations and VUS were curated
from clinical sequencing databases as of March 2021.

Mutagenesis reactions were performed as previously reported® in
a 96-well plate format. Each well contained its own mutagenesis
reaction. Reactions were performed using the QuikChange protocol as
directed by the manufacturer (Agilent Technologies, New England
Biolabs). Upon completion of mutagenesis, we digested any remaining
methylated wildtype plasmid using Dpnl (New England Biolabs,
RO176L) for 1 h at 37 °C. We then transformed 1 L of each reaction into
5 uL of competent E. coli DH5alpha cells (New England Biolabs, C2987I).
Transformants were grown to saturation in 5-8 mL of LB media sup-
plemented with ampicillin (100 ug/mL) and miniprepped (Qiagen) for
Sanger sequencing. To validate successful mutagenesis, we aligned
each sequence to the template ORF and ensured that only the intended

Nature Communications | (2025)16:636

10


https://www.fordycelab.com/microfluidic-design-files
https://www.fordycelab.com/microfluidic-design-files
https://github.com/FordyceLab/designQuikChangePrimers
https://github.com/FordyceLab/designQuikChangePrimers
www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-024-55672-2

mutation was present in the plasmid. We re-picked colonies in the
event of errant mutations elsewhere in construct (eg. indels, additional
mutations in plasmid), or poor sequencing quality.

Plasmid array printing
Prior to printing plasmids, we transferred mini-prepped plasmid into
96-well plates. To standardize volumes of plasmids, the wells were
evaporated to dryness. We resuspended each plasmid with 50 uL of
Milli-Q water. Plasmids were transferred from 96-well plates into 384-
well plates using a Biomek FX Automated Workstation (Beckman
Coulter, model A31843). Each plasmid was pipetted into 4 consecutive
wells within the 384-well plate, and each well of the 384-well plate
contained 10 uL of plasmid. We recorded positions to keep track of
empty wells for adding subsequent mutants manually.
We evaporated 384-well plates to dryness at room temperature
and resuspended dried wells in print buffer formulated as below:
* 1% (10 mg/mL) Bovine Serum Albumin (Sigma Life Science,
B4287-25G)
* 200 mM (11.65 mg/mL) NaCl (Sigma Life Science, 71376-1KG)
* 12 mg/mL trehalose dihydrate (Sigma Life Science, T9531-25G)

All reagents were combined in Milli-Q water and mixed to dis-
solution at room temperature and sterile filtered to remove aggre-
gates. To each well in the 384-well plate, we added 12-15 pL of print
buffer for arrayer printing. When not in use, we sealed plasmid plates
with foil covers and stored them at -20 °C. Prior to printing, plates
were defrosted overnight at 4 °C and centrifuged at 2000 RPM/773 g
for 5-10 min. Over the course of subsequent prints, we added ~3-5 uL
of Milli-Q water (or additional print buffer) as needed to ensure suffi-
cient volumes of sample in plates for printing.

We printed plasmids using a SciFlex Arrayer (SCIENION AG) using
either the PDC50 or PDC70 nozzle (Type 1 coating). We generated a
“field file” to map each well on a 384-well plate to positions within the
printed plasmid array. To prevent cross-contamination between plas-
mids, the glass nozzle was washed with room temperature Milli-Q
water in between spotting different plasmid samples. We printed
plasmid arrays on epoxysilane-coated glass slides (Arraylt SME2,
SuperChip C50-5588-M20, or self-coated as previously described®).
After drying arrays overnight at room temperature, we aligned
microfluidic devices to “program” each chamber with its own plasmid
spot. Prior to alignment, we pre-baked microfluidic devices at 80 °C for
20-25 min using a hotplate (Torrey Pines Scientific) and allowed them
to cool to room temperature. These devices were then baked for
4-4.5h at 95°C on a hotplate.

Preparation of DNA for fluorescence-based binding assays

We designed all DNA sequences for binding assays with a 3’ region
complementary to a AlexaFluor-647 dye-conjugated primer (anneal
temperature: 37°C) (Supplementary Table 4).

We ordered all DNA sequences as single-stranded oligonucleo-
tides from Integrated DNA Technologies (IDT) with standard desalting
purification and shipped in ‘LabReady’ formulation (100 uM in IDTE
buffer, pH 8.0). We then duplexed these single-stranded DNA
sequences by (1) annealing the universal AlexaFluor-647-labeled pri-
mer to the 3’ region of the oligonucleotide and (2) extension using the
primer as a template using Klenow fragment, exo, polymerase. Both
steps (1) and (2) were performed as previously described®.

After the Klenow extension, we filtered the DNA reactions using a
0.45um filter spin column. We subsequently equilibrated duplexed
DNA in the final assay buffer (10 mM Tris-HCI, 100 mM NaCl, 1mM
DTT, pH 7.5; aliquoted and filtered using 0.45mM Steriflip vacuum
(Millipore, SEIM179M6)) using 10K filter spin concentrator columns
(Amicon Ultra, UFC501096). We added ~100 uL of the duplexed DNA to
the filter spin columns, added 200 uL of assay buffer, mixed by
pipetting, and concentrated the reaction to 100 uL by centrifugation

(9000 RPM/7.8 g for 8 min). We repeated this process 5 times, and
subsequently eluted the equilibrated DNA via manufacturer’s instruc-
tions for the 10 K filter spin concentrator column.

We serially diluted equilibrated DNA in final assay buffer as pre-
viously described®. For this dilution and the subsequent assay, the
assay buffer was supplemented with 50 pg/mL of UltraPure BSA
(ThermoFisher, AM2618). To calibrate each step of the binding assay
with a DNA concentration, we measured the highest concentration of
DNA using a DeNovix to measure absorbance at 260 nm.

For all experiments involving a mutation within the core-site, we
also performed this procedure for the consensus DNA sequence 5-C
CACGTG A-3. For these oligonucleotides, we measured binding iso-
therms for 5 DNA concentrations. For the sixth measurement, we
introduced the duplexed and labeled reference DNA sequence at a
high concentration (-7-9 uM) so that we could accurately quantify the
saturation ratio with which to fit all binding isotherms.

Microscopy and instrumentation

We made measurements as previously described®*®* using a Nikon Ti-S
microscope. Devices were controlled using a pneumatics manifold®®.
Custom scripting and automation enabled integrated control of both
the microscope and the pneumatics manifold (https://github.com/
FordyceLab/RunPack)*.

Measuring K4 values on-chip via STAMMP

Measuring Ky values on-chip have 3 major steps: (1) On-chip expression
and purification of MAX mutants, (2) titration of fluorescently labeled
DNA, (3) image analysis and calculation of Ky values.

On-chip expression & purification of MAX mutants

At assay start, “control” valve lines (Supplementary Fig. 2) were dead-
end filled with 550 mM NaCl solution to prevent premature solubili-
zation of arrayed DNA by osmotic balancing. All other control lines
were dead-end filled with Milli-Q water. All pneumatic valves on the
device were pressurized at 32-35 psi and reagents were introduced at
pressures of 3-4 psi.

On-chip expression and purification require the immobilization of
expressed proteins for subsequent assay steps. To accomplish this, we
performed a series of passivation steps as described previously**** to
immobilize biotinylated anti-GFP (Abcam ab6658, loaded at 1:20
dilution in PBS) antibodies selectively underneath the ‘button valves’
of the STAMMP microfluidic device. As all TF variants are fused to a
GFP, these antibodies will trap recruited TF variants for subsequent
assays. Briefly, the device flow layer was first dead-end filled with
biotinylated BSA (2 mg/mL, ThermoFisher Pierce, 29130). After all air
bubbles were expelled, we opened the outlet valve to allow reagent
flow, and introduced the biotinylated BSA for an additional 5 min with
the “button” valves pressurized and then for 30 min with the “button”
valves open. Next, we flushed the device with phosphate buffered
saline (10X stock, Corning, 46-013-CM; diluted to 1X in Milli-Q water)
for 10 min. We then introduced neutravidin (1 mg/mL, Thermo Scien-
tific, 31000) for 30 min with “button” valves opened, followed by
another PBS wash for 10 min and an additional biotinylated BSA wash
with the “button” valves pressurized again for 30 min. After an addi-
tional 10 min PBS wash, we introduced biotinylated anti-GFP antibody
(100 pg/mL, Abcam, ab6658) into the device for 2 min with the “but-
ton” valves pressurized and then opened “button” valves and flowed
for an additional 11 min and 20 s. Finally, we washed the device with
PBS for 10 min.

To express all TF variants simultaneously, we used PURExpress
(NEB E6800L). Briefly, we equilibrated Parts A and B of PURExpress on
ice until defrosted. For one device using 25 uL total of PURExpress, we
first incubated 10 uL of Part A with 7.5 uL of Part B on ice for 45 min.
Then, we added 1.5 uL of recombinant RNAsin (Promega N2515) and
6 uL of nuclease-free water (Promega P1193) and mixed by pipette until
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no phase separation was visible. We introduced PURExpress onto the
device as previously described**** Devices were then placed on a pre-
heated hotplate at 37 °C for 45 minutes to express all proteins. We then
placed devices on the scope and allowed the GFP to fold over the
course of 45-60 minutes with the button valves on the device closed.
After this was completed, we opened the button valves and recruited
GFP-tagged protein to the antibodies for 20-30 min. We then closed
the buttons to shield trapped TFs while we washed the device with PBS
and TrypLE (ThermoFisher 12604-013) to remove nonspecifically
bound TFs from the device walls. After this, we equilibrated the device
with assay buffer to remove trace amounts of TrypLE, composed of the
following unless otherwise specified:

* 20 mM Tris-HCI pH 7.5 (from 100 mM stock)

* 100 mM NaCl (from 100 mM stock)

* 1mM DTT (from 1 M stock) (Sigma-Aldrich, D9779)

* 50 ug/mL ultrapure BSA (ThermoFisher, AM2618)

DNA binding measurements

To perform binding affinity measurements, we introduced fluorescent
DNA (prepared as described above) at 6 concentrations ranging
between -60 nM to ~6 uM on the device. At each concentration step,
DNA was introduced to the device by:

(1) closing “neck” and “button” valves and opening “sandwich” and
inlet and outlet valves

(2) flowing labeled DNA across the device for 10 min

(3) closing “sandwich”, inlet, and outlet valves

(4) opening “button” valves and incubating for 20 min to allow
reactions to come to equilibrium

(5) imaging all chambers within the device in the Cy5 (DNA)
channel

(6) closing “button” valves (to trap TF-bound DNA)

(8) washing with assay buffer for 10 min

(9) imaging all chambers in both the GFP (TF) and Cy5 (DNA)
channels to quantify the relative intensities of trapped species in each
chamber.

For binding measurements with DNA sequences containing
mutations within the core binding site, only five concentration points
were measured. For the sixth and final concentration point, we mea-
sured DNA binding for the reference DNA sequence 5-C CACGTG A-3’
at a high concentration to determine DNA to protein fluorescence
intensity ratio denoting saturation of all binding sites for global fitting
K4 values. For prewash Cy5 images, we imaged the device at multiple
exposure times, ranging from 30 ms to 100 ms. We imaged postwash
GFP images using an exposure time of 500 ms. For postwash Cy5
images, we used exposure times of either 12200 ms or 3000 ms to
ensure we did not collect measurements at a saturating intensity.

Quantification of bound DNA fluorescence intensities

Images were stitched using in-house Python packages ImageStitcher
(https://github.com/FordycelLab/ImageStitcher)®. These images were
then analyzed using the ProcessingPack package (https://github.com/
FordyceLab/ProcessingPack)®. To quantify affinities for each TF
mutant binding to a given DNA sequence, we acquired per-chamber
calibration curves relating observed AlexaFluor-647 fluorescence to
spectroscopically measured dsDNA concentrations (Supplementary
Fig. 7), converted intensities to DNA concentrations based on ortho-
gonal measurements using a DeNovix instrument, and then fit
concentration-dependent binding curves as described below.

To identify TF mutants with DNA binding statistically indis-
tinguishable from background, we compared Cys intensities from TF-
containing chambers with those from blank chambers by repeated
measures ANOVA (providing a conservative estimate of mutants with
detectable binding); we report measured Kgs for these variants as a
lower limit (Supplementary Fig. 8, Supplementary Table 3).

Fitting K4 values

To fit dissociation constants, we first measured the amount of DNA
bound to surface-immobilized TF mutants over multiple concentra-
tions and converted these to ratios of bound DNA intensities (Cy5
channel) over immobilized TF (eGFP channel). We then applied a
global fit to the measured DNA/TF ratios and fit data from each indi-
vidual chamber to single-site binding models®*2,

Rinax - [DNA
RqDNA) = ST W)
R([DNA]): (Rmax - C) i [DNA] +C (2)

K, +[DNA]

Here, R is the intensity of DNA/TF as a function of DNA concentration
within the chamber, Ry is the constant shared across all chambers
corresponding to the value at which all binding curves saturate
(assuming an identical molecular stoichiometry), [DNA] corresponds
to the concentration of free DNA within the chamber, and Ky is the
dissociation constant for a particular chamber. We determined the
Rimax value by taking the median of the top 10% of DNA binding MAX
mutants at the highest DNA concentration point in an experiment for
the reference DNA sequence; for experiments with a mutated DNA
sequence, we measured the highest DNA concentration point using a
reference DNA sequence to prevent underestimation of Ryax.

In addition to fitting to a Langmuir isotherm, we fit our data to a
modified single-site binding model with an offset value, C, to correct
for variations in background intensities between experiments that can
affect ratio values. The fitting method that minimized per-chamber
RMSE of fits for each technical replicate was used for final determi-
nation and export of Ky values.

Measuring ko values on-chip via k-STAMMP

At the end of a STAMMP binding assay, k. values can also be
optionally obtained. Measuring k. values on-chip adds two additional
steps to a STAMMP assay: (1) titration of unlabeled DNA and (2) image
analysis and calculation of kinetic constants.

Dissociation measurements

Dissociation rate data was acquired after equilibrium binding proce-
dures largely as previously described®*. We first flushed each device
with non-fluorescent (dark) competitor dsDNA oligonucleotides con-
taining an E-box motif at a concentration of ~0.9 uM diluted in assay
buffer for 10 min with button valves closed after the acquisition of the
“post-wash” image. These oligos were prepared with Klenow poly-
merase as described above but with unlabeled primers. The inclusion
of non-fluorescent (dark) competitor at high concentrations during
dissociation is critical to prevent rebinding of labeled material, which
leads to systematic underestimation of dissociation rates®.

Next, after stopping flow of unlabeled competitor dsDNA and
closing sandwich valves, we then opened the buttons for 2.0 s to allow
dissociation of bound fluorescent DNA from surface-immobilized TF.
Finally, we closed buttons, flushed the device, and imaged in both the
CyS5 and eGFP channels to quantify loss of DNA binding and surface-
bound TF, respectively. For each experiment, we iterated this process
for 40 button duty cycle iterations.

Fitting of kinetic constants

After acquiring and processing images as described for STAMMP
assays, kinetic constants (k.¢) were determined by first calculating the
ratio (R) of “post-wash” DNA fluorescence (Alexa 647) to “post-wash”
GFP fluorescence per chamber at each time point. This ratio was then
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used to fit a single exponential value:
R(t)=R,_o-e*mt+C 3)

where R(t) is the fluorescence ratio as a function of time, k is the
dissociation constant, and C is a constant term which accounts for
background fluorescence or non-specific sticking of DNA. From these
fitted ko values, we can infer k,, through the definition of the
dissociation constant from measured K3 and measured ko¢ as
previously described®*

k
k. = —off “)
on Kd

Fold-reduction in binding from MITOMI measurements

To calculate fold-reduction in binding for MAX and Pho4 from pre-
vious measurements”, we collected the measured affinities for all
sequences with a Hamming distance of one away from the consensus
motif (Fig. 1e), compared these binding affinities to the median of all
consensus motif measurements (with variable flank nucleotides), and
calculated and reported the median for fold-reduction in binding.

Calculation of conservation

To calculate conservation of individual positions in the bHLH DBD, we
used curated multiple sequence alignment (MSA) of bHLH DBDs
(PFO0010 [https://www.ebi.ac.uk/interpro/entry/pfam/PFO0010/entry_
alignments/]). We culled this MSA to only include non-gapped posi-
tions and positions aligned to MAX. Finally, we re-aligned this filtered
MSA with the skbio.alignment.TabularMSA function, and calculated
conservation from this using the skbio.alignment.TabularMSA.-
conservation function (Fig. 2c).

Thermodynamic modeling of folding and binding equilibria
Thermodynamic model fitting and binding simulations were defined
by the following variables:

(1) H, the percentage of TF that is folded (helical) in solution.

(2) C, the percentage of TF that is unfolded (coil) in solution.

(3) D, the concentration of free DNA.

(4) Co (for Complex), the bound TF-DNA complex.

(5) pT (for total protein), the total amount of TF available in the
reaction.

(6) dT (for total DNA), the total amount of DNA available in the
reaction.

These variables were used to construct the following equations
and define equilibrium constants:

(1) Mass balance equation for protein species, defined as:

pT=H+C+Co 5)
(2) Mass balance equation for DNA, defined as:
dT=D+Co (6)

(3) Equilibrium constant defining partitioning between folded and
unfolded states in the unbound state:

H
Ktoia =& @

(4) True binding equilibrium constant, where only the folded
(helical) form can complex with DNA:

:H*D

Ka==o

®

In a STAMMP experiment, only the total amount of free DNA, total
amount of immobilized TF, and fractional occupancy of bound TF-
DNA complex is known; the distribution of folded/unfolded unbound
states and true values underlying equilibrium constants is not known.
Therefore, first we used the preceding 4 equations and sympy.solve to
define: Co(pT, dT;K;4q,K4), the concentration of bound TF-DNA
complexes as a function of total protein and DNA given the folding and
binding equilibrium constants, as follows:

1
Co(pT, dT; Kroa, Kg) = 51T +KoKpog + K +pT

- \/ dT? +2dTK 4K g + 2dTK g — 2dTpT + K2K 2 + 2K2K o + K3 + 2K 4K 1o1aPT + 2K 4pT +pT?]

©

For all subsequent calculations, pT was defined as 50 nM, based
on previous estimates for the concentration of immobilized protein on
MITOMI microfluidic devices®'. Apparent (measured) DNA-binding
affinities were then obtained by: (1) calculating equilibrium occupancy
of Co at dT spanning from O to 10 uM, analogous to the procedure for
measuring binding affinities in STAMMP experiments, and then (2)
defining the dT resulting i % =0.5 as the apparent DNA-
binding Kd,apparent'

TF mutations that alter the propensity to fold or unfold in the
unbound state can also alter the observed DNA binding affinity. We
assumed that all surveyed TF mutations only change the free energy
difference between the folded and unfolded state, changing K4 but
not K 4. The amount by which a TF mutation changes K4 can then be
defined as the change in helical propensity relative to WT TF, which
changes the folding equilibrium as follows:

Kol
AAGyp
@-1.987'10-3+298

10

Kfold, mutant —

where AAGy,, is defined as the change in helical propensity, which
defines the free energy difference for partitioning between unfolded
and folded, helical states™.

Fitting STAMMP data to derived thermodynamic model
To first develop intuition for how Ky e, Krold, and AAGyp alter the
range of Kq measured fOr both WT and mutant TFs, we determined how
the expected linear free energy relationships between helical
propensity-altering TF mutants and apparent DNA binding affinity
impact Kqmeasurea fOr TF mutations with intrinsic changes in helical
propensity spanning —2.0 to 2.5 kcal/mol (Supplementary Figs. 14-15).
Next, we fit K4 measured fOr MAX and Pho4 to the thermodynamic
model defined for Co(Ky, Kyyq, dT, pT) to extract K tue and Kioiq for
WT TF (Supplementary Fig. 16). To accomplish this, we first restricted
our analysis to TF mutations in the basic region that do not make
crystal contacts with DNA or at the dimerization interfaces, as these
mutants presumably alter Ky measured through mechanisms other than
changes to Kr,14. Each of these TF mutations was then defined to have a
AAGyp in accordance with previously measured changes in Gibbs free
energy for helix formation®. Next, for both MAX and Pho4, we calcu-
lated the RMSE of log;o thermodynamic model-predicted Ky measured
for all measured TF mutations to the STAMMP-derived log;o K4 measured
for values of K trye wr ranging from1 to 103.5 nM and values of K¢ojq wr
where the fraction of unfolded TF in the unbound state ranged from 99
to 1%. The fitted values of K true wr and Kroiqwr Were defined as those
that minimized RMSE for the mutations and Ky measurea measured via
STAMMP relative to the thermodynamic model of folding-and-
binding. Code to reproduce all simulations and fitting procedures is
available at https://osf.io/jmz8t.
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Identification of affinity altering mutations

To identify affinity-altering mutations, we first performed boot-
strapped equivalence testing for all MAX mutations, rejecting the null
hypothesis that a given mutation does not equally alter affinity for all
sequences (||zi = || > 8) if p < 0.05. For this procedure, we used a noise
tolerance threshold & set by the noise in WT MAX measurements (the
median standard deviation in measured Ks for across all motifs). Next,
we exclude mutations that are WT-like (AAG = 0) by filtering mutations
that do not significantly alter affinities relative to WT MAX (p < 0.05 via
independent t-test) in any measured E-box sequences. Finally, we
excluded mutations unresolvable from background binding to any
DNA sequence (Supplementary Fig. 8, Supplementary Table 3) from
our definition of affinity-altering.

Identification of non-additive TF/DNA mutation pairs
Identifying epistasis across the TF-DNA interface requires 4 affinity
measurements: (1) WT TF binding a ‘reference’ DNA sequence, (2)
mutant TF binding a ‘reference’ DNA sequence, (3) WT TF binding a
‘mutant’ DNA sequence, and (4) mutant TF binding a ‘mutant’ DNA
sequence. We then determined if each pair was statistically sig-
nificantly non-additive in K4 space, largely as previously reported®.

Briefly, to estimate the affinity that would have been expected if
the energetic effects of TF and oligonucleotide mutations were purely
additive, we first calculated an expected ‘additive’ K4 value using the
median reference Ky value (for WT TF interacting with the ‘reference’
oligonucleotide), the median Ky resulting from the relevant oligonu-
cleotide mutation alone, and the median Ky resulting from the TF
mutation alone as follows:

KTquu DNACACGTG *KTFWT' DNAmut
KTqu[' DNA —_d d

d KTFWT, DNAcaccTo
d

an

To determine whether the candidate TF mutant appeared epi-
static with the DNA nucleotide mutation, we used measurements of (1)
WT MAX and CACGTG, (2) WT MAX and mutant DNA, and (3) mutant
MAX and WT DNA to generate a distribution of additive K4 measure-
ments (n=500 simulated additive measurements). We then per-
formed an independent t-test comparing the distribution of additive
affinities with the experimentally measured affinities for the double-
mutant and used a Bonferroni-corrected p-value cut-off of 0.05 to
define TF mutants that are epistatic with DNA mutants.

Identification of selective MAX mutations

To identify mutations that differentially increase selectivity, we com-
puted residuals for each pairwise comparison between a mutated
E-box motif and the CACGTG cognate, calculated Z-scores for each
residual (to account for the fact that residual distributions vary with
absolute affinity), and defined a score as the median of all Z-scores
across each double mutant cycle comparison (Fig. 4c, Supplementary
Fig. 35), with selective mutations exceeding a threshold defined by the
standard deviation of the Gaussian fit to the residuals (Supplementary
Fig. 37). Mutations which were unresolvable from background in the
cognate motif measurement (for which reported Kgs are under-
estimated) were excluded from the list of reported selective muta-
tions, and candidate selective mutations were inspected and
culled by eye.

Gillespie model of TF binding kinetics
Gillespie algorithms are stochastic simulations based on reaction rates
that use discrete molecule counts and variable time steps®. Here, we
simulated TF selectivity using Gillespie models of different binding
pathways depicted in Fig. 6d, f. At each time step, we compute: (1) How
long until the next reaction occurs? and (2) Which reaction happens?
First, we calculated reaction propensities (a) from reaction
probabilities (c) and the number of reactants available for each

reaction. Reaction probabilities can be derived from the kinetic rate
constants as previously described®. For all simulations, microscopic
rate parameters previously estimated from CTMC modeling were used
as a starting estimation®. In this model, we initialized with 1 molecule of
MAX and DNA and set the volume to 1.66 x 102 pL (chosen for sim-
plicity so simulated s values equal M s* on-rate constants).

Observed off-rates (macroscopic ko) were calculated as the
median value across 3 replicates of the inverse of the average time it
takes MAX to become fully dissociated once specifically bound;
observed on-rates (macroscopic k,,) were calculated as the median
value across 3 replicates of the inverse of the average time it takes MAX
to become specifically bound once dissociated in solution. The
observed Kj is calculated as the ratio between macroscopic on- and
off-rates.

To calculate selectivity, we calculated ko, kon, and Ky for a range
of “motifs”, ranging from strongly to weakly bound sequences. Motif
“strength” is defined in all models by fi,orif, an implicit parameteriza-
tion of the probability of binding such that an increase in fi,or (tightly
bound motifs) causes an increase in association rate and a decrease in
off-rate, as previously described®*. Given that all observed specificity-
increasing mutations do not occur at conserved nucleotide contacting
residues, we assumed that TF mutations do not change the intrinsic
probability of recognizing a motif (f,.) but instead only alter
microscopic rate parameters. Selectivity was defined as the free energy
difference between the strongest (foour=0.99) and weakest
(fmotir= 0.01) motif surveyed. Code to reproduce all simulations is
available at https://osf.io/jmz8t.

Sensitivity analysis for 3-state model

Reaction likelihoods were defined according to the 3-state model
consisting of unbound, testing, and bound states shown in Fig. 6d.
Simulated kop, kofr, and Ky values across 20 “motifs” of strengths ran-
ging from fioe = 0.99 to 0.01 were obtained by coarsely varying 3 free
microscopic rate constants Kon, max Koff, max, and Kofr, 4 across 4 orders
of magnitude each in 10 step increments. For each combination of free
parameters, we simulated 3 independent trajectories with 10* reaction
steps. The resulting free energy difference between the tightest and
weakest surveyed motifs was calculated.

Sensitivity analysis for 4-state model

Reaction likelihoods were defined according to the 4-state model
consisting of an unbound binding-incompetent conformation, an
unbound binding-competent conformation, testing states, and bound
states shown in Supplementary Fig. 55. Simulated kon, kofr, and Ky
values across 20 “motifs” of various strengths (from fi,oir=0.99 to
0.01) were obtained by coarsely varying 3 free microscopic rate con-
stants Kon, max» Koff, max» aNd Kofr, y across 4 orders of magnitude each in
10 step increments, and an additional equilibrium folding constant
Keoia (defined as kon, foid/(1- Kon, foia)) Over 5 increments (spanning
percent folded in the unbound state from 1 to 99%). For each combi-
nation of free parameters, we simulated 3 independent trajectories
with 10* reaction steps. The resulting free energy difference between
the tightest and weakest surveyed motifs was calculated to report
selectivity.

Sensitivity analysis for model with multiple conformations

Reaction likelihoods were defined according to a 5-state model of
consisting of unbound TF, a selective testing and bound state, and a
promiscuous testing and bound state (Fig. 6f). Simulated kop, kofr, and
K4 values across 10 “motifs” of various strengths (from fi,oir = 0.99 to
0.01) were obtained by coarsely varying 6 free microscopic rate con-
stants kon, max, sr koff, max, sr koff, u, 87 kon, max, pr koff, max, pr and kof‘f, u, p
across 4 orders of magnitude each in 5 step increments. For each
combination of free parameters, we simulated 3 independent trajec-
tories with 3 x 10° reaction steps. The resulting free energy difference
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between the tightest and weakest surveyed motifs was calculated to
report on selectivity. For relevant parameter spaces, trajectories were
re-simulated with 10* steps across 20 “motifs” with 5 independent
replicates.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The processed affinity and kinetic measurements used in main text
Figures are reproduced as Source Data; all other data (including
quantified imaging data, fitted affinity and dissociation measurements,
and simulated data) used to generate Supplemental Figures, Tables,
and analyses are deposited as an Open Science Framework under
accession code jmz8t (https://osf.io/jmz8t/) in the Data and Simula-
tions subfolders, with a README.md file delineating which data relate
to which figure. Due to the large size of the imaging data, raw micro-
scopy images are available upon request. Figures using protein struc-
tures were generated using PDB accession no. IHLO or 5EYO (for
MAX), as well as 1AOA (for Pho4). Source data are provided with
this paper.

Code availability

All source code generated and used in this study for simulations and
figure generation is available as an Open Science Framework in the
Figures and Simulations subfolders under accession code jmz8t
(https://osf.io/jmz8t/) as well as Zenodo*® (https://doi.org/10.5281/
zenodo.14218355).
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