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Deep learning has proven capable of automating key aspects of histopatho-
logic analysis. However, its context-specific nature and continued reliance on
large expert-annotated training datasets hinders the development of a critical
mass of applications to garner widespread adoption in clinical/research
workflows. Here, we present an online collaborative platform that streamlines
tissue image annotation to promote the development and sharing of custom
computer vision models for PHenotyping And Regional Analysis Of Histology
(PHARAOH; https://www.pathologyreports.ai/). Specifically, PHARAOH uses a
weakly supervised, human-in-the-loop learning framework whereby patch-
level image features are leveraged to organize large swaths of tissue into
morphologically-uniform clusters for batched annotation by human experts.
By providing cluster-level labels on only a handful of cases, we show how
custom PHARAOH models can be developed efficiently and used to guide the
quantification of cellular features that correlate with molecular, pathologic
and patient outcome data. Moreover, by using our PHARAOH pipeline, we
showcase how correlation of cohort-level cytoarchitectural features with
accompanying biological and outcome data can help systematically devise
interpretable morphometric models of disease. Both the custom model design
and feature extraction pipelines are amenable to crowdsourcing, positioning
PHARAOH to become a fully scalable, systems-level solution for the expansion,

generalization and cataloging of computational pathology applications.

Deep learning has the potential to help automate and objectify many
manual and subjective aspects of histomorphologic analysis'. With
the growing availability of digital Hematoxylin and Eosin (H&E)-
stained tissue Whole Slide Images (WSIs), machines can now leverage
massive volumes of labeled image data to guide feature engineering
in an entirely automated and data-driven manner. Despite this
exciting prospect, the real-world utility and broad adoption of deep
learning in pathology has been challenged by the high input
requirements of expert-annotated data for each context-specific
application. To solve this gap, recent approaches have explored
using weakly supervised multi-instance learning to assign patch-level
tissue labels using existing WSI-level clinical annotations®. While

these approaches have shown that laborious manual annotations can
potentially be bypassed, the continued requirement for massive data
volumes to achieve good model performance (e.g. ~-10,000 WSIs/
application) may limit generalizability’. There is therefore a need for
more practical hybrid approaches where both humans and machines
contribute to learning, as these may provide a more favorable bal-
ance between automation and data efficiency. Such “human-in-the-
loop” (HITL) learning paradigms®* may help to more efficiently
produce the full diversity and scale of training data necessary to
generate a comprehensive toolbox of context-specific Convolutional
Neural Networks (CNNs), and other emerging deep learning archi-
tectures, for computational pathology.
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We recently developed a computational pipeline (coined “His-
tomic Atlases of Variation Of Cancer” (HAVOC’)) that takes advan-
tage of Deep Learning Feature Vectors (DLFVs), generated in a CNN’s
final global pooling layer, to serve as “histomorphologic fingerprints”
of individual pathology images®. By clustering associated image
patches using these signatures, we found that HAVOC could segment
WSIs, from a wide diversity of tissue types, into regional partitions

A

Input: WSI of tumor section CNN regional feature extraction

showing relative cytoarchitectural uniformity’ (Fig. 1Ai). Importantly,
we found that these proposed tissue partitions/regions correlate
with expert annotations, immunohistochemical readouts and even
subtle intra-tumoral differences in molecular profiles’. As such, we
reasoned that this DLFV-based clustering approach could potentially
serve as the foundation of a HITL weakly supervised learning
approach in which a system only needs to query experts for sparse
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Fig. 1 | Image feature-based clustering segments complex WSIs into relatively
uniform tissue partitions. A (i) Workflow highlighting mapping of tissue patterns
across entire Whole Slide Images (WSIs). Briefly, a pre-trained Convolutional Neural
Network (CNN) is used as a feature extractor and the generated Deep Learning
Feature Vector (DLFV)s are used to cluster and map image patches back onto the
WSIL. (ii-iv) Cartoon schematic of the PHARAOH workflow. (ii) Unlabeled WSlIs are
uploaded to the online portal. Users receive tile-clustered maps to help decipher
proposed groupings. Users provide cluster-level annotations which are aggregated
across multiple WSIs and used to finetune custom CNN models. The process can be
repeated to refine accuracy/desired outputs. (iii) Once developed, trained classi-
fiers are made publicly available. In addition to tissue segmentation, various
regional histomic (DLFs) and cell-based phenotyping outputs are provided to serve
as biomarkers of disease (e.g. tumor infiltrating lymphocytes). (iv) In addition to
core PHARAOH outputs, users can also export segmented target regions of interest
and carry out custom image analyses using other third-party tools on companion
platforms (CODIDO; codido.co). Panels (ii-iv) created in BioRender. Diamandis, P.

(2025) https://BioRender.com/y70k830. B, C Demonstrative input (WSI) (B) and
output (tissue heterogeneity map) (C) images of a sample colorectal adenocarci-
noma from The Cancer Genome Atlas (TCGA). Scale bars =2 mm. (n=984 tiles
extracted/clustered from this sample). D Representative image patches high-
lighting stereotypical morphology from different partitions. Tiles =256 x 256 pix-
els. E, F The relative degree of histomorphology similarities/differences align with
cluster positioning on dimensionality reduction plots (UMAP) (E) and Pairwise
Pearson correlation coefficients (r) (F) of the partition’s DLFVs. G-I Box plots
highlighting quantitative cellularity (G), epithelial (DLF66) (H), and fibrosis
(DLF215) (I) marker differences between defined regions. Box plots show minimum,
first quartile, median, third quartile, and maximum. Counts represent nuclear
instances or overall activation per 67,488 um> **p < 0.001 (2-sided t-test).

J Regional cell composition differences (HoVer-Net outputs). All relevant source
data including number of unique image patches (technical replicates) for each
comparison group are provided as Supplementary Data files.

cluster-level labeling of grouped image patches for custom model
training®*,

In this work, by combinatorially coupling these custom tissue
segmentation models with a complementary set of context-agnostic
cellular phenotyping readouts (e.g. cell-type classification/nuclear
morphometric analysis), we present a framework for a community-
driven encyclopedia of computational pathology tools for PHenotyp-
ing and Regional Analysis Of Histology (PHARAOH; https://www.
pathologyreports.ai/) (Fig. 1Aii-iv). Importantly, in this work, we also
highlight how PHARAOH models, designed with weak labels from a
relatively small sample of images, can be used to make meaningful
population-level inferences with clinical and biological significance.

Results

Image-feature clustering automates the organization of image

patches into histologically-uniform batches

To automate segmentation of histological information spanning entire
tissue sections, the user-friendly platform PHARAOH leverages HAVOC
to divide submitted WSIs into non-overlapping image patches
(~0.017-0.07 mm?; user-defined size) and uses patch-level DLFV sig-
natures to organize tiles into a tunable number of image clusters
(default k=9)° (Fig. 1B, C). Importantly, we found that, when tile par-
titions are projected back onto the original WSlIs, clusters often show
non-random spatial distributions that closely mirror morphologic
regions of uniformity and can be easily recognized and labeled by
pathologists (Fig. 1D). For each analyzed WSI, PHARAOH also provides
additional visualization outputs, such as the positional relationships of
clustered tiles on uniform manifold approximation and projection
(UMAP) and their pairwise DLFV Pearson correlation coefficients (r), to
allow users to decipher more subtle spatial deviations in related tissue
types and patterns (e.g. stromal elements in green/cyan clusters;
normal epithelium in purple cluster; inflammation in orange cluster
and tumor in red/yellow/blue/lime clusters) (Fig. 1E, F). Using more
formal benchmarking strategies, we also show a high level of agree-
ment between this unsupervised image segmentation workflow and
manual (Dicémean=0.93 + 0.04, n=6), immunohistochemical
(Dicemean=0.82 + 0.1, n=6) and transcriptionally-defined tissue
boundaries (Dicemnean=0.82 + 0.1, n=4) (see Supplementary
Figs. 1-3).

The downstream outputs of PHARAOH can further help in
objectively characterizing the delineated histological tissue regions
(Fig. 1 Aiii). For example, on every submitted case, PHARAOH carries
out nuclear segmentation/classification and morphometric analyses
(e.g. cellularity and nuclear surface area) in a representative subset of
tiles derived from each partitioned tissue region. Indeed, as high-
lighted in the Fig. 1 demonstrative example, cellularity counts are, as
expected, significantly higher in compact lymphocyte-rich tissue
regions as compared to areas containing larger neoplastic and non-

neoplastic epithelial cells, as well as the more paucicellular connective
tissue compartments (Fig. 1G, Supplementary Data 1A). Previously-
reported individual Deep Learning Features (DLFs)® are also standard
PHARAOH outputs and closely correlate with epithelial- (DLF66), fiber-
(DLF215) and mucin- (DLF382) rich regions, allowing users to have
additional supporting and objective metrics of interpretability for
different cluster compositions (Fig. 1H, I and Supplementary Fig. 4,
Supplementary Data 2). Regional nuclear segmentation and classifi-
cation using the HoVerNet-PanNuke®® model can also provide support
and objective cross-verification for an increased relative number of
epithelial (neoplastic/non-neoplastic), inflammatory and/or stromal
cells within respective WSI partitions (Fig. 1) and Supplementary
Data 1B). Overall, this automated framework of WSI segmentation and
downstream phenotyping with interpretable features provides a
dynamic approach for arranging large swaths of tissue into uniform
and informative subregions across diverse tissue types.

Regional features are associated with clinical outcome and
transcriptional processes in skin melanoma

To demonstrate the adaptive ability of this workflow (Fig. 2A) to
streamline the development of clinically-meaningful histopathologic
applications, we set out to confirm the known prognostic relationship
between the levels of Tumor Infiltrating Lymphocytes (TILs), inferred
from H&E images, with median overall survival time in patients with
cutaneous melanoma'. To train the model, we first performed auto-
mated region delineation in a handful of WSI samples (n =7) from the
cutaneous melanoma cohort of The Cancer Genome Atlas (TCGA-
SKCM) (see Supplementary Fig. 5). On average, we found that the
labeling of tissue regions delineated by the PHARAOH workflow took
~1-2 min/WSI, and generated a total of 23,211 annotated images span-
ning 8 unified classes (e.g. tumor and surrounding tissue types)
(Supplementary Data 3). This weakly-labeled dataset was then used to
fine-tune a VGG19 CNN model for automated lesion segmentation
tasks. Importantly, a comparison of this melanoma model (PHARAOH
model ID: e5dad8db) with additional PHARAOH-derived lesion classi-
fication models showed high spatial (Diceyean=0.86 + 0.09, n=9)
and overall patch-level agreement (r=0.79, n =50, p < 0.0001, 2-side t-
test) when compared to manual annotation and immunohistochemical
ground truths (see Supplementary Figs. 1, 6 and 7). We therefore
proceeded to use the cell phenotyping readouts provided by HoVer-
Net/PanNuke, which are built into the standard PHARAOH workflow, to
quantify immune cells in up to 200 representative tiles (from each of
the remaining TCGA melanoma cases) that were classified as tumor
(probability score: >90% tumor). To later highlight how the PHARAOH
workflow can be leveraged to facilitate custom and collaborative
applications, we also exported this representative set of target image
tiles to the companion platform CODIDO, which hosts additional third
party feature extractors, to generate an additional set of 160
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Fig. 2 | Automated analysis of TILs and morphometric features correlate with
outcomes and biology in skin melanoma. A Schematic of weakly supervised
annotation pipeline to train Convolutional Neural Network (CNN) models for
automated tumor delineation, coupled with Tumor Infiltrating Lymphocyte (TIL)
inferencing and morphometric analysis. B Sample Hematoxylin & Eosin (H&E)-
stained Whole Slide Image (WSI) case input (top) and Class Activation Map output
(bottom) of a representative case from The Cancer Genome Atlas Skin Cutaneous
Melanoma (TCGA-SKCM) cohort; custom region of interest (melanoma) shown in
brown; adipose and fibroconnective tissue shown in red and yellow, respectively.
Scale bars =2 mm. C Representative output of HoverNet/PanNuke for nuclear
segmentation and classification; nuclei from neoplastic cells delineated in red, TILs
in yellow. Tile length =129 um. D Sample distribution of TIL counts in 200 tiles
classified as tumor and computed sample-level TIL score (mean and standard
deviation shown in red) from 200 target tiles extracted from this representative
case. E Scatter plot of case-level correlation between PHARAOH-based TIL quanti-
fication and RNA-based Lymphocyte infiltration signature score across TCGA-

Difference group means (ssGSEA)
total =

335 variables

SKCM cohort. (R* and p-value generated by simple linear fit model). F Kaplan-Meier
survival curves for TCGA-SKCM cohort split into “high” (yellow) and “low” (blue)
PHARAOH-TIL scores based on the overall cohort’s median value. p-value derived
from 2-sided log rank test. Shaded bands show 95% confidence intervals of the
variance in survival estimates (standard deviation). G Top ranked morphometric
features whose values were found to predict divergent values in the Mitotic spindle
program (p < 0.05, 2-sided ANOVA). H Sample case images with low, intermediate
and high activations for the feature “AreaOccupied_NucleiObjects”, showing an
expected increase in nuclear density. Tiles =256 x 256 pixels. I Volcano plot high-
lighting significant differences in Single Sample Gene Sets Enrichment (ssGSEA)
between subgroups of cases with high and low values of the morphometric feature
“AreaOccupied_NucleiObjects”. Legend is shown above plot (p-value generated by
2-sided ANOVA, no FDR). ] Morphometric model of interpretable features that
predict melanoma with elevated mitotic spindle activity. All relevant source data
for this figure are provided as Supplementary Data files. Panels (A, J) created with
Biorender.com. Diamandis, P. (2025) https://BioRender.com/c691485.

quantitative nuclear parameters using a hosted and fully executable
version of CellProfiler (Fig. 2A).

Altogether, after filtering out low-quality WSIs, we applied this
tandem model to compute a sample-level TIL score for the remaining
385 patients from the TCGA-SKCM cohort, defined as the log-
transformed mean value of lymphocyte counts across the set of sam-
pled tiles classified as tumor (Fig. 2B-D, Supplementary Data 4).
Molecular metadata in TCGA supported the validity of our approach,
as the computed TIL score aligned with the RNA-based Lymphocyte
Infiltrating Signature Score? (linear model fit, 2-sided, R?=0.18,
p <0.0001, n=385) (Fig. 2E). Moreover, partitioning the TCGA-SKCM
cohort into groups of cases with either high or low TIL scores (with

respect to the median score) showed significant differences in median
survival (high =109 months, low = 66 months, log rank test, 2-sided,
p=0.00016, n=385) (Fig. 2F), which aligns with previously-reported
results from RNA-based TIL inferences” and other computer vision TIL
models'. Together, this demonstrates how the annotation of image-
feature-based clusters, generated from only a small handful of cases
submitted to PHARAOH, can be utilized to develop custom
biologically-informative histologic biomarkers of clinical outcomes
without imposing significant data curation requirements on
researchers.

In addition to providing examples of how PHARAOH can aid in the
automation and quantification of established histomorphologic
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Fig. 3 | Multivariate models developed using extracted morphometric features
predict aggressiveness in ccRCC. A Schematic of the hand-crafted 3-feature
model designed to capture key aspects of clear cell Renal Cell Carcinoma (ccRCC)
Fuhrman grading. Created with Biorender.com. Diamandis, P. (2025) https://
BioRender.com/c691485. B Sample case input (top) and Class Activation Map
(CAM) output (bottom) of a representative case from The Cancer Genome Atlas
Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) cohort. Custom region of interest
(ccRCC) is shown in brown while normal renal parenchyma and fibroconnective
tissue are shown in cyan and yellow, respectively. Scale bars =2 mm. C, D Box plots
showing aggregate nuclear feature values, separated by their pathologist-reported
nuclear grades, in the TCGA-KIRC study (test set, n =446 subjects, G1-4:
12,194,183,57 respectively) and in a local cohort (n =35 subjects, G1-4: 8,10,9,8
respectively) (Saint Michael’s Hospital; SMH), respectively. Legend is shown
between panels. E Kaplan-Meier (KM) survival curves for the TCGA-KIRC cohort
split into “high” (yellow) and “low” (blue) aggregate nuclear feature score groups

based on the overall cohort’s median value. F Variable importance in the XGBoost
model for survival, trained with the 160 morphometric features. G, H Box plots
showing predicted risk scores stratified by nuclear grade, in the TCGA-KIRC study
(test dataset, n =242 subjects, G1-4: 5,111,98,28) and in a local cohort

(n=35 subjects, G1-4: as above), respectively. Legend is shown between panels.

1 KM analysis for the TCGA-KIRC cohort (test dataset, n =242 subjects) split into
groups with “high” (pink) and “low” (turquoise) risk scores shows a more pro-
nounced survival difference than the former hand-crafted model. All box plots in
this figure show minimum, first quartile, median, third quartile, and maximum.
p-value thresholds for box plots are denoted as follows using a 2-sided ANOVA test:
*p<0.05, *p <0.01 and **p < 0.001. NS = not significant. P-values for KM survival
curves represent 2-side log rank tests. Shaded bands show 95% confidence intervals
of the variance in survival estimates (standard deviation). Corrections for multiple
comparisons were not relevant to these analyses. All relevant source data for this
figure are provided as Supplementary Data files.

paradigms (e.g. TILs), we also leveraged specific PHARAOH outputs in
exploratory analyses to show how the platform can be used to gen-
erate biological insights. Using transcriptomic data from the TCGA-
SKCM cohort and the 160 morphometric features produced by Cell-
Profiler, we ranked cases based on enrichment of genes related to
mitotic spindle activity. Specifically, this was done by establishing high
and low subgroups for each nuclear feature and computing differ-
ences in their average Single Sample Gene Set Enrichment Analysis
(ssGSEA) scores from the “MSigDB_Hallmark Mitotic Spindle” gene set
(Fig. 2G, Supplementary Data 5). In this analysis, the computed
“AreaOccupied_NucleiObjects”, which can be interpreted as an aggre-
gate measurement of cellular density and/or nuclear size, proved to be

the most informative feature (p=0.002, ANOVA, 2-side, no FDR) and
was corroborated by histological review (Fig. 2H). Encouragingly, fur-
ther analysis of the transcriptomic profiles of the high/low subgroups
for the feature “AreaOccupied_NucleiObjects” revealed multiple addi-
tional cell cycle-related molecular programs as being enriched in cases
with higher nuclear densities, whereas many KRAS-related gene sets
(e.g. KRAS_PROSTATE_UP), which have been associated with cancer
migration processes in different cancer types”, were found to be
enriched in the subgroup of melanoma cases with lower nuclear den-
sities/sizes (Fig. 2I). In addition to the conceptual value such models
provide (Fig. 2J), we envision that they can be leveraged by patholo-
gists, reviewing routine H&E slides, to guide the triaging/prioritizing of
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patients for advanced molecular testing to ultimately improve enroll-
ment and uptake of precise medicine-based care.

Multivariate models of morphometric features predict aggres-
siveness in clear cell renal cell carcinoma

We next investigated how the aggregate use of morphometric fea-
tures, extracted from tumor regions delineated by PHARAOH classi-
fiers, could be used to develop clinically-informative models of
disease. As a proof-of-concept, we investigated the degree of correla-
tion between the grading annotations of the TCGA Clear Cell Renal Cell
Carcinoma cohort (TCGA-KIRC) with relevant nuclear morphometric
features computed with CellProfiler (via CODIDO). The aforemen-
tioned weakly supervised tissue segmentation pipeline was again used
to develop a tumor segmentation model for clear cell Renal Cell Car-
cinoma (ccRCC) with cluster-level annotations for 27 cases from the
TCGA-KIRC cohort. A total of 81,768 annotated images, spanning 9
tissue classes, were generated (Supplementary Data 6 & Supplemen-
tary Fig. 8), and later used to fine-tune a custom ccRCC model
(PHARAOH model ID: 82829b22). We then used this PHARAOH model
to delineate lesional regions and extract a representative set of up to
200 tiles classified as tumor (probability score: >90%) from each of the
remaining TCGA-KIRC cases. Then, each case’s set of tumor tiles
underwent nuclear segmentation using HoVer-Net/Kumar, followed by
analysis with CellProfiler (v4.0.5) to extract a set of 160 morphometric
features encompassing both nucleus- and tile-level metrics (Supple-
mentary Data 7). As an initial attempt, we developed a 3-feature
aggregate score by using the average of the normalized values of the
following three relevant features: (i) nuclear atypia (inverse Area-
Shape_FormFactor), (ii) nuclear size (AreaShape_Perimeter) and (iii)
nuclear staining heterogeneity as a marker of prominent nucleoli
(Intensity MADIntensity Grayscale) (Fig. 3A, Supplementary Data 8).
Importantly, in cases where this metric could be computed, this
3-feature aggregate score showed significant alignment with the
Fuhrman ccRCC grading system reported in TCGA-KIRC samples
(Fig. 3B, C). To demonstrate the real-world generalizability of PHAR-
AOH models outside of the potentially idealized cohorts of TCGA, we
also applied this pipeline to a local cohort of 35 ccRCCs stratified to
include cases spanning all 4 grades (Supplementary Data 9). The
aggregate risk score again showed a strong relationship with tumor
grade in this independent cohort (Fig. 3D, Supplementary Data 10).
Lastly, partitioning the TCGA-KIRC cohort into cases with either high
or low aggregate scores (with respect to the median cohort value)
showed significant differences in median survival times (log-rank test,
p <0.0001) (Fig. 3E).

To achieve a more generalizable and data-driven approach,
compared to this initial manually hand-crafted model, we investigated
the use of machine learning to produce more complex signatures
capable of handling the entire set of extracted morphometric features.
To this end, we trained an XGBoost to build a survival model using all
160 morphometric features extracted from the TCGA-KIRC cases (50/
50 train/test split). This approach produces an output risk score that is
analogous to hazard ratios in conventional Cox models. Inspection of
the ranked feature importance from this XGBoost model highlighted
distinct but encouragingly related morphometric features, under-
scoring the interpretability of these biologically-informed features
(Fig. 3F). Importantly, the predicted risk scores again aligned with
Fuhrman grade in both the TCGA-KIRC (test dataset, n =244) (Fig. 3G,
Supplementary Data 8) and in the local ccRCC (n =35) (Fig. 3H, Sup-
plementary Data 10) cohorts; however, the smaller size of the latter
cohort limited confirmation of significant differences between the
multiple group comparisons. Additionally, stratification of the
remaining TCGA-KIRC cohort (unseen test dataset) into high and low
risk score subgroups, based on the median cohort value, yielded an
even more pronounced and significant difference in survival (log-rank
test, p<0.0001) (Fig. 3I). Altogether, these results illustrate how a

diversity of machine learning models can be successfully used in tan-
dem to select regions of interest (PHARAOH), extract morphometric
features (CellProfiler on CODIDO) and link them to clinical outcomes
(XGBoost). The generalizability of these steps opens the door for the
automated analyses of readily available H&E images to generate
interpretable readouts such as risk scores across different cancer types
and relevant features of interest.

Discussion

Deep learning has proven to be capable of addressing many of the
challenges surrounding human subjectivity and automation in histo-
morphologic analyses. However, the inherent context-specific nature
of developing robust models, including the required development of
large, domain-specific training image datasets, has made imple-
mentation and translational efforts difficult. Building a “one-size-fits-
all” solution or, conversely, innumerable “point” solutions, scattered
across different online repositories, therefore present practical ineffi-
ciencies in sharing innovations in computational pathology. To
address these critical scalability barriers, we developed PHARAOH to
serve as a dynamic “systems-level” platform that can continually evolve
through asynchronous cross-disciplinary contributions from patholo-
gists and computer scientists. In addition to allowing translational
researchers to seamlessly use advanced computational tools, PHAR-
AOH is distinct by also empowering users to contribute unique clinical
knowhow to design and share highly nuanced tools for custom appli-
cations. Like many other social platforms (e.g. Wikipedia, YouTube)
this facilitates widespread access to a growing catalog of catered and
personalized content. Notably, the cluster-level labels PHARAOH uses
significantly reduce the time investment from expert annotators, who
have demanding clinical schedules, and can be carried out entirely
online without the need for any specialized hardware/software. The
modular nature of PHARAOH, in combination with other com-
plementary platforms (e.g. CODIDO), also allows computational
researchers to agnostically plug-in their own innovations (e.g. mitosis
detection algorithms) to explore clinical applications (e.g. using mul-
tiple PHARAOH classifiers) without the need to collaborate with
scarce/busy subspecialists. Indeed, we have collectively used this
pipeline to virtually catalog a diverse set of both tissue segmentation
models (PHARAOH) and feature extractors (CODIDO) that were
developed across several international institutions and among colla-
borators who have never physically met and/or have not had previous
formal relationships. By enabling/promoting the sharing of developed
tools, PHARAOH has the potential to develop an expansive catalog of
custom models to help address the challenges of equitability, inclu-
siveness and diversity of machine learning tools across distinct patient
populations and geographies.

In addition to automating well understood clinical paradigms, we
also highlight how PHARAOH can be used to derive translational and
biological insights by computationally cataloging the histomorpholo-
gic landscape of disease across different clinical (Fig. 3) and molecular
variables (Fig. 2). While we show how quantitative image analysis of the
TCGA-SKCM cohort can be leveraged to build computational mor-
phometric models of rapidly cycling melanomas, this approach can be
seamlessly applied to additional pathways and disease types of inter-
est. In TCGA-KIRC, we show how the generalizable PHARAOH-CODIDO
pipeline can be used to develop data-driven histomorphologic models
of aggressive cancers. By mapping interpretable features (e.g. cell size,
density) on routine H&E-stained sections to actionable biological
parameters, we envision knowledge generated from these pipelines
will augment pathologists’ ability to better prioritize specific patients
for the most appropriate ancillary molecular tests and downstream
clinical stratification.

As a final note, we raise some caveats to consider while using this
initial iteration of PHARAOH. Firstly, while there are parameters in the
image clustering workflow that perform well across a wide range of
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applications (e.g. tile size: 256-512, 7-9 clusters), the optimal values for
specific contexts will likely differ and thus can be tuned based on
specific applications and user preferences. For challenging cases,
heterogeneous clusters may still persist, and can therefore be omitted
and censored from downstream analyses. As each cluster generated in
PHARAOH is accompanied by a proposed label and confidence score,
future improvements will focus on developing more active learning
approaches to mark and prioritize the most challenging cases for
human review. Similarly, while we focus on using the VGG19 CNN as the
backbone for fine-tuning custom models, future iterations of PHAR-
AOH will look to expand offerings to include other CNN architectures
and emerging vision transformer and foundation models®. Lastly,
while we focus on surgical cancer specimens as an initial application,
we note the exciting potential for the generalization of this workflow to
non-neoplastic tissue types (see Supplementary Fig. 4). All together,
we believe that PHARAOH represents a dynamic Wikipedia-like crowd-
sourcing platform to improve the system-level reproducibility, scaling
and generalization of computational pathology tools for both clinical
and translational research applications.

Methods

Ethical approval

The University Health Network Research Ethics Board has approved
the study REB #17-5387 as it has been found to comply with relevant
research ethics guidelines, as well as the Ontario Personal Health
Information Protection Act (PHIPA), 2004. Patient consent was not
directly obtained and a consent waiver for this study was granted by
the University Health Network Research Ethics Board as the research
was deemed to involve no more than minimal risk as itincluded the use
of exclusively existing pathology specimens. The remainder of the
WSIs were obtained from various TCGA cohorts that are publicly
available for research purposes, and did not require any additional
institutional review board approval.

Reporting on sex and gender

There are no currently known major sex or gender differences in the
diagnostic morphologic patterns of cancer as seen under a micro-
scope. Therefore, given our primary goal of developing a crowd-
sourcing pipeline for computational pathology, the focus was on
validating the pipelines on well understood sex/gender-agnostic bio-
logical parameters (e.g. TILs, nuclear grades). It is therefore expected
that the tools developed will therefore apply to all sexes/genders. As
TCGA collected and reported the sex of each patient, future studies
can apply the reported pipeline and data generated towards these
questions. The age range and sex of patients in the local ccRCC cohort
is also provided in Supplementary Data 10.

Image feature-based decomposition of WSIs into patch clusters
with uniform histomorphology

Tissue partitions are generated in PHARAOH using an unsupervised
image feature-based clustering workflow we previously coined
“HAVOC” that is implemented in python (https://pypi.org/project/
havoc-clustering/) and described in detail elsewhere’’. Briefly, WSIs are
first tiled into individual 0.066-0.27 mm? image patches (patch width:
129 um (256 pixels) to 258 um (512 pixels)) respectively. While this
parameter is entirely tunable by the user when WSIs are submitted to
PHARAOH, we found that this apparent magnification effectively
separates a variety of tissue types/tumor sub-patterns while providing
a favorable balance between capturing both individual cellular differ-
ences (e.g. nuclear features) and more advanced secondary structures
(see below for further details). Although various tile sizes were used
during the initial tests, for simplicity and consistency, we have set the
current default on PHARAOH to 0.066 mm? (512x 512 pixel, 20x
apparent magnification) and 9 clusters. The results generated from
this patch size maintained easily recognizable spatial patterns in tissue

makeup while reducing tile-to-tile variability and not compromising
the computational time of the workflow.

Histomorphologic signatures for individual tiles are represented
by averaging the “deep learning feature” (DLF) values extracted from
the final global average pooling layer of a previously fine-tuned version
of the VGGI9 CNN that we trained, with transfer learning, on a diverse
set of nearly 1 million pathologist-annotated image patches spanning
over 70 distinct tissue classes that were extracted from over 1000
brain tumor samples®. We refer to these 512 feature representations as
the “Deep Learning Feature Vector” (DLFV). We previously showed that
individual DLFs are activated by specific histomorphologic patterns
(e.g. fibrosis, epithelium and mucin), allowing them to drive the clus-
tering of image patches with relatively similar morphologies. Tile-level
DLFVs are scaled feature-wise and are then hierarchically clustered into
9 clusters using Ward’s Method®. As discussed below, the total number
of generated clusters can also be tuned by the user, and in conjunction
with custom tile sizes, can help optimally align clustering solutions
with the contextual level of tissue complexity. Empirically, this solution
tends to ensure slight over-clustering of distinct (sub)regions while
maximizing the production of relatively uniform histomorphological
subgroups of images that are readily identifiable by expert reviewers’.
To help further qualitatively and quantitatively visualize inter-cluster
relationships, PHARAOH also produces tile-level UMAP projections
and pair-wise Pearson correlation coefficients of each region’s average
DLFVs. To include a spatial context to these image feature-based
clusters, the cluster identities are also projected back onto a thumbnail
of the WSI as different colors. This creates the so-called “Histomic
Atlases of Variation of Cancer” (HAVOC) that we found could be easily
inspected by experienced histologists/pathologists to assign accurate
cluster-level labels or omit heterogenous ones in a fairly streamlined
and intuitive manner.

Weakly supervised annotation and tissue-specific CNN fine-
tuning

The PHARAOH workflow generates tissue-specific CNN classifiers by
using expert-annotated histologically-homogeneous clusters of ima-
ges as training data. Briefly, WSIs undergo deep image feature-based
decomposition (via HAVOC), as described above, to form 7-12 parti-
tions, usually comprising ~-10%*10* image patches per cluster (512px,
20x apparent magnification). To facilitate the annotation process,
PHARAOH also provides a companion set of interpretable features at
the region level. Using Mask R-CNN""® for nuclear segmentation and
Detectron2 for morphometric analysis, the workflow calculates
regional average values for cell counts, nuclear surface area and cir-
cularity. Additionally, “preliminary labels” and probability scores (e.g.
Class: Fibrocollagenous tissue, Probability: 85%) from existing models
are provided for each region to pre-populate commonly-found histo-
logical entities and allow users to focus their annotations on the classes
that lacked high-confidence labeling. The pre-populated labels also
serve as a cross-verification system to help users potentially seek
additional consensus for cases where their interpretations may not
match results generated from similar relevant models.

Specifically, after submitting the desired set of WSIs to be used for
training to PHARAOH for analysis, users can use the “create” function
from their Personal Dashboard to design and develop custom models.
For each included case, users are sequentially shown a HAVOC map
depicting each image cluster spatially projected back onto the original
slide thumbnail. By comparing each HAVOC color map with the
respective original high-quality WSI, users can choose to either keep or
update the pre-populated cluster labels and effectively assign the same
class label to all tiles from that specific region (“Tiles from HAVOC
region”). For example, for the WSI “TCGA-D3-A8GD-06Z-00-DX1” from
the “TCGA-SKCM” cohort, all 226 tiles from the blue HAVOC cluster
(“TCGA-D3-A8GD-06Z-00-DX1_HAVOC k12 blue”) were annotated
with the label “lymph_dense” when developing the Melanoma (ID:

Nature Communications | (2025)16:742


https://pypi.org/project/havoc-clustering/
https://pypi.org/project/havoc-clustering/
www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-024-55780-z

e5dad8db) classifier (see Supplementary Data 3). The annotations
from these multiple WSIs/HAVOC maps are then merged to create a
global summary of annotations. By evaluating this summary report,
users can confirm whether all the tissue classes have reached a suffi-
cient number of annotated tiles for CNN fine-tuning and decide which
classes should be included, merged or omitted from training (see
Methods for further details). We also produced an instructional step-
by-step video demonstrating how to develop a custom PHARAOH
classifier: https://youtu.be/H9oBpH8bApc.

The annotated collection of image patches is then used to fine-
tune a CNN for custom classifier generation”. During this process, the
image set is filtered to remove patches with over 40% blank space, and
the remaining tiles are then partitioned into training and validation
sets (ratio: 85:15). The final, fully-connected layers of the VGG19 CNN
are removed and replaced with a global average pooling, single fully-
connected layer, and then these final two convolutional layer blocks of
the network are retrained using the user-annotated images. The pro-
cess is carried out using the Keras framework with a Tensorflow
backend and powered by an NVIDIA RTX 3090 graphics processing
unit (GPU). Users are free to iteratively retrain and refine models as
they see fit.

Nuclear segmentation and classification

To provide estimates of the cellular composition of tissue images,
PHARAOH performs nuclear segmentation and classification using
the HoVer-Net/PanNuke model (TIAToolbox implementation®),
which produces counts for the following cell types: neoplastic epi-
thelial, inflammatory, connective, necrotic and non-neoplastic epi-
thelial. Although this model was trained with 512 x 512 pixel tiles and
40x apparent magnification, we found we could also apply this
model to a WSI scanned at an apparent magnification of 20x by
producing tiles of 256 x 256 pixel and scaling them to pseudo-40x
magnification, 512 x 512 pixel, using bicubic pixel interpolation (‘vips
resize’ command). To manage the level of utilization of computa-
tional resources, nuclear segmentation and classification is carried
out on a sample of up to 200 tiles from each region of interest.

To elaborate, while the dimensions of a WSI can vary depending on
the size of the sectioned tissue area, typical sections reach 150,000
(length) x 100,000 pixels (width) when scanned at a magnification of
40x. At this magnification, each pixel represents a physical length of
0.2531 microns. In addition to the need to divide these large images into
smaller, more manageable and standardized image patches (tiles of
512 x 512 pixel dimensions), it is also important to correct for potential
differences in the scanning resolution/magnification of the WSIL. For
example, many cohorts/datasets, including TCGA, contain WSIs scan-
ned at either 40x and/or 20x. At this latter magnification, each pixel
represents a physical length of 0.521 microns. If not corrected, the
lower pixel density of tiles generated from 20x WSIs can make both
distances and cells be computationally interpreted as much smaller
than they really are. For algorithms designed to work at 40x (e.g. HoVer-
Net), these apparent differences can lead to increased misclassification
of larger cells (e.g. epithelial/cancer cells) as smaller cell types (e.g.
lymphocytes) and distort meaningful differences in classification.
Scanning resolution encoded in the metadata of each WSI was used to
dictate when we generate 512 x 512 pixel (microns per pixel: 0.2531,
40x) or 256 x 256 pixel (micros per pixel: 0.521, 20x) tiles to ensure we
normalize the capture area and distances of image patches.

As part of the effort to generate interpretable readouts for the
regions produced by automated tissue segmentation, PHARAOH runs
HoVer-Net/PanNuke in tiles sampled from all the resulting regions. In
Fig. 1, we merged the non-neoplastic and neoplastic epithelial cate-
gories and omitted the necrotic class as we found that these classes
had low specificity in this context.

After a tissue classification model has been established, HoVer-
Net/PanNuke can be run in the tiles that have been classified as lesional

with a high degree of confidence (>0.9 probability) to provide a
readout of the immune status of the tumor areas. A total of 476 WSIs
(.svs files) from the TCGA-SKCM study® were downloaded from the
GDC Data Portal using the GDC Data Transfer Tool Client v1.6.1. The
associated clinical information was obtained from cBioportal’s dataset
download section (https://www.cbioportal.org/datasets) by selecting
the “TCGA, Firehose legacy” data release of the TCGA-SKCM study. We
developed a training cohort of labeled image patches (256 x 256 pixel,
20x apparent magnification) using the PHARAOH workflow as descri-
bed above. Specifically, we selected 7 representative WSIs containing
melanoma and other commonly-encountered tissue types including
normal skin, lymph nodes and intestinal mucosa. Each WSI was passed
through our image feature-based clustering workflow to delineate 12
clusters of tiles per slide. Overall, we included 8 tissue classes in the
final model (see Supplementary Data 3 and Supplementary Fig. 5). The
annotated tiles were used to fine-tune a pre-trained VGG19 neural
network. The remaining WSIs of the TCGA-SKCM were analyzed with
the newly developed melanoma classifier, and a representative sample
from each WSI of up to 200 tiles (bicubic pixel interpolation for
512x 512 pixel, pseudo-40x magnification) was analyzed with the
HoVer-Net/PanNuke model. Cases with only a handful of selected
lesional tiles were filtered out as a quality control step prior to the
formal TIL analysis. For this analysis of the TCGA-SKCM cohort, we
made the assumption that the resulting inflammatory cell counts
provided by the model are equivalent to TIL counts. A region-level TIL
score was defined using the following formula:

n
TIL score= % > log(cc+1) @
i=1

In this formula, TIL score is the mean value of the log-transformed
“inflammatory cell count” (ICC) of each selected tile (n=up to 200
available tiles/region) computed by HoVer-Net/PanNuke.

Nuclear segmentation and morphometric analysis in ccCRCC
To investigate the level of alignment between nuclear morphometric
features and pathology grading (Fuhrman grade) in ccRCC, the
PHARAOH weakly supervised workflow was used to develop a ccRCC
classifier with 9 tissue types using images from TCGA-KIRC (n =27) and
additional non-lesional tiles from TCGA-KIRP (n=2) (Supplementary
Data 6) (PHARAOH model ID: 82829b22). The classifier was then used
to analyze the remaining WSIs from the TCGA-KIRC cohort (down-
loaded again from the GDC Data Portal) to delineate their tumor-
containing regions, followed by sampling of up to 200 lesional tiles
from each WSI. HoVer-Net/Kumar®, an image segmentation archi-
tecture trained to detect cell nuclei in histology images, was applied to
each set of lesional tiles. Then, a CellProfiler pipeline was used to
perform morphometric analyses that included the following image
analysis modules for NucleiObjects: MeasureObjectSizeShape, Mea-
surelmageAreaOccupied, MeasureObjectintensity, Measur-
eObjectIntensityDistribution (with maximum radius set to 100),
MeasureGranularity and MeasureObjectNeighbors; and the following
modules for image-level analyses: MeasureTexture and Measur-
elmagelntensity. A total of 160 morphometric features were gener-
ated, and their values, averaged for the selected lesional tiles, were
used to represent each WSI/case. A Docker image with CellProfiler was
used as the base component of the workflow, to which HoVer-Net/
Kumar and application-specific scripts were added (https://github.
com/duanxianpi/Nuclei-Feature-Extraction). This workflow can be run
either in a GPU-enabled system locally or online in PHARAOH’s com-
panion platform CODIDO (https://www.codido.co/; “Nuclear Feature
Extractor”).

A model to infer risk scores in ccRCC was trained with data from
50% of the samples from the TCGA-KIRC cohort (n = 243) using the set
of 160 morphometric features, together with the survival time and
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status. The XGBoost for survival model was trained using the following
parameters: objective =survival:cox, eval_metric =cox-nloglik, eta=
0.05, max_depth =2, subsample = 0.85 and nrounds =100. Inference
was performed in the test dataset (n=244) and the resulting risk
scores, which are analogous to hazard ratios in Cox models, were used
in subsequent analyses.

Validation of PHARAOH outside of TCGA

It is possible that the large-scale nature of the TCGA initiative could
contain biases in the inclusion of cases that have definitive and parti-
cularly representative histomorphologic tumors that differ from those
encountered in real-world practice. Therefore, to externally validate the
robustness of the PHARAOH workflow, we scanned independent cases
from local Toronto hospitals that did not participate in the TCGA study.
These included relevant cases of: (i) cutaneous melanoma (3 cases
generated at the Toronto General Hospital) (ii) ccRCC (35 cases gener-
ated at Saint Micheal’s Hospital (SMH)) and (iii) metastatic brain lesions
(3 cases generated at the Toronto General Hospital) (total: n =41). For all
these local cases, we highlight strong concordance of partitions formed
by image feature-based clusters (HAVOC) and class activation maps with
manual annotations of tumors by pathologists. For the final cohort
(brain metastases: lung adenocarcinoma, melanoma and squamous cell
carcinoma), we also leveraged access to relevant objective IHC markers
to benchmark the reliability of outputs in this independent dataset (see
Supplementary Figs. 2 and 7). To validate the fidelity of generating
downstream regional morphometric outputs, our local cohort of
ccRCCs was stratified to include cases from all 4 Fuhrman grades (n = 35;
Grade 1: 8; Grade 2: 10; Grade 3: 9; Grade 4: 8).

Strategies for managing complex tissue patterns in the PHAR-
AOH workflow

While we have found the presented workflow to be highly general-
izable to multiple tissue types and users, tissue complexity in pathol-
ogy can show extreme variations that may benefit from more context-
specific parameter optimization. Therefore, we describe below many
built-in strategies to improve the usefulness of outputs depending on
users’ judgment and preferences. Examples of how these strategies can
be implemented by users during the development of classifiers is
demonstrated in an accompanying instructional video (https://youtu.
be/H90BpH8bApC).

Customization and optimization of the number of HAVOC clusters
and the tile sizes generated for labeling. Due to the extreme diversity
of tissue heterogeneity across different specimen types, the optimal
number of clusters and the optimal tile size can vary greatly across
applications. We previously found that ~9 HAVOC clusters (k-value)
was able to most consistently segment relevant tissue compartments
across a variety of WSIs derived from different organ systems. For
some simpler and/or more complex tissue sections this default
k-solution (k=9) may be suboptimal. For WSIs with relatively simple
tissue compositions, generating a smaller number of partitions (k< 9)
may be sufficient to capture the main variation of tissue into uniform
clusters and simplify annotation. We find that solving for additional
clusters in these cases often leads to the generation of redundant (but
uniform) subclusters and can make interpretation/labeling more
laborious. Conversely, for large and highly heterogeneous tissue, it is
possible that 9 clusters is not enough and therefore that partitions may
contain a mix of 2 or more distinct but somewhat morphologically-
similar tissue types/patterns. In these scenarios, solving for additional
clusters (k>9) may provide more uniform groups for labeling.

While we previously attempted to solve the complexity sur-
rounding image clustering computationally on a case-by-case basis, we
found that this often led to poor and under-clustered solutions that
missed critical subtleties in histomorphology that would have been
consistently segmented further by histology experts. We therefore set

the default number of clusters to an empirically optimized value of 9,
defined in our original HAVOC study, and allow for further fine-tuning
by the user each time a WSI is submitted for analysis. The size of the
generated tiles for clustering can also be tuned to further optimize the
uniformity of the training images for precise labeling and training.
Users are also free to re-run cases to experiment with varying HAVOC
tile sizes and cluster values until the optimal solution is achieved.

Censoring of problematic clusters during labeling and training. It is
possible that even with multiple attempts and parameter changes, not
every cluster generated in PHARAOH will represent a uniform set of
images. This is most often encountered with highly complex tissue,
where some HAVOC-based clusters can contain: (i) heterogeneous tiles
that do not neatly belong to/are not accurately described by a specific
descriptor, (i) contain non-contributory artifacts (over-stained
regions), or (iii) are comprised of legitimate patterns that are rare and
unlikely to re-occur even across large cohorts (e.g. embolization
material). In these circumstances, users are free to use their discretion
when providing labels for these clusters for simplicity. We found that
including too many or heterogeneous classes (especially when not
represented by examples from multiple cases) can reduce classifier
performance or lead to overfitting. In these scenarios, users can censor
the problematic tile clusters from entering the training data by not
providing labels (leaving textbox blank) during the annotation step.
For example, the user may decide to only label 7 (out of 9) high quality
clusters and exclude the remaining 2 from downstream analysis.
Conversely, labeled clusters that are of high quality, but turn out to be
uncommon in the annotation cohort, can also be omitted in the final
training data integration step, just prior to submitting the entire
cohort of labeled tiles for training.

Standardization of classification labels. To improve the standardi-
zation of class labels between classifiers, we also provide a recom-
mended ontological schema (see Supplementary Fig. 9). For example,
we recommend first organizing regions defined within cancer speci-
mens into either neoplastic (lesional/tumor) or non-neoplastic tissue
classes. In some cases, this can include a broad category such as
“neoplastic tissue” or, where appropriate, can include relevant tumor
sub-patterns (e.g. micropapillary vs mucinous adenocarcinoma). For
non-neoplastic regions, we recommend including separate annota-
tions for surrounding normal tissue elements (e.g. renal tubules for
ccRCC) and other non-diagnostic/extraneous tissue patterns (e.g.
hemorrhage, surgical gauze, necrosis). While each classifier will likely
have its own nuances, we anticipate that this general scheme will help
improve the standardization of classifiers across PHARAOH.
Additionally, the pre-populated labels assigned to each cluster
based on existing classifiers also aim to help guide standardization
across models. Lastly, while the most appropriate number of classes
depends on the specific context, as with many machine learning
workflows, including tissue patterns with <1000 tile-level examples,
especially when derived from single cases, or with significant class
imbalances, can erode the performance of the classifier. To manage
this limitation, we provide users with a running tally of annotated tiles
to allow sparse patterns to be omitted and/or merged with other
redundant classes (see instructional video tutorial for demo).

Cross-verification of image labels and classifier performance.
While human cross-verification approaches, including expert con-
sensus, can be used at the discretion of users to improve the quality of
cluster annotations, in the spirit of crowdsourcing and customization,
we do not attempt to oversee or change final annotation labels pro-
vided by users. However, to improve quality control and consistency of
standardized labels across different classifiers, as noted above, each
image-feature-based cluster generated on PHARAOH for annotation is
pre-populated with preliminary labels (and respective confidence
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scores) using the specific “seed” classifier used to run the initial WSI
analysis. Users designing custom classifiers can therefore use these
initial labels as a starting point or for cross-verification. For challenging
cases, users can also re-process WSIs using multiple related PHARAOH
classifiers, prior to final annotations, to understand how other user-
developed models would have labeled the respective regions. Ulti-
mately, we believe the classifier's performance on independent cases
serves as the true verification of the quantity and quality of the labeled
training data (described below).

Benchmarking the segmentation performance of image feature-
based clustering and custom PHARAOH models

To assess the performance of tissue segmentation obtained using our
image clustering pipeline (HAVOC) and various PHARAOH models, we
compare results on a set of representative WSIs that include (i) regions
of interest (lesion) manually annotated by expert histologists and
objective ground truths defined by (ii) immunohistochemical and (iii)
spatial transcriptomic readouts®. While the latter non-expert mole-
cular approaches show slightly lower concordance (Dice Scores) due
to various nuances (e.g. non-specific staining of markers in necrosis
tissue areas), we believe their entirely objective nature complements
and further strengthens the manually provided annotations. These are
described individually in more detail below. Dice scores and various
enrichment metrics were used to report performance across the dif-
ferent methods and testing cases.

Benchmarking segmentation of image feature-based clustering
and custom PHARAOH models to manual annotations. To validate
the segmentation accuracy of classifiers developed using the PHARAOH
workflow, we carried out comparisons of lesion (Class) Activation Maps
(CAMs) with representative WSIs manually annotated by human experts.
Specifically, we compared the overlap between lesional and “other”
(non-lesional) regions for a set of 3 local cutaneous melanoma and 3
clear cell renal cell carcinoma cases using the same PHARAOH Mela-
noma (ID: e5dad8db) and Clear Cell Renal Cell Carcinoma (ID: 82829b22)
classifiers central to our study. Manual annotations were carried out
using QuPath (https://qupath.github.io/). The annotated regions were
projected back onto the WSI as binary 512 x 512 image patches labeled as
either “lesion” or “other” (non-lesional areas). These labels were com-
pared to tile labels with classification scores of >85% melanoma/clear cell
renal cell carcinoma (lesion) or <85% (“other”/non-lesion). Overlap was
benchmarked by computing a dice score. A similar approach was carried
out to compare HAVOC regions to the CAMs for the same 6 cases. For
this analysis, we chose to solve for relatively fewer clusters to ensure the
lesion was represented by a single cluster, thereby making comparisons
more objective.

To extend benchmarking across a larger diversity of cases, we also
compared the overall lesional class prediction score (lesional class
activation % across the entire WSI) with the proportion of tiles con-
taining “lesion” from 200 representative (random) tiles. This process
was performed across a total of 50 non-overlapping TCGA cases
spanning multiple cancer types (see Supplementary Fig. 6D). For this
analysis, a Person correlation was used to report the relationship
between the overall WSI lesion fraction and manual estimates derived
from the fraction of representative tiles showing tumor in each case.
Importantly, this relationship was much stronger when using the
context-appropriate PHARAOH classifier rather than an “out-of-dis-
tribution” model (r=0.79 vs r = 0.43, n = 3 out of distribution classifiers
tested). Conversely, the reported fraction of user-defined lesion tiles
(up to 200 with a lesion class probability of >85%) was well over 90% in
all cases, supporting that PHARAOH classifiers could robustly select
and enrich for relevant lesional tiles, irrespective of the overall lesional
fraction of WSlIs (see Supplementary Fig. 6E). This supports the close
relationship between custom classifier- and expert-based lesional
segmentation across a diversity of WSIs.

More up-to-date and classifier-specific performance metrics are
also included on the main page of each PHARAOH classifier to help
better inform users as to how classifiers are expected to perform
across different contexts. “Tile selection map” thumbnails (similar to
Supplementary Fig. 6B) are also included with each analysis to allow
users to quickly survey where each classifier is selecting relevant tiles
from on the WSI and how this compares to the corresponding CAM.

Benchmarking segmentation of image feature-based clustering
and custom PHARAOH models to immunohistochemistry-based
readouts. We also used more objective immunohistochemical (IHC)-
based ground truths to benchmark the performance of classifiers
(regional lesion class activation/probability scores) as well as the tissue
partitioning workflow (HAVOC) hosted on PHARAOH. For this, we used
our local neuropathology service to identify 3 brain metastases with
corresponding IHC stains of the lesion and surrounding brain tissue.
To benchmark segmentation, we independently compared (i) tile-level
class (activation) probability scores and (ii) HAVOC Cluster IDs to
positive staining on relevant IHC slides. Briefly, for the former, we tiled
representative H&E WSIs into non-overlapping image patches and
assigned tiles with >85% lesion probability scores as “lesion tissue”
using the “Common Brain Tumors and Surrounding Tissue Elements”
(ID: 48137ffb) PHARAOH classifier (visualized as RED Boxes in Sup-
plementary Fig. 7, panel v). For this analysis, the remaining tiles con-
taining tissue were considered non-lesion (green box). We then used
Scale Invariant Feature Transform (SIFT*) to spatially align these H&E
sections to relevant immunohistochemical stains (e.g. cytokeratin for
an epithelial brain metastasis). For aligned tissue regions on the IHC
slide, we used a separate IHC CNN classifier to assign a “positive” (Red)
label to regions in which >85% of cells are deemed positive. The
remaining selected tiles on the IHC slide were assigned a “negative”
label (Green). The overall overlap between the paired green (and red
regions) was used to produce a dice score.

A similar series of steps was performed to evaluate specific
HAVOC regions of interest (e.g. GFAP for brain tissue; CK7 for
lesional tissue). In addition to a dice score between the regions of
interest and the relevant IHC positive areas, the purity of these
HAVOC regions was calculated by determining the number of tiles
that are correspondingly IHC positive or negative for various stains.
This may perhaps be a better benchmarking metric for this unsu-
pervised analysis as different partitions may be positive for a specific
marker due to both biologically-explainable or non-specific staining
factors, but does not inherently affect the labeling performance of
specific regions by users.

Benchmarking image feature-based clustering pattern segmenta-
tion using spatial transcriptomics. To highlight the generalizability of
the HAVOC segmentation approach to multiple tissue types and non-
neoplastic tissue patterns, we also compared our image clustering
algorithm to objective spatial tissue boundaries defined purely based on
global molecular signatures. Briefly, a H&E-stained slide of a male C57BL/
6 E15.5 FFPE mouse embryo section was obtained from the 10X Geno-
mics  website  (https://www.10xgenomics.com/datasets/visium-hd-
cytassist-gene-expression-libraries-of-mouse-embryo) and clustered
using our HAVOC pipeline (256 pixel tile size, k=6). To benchmark the
quality of the segmentation, HAVOC-derived clusters were matched to
corresponding Visium 10X Genomics spots of the same tissue section by
aligning the centroid of each tile to the coordinates of Visium spots using
a k-dimensional tree for nearest neighbor analysis. Expression of cano-
nical organ-specific markers was extracted from the Visium spatial gene
expression data to assess the specificity of HAVOC-derived clusters to
unique organs. Expression of 4-hydroxyphenylpyruvate dioxygenase
(HPD), an enzyme widely expressed in the liver, was used to isolate liver
tissue. Suprabasin (SBSN), a marker of differentiated keratinocytes, was
used to identify skin tissue. Expression of collagen type Xl alpha 2 chain
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was used to identify soft tissue elements. Tubulin beta-3 chain (TUBB3), a
tubulin isotype expressed exclusively in neurons, was used to identify
brain tissue. After identifying four organs (brain, liver, skin, soft tissue),
violin plots of gene expression among the four HAVOC clusters
belonging to these organs were produced using Loupe Browser. To
calculate the Dice coefficient (F1), Visium spots belonging to each of the
4 clusters were selected based on expression of the respective marker
gene, which was done by removing low count Visium spots to match the
same number of spots as are in the corresponding cluster. Spots not
belonging to these 4 organ clusters were excluded from the analysis. A
confusion matrix was produced using spots shared among both the
gene expression-derived spots and the HAVOC-derived spots and mar-
ker gene spots were used as ground truth.

Statistics and reproducibility

The number of image feature-based partitions generated from each WSI
was set by default to 9, but users are able to fine-tune and customize the
precise number of tissue partitions based on their preferences and/or
context-specific needs as described above (e.g. Fig. 1Ai). For the com-
parison of cellular and deep features between image feature-based
clustering partitions, either all or a randomly-selected representative
subset of image patches (up to 200 tiles) were selected for analysis (e.g.
Fig. 1D-J)). For survival (e.g. Figs. 2F, 3E), molecular (e.g. Fig. 2E, G-J), and
clinical grading analysis (e.g. Fig. 3C), all available cases in the afore-
mentioned TCGA cohorts were included. The large sizes of these cohorts
(n=-~400 each) were deemed to be sufficient to produce meaningful and
representative differences with respect to histological features and the
chosen biological and clinical benchmarking parameters. As there was
no appreciable extra cost to analyze all WSIs and we could not recruit
additional cases, all available cases were included and no statistical
method was employed to pre-determine sample size. As this study
focused on crowd-sourcing the development of automated histo-
pathological analytical pipelines, multi-variate analysis with clinical
variables was not immediately relevant to the presented benchmarking
metrics (e.g. quantifying TILs and nuclear grade) or performed. Rare
WSIs were omitted only if no significant tumor regions (e.g. few image
patches with a probability score >0.90 “lesion”) could be identified by
the relevant PHARAOH-developed algorithm or if a relevant downstream
score could not be computed (see Supplementary Data for examples).
Case IDs of each sample included in each analysis are provided in the
Supplementary Data. For the XGBoost models (e.g. Fig. 3F-1), the TCGA-
KIRC cohort was randomized into a non-overlapping training and test
set (50:50 split). The developed algorithm was blinded to the test cases
until fully trained and risk scores were only calculated once following
model training. The external validation cohort data was developed by
stratification of ccRCC cases across the 4 nuclear grades based entirely
on pathology reports by a researcher blinded to the goals of our study.
The risk score for these cases were generated only after the cohort was
finalized (e.g. Fig. 3D).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

WSI (.svs files) from both the TCGA-SKCM and TCGA-KIRC/KIRP cohorts
are publicly available and were downloaded from the GDC Data Portal.
The associated clinical information was obtained from cBioportal as
described below. The scanned WSiIs of the local RCC cohort developed
for external validation in this study have been deposited in the ZENODO
database**” under the accession codes: 10.5281/zenodo.13695615
(https://zenodo.org/records/13695615) and 10.5281/zenodo.13710865
(https://zenodo.org/records/13710865). Source data are also provided
with this paper as Supplementary Data 1-10. The spatial transcriptomic
dataset used for benchmarking segmentation is available from the 10x

Genomics website (https;//www.10xgenomics.com/datasets)*. Source
data are provided with this paper.

Code availability

The code used for extracting lesional tiles and the clear cell renal
carcinoma (ID: 82829b22) and melanoma (ID: e5dad8db) models on
PHARAOH are publicly available at https://bitbucket.org/
diamandislabii/faust-pharaoh-2024. The code used for HAVOC and
SIFT slide alignment can be found at the previously published repos
https://bitbucket.org/diamandislabii/havoc & https://bitbucket.org/
diamandislabii/faust-alignment-2021, respectively.
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