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Despite rapid developments of wearable self-powered sensors, it is still elusive
to decouple the simultaneously applied multiple input signals. Herein, we
report the design and demonstration of stretchable thermoelectric porous
graphene foam-based materials via facile laser scribing for self-powered
decoupled strain and temperature sensing. The resulting sensor can accurately
detect temperature with a resolution of 0.5°C and strain with a gauge factor of
1401.5. The design of the nanocomposites also explores the synergistic
effect between the porous graphene and thermoelectric components to
greatly enhance the Seebeck coefficient by almost four times (from 9.703 to
37.33 uV/°C). Combined with the stretchability of 45%, the self-powered sensor
platform allows for early fire detection in remote settings and accurate and
decoupled monitoring of temperature and strain during the wound healing
process in situ. The design concepts from this study could also be leveraged to

M Check for updates

prepare multimodal sensors with decoupled sensing capability for accurate
multi-parameter detection towards health monitoring.

Wearable sensors with flexibility', portability?, high sensitivity’, and
biocompatibility* have been widely used in health monitoring®”, pre-
ventive medicine®’, disease diagnosis'®’?, and human-machine
interactions” ™, among others'®’. However, the use of external bat-
teries (with matching circuits) for electrical supply creates challenges in
device miniaturization. Efforts to address this challenge have led to the
exploration of integrated powering components®? such as battery
arrays and supercapacitors” or of energy harvesting units (e.g.,
photovoltaic”, triboelectric** %, thermoelectric?®!, piezoelectric®*>*,
and biological reactions®*°). The ubiquitous temperature gradients in
nature can generate potential differences through the selective migra-
tion of electrons by leveraging the Seebeck effect” >, Capable of pro-
ducing stable and continuous voltage from a temperature gradient,
high-performance thermoelectric energy harvesting based on stretch-
able materials is promising for wearable electronics*™**. Representative

efforts include a flexible dual-parameter pressure-temperature sensor
based on a three-dimensional spiral textured thermoelectric bismuth
telluride (Bi,Tes) film*. With a maximum Seebeck coefficient of -181 pV
K?, the device detects temperature with a high sensitivity of 123.2 pvV K™
leg™ and fast response of 0.5s, along with a pressure sensitivity of
120 Pa™. Connecting silver nanowire-based soft electrodes to Bi,Tes-
based thermoelectric legs yields a compliant thermoelectric generator,
which allows adaptation to curved surfaces*¢. Magnetic self-assembled
metal particles in the elastomeric substrate form soft thermal con-
ductors to significantly enhance heat transfer to the thermoelectric
legs, thereby maximizing the energy conversion efficiency.

On the other hand, the porous laser-induced graphene (LIG) foams
exhibit compelling advantages for high-performance sensing"’, includ-
ing one-step patterning preparation*®, a high specific surface area*’, and
superior conductivity®. Although the porous LIG holds great promise
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for multi-parameter sensing, the accurate detection of simultaneously
applied input signals is still challenging. By mimicking the human skin,
wearable sensors are developed to simultaneously monitor and
decouple multiple physical stimuli (e.g., strain-temperature®)
without interference”. The design often relies on the exploration of
assembled sensor arrays through either in-plane (tiling) or out-of-plane
(lamination) methods with distinct sensing functions in each sensor®.
Compared with sensing arrays, a single sensing unit with multiple sen-
sing mechanisms could reduce the complexity and the cost™*. As a
representative example, stretchable thermoelectric materials can
simultaneously and accurately detect temperature and pressure from
the measured two independent electrical signal outputs™®.
However, it is still a great challenge to fabricate a low-cost, self-pow-
ered, dual-parameter high-performance sensor for decoupled signal
detection.

This study reports the design, evaluation, and application of a
thermoelectric 3D porous laser-induced graphene foam with a simple
low-cost laser direct writing technique. Combined with the pre-strain
strategy and high-performance thermoelectric component, Poly (3,4-
ethylenedioxythiophene)/poly (styrenesulfonate) (PEDOT:PSS), the
stretchable thermoelectric 3D porous graphene foam nanocomposites
can be created for decoupled and self-powered sensing. The significant
T electrons in the porous graphene engage in -1t conjugation within
PEDOT:PSS to modify the arrangement of polymer chains within the
PEDOT:PSS matrix for improved Seebeck coefficient and boosted
thermoelectric properties. The measured resistance and voltage from
the thermoelectric porous graphene foam-based materials provide the
decoupled detection of strain (with a maximum Gauge factor of
1401.5) and temperature (with a resolution of 0.5°C), respectively.
Taken together with the stretchability of 45%, the resulting self-
powered and decoupled sensors provide unique application oppor-
tunities from wound healing monitoring in vivo to a self-powered fire
alarm in remote settings.

Results

Fabrication of porous graphene foam-based materials

The fabrication of the porous graphene foam-based materials starts
with laser direct writing of carbon-containing materials, such as com-
mercial polyimide (PI) films, to create patterned porous graphene
sensors (Fig. 1a). Infiltrating elastomer such as polydimethylsiloxane
(PDMS) precursor into the porous graphene foams followed by curing
peels them from the Pl to result in a stretchable porous graphene foam
on PDMS with a thickness of ca. 300 um. The porous 3D graphene
foam with a large number of randomly stacked 2D graphene flakes is
highly sensitive to strain and exhibits good thermoelectric properties
to respond to temperature differences. The resulting stretchable
thermoelectric graphene foams-based materials driven by the tem-
perature differential between the surrounding and the skin (Fig. 1b)
provide self-powered and decoupled sensing of temperature and
strain for in situ wound healing monitoring and remote fire alarm
warning (Fig. 1b-d).

Characterization of porous graphene foams

Scanning electron microscopy (SEM) images of the porous gra-
phene foams reveal the infiltration of PDMS in the porous structure
with mesopores (-2 pm) (Supplementary Fig. 1a) and inter-
connected 3D structures (thickness about 20 um) (Supplementary
Fig. 1b). The Raman spectra exhibit three characteristic peaks: the G
peak (1580cm™), the D peak (1330cm™), and the 2D peak
(2900 cm™) (Supplementary Fig. 1c). The presence of few-layered
graphene and a large number of defects are confirmed by a rela-
tively large ratio Ip/Ic of 0.70 as in the literature®®. The presence of
C, O, and Si, along with the absence of N, from the high-resolution
XPS spectra reveals the chemical composition of the composite
(Supplementary Fig. 1d).

Performance characterizations of the porous graphene foam to
the temperature gradient and tensile strain

A thermal gradient (AT) established across the stretchable composite
film by two parallel-connected Peltier thermoelectric modules (one
heater and one cooler) characterizes its thermoelectric properties
(Fig. 2a). As the temperature gradient increases, the current-voltage
(I-V) curves are shifted with increased x-intercept from the generated
thermoelectric potential and almost unchanged slope (Fig. 2b). The
thermoelectric voltage V;, (or current) of the porous graphene foam
increases with the temperature gradient AT (Fig. 2¢, Supplementary
Fig. 2) following a linear relationship with a slope representing the
Seebeck coefficient Sy of 9.703 pV/°C (Fig. 2d). The generated ther-
moelectric voltage is still as high as ~6 pV for a small temperature
gradient AT of 0.5°C (Fig. 2e), allowing it to harvest low-grade envir-
onmental heat and sensitively detect the temperature variations. The
generated thermoelectric voltage directed from the low- to high-
temperature end due to electron diffusion from the hot to cold end
(driven by the temperature differential) is consistent with the n-type
thermoelectric graphene®’. It is worth noting that the variations in the
initial resistance (1.3-1.2 kQ with a rate of change of 7.7%) and Seebeck
coefficient Sy (9.7 to 8.9 nV/°C with a rate of change of 8.2%) of the
sensor in the environmental temperature range from 10 to 100°C are
negligible (Supplementary Fig. 3). Reliable experimental measure-
ments in this study are obtained from five sensors with five measure-
ments from each sensor (to provide the average value and standard
deviation represented as the error bars). As the tensile strain increases
from O to 45%, the almost linear /-V curves with increased resistance
and decreased slope still exhibit Ohmic behavior (Fig. 2f). The porous
graphene foam also shows highly repeatable (Fig. 2g) and sensitive
response (Fig. 2h) to the applied tensile strain from 5 to 45%. While
relatively small tensile strain leads to deformation and rotation of
porous graphene, large stretching generates microcracks to induce
significant resistance changes, resulting in increased gauge factor
upon stretching as in the previous literature reports™°, The piecewise
linear calibration curve shows a reasonably high gauge factor defined
as the ratio of normalized resistance change to the strain (AR/Ry)/:
109.8 in 0-30% and 1401.5 in 30-45%. Besides the high sensitivity, the
sensor can also detect subtle strain variations of 0.05, 0.1, 0.2, 0.4, and
0.8% (Fig. 2i).

Decoupled sensing of temperature gradient and strain based on
the porous graphene foam

The independent measurements of thermoelectric voltage and resis-
tance allow the simultaneous detection of temperature and strain. In
fact, the IV curves follow R(e)/ =V + V,(AT), where R is the resistance
due to the strain only. The strain input has a vanishing effect on the
generated thermoelectric voltage ag—éh ~ 0), and the temperature sti-
muli have a negligible effect on the electrical resistance (32 ~ 0). As a
result, temperature and strain stimuli can be decoupled by using the
measured thermoelectric voltage and electrical resistance, respectively.

The well-separated I-V curves of the stretchable thermoelectric
sensor based on the porous graphene foam measured at varied tem-
perature gradients AT (0, 3, 6, 9, and 12 °C) and tensile strain levels (5%
and 15%) demonstrate the decoupled sensing of temperature and strain
(Fig. 3a). The generated thermoelectric voltages are determined by the
temperature gradient without being affected by the varied strain levels
(Fig. 3b, c). Meanwhile, the electrical resistance (or the inverse of the
slope of the /-V curve) is only affected by the strain (Fig. 3a, d).

The cyclic response and the corresponding calibration curve of
the relative electrical resistance versus strain from 15-45% at a tem-
perature gradient of 6 °C (with a thermoelectric voltage of 58 mV)
(Supplementary Fig. 5a, b) are almost identical to those from the
sensor driven by an extra power supply (Fig. 2g). This result implies the
potential use of the device for self-powered sensing. This negligibly
small effect is also observed for the sensor to detect subtle strains
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Fig. 1| Overall design and application of the thermoelectric porous laser- detection of temperature and strain for (c) in situ wound healing monitoring in
induced graphene nanocomposites. a Fabrication, (b) structure, and application ~ mice and (d) remote fire alarm warning. PDMS: polydimethylsiloxane, PI: poly-
of the self-powered sensors based on porous graphene foams for decoupled imide, PEDOT:PSS: poly (3,4-ethylenedioxythiophene)/poly (styrenesulfonate).
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Fig. 2 | Characterization of the porous graphene foam in response to the
temperature gradient and tensile strain. a Schematic showing the experimental
setup for the measurements (AT = T;-T,). b I-V curves of the sensor in response to a
thermal gradient AT=0, 1,3, 6,9, 12, and 15 °C. ¢ The change in the thermoelectric
voltage with AT in the range from 1 to 15 °C and its (d) linear fit to determine the
Seebeck coefficient. e Output response signal of a device to a biased minimum

temperature gradient of 0.5 °C. f /-V curves of the sensor in response to tensile
strain from O to 45%. Relative resistance variation as a function of (g) time and (h)
strain for a tensile strain in the range of 5 to 45%, with the gauge factor (GF) labeled
in the plot. The standard deviation (SD) is shown as error bars (n = 3). i Relative
resistance variation of the sensor under subtle strain levels of 0.05, 0.1, 0.2, 0.4,
and 0.8%.

(0.1%, 0.2%, 0.4%, and 0.8%) (AT of 3 °C) (Supplementary Fig. 5¢). The
normalized current changes from the sensor upon 10% stretching are
ca. 67.2% across temperature gradients of 0, 3, 6, 9, and 12 °C (Fig. 3e,
Supplementary Fig. 6). The output current decreases exponentially
with increasing strain from 0% to 45% due to the increased resistance
of the sensor after stretching (Fig. 3f), but the relationship between the
natural logarithm of current output and the strain becomes linear
(Fig. 3f, inset) with a slope of —0.0849 In(nA)/%.

The strain-dependent relative resistance change AR/R, and
temperature-dependent thermoelectric voltage V;, (Fig. 4a) allow
simultaneous and real-time sensing of the temperature gradient
(0-6°C) and strain (0-25%) (Fig. 4b). By placing a load with a resis-
tance R, of 100 Q in series with the device, both voltages and currents
of the load resistor are monitored (Supplementary Fig. 7). As the
temperature gradient increases from O to 3°C, the thermoelectric
voltage V,;, gradually increases from 0 (c-1) to 25 uV (c-2), with the same
vanishing relative resistance change AR/R, due to the strain of 0%.
Subsequently increased temperature gradient to 6 °C and strain to 15%
results in increased V,;, to 55 pV and AR/R, from O to 6 (c-3). Further

increasing the tensile strain to 25% while keeping the temperature
gradient (at 6 °C) increases AR/R, to 17.5 (c-4). Reducing the strain to
15% and temperature gradient to 3 °C gives V, of 25 uV and AR/R, of
6.5 (c-5). Further relaxing the applied strain to 0% and the temperature
gradient to 0°C provides the vanishing readouts (c-6). The final read-
ings at an applied strain of 0% are not exactly zero because of the drift
in the initial resistance that results from the tiny changes in the
ambient environment as in the previous literature reports® % In
addition, the decoupled sensing experiments to simultaneously detect
temperature gradient (from O to 60°C) and strain (from O to 40%)
demonstrate the stable thermoelectrical property of the reported
sensor over a large stain range in a large temperature variation (Sup-
plementary Fig. 8).

Performance characterization of the porous graphene foam
nanocomposite with PEDOT:PSS in response to temperature
gradient and textile strain

The thermoelectric property of the intrinsic porous graphene foam
can be further enhanced by forming a nanocomposite with
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Fig. 3 | Decoupled sensing of simultaneously applied temperature gradient and
strain with the stretchable thermoelectric sensor based on the porous
graphene foam. a Measured /-V curves under different temperature gradients (O,
3, 6,9, and 12 °C), and strain levels (5% and 15%). Thermoelectric voltage as a
function of (b) time (strain of 0, 15, 25, 35, and 45%) and (c) strain for different
temperature gradients (3, 6, 9, and 12 °C). The output voltage fluctuation at 3, 6, 9,

and 12°C is 9.1%, 9.8%, 6.5%, and 4.0% respectively, as the strain increases from 0%
to 45%. The standard deviation (SD) is shown as error bars (n =3). d Normalized
relative resistance and current changes with the temperature gradient for different
strain levels (15, 25, 35, and 45%). Thermoelectric current as a function of (e) time
(10% stretching) and (f) strain for temperature gradients of 0, 3, 6, 9, and 12 °C, with
log-linear fit shown in the inset.

PEDOT:PSS (Fig. 5a) through the pre-strain strategy (Fig. 1a). Filling
the microcracked surface upon stretching with PEDOT:PSS (Sup-
plementary Fig. 9) also increases the conductivity (Supplementary
Fig. 10). The PEDOT:PSS is uniformly distributed in the layered
structure (Supplementary Fig. 11), as evidenced by the uniform dis-
tribution of S (together with C and O) across the surface in the
energy-dispersive X-ray spectroscopy (EDS) (Supplementary Fig. 12).
The filling of the microcracks (dashed lines) with PEDOT:PSS is also
supported by the higher content of the S element in these regions
(marked by red circles in Supplementary Fig. 12d). The wide scan and
S2p spectra in XPS show the broad peak between 166 and 172 eV of
PSS (sulfonate moiety) from two spin-orbit splitting peak super-
positions (2ps, at 167.9 eV and 2p,,, at 169.2eV), and the band
between 162 and 166 eV of PEDOT (thiophene ring) from the overlap
of 2ps/, at 163.9 eV and 2p,, at 165.1 eV (Fig. 5b and Supplementary
Fig.13). These results agree reasonably well with previously reported
graphene/ PEDOT:PSS nanocomposites®.

Compared with the intrinsic porous graphene foam, the nano-
composite with the PEDOT:PSS shows a significantly increased See-
beck coefficient from 9.703 to 37.33 pV/°C by 384.73% (Fig. 5¢c and
Supplementary Fig. 14a) and improved temperature resolution from
0.5 to 0.2 °C (Supplementary Fig. 14b). However, the stretchability
and sensitivity of the nanocomposite are slightly reduced due to the
loss of the porous graphene textures (Fig. 5d and Supplementary
Fig. 14c, d). Different from the bi-layered porous graphene/PDMS
(Supplementary Fig. 1b), the tri-layered nanocomposite (Supple-
mentary Fig. 11) with more mechanically mismatched interfaces
exhibits declined stretchability and sensitivity. The stretchable
nanocomposite shows almost unchanged sensing performance
as the applied bias voltage reduces from 0.5V to 5 pV (Fig. 5e),
indicating drastically reduced energy consumption in the measure-
ment circuit. The temperature gradient created by representative

everyday objects (e.g., alcohol, fingers, and hot water bottles) can be
easily captured (Fig. 5f), in which endothermic reaction from the
volatile alcohol produces a negative temperature gradient resulting
in reverse voltage output. The nanocomposite that can decouple
strain and temperature (Fig. 5g and Supplementary Fig. 15) allows
real-time detection of human movement while harvesting the ther-
mal energy (with a thermoelectric voltage of 100 pV for AT=2.5°C
between the finger and the environment) (Fig. 5h) for self-powered
sensing. The sensors placed on five finger joints can also differ-
entiate hand gestures for sign language detection to facilitate com-
munication for people with language disorders (Supplementary
Fig. 16). For instance, the expression “how are you” results in a
vanishing strain signal from the thumb as in the fully relaxed state,
along with large signals from the other four fingers in the second
stage. With the index finger relaxed and the other four fingers bent in
the third stage, the strain signal from the index finger vanishes as in
the fully relaxed state, whereas the signals from the other four fin-
gers exhibit large values. Creating a device array in series or parallel
connection can also linearly increase the thermoelectric voltage
(from 100 to 500 pV for five elements) (Fig. 5i) or current (from 75 to
375 nA for five elements) (Supplementary Fig. 17).

Self-powered decoupled sensing of temperature and strain for
alerting fire

The thermoelectric voltage of the sensor based on the nanocomposite
gradually increases as the distance to the fire source is decreased from
3 cm to 0.2 cm (for the same duration of 2 s) (Fig. 6a). When the dis-
tance to the fire source remains at 0.2 cm, the thermoelectric voltage
also gradually increases with the increasing duration from 0.1sto 2.5s
(Fig. 6b) and then saturates at a dwell time of 4 s, which is also true for
the other distances (i.e., 3, 2, and 1cm) (Supplementary Fig. 18). The
immediate voltage increase that exceeds the defined threshold from
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shown in the inset (temperature gradient from O to 6 °C and strain from O to 25%).

the fire can be processed by the backend device to trigger the red light ~ Self-powered decoupled sensing of temperature and strain for
and sound an alarm (or other warnings) in the alarm system (Fig. 6¢). monitoring in situ wound healing status

As aresult, the device system can easily detect abnormal temperature  Highly accurate measurements of strain and temperature from
increases (Fig. 6d) and simulated laboratory and forest fires (Fig. 6e  decoupled sensing are vital to evaluate complicated biophysical
and Supplementary Fig. 19). processes such as skin wound healing that involves cell migration,
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Fig. 5 | Design and demonstration of porous graphene foam nanocomposite
with PEDOT:PSS. a Structure diagram of the stretchable thermoelectric sensor
based on the nanocomposites. b XPS S2p spectrum of the nanocomposites. Per-
formance in ¢ Seebeck coefficient and d strain sensitivity of the nanocomposite
(compared with the intrinsic porous graphene foam). e Effect of the biased voltage

on strain sensing. f The thermoelectric voltage in response to alcohol, finger, and
hot water bottle. g Schematic and h demonstration of the nanocomposite on the
finger to detect motion while harvesting thermal energy. i Demonstration of the
sensor array connected in series to linearly increase the output voltage.

proliferation, and natural tissue remodeling®*®. The temperature
rise at the wound site may alert for inflammation, infection, and
possible development into a chronic wound®®*’. While the pre-
sence of tensile stress facilitates the growth of new blood vessels
and cells, excessive stress would tear the newly grown tissue’®. As a
proof-of-the-concept demonstration, the sensor with decoupled
sensing capability is applied on the back of the mice (Kunming
model for high rates of reproduction/survival, low cost, and good
resistance to illness) (Fig. 7a). In the pilot study with two Kunming

mice, two circular full-thickness wounds with a diameter of 10 mm
symmetrically created on the back of each mouse provide the left
one as the experimental group and the right other as the control
group (Fig. 7b). The sensor on the left wound does not change the
wound healing in terms of the wound closure rate (Fig. 7c) and
status (Fig. 7d), when compared with the control group on the right
wound. Besides excellent biocompatibility, the sensor can provide
accurate measurements of the strain and temperature over the
entire course of the wound healing process (taken for 10 min every
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fire alarm system and its demonstration to detect (d) fire and high temperature,
as well as simulated (e) laboratory fires.

three days during anesthetization) (Fig. 7e). The wound tempera-
ture obtained from the temperature differential between the
wound and the shaved skin on the first day after surgery (-37.7°C
that is higher than the skin temperature of 36.4°C on other parts of
the body) is attributed to inflammation that results from the
migration of white blood cells to the wound site. Subsequently, the
temperature starts to decrease due to healing and gradually
diminished inflammation in the falling phase (1-9 days), which is
followed by the plateau phase that is associated with a steady
temperature change (36 —36.5°C) for expedited recovery from
cleared wound inflammation. The gradually reduced strain from
12% to 0% over 24 days also indicates the successful and complete
healing of the wound (Fig. 7e).

Discussion

In conclusion, this work reports the design and demonstration of
stretchable thermoelectric porous graphene foams for decoupled
sensing of temperature and strain. The resulting sensor based on the
intrinsic porous graphene foams exhibits a Seebeck coefficient of
9.703 pV/°C, temperature resolution of 0.5 °C, and high gauge fac-
tor of up to 1401.5. Introducing the PEDOT:PSS through a pre-strain
strategy creates the stretchable foam nanocomposites with a See-
beck coefficient enhanced by almost four times while minimally
affecting the other sensing parameters. The application of the
device in self-powered sensing and fire alarm warning, as well as
decoupled sensing of strain and temperature during the wound
healing process in vivo on mice, provides a system-level
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Fig. 7 | Application of the sensor to decouple temperature and strain over the
wound healing process on mice. a Schematic and (b) digital image of surgical
wounds on the back of mice with the left for experimental (dashed red) and right
for control (dashed blue) groups. Comparison in wound closure in terms of (c)

wound area and (d) optical images between the experimental and control
groups after 1, 3, 6, 9, 12, 15, 18, 21, and 24 days. e Measured temperature and
strain changes over the course of 24 days.

demonstration and opens up opportunities for future self-powered
decoupled multimodal sensors.

Methods

Materials

Polyimide (PI) film with a thickness of 75 um was purchased from
Suzhou Dongxuan Plastic Products Co. Ltd (Jiangsu, China). The
water-soluble tape was obtained from the Yongri adhesive Co. Ltd.
(Shanghai, China). The PDMS Kit (Sylgard 184 Silicone Elastomer)
was purchased from Dow Corning Corporation (U.S.A). The PED-
OT:PSS conductive coating solution (S315-1%) was purchased from
Zhuhai Kaiwei Optoelectronics Technology Co., Ltd. (Guang-
dong, China).

Fabrication of the porous graphene foams and their nano-
composites on PDMS

After creating the computer-designed layout, the 3D porous graphene
foam in the dog bone shape with a length of 15mm and a width of
1.2 mm was rapidly fabricated on a commercial Kapton PI film in the
ambient environment by using a CO, infrared laser (wavelength ~
10.6 um, power ~ 12 W, scanning speed ~ 508 mms™, Universal Laser
System). Uniformly coating and curing (at 100 °C for 40 min) 1 mL of
PDMS precursor solution with a 10:1 (prepolymer A: crosslinker B)
weight ratio on the sensor area was followed by peeling to prepare the
porous graphene foam on PDMS. After pre-stretching the porous
graphene foam/PDMS film by 50% and fixing it on the glass plate with
two clips, the PEDOT:PSS solution was coated by the doctor blade
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technique, followed by drying at 35 °C for 15 min. The release of the
pre-strain yielded the nanocomposites on PDMS. An aluminum foil
mounted at the two ends of the sample served as an electrical con-
nection to the data acquisition system for measurements.

Monitoring of physiological signs during the wound-healing
process

Male Kunming mice weighing 22 +3g were procured from Beijing
Huafukang Biotechnology Co., Ltd. All animal subject studies were
approved by the Biomedical Ethics Committee of the Hebei University
of Technology (protocol number HEBUTacvc2023045). The full-layer
skin defect wound model on mice was created for simultaneous
monitoring of temperature and strain throughout the wound healing
process by the dual-mode sensors. To avoid discomfort and slowdown
of the wound healing process during frequent daily activities, the
sensor was only applied to the wound during each test (and removed
after the test). Specifically, the temperature-strain decoupled sensor
was applied to measure the temperature and strain from the wounds
on the 1st, 3rd, 6th, 9th, 12th, 15th, 18th, 21st, and 24th days post-
surgery, with images of the wounds captured by a digital camera. On
the first day post-surgery, the mice were intraperitoneally anesthetized
with 10% chloral hydrate, with the skin and sensors sterilized with 75%
ethanol. The monitoring was approximately 10 minutes and then the
sensors were removed with the placement locations marked on the
mice. On the following days of measurements, the same anesthesia and
sensor sterilization procedures were followed before attaching the
sensors to the marked positions.

Characterization and measurements

The scanning electron microscope (SEM, Nova Nano SEM450), energy
dispersive spectrometry (EDS, OCTANE PLUS), and X-ray photoelec-
tron spectroscopy (XPS, ESCALAB 250Xi) were used to analyze the
morphology and composition of the porous graphene foams and
nanocomposites. Thermoelectric and sensing performance was eval-
uated by using Peltier elements (20 x 20 mm), force gauge (JSV-H1000
and HF-1), and source meter (Keithley 2400). All human subject studies
were approved by the Institutional Review Board of the Hebei Uni-
versity of Technology and the volunteers gave informed consent.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All the data supporting the findings of this study are available within
this paper and its Supplementary Information. Any additional infor-
mation can be obtained from the corresponding author on request.
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