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Anti-correlation of LacI association and
dissociation rates observed in living cells

Vinodh Kandavalli , Spartak Zikrin , Johan Elf & Daniel Jones

The rate at which transcription factors (TFs) bind their cognate sites has long
been assumed to be limited by diffusion, and thus independent of binding site
sequence. Here, we systematically test this assumption using cell-to-cell
variability in gene expression as a window into the in vivo association and
dissociation kinetics of the model transcription factor LacI. Using a stochastic
model of the relationship between gene expression variability and binding
kinetics, we performed single-cell gene expression measurements to infer
association anddissociation rates for a set of 35 different LacI binding sites.We
found that both association and dissociation rates differed significantly
betweenbinding sites, andmoreover observed a clear anticorrelation between
these rates across varying binding site strengths. These results contradict the
long-standing hypothesis that TF binding site strength is primarily dictated by
the dissociation rate, but may confer the evolutionary advantage that TFs do
not get stuck in near-operator sequences while searching.

Cell-to-cell variability in gene expression, sometimes called “noise,” is a
fact of life in the low molecular copy number regime in bacterial cells.
A variety of mechanisms underpin this variability, including the sto-
chastic binding and unbinding of transcription factors (TFs)1 and RNA
polymerase (RNAP)2, gene dosage effects, and partitioning of macro-
molecules upon cell division3,4, among many others5,6. Conversely,
measurements of gene expression variability can be used to shed light
on these cellular processes7–9, although attributingobserved variability
to specific mechanisms can be challenging. Among the biological
implications of gene expression variability, one of themost prominent
is “bet-hedging,” the idea that subpopulations of cells exhibiting
altered gene expression statesmay be better prepared to survive rapid
and unpredictable shifts in environmental conditions10,11.

In this work, we focus on variability due to the stochastic asso-
ciation and dissociation of TFs. A long-standing assumption has been
that TF association is diffusion-limited: that is, that the association rate
is largely independent of the strength of the TF binding site7,12. Under
this assumption, the strength (reflected in the dissociation constant
Kd) of a particular binding site is modulated by changes in the dis-
sociation rate kd. However, recent in vitro experiments have called this
assumption into question, showing that the dissociation rate kd and
association rate ka were negatively correlated for the model TF LacI13.

Here, we use cell-to-cell variability in gene expression as awindow
into LacI kinetics in living cells. By modeling the relationship between
variability and LacI kinetics, we use single-cell gene expression mea-
surements to infer association and dissociation rates for a set of 35
different LacI binding sites. Consistent with recent in vitro results, we
find a clear anticorrelation between association and dissociation rates,
upending long-standing understandings of in vivo TF binding kinetics.

Results
We designed a set of promoter-operator constructs in which LacI
binding sites were placed immediately downstream of the apFAB120
promoter (Supplementary Fig. 1), such that transcription from the
promoter is occludedwhen LacI is bound, and transcription is enabled
when LacI is not bound (Fig. 1a). To relate the observed mRNA copy
number distributions to LacI association and dissociation rates, we
used the standard two-state model of stochastic gene expression,
sometimes referred to as the “random telegraph”model14,15 (Fig. 1a). In
this model, the promoter can be found in one of two states depending
on whether LacI is bound to its operator. In the “on” state, corre-
sponding to unbound LacI, transcripts are produced at rate r; in the
“off” state, corresponding to bound LacI, transcription is blocked. In
both states, mRNAs are degraded at rate γ. Transitions from “off” to
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Fig. 1 | Promoter-operator construct and model relating gene expression
variability to transcription factor kinetics. a The construct consists of a LacI
binding site (“Operator”) immediately downstream of the apFAB120 promoter,
driving expression of the mVenusNB fluorescent protein. The system is either in a
LacI-unbound state (top) inwhichmRNA is produced at rate r, or a LacI-bound state
in which transcription is halted (bottom), (created in BioRender https://BioRender.
com/q45e576). mRNA is degraded at rate γ, and ka and kd represent the LacI
association and dissociation rates, respectively. Expressions for mean expression μ

and Fano factor F as a function of model parameters are shown below the
schematic14. b Stochastic simulations of mRNA production for “slow” (top, blue;
ka = 3.0min−1, kd =0.18min−1) and “fast” (bottom, orange; ka = 30min−1,
kd = 1.8min−1) operators. r = 25min−1 and γ =0.8min−1 for both operators. Both
operators have the same steady-state LacI binding probability and hence the same
mean mRNA expression. However, the “slow” operator exhibits greater variability,

reflected in its larger Fano factor and longer-tailed steady-statemRNAcopynumber
distribution. For easier comparison, the “fast”mRNAdistribution is plotted (orange
dashed line) on top of the “slow”mRNA distribution (blue bars) and vice versa. The
mRNA distributions are plotted on a log scale in insets. c Subset of operator
mutants assayed in this paper. Operators used the Osym (pink), O1 (green), or O2

(purple) operators as starting points. The wild-type operators are shown in bold
and mutations are highlighted in black. Gene expression levels as measured by
mRNA FISH (“mRNA”) and fluorescence microscopy (“mVenusNB”) are shown for
Osym, O1, and O2. d For each operator, the mean mRNA copy number is plotted
against the mean mVenusNB fluorescence, showing (as expected) a strong corre-
lation.Osym,O1, andO2wild-typeoperators areplottedwith larger circles; error bars
represent sem from bootstrapping. Each data point corresponds to at least 862
individual cells assayed across at least two biological replicates. Source data are
provided as a Source Data file.
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“on” occur at rate kd, corresponding to LacI dissociation, whereas
transitions from “on” to “off” occur at rate ka, corresponding to LacI
association. Note: in this work, ka shouldbe interpreted as anobserved
empirical rate constant under conditions of constant LacI concentra-
tion; hence ka has units ofmin−1 rather thanmin−1 M−1 or s−1 M−1 aswith a
true association rate constant.

A full analytic solution to the resulting chemical master equation
has previously been derived (see section “Methods”)14,15. Under this
model, the mean mRNA expression is given by

μ=
r
γ

kd

ka + kd
=
r
γ

1
1 + ka=kd

, ð1Þ

where r
γ is the mean mRNA copy number in the absence of LacI while

the second term is simply the fraction of time that LacI is not bound.
Notably, the mean expression is dependent on the ratio of association
rate to dissociation rate, but does not depend on their absolute
magnitude.

To obtain the absolute magnitudes of ka and kd, we need to
consider higher moments of the distribution. It is convenient to use
the Fano factor, defined as the variance σ2 divided by the mean μ. For
this model, the Fano factor is given by

F =
σ2

μ
= 1 +

ka

ka + kd

r
γ + ka + kd

: ð2Þ

In Fig. 1b, stochastic simulations of twohypothetical operators are
shown: one operator with slow association and dissociation kinetics
(top, blue), and one operator with fast kinetics (bottom, orange), as
well as the corresponding steady-state distributions (Fig. 1b, right).
Both operators have the same ka to kd ratio, resulting in the same
fractions of time spent in the “on” (LacI unbound) and “off” (LacI
bound) states and the same mean expression. However, the slow
operator is characterized by infrequent bursts of large numbers of
transcripts, whereas the fast operator maintains a more constant
production. This difference is reflected in a broader steady-state dis-
tribution and a larger Fano factor value for the slow operator.

To systematically investigate the relationshipbetween association
and dissociation rates for LacI binding sites, we selected a set of 35
binding sites to span a broad range of binding site strengths (Fig. 1c)13.
We used the syntheticOsym operator as well as the naturally occurring
O1 and O2 operators as starting points, and constructed mutants of
each operator (Supplementary Table 2). These promoter-operator
constructswereused to drive the expression of thefluorescent protein
mVenusNB (Fig. 1c).

For each operator,we quantified gene expression using single-cell
mRNA FISH (Fig. 1c, “mRNA”, Supplementary Fig. 2), allowing us to
determine the distribution of mRNA copy numbers across a popula-
tion of fixed cells. As expected, thewide range of binding site strengths
was reflected in mean mRNA copy number values ranging from 0.3 to
20 (Supplementary Fig. 3). In parallel, we measured mVenusNB fluor-
escence for each construct (Fig. 1c, “mVenusNB”) and found thatmean
mRNA and mean protein fluorescence were highly correlated across
our panel of LacI binding sites, as expected (Fig. 1d). We also validated
themRNA FISH data with relative RT-qPCRmeasurements for a subset
of binding sites, and found excellent agreement between the mea-
surements (Supplementary Fig. 4).

Calculation of ka and kd from mRNA statistics
In Fig. 2, the procedure for the calculation of ka and kd is illustrated
using the Osym operator as an example. Equations (1) and (2) contain
two unknowns besides ka and kd: the degradation rate γ and the basal
transcription rate r. The degradation rate γ was obtained for the Osym,
O1, and O2 operators by halting transcription at t =0 using rifampicin
(500 µg/mL) and measuring mRNA levels at subsequent time points

using bulk RT-qPCR, yielding a value of γ = 0.79min−1 (Fig. 2a, left),
consistent with previously published results16,17. The basal transcrip-
tion rate r was determined separately for each operator by measuring
the mean mRNA copy number in ΔlacI strains and using the fact that
μΔlacI= r/γ, enabling estimation of r once the degradation rate γ and
meanexpressionμΔlacI are known (Fig. 2a, right). For theOsymoperator,
we estimated that r = 24.6min−1. With r and γ known, and themean and
Fano factor experimentally determined using mRNA FISH, Eqs. (1)
and (2) constitute a system of two equations with two unknowns and
can be numerically solved for ka and kd (Supplementary Fig. 5). Before
doing so, we correct the Fano factor for the effect of RNAP copy
number variability to obtain the corrected Fano factor Fc = F−μ/10, as
described previously18,19, then use Fc in place of F when solving for ka
and kd (Fig. 2b). The inferred ka and kd values are substantively
unchanged even if this correction is not included (Supplementary
Fig. 6). For both ΔlacI and wt lacI experiments, only cells with lengths
between 1.73 and 2.16μmwere included in the analysis (out of a length
range of ~1.4–3.25μm across all cells), to ensure that only cells with a
single copy of the promoter-operator construct were present and thus
counteract variability from gene copy number variation18,19.

This procedure was repeated to estimate ka and kd for each of the
35 LacI binding sites. The value of rwas estimated individually for each
operator from ΔlacI experiments, in order to account for potential
differences in basal transcription rates due to changes in operator
sequence, which in turn affects the 5′ UTR and hence potentially
transcription initiation. We found that changes in operator sequence
weakly affected transcription in ΔlacI strains, with a maximum differ-
ence of about twofold (Supplementary Fig. 7). In Fig. 3a, the
experimentally-determined mRNA copy number distributions are
shown for the Osym, O1, and O2 operators (colored histograms), along
with corresponding model predictions (see section “Methods”, “Ana-
lyticprobabilitymass function”) given the estimated values ofka and kd
(black dotted lines), which show good agreement. The corresponding
distributions are shown in Supplementary Fig. 3 for all operators.

In Fig. 3b, the estimated ka values are plotted against kd for all
operators, revealing a distinct anticorrelation between these two
rates, and demonstrating that changes in operator strength are
reflected in both rates, rather than primarily in kd. Osym mutants
contribute most to the anticorrelation, presumably because Osym is
the strongest operator and itsmutants contain themost information
about LacI kinetics in their mRNA distributions. In Supplementary
Fig. 8, we compare our results with previous in vitro measurements
of the same operators4 and find reasonable agreement between
in vitro operator occupancy and in vivo repression ratio (Supple-
mentary Fig. 8a), as well as between in vitro and in vivo rate mea-
surements (Supplementary Fig. 8b, c).

Discussion
Here, we combined a mathematical model of stochastic gene expres-
sion with measurements of steady-state mRNA copy number distribu-
tions, to infer the LacI association and dissociation rates for a wide
range of operator strengths. This system can be described with more
complex models explicitly incorporating, e.g., RNAP binding kinetics,
open complex formation, and transcription-induced supercoiling7,20–23,
but our aim was to employ the simplest model that adequately descri-
bed the observed distributions. For some operators with higher mean
expression, the theoretical probabilitymass function (pmf) fits the data
less well, which presumably reflects the fact that our approach is less
suitable for weak operators whose mRNA distributions contain less
information about LacI binding kinetics. We also see that several
operators deviate from the theoretical pmf in the 0 and 1 mRNA bins;
which may be due to the presence of partially transcribed or
decayed mRNAs.

Nonetheless, we found good agreement between our measure-
ments and previous in vivo results, strengthening the credibility of our
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approach. For the Osym operator, we obtained a dissociation rate of
kd =0.10min−1, in excellent agreement with kd =0.11min−1 as obtained
in a previous in vivo study via microscopy on fluorescently-tagged
LacI24. For the O1 operator, we found an association rate of
ka = 5.23min−1, slightly higher than ka≅ 2.5min−1 obtained in a previous
study (after accounting for LacI expression levels)25. We attribute the

twofold higher association rate in our work to the fact that we used the
wt LacI protein which tetramerizes in vivo, whereas the previous study
used a fluorescent LacI-venus fusion which dimerizes but is incapable
of tetramerization and intersegmental transfer. To our knowledge, our
work represents the first in vivo measurement of search times for the
wt LacI protein.
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μΔlacI = r/γ. b Once r and γ are known, ka and kd are determined by measuring the
mRNA copy number distribution in cells expressing LacI (created in BioRender
https://BioRender.com/q45e576). From the distribution, the mean μ and Fano
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solved numerically for ka and kd. Source data are provided as a Source Data file.
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Ourmeasurements also showqualitative agreementwith previous
in vitro results13 in that equilibrium occupancy, ka, and kd values are
generally correlated in vivo vs. in vitro (Supplementary Fig. 8). How-
ever, both ka, and kd values are generally about an order of magnitude
larger in vivo. Several important differences between in vivo and
in vitro contexts make exact agreement unlikely; these include LacI
concentration, salt concentration26, presence of non-specific DNA and
other DNA-binding proteins, and DNA topology (summarized in Sup-
plementary Table 1). While the faster dissociation rate in vivo can
seemingly be explained by the higher salt concentration (which
impedes sliding and lowers the probability of rebinding), the majority
of factors identified could be expected to result in slower association
in vivo. For this reason, it seems noteworthy that we actually observe
faster association in vivo, evidently reflecting LacI’s impressive opti-
mization for fast search in living cells. Interestingly, the synthetic Osym

variants appear to exhibit relatively lower ka values and higher kd
values in vivo than O1 and O2 variants with similar in vitro rates (Sup-
plementary Fig. 8); we are uncertain as to why.

This paper provides direct in vivo evidence of an anticorrelation
between TF association and dissociation rates. Such anticorrelation
appears if binding strength mainly is governed by the probability of
recognizing andbindingupon reaching theoperator, whichalso shows
up in the macroscopic rate of leaving the operator kd since many
rebinding events occur for strong operators13,27. For this reason, it
may be a general feature of DNA-binding proteins whose search
mechanisms combine 1D sliding and 3D diffusion. This picture is
contrary to the long-standing hypotheses that TF binding site
strength is primarily dictated by the dissociation rate, but has the
evolutionary advantage that TFs do not get stuck in near-operator
sequences while searching.

At the same time, finding an appropriate regime in parameter
space for basal transcription rate r, repressor concentration, and
operator strength in order to carry out these measurements was not
trivial. For strong operators such asOsym, r needed to be large enough
compared to the association rate ka for multiple transcripts to have a
reasonable chance of being produced during LacI unbinding events.
Otherwise, if each LacI unbinding event leads to 0 or 1 transcripts,
transcription events become uncorrelated and hence effectively
Poissonian, with the Fano factor equal to one. In this scenario, the
variability carries no information about LacI kinetics. Conversely, too
large an r value risks perturbing LacI binding kinetics as RNAP clears
the promoter region, potentially hindering LacI from binding21. In
Supplementary Fig. 9, we investigate this effect and find that it does
notmaterially affect the conclusions of this paper. Itwasalsonecessary
to balance LacI concentration with operator strength such that
operators are neither always bound nor never bound, situations in
which gene expression variability again carries little information about
LacI kinetics (Supplementary Fig. 10). As the operators investigated
here roughly spanned the range of operator strengths found in nature
(from stronger than O1 to weaker than O2), the wild-type LacI con-
centration (ca 5–10 tetramers per cell28) proved to be an appropriate
choice.

In other words, we sought to create a scenario with a simple
regulatory architecture where parameter values were chosen to make
the connectionbetween cell-to-cell variability and LacI kinetics as clear
as possible. Nevertheless, these parameters generally fall within the
range observed in nature, and the promoter architecture studied here
(“simple repression”) is one of the most common in E. coli29. For more
complicated regulatory architectures, TF kinetics remain an important
factor dictating both mean and variability in gene expression. One
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implication of our work is that TF association and dissociation rates
cannot be tuned independently by mutations in binding sites. This in
turn should in principle constrain the changes in gene expression
output that can be accessed by mutations in regulatory DNA, whether
by evolution in nature or intentional design in a synthetic biology
context. However, unambiguously detecting the signature of such
constraints may be challenging given the multitude of factors that
affect gene expression. A complete understanding of the interplay
between TF binding site strength, TF kinetics, gene expression varia-
bility, and the evolution of transcriptional regulatory sequences
remains a compelling challenge for ongoing research.

Methods
Strain construction
Chromosomal knockout of lacI gene: the lacI gene was deleted using
the DIRex method30. PCR fragments were amplified from the Acatsac1
(GenBank: MF124798) and Acatsac3 cassettes (GenBank: MF124799)
using the oligos Del_LacI_Direx-F cat_mid-R, cat_mid-F, and
Del_LacI_Direx-R (see Supplementary Table 3 for sequences). The PCR
products were purified and electroporated into EL330 [E. coli K-12
MG1655] cells expressing lambda red proteins from plasmid pSIM5-
Tet. After electroporation, cellswere incubated in 1mLof SOCmedium
at 30 °C for 1 h and then plated onto LB + 25μg/mL chloramphenicol
plates. The colonies were re-streaked on LB+ 5% sucrose plates to
select cells with the desired recombination. The resulting colonies
were confirmed by PCR. Further sequence confirmation was done for
the deletion of LacI gene in the chromosome and hereafter the strain is
referred to as EL4110 [E. coli K-12 MG1655, ΔlacI].

Operator mutation library construction
UsingGoldenGate cloning, we assembled a plasmidwith anR6Korigin
of replication backbone and a Biopart that consists of the fluorescent
protein (mVenusNB) with a strong ribosome binding site downstream
of the lac operator site, with expression driven by the constitutive
synthetic promoter apFAB12031. Upstream of the promoter sequence,
an ampicillin resistance cassette was introduced transcribing in the
opposite direction (Supplementary Fig. 1).

Next,weamplified theBiopartwith ygaYhomology armsusing the
oligos ygaY_HA_F, and ygaY_HA_R, in preparation for chromosomal
integration into the ygaY locus. The PCR fragment was further purified
and electroporated into the EL330 and EL4110 strains producing
lambda red proteins from plasmid pSIM5-tet. The successful chro-
mosomal integration of the Biopart in the ygaY locus was confirmedby
PCR and sequencing. For the operator mutation library, we selected
single- and double-point mutations in Osym, O1, and O2 from mutants
characterized in Marklund et al.13. Using the DIRex method, we con-
structed a total of 35 operator variants (see Supplementary Table 2) in
both the EL330 and EL4110 strains. All these strains were also con-
firmed by sequencing.

Growth medium and conditions
From the glycerol stocks (−80 °C), cells were streaked on the fresh LB
plates and grownovernight at 37 °C. Single colonieswere inoculated in
an LB medium and grown overnight in a continuous orbital shaking
incubator with 200 rpm at 30 °C. From the overnight cultures, cells
were further diluted in 1: 100 times in fresh M9 medium (containing
M9 salts, 2mM MgSO4, 0.1mM CaCl2, 0.4% succinate as a carbon
source, supplemented with 0.5X RPMI). Cells were grown at 37 °C with
200 rpm until they reached mid-exponential phase (OD600 = ~0.4).
Next, cells were collected for microscopy experiments to quantify
mRNA and protein expression levels.

FISH probe design
To detect the mRNA of mVenusNB gene, 30 fluorescent DNA probes
were designed using the Stellaris® Probe Designer version 4.2 (https://

www.biosearchtech.com/stellaris-designer) and purchased from Inte-
grated DNA Technologies (IDT Iowa, USA). Each DNA probe was 20nt
in length with aminimumdistance of 2 nt and themasking level at 1–2.
All probes were labeled by Cy5 at the 3′ end of the DNA. Probe
sequences are listed in Supplementary Table 4.

FISH protocol
We followed the FISH protocol as in refs. 16,32. Briefly, when cell cul-
tures reached mid-exponential phase (OD600≅0.4), cells were col-
lected by centrifugation at 2400 × g for 5min. Pelleted cells were then
fixed by resuspending them gently in 1mL of 3.7% (v/v) formaldehyde
in 1× PBS prepared in nuclease-free water, followed by 30min incu-
bation at room temperature. Next, cells were centrifuged and washed
twice in 1mL of 1× PBS, followed by permeabilization in 1mL of 70%
ethanol (v/v) in nuclease-free water, with gentle mixing at room tem-
perature for 1 h. Afterward, they were washed once more in 1mL of
washing buffer (2× SSC solution in nuclease-free water containing 40%
(w/v) formamide). Probing was done by treating the cells with hybri-
dization buffer (consisting of 2× SSC, 40% (w/v) formamide, 10% (w/v)
dextran sulfate, 2mM ribonucleoside-vanadyl complex, 0.2mg/mL
BSA, and 1mg/mL carrier E. coli tRNA, along with 1μM of each fluor-
escent probe), overnight at 30 °C. Next, the cells were washed thrice
with the washing buffer to remove excess probes, and subsequently
resuspended in 2× SSC buffer. 3μL of the cell suspension were sand-
wiched between the coverslip and 1% (w/v) agarose pads. In order to
improve the photostability of Cy5 dye, the agarose padswere enriched
with an oxygen scavenging system33 consisting of 2.5mM proto-
catechuic acid (Sigma, prepared from a 100mMstock stored frozen in
water-NaOH, pH 8) and 0.05U/mL protocatechuate 3,4-dioxygenase
(OYC Americas).

RT-qPCR measurements of mVenusNB expression
As in FISH experiments, overnight cultures were diluted 1:100 into
fresh M9 medium and grown until mid-exponential phase. Next, cul-
tures were treated with twice the volume of RNAprotect Bacteria
reagent (Qiagen, Germany) at room temperature for 5min and cen-
trifuged at 2400× g for 10min. An enzymatic lysis was performed on
the pelleted cells with Lysozyme (10mg/mL) in Tris-EDTA buffer (pH
8.0) and 10 % SDS. From these lysates, the total RNA content was
extracted using the PureLink RNA Mini Kit (ThermoFisher) as per the
kit manufacturer’s instructions. The RNA content and absorbance
ratios A260/A280nm and A260/A230 nm were quantified by a Nano-
drop 2000Spectrophotometer (Thermo Scientific). The ratio (2.0–2.1)
indicated highly purified RNA.

DNA contamination was removed by treating the samples
with DNase using the Turbo DNA-free kit (Invitrogen). Next, cDNA
synthesis was performed from RNA through the High Capacity
Reverse Transcription kit (ThermoFisher) as per the manu-
facturer’s instructions.

cDNA samples were mixed with qPCR master mix with the Power
SYBR Green PCR mix (ThermoFisher) with primers (200 nM) for the
target and reference gene. The primer sequences for the target
(mVenusNB) and reference (rrsA) genes were shown in Supplementary
Table 3. Experiments were performed in a StepOneTM Real-Time PCR
system v2.3 (ThermoFisher). The thermal cycling conditions were
50 °C for 10min, 95 °C for 2min, followedby 40 cycles of 95 °C for 15 s,
60 °C for 30 s, 72 °C for 40 s with the fluorescence being read after
each cycle, and finally a melting curve from 90 °C through 70 °C at
0.3 °C intervals and 1 s dwell time. All samples were performed in three
technical replicates, and for each condition, No-reverse-transcriptase
and no-template controls were used to crosscheck non-specific signals
and contamination. qPCR efficiencies of these reactions were greater
than 95%. The fold change was calculated from the CT values from
target gene (normalized to the reference gene) and standard error,
using Livak’s 2−ΔΔCT method34.
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mRNA degradation rates
To measure the mVenusNB mRNA lifetimes in strains varying the
operator sites (Osym,O1, andO2), we followed the procedure described
in ref. 16. From overnight cultures, cells were diluted 1:100 in a 20mL
volume of M9 succinate medium supplemented with 0.5X RPMI,
grown at 37 °C with 200 rpm. Upon reaching OD600≅0.4, the culture
was divided into two equal halves, with each half transferred to a new
50mL tube and kept at 37 °C with aeration. Subsequently, 1.0mL of
culture was extracted from each tube and mixed with 3mL of RNA-
protect Bacteria reagent (Qiagen, Germany) to stabilize cellular RNA,
serving as the t =0 samples. Next, to inhibit transcription a final con-
centration of 500 µg/mL of Rifampicin was added to one of the culture
tubes, while the culture without rifampicin served as a control. At
2-min intervals after rifampicin addition (e.g., at t = 2, 4, 6, 8min),
1.0mL of culturewas extracted from each tube andmixedwith 3mLof
Qiagen RNAprotect Bacterial reagent. Subsequent total RNA extrac-
tion and quantitative real-time polymerase chain reactionwere carried
out following the procedures outlined above. The relative mVenusNB
mRNA levels in the rifampicin-treated sample were fitted to an expo-
nential function, RNA= exp(−γ·t) where γ is themRNAdegradation rate
and t is the time since rifampicin addition, yielding an estimate of
γ =0.79min−1.

Microscopy
Wide-field microscopy was employed to capture cells in both phase
contrast and fluorescent channels. The optical setup consisted of a
Nikon Ti2-E inverted microscope equipped with a 1.45/100x oil
immersion objective lens (CFI Plan APO lambda, Nikon), a Spectra III
light source from Lumencor for epi-fluorescence illumination, and a
Kinetix camera from Teledyne Photometrix. Control of the setup was
facilitated by micro-Manager 1.4 software35. For RNA measurements,
we acquired Z-stacks of 9 Cy5 fluorescence images centered on the
focal plane and separatedby 200 nm,with afilter cube consisting of an
FF660-Di02 excitation filter and a Semrock 692/40 emission filter. A
single-phase contrast imagewas captured at the focal plane. All images
were captured at an exposure time of 250ms. For protein measure-
ments, we used the same optical setup, and fluorescence images were
captured using the mVenusNB channel with a filter cube consisting of
an FF01-559/34 (Semrock) excitation filter, a T585lpxr (Chroma)
dichroic mirror, and a T590LP (Chroma) emission filter. We acquired
images at 200ms exposure for both phase and fluorescence images.

Image analysis
The image analysis pipeline consists of the following steps: cell seg-
mentation, spot detection, and mRNA or mVenusNB quantification
(see below for mVenusNB quantification) using custom Matlab
(R2022a) code. Cell segmentation was performed using the U-Net
algorithm36. The segmentation was refined by imposing filters on cell
area, width, and length; and each field of view was manually checked
for mis-segmented cells. Fields of view with mis-segmented cells were
excluded from further analysis.

For mRNA FISH experiments performed with wt LacI expression
levels, spot detection proceeded similarly to previously published
work18. Fluorescence images were subjected to a mild Gaussian filter
(σXY = 1 pixel, σZ = 0.7 pixels), and local maxima were identified in 3D
using Matlab’s imregionalmax function. Local maxima whose peak
intensities fell under a threshold were discarded. This threshold was
chosen such that at most a handful of spots were detected in the
negative control sample (a negative control sample was run for each
individual experiment). For eachdetected spot whose intensity passed
the threshold, the spot intensity was determined by summing the
pixels inside a circle of radius 5 pixels of the local maximum, in the XY
plane in which themaximumwas detected. To avoid double-counting,
spots whose quantification radii overlapped in a particular XY plane

weremerged. The negative control pixel intensitywas subtracted from
all pixels while quantifying spot intensity.

To convert spot intensity to number of mRNA, the strain con-
taining wt lacI and the Osym operator was used. This strain is highly
repressed, with on average 0.33 mRNA per cell, such that most
detected spots are likely to contain a single mRNA. A histogram of
detected spot intensities was created for theOsym strain, and the single
mRNA intensity was identified as the mode of the resulting intensity
distribution (Supplementary Fig. 2).

With the single mRNA intensity in hand, the number of mRNA in
each cell can be computed. The intensities from all detected spots in a
cell are summed, and the resulting sum is divided by the single mRNA
intensity, yielding the estimated number ofmRNA in the cell. From the
set of cells for each operator, the mean, Fano factor, and other sta-
tistics can be calculated. mRNA distributions in Figs. 2 and 3 were
created by pooling the results of at least two independent experiments
on separate days. Bootstrapped estimates of uncertainty in ka and kd
(Fig. 3) were created as follows: for each operator, 1000 bootstrap
samples were drawn from the pooled set of mRNA copy number
observations. For each bootstrap sample, the ka and kd values were
estimated as described above (“Calculation of ka and kd from mRNA
statistics”). For error bars shown in Fig. 3b, the lower and upper error
bar ranges represent the 10th and 90th percentile of bootstrapped ka
and kd values, respectively.

For mRNA FISH experiments performed in ΔlacI strains, the
summed fluorescence intensity of all pixelswas calculated for each cell
at the XY plane in which the cell was brightest, background fluores-
cence was subtracted using the negative control strain, and the
background-subtracted summed fluorescence intensity was divided
by the singlemRNA intensity to yield the number ofmRNA in each cell.

For mVenusNB expression experiments (Fig. 1c, d), the average
mVenusNB channel pixel intensity was computed for each cell, and the
average fluorescence of the negative control strain (without mVe-
nusNB) was subtracted from this value. The background-subtracted
mVenusNB intensity was averaged over all cells with a given operator
to obtain a mean mVenusNB expression level for each operator. Error
bars in Fig. 1d represent semderived frompooling all cells with a given
operator across experiments, drawing 10,000 bootstrap samples from
the pooled data set, and computing the standard deviation of the
bootstrapped mean values.

Stochastic simulations
Stochastic simulations in Fig. 1b were performed using code from
Sanchez et al.37. The steady-state probability distributions in Fig. 1b
were computed from the chemicalmaster equation by formulating the
master equation in matrix form and numerically computing the
eigenvectors of the matrix with eigenvalue equal to zero, also as
described in Sanchez et al.

To generate Supplementary Fig. 9, investigating the effects of
RNAP occlusion of the operator, this code was modified to make the
association rate ka dependent on the time since the most recent
transcript production event. Specifically, the association rate was set
to zero for a time tocclude following each transcription event; after
tocclude, ka returned to its previously set value. Thus, tocclude models
occlusion of the operator during transcription initiation, during which
time the operator is unavailable for binding. When constructing Sup-
plementary Fig. 9, the association rate ka,sim was modified for each
operator such that the effective association rate when tocclude = 1 s
would approximately equal the experimentallymeasured ka,exp for that
operator. For instance, in the case of Osym, r = 24.6min−1 (Fig. 2) and
ka,exp = 9.79min−1. This means that, on average, 24.6 s of every minute
are unavailable for LacI binding, so that the “true” association rate
would bemultiplied by a factor of (60−24.6)/60 =0.59. Thus, to create
the Osym simulations in Supplementary Fig. 9, ka,sim was set to
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ka,sim= 9.79/0.59min−1 = 16.6min−1, which is indeed the inferred value
for kawhen tocclude =0. An analogous procedurewas used to determine
ka,sim values for O1 and O2 that, when taking into account an occlusion
time tocclude = 1 s, would yield inferred values close to the experimen-
tally observed rates ka,exp and kd,exp. For all three operators, this pro-
cedure worked well as inferred ka and kd values were close to the
experimentally-determined values when tocclude = 1 s.

To generate Supplementary Fig. 10, a set of 50 simulated opera-
tors was created whose association rate per repressor ka0 and dis-
sociation rate kd values were linearly spaced along the line defined in
Marklund et al. (Supplementary Fig. 10, green lines). In order to cap-
ture the effect of varying repressor copy number nrepressor, the asso-
ciation rate ka was assumed to be proportional to repressor copy
number: ka = nrepressor ka0. We examined six different repressor copy
numbers, varying from 1 to 100 per cell. For a given operator and
repressor copy number, the steady-state mRNA copy number dis-
tribution was computed numerically, again as described in Sanchez
et al.37, and a set of 1000 samples (i.e. comparable to performing
mRNA FISH on a population of 1000 cells) was drawn from the dis-
tribution. The observed mRNA copy numbers in the simulated popu-
lationwere then analyzed according to the procedure in Fig. 2, yielding
the “Inferred values” (blue dots). In order to estimate the effects of
experimental noise, each mRNA was assigned a “fluorescence inten-
sity” randomly chosen from a Gaussian distribution with mean 1 and
standard deviation 0.4. The intensities from all mRNA within a parti-
cular cell were summed and rounded to the nearest integer, similar to
how experimental data are analyzed. These data were also analyzed
according to the procedure in Fig. 2 (“Inferred values w exp noise”,
orange dots). Basal transcription rate r = 22min−1 and mRNA degra-
dation rate γ =0.80min−1 in these simulations.

Analytic probability mass function
The analytic probability mass function plotted in Fig. 3a and Supple-
mentary Fig. 3wasoriginally derivedby Shahrezaei and Swain and later
adapted by Morrison et al.7,14.

For convenience and clarity, we reproduce it here. We start by
defining non-dimensionalized versions of the various rates by dividing
by the mRNA degradation rate, such that

er = r=γ;fka = ka=γ;
fkd = kd=γ

The probability of a cell having m mRNA is then given by
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,

2F1 is the Gaussian hypergeometric function, and Γ denotes the
gamma function (i.e., the generalization of the factorial function, not
to be confused with the mRNA degradation rate).

It is noteworthy that Eq. (3) depends only on the non-
dimensionalized rates, as is also the case for Eqs. (1) and (2) as can
be seen with minor rearranging. In other words, the absolute rates
cannot be obtained from themRNA data; what we are actually doing is
using the mRNA data to solve for the non-dimensionalized rates, then

using the external measurement of mRNA degradation rate γ to con-
vert to physical units of min−1.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All experimental data are available in the SciLIfeLab Data Repository at
https://doi.org/10.17044/scilifelab.26425576.v138. Source data are
provided with this paper.

Code availability
All code used in this paper is available in the SciLifeLab Data Reposi-
tory at https://doi.org/10.17044/scilifelab.26425576.v138.
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