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NuFold: end-to-end approach for RNA
tertiary structure prediction with flexible
nucleobase center representation

Yuki Kagaya 1, Zicong Zhang2, Nabil Ibtehaz 2, Xiao Wang2,
Tsukasa Nakamura 1, Pranav Deep Punuru1 & Daisuke Kihara 1,2

RNA plays a crucial role not only in information transfer as messenger RNA
during gene expression but also in various biological functions as non-coding
RNAs. Understanding mechanical mechanisms of function needs tertiary
structure information; however, experimental determination of three-
dimensional RNA structures is costly and time-consuming, leading to a sub-
stantial gap between RNA sequence and structural data. To address this
challenge, we developed NuFold, a novel computational approach that
leverages state-of-the-art deep learning architecture to accurately predict RNA
tertiary structures. NuFold is a deep neural network trained end-to-end for the
output structure from the input sequence. NuFold incorporates a nucleobase
center representation, which enables flexible conformation of ribose rings.
Benchmark study showed that NuFold clearly outperformed energy-based
methods and demonstrated comparable results with existing state-of-the-art
deep-learning-based methods. NuFold exhibited a particular advantage in
building correct local geometries of RNA. Analyses of individual components
in the NuFold pipeline indicated that the performance improved by utilizing
metagenome sequences for multiple sequence alignment and increasing the
number of recycling. NuFold is also capable of predicting multimer complex
structures of RNA by linking the input sequences.

Ribonucleic acid (RNA) is a fundamental molecule for living organ-
isms. In addition to its central role as messenger RNA used in tran-
scription, RNA molecules carry out various biological functions as
non-coding RNAs (ncRNAs). ncRNAs include ribosomal RNAs (rRNAs)
and transfer RNAs (tRNAs), which probably are most well-known
ncRNAs, as well as small nuclear RNAs (snRNAs)1, small nucleolar
RNAs (snoRNAs)2, circular RNAs (circRNAs)3, and ribozymes4, which
are involved in functions such as gene regulation and modification5,6.
The RNACentral database7 currently contains over thirty million
ncRNA sequences. ncRNAs are garnered attention also in drug design
as new drugs may be designed to inhibit or mimic the activity of
functional RNAs8.

To understand functional mechanisms of ncRNA, obtaining ter-
tiary structure information is crucial. However, our knowledge of RNA
structures remains limited due to the scarcity of experimentally
determined RNA structures. The Protein Data Bank (PDB)9 contains
approximately 6000 entries, including RNA molecules, which con-
stitute only about 3% of the entire PDB entries. Out of the 4094 RNA
families listed in the Rfam database (v14.8)10, merely 124 (3.0%) have
one or more corresponding structures in the PDB.

To bridge the gap between sequence and structure knowledge,
computational methods have been developed for predicting the ter-
tiary structure of RNA from the sequence. Conventional methods can
be roughly classified into two categories, template-based and energy
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minimization-based methods. Template-based prediction methods
include RNAbuilder11 and ModeRNA12, which utilizes global or local
structure information from previously solved homologous RNA
molecules. While these methods can build accurate models when an
appropriate template is available, a drawback is the limited availability
of templates for many cases. On the other hand, energy minimization-
based prediction methods, such as SimRNA13 and FARFAR214, over-
come the limitation of template-based methods by folding RNA
structures through minimization of an energy term. However, this
approach has its own drawbacks, which include extensive computa-
tional time, especially for large RNA structures, and imperfect energy
term that leads to incorrect structures. To address the challenge of
model selection arising from an imperfect energy term, a scoring
function was specifically designed using deep learning15. More
recently, methods were developed that use deep learning.
DeepFoldRNA16 takes a multiple sequence alignment (MSA) and pre-
dicted secondary structure as inputs and outputs distances between
three nucleotide atoms and torsion angles between nucleotides and
along the main chain. These constraints are used to build a coarse-
grainedmodel by a custom folding simulation, followed by a full-atom
reconstruction using SimRNA13 and QRNAS17. trRosettaRNA18 is a deep
learning model that takes anMSA and predicted secondary structures
as input and predicts various angles and distances along the main-
chain and between nucleotides, which serve as constraints for building
the full atomic model using pyRosetta19. RhoFold20 is an end-to-end
model to directly predict the three-dimensional structure of RNA from
an MSA. The MSA is first processed by a pre-trained RNA language
model called RNA-FM21.

Here, we introduce NuFold, a de novo RNA structure prediction
method, using an end-to-end deep network architecture. This method
takes a target RNA sequence and generates a tertiary structure model
through a single network trained comprehensively. The network
architecture is based on that of AlphaFold2 (AF2)22, a protein structure
prediction method that achieved a distinctive performance in CASP14
(Critical Assessment of Structure Prediction) in 202023. Building upon
theAF2 architecture, wemade significantmodifications. Those include
accommodations of nucleic acid sequences, to take secondary struc-
tures as input, modifications for predicting RNA-specific inter-base
angles, distances, and atompositions, and to allow complete flexibility
in the RNA structure representation. Our implementation, termed the
nucleobase center representation, enables the optimization of angles
of all rotatable bonds of nucleobases. This representation allows us to
reproduce any flexibility that exists in the base backbone, providing
the ground for accurate base conformation modeling. In comparison
with above mentioned deep learning-based approaches, NuFold
stands out as a unique end-to-end model that directly outputs full
atomic models from MSA and predicted secondary structure, unlike
manyother deep learningmodels thatpredict atom-atomdistance and
angle constraints to use in the subsequent structure-modeling proce-
dure. RhoFold is the only other end-to-end model, which has a similar
architecture as NuFold. Apparent differences in the two architectures
are that RhoFold uses a languagemodel to process an inputMSAwhile
NuFold takes an MSA in a more direct way similar to AF2 and NuFold
takes predicted secondary structure information as another input.

RNA structure prediction is, arguably, more difficult than protein
counterpart because the molecule is more flexible and available
structural data is very limited compared to proteins. We examined
several approaches toovercome thisdifficulty: To increase thenumber
of training data, we employed a self-distillation technique24, where
predicted structures which are believed to be accurate enough, are
included in a training set. To increase the depth of input MSAs, we
incorporated metagenomic sequences, because the use of metagen-
ome was shown to be effective in protein structure prediction25,26.
During training, we adopted a dynamic sampling strategy, which
schedules a balance of easy and difficult targets27. Furthermore, we

also tested a couple of smaller networks, because the training data we
have is smaller than protein datasets used in the original AF2. We
report approaches that were effective in improving the modeling
accuracy. NuFold achieved a full-atom RMSD of 5 Å or less for most of
the test targets. With an RMSD of 5 Å or less, NuFold accurately built
the conformation almost perfectly, except for flexible terminal and
loop regions. Additionally, it was found that utilizing metagenomic
sequences for input MSAs and optimizing the number of recycling
enhances NuFold’s prediction performance. NuFold is made available
in the forms of source code and a Google Colab Notebook to serve
both the computational biology community who aim for further
development of RNA structure prediction methods and biology
researchers who are interested in obtaining structure models for their
RNA sequences.

Results
Overview of NuFold
The architecture of NuFold is depicted in Fig. 1a. NuFold is an end-to-
end network that predicts the all-atom tertiary structure of RNA from
its sequence. NuFold shares the basic framework of deep learning
architecture as AF2, which consists of three main modules: the first
module, which deals with input data, the second module, the Evo-
former blocks, which generates embeddings of the multiple sequence
alignments (MSA) collected for the target sequence and residue pair-
wise information, and the last module, the structure module, which
constructs the three-dimensional (3D) structure models of the target
RNA. For an input RNA sequence, anMSA is generated by rMSA28 and a
predicted secondary structure is generated by IPknot29,30. The Struc-
ture Module utilizes Flexible Nucleobase Center Representation
shown in Fig. 1b. In the structuralmodule of NuFold, wedefine the base
framewith the following four atoms:O4’, C1’, C2’, and the first nitrogen
of the base (N1 for C and U, N9 for G and A). All other atoms are
partitioned into ten frames, which are then iteratively bonded using
predicted torsion angles on the bonds between frames as a guiding
principle (Fig. 1b). Aswasdone inAF2 for amino acids, these definitions
are hardcoded for RNA. This representation of RNA nucleotides can
reproduce the full dynamics of nucleotide conformations. In Fig. 1c, we
show two different conformations of nucleotides, C3’-endo and C2’-
endo sugar conformations. These two conformations share about 82%
and 10% of nucleotides in known RNA structures and their structures
differ by a rootmean square deviation (RMSD) of around 0.3 to 0.5 Å31.
With the NuFold structure presentation, these two conformations are
precisely built with an RMSDof 0.04 Å and0.03 Å for the C3’-endo and
C2’-endo conformations, respectively.

NuFold was trained on 2860 RNA chains, validated on 48 chains
during training, and tested primarily on 36 test RNAs. Entries across
the training, the validation, and the test set are non-redundant using a
commonly used nucleotide sequence identity cutoff of 80%. These
entries originate from RNA entries downloaded from the Protein Data
Bank (PDB)9 as of February 28th, 2022.We also used 11101 entries from
the bpRNA-1m32 dataset for a self-distillation dataset, which was com-
bined with the training dataset during training. Further details can be
found in Methods.

Overall structure prediction performance of NuFold
The structure prediction accuracy for the 36 test targets by different
models of NuFold is summarized in Table 1. The first two results,
RMSD-centric and GDT-TS-centric, represent outcomes from two
network models. The former was selected from a training step that
exhibited the smallest average root mean square deviation (RMSD) to
the native structure on the validation dataset, while the latter was
chosen at a training step demonstrating the highest average Global
Distance Test-Total Score (GDT-TS)33 on the validation dataset. RMSD
was computed for C1’ atoms in nucleotides. GDT-TS measures overall
structural similarity between a predicted and the native structures,
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ranging from 0 to 1 with 1 indicating exact agreement with the native.
These two network models showed similar performance on the test
set, folding 25 RNA targets within an RMSD of 6Å and showing com-
parable values in average RMSD andGDT-TS. In a direct comparison of
the structures generated by these models, the RMSD-centric model
generated a lower RMSD (by more than 0.5Å) structure for four tar-
gets, while the GDT-TS centric model generated a lower RMSD struc-
ture for two targets. For the remaining 30 targets, the structure
generated by both models were within 0.5 Å RMSD, denoted as ties in
Table 1. We designated the RMSD-centric model as the baseline due to
its better performance compared to the GDT-TS-centric model and
used it for comparison with other variants of NuFold.

Effect of various factors and techniques
In Fig. 2, we investigated how the length of the targets and the depth of
input MSAs affected the modeling results of the baseline model.
Results from both the test set (blue circles) and the validation set
(orange triangles) are shown. In Fig. 2a, we observed a modest corre-
lation between the target length and the modeling accuracy. All small
RNA targets shorter than 50 nucleotides (nt) in the test set folded
within a 6 Å RMSD, while the fraction of targets with a large RMSD
increased for targets with more than 100 nt. The same trend was
observed both in the testing and validation sets. Figures 2b, c investi-
gate the effect of the depth of input MSAs in terms of the raw counts

of sequences in MSAs (Fig. 2b) and the number of effective counts
(Nf)34 ofMSAs (Fig. 2c). The effective count of anMSA is the number of
non-redundant sequences in the MSA that have similarities below the
cutoff of each other. Here, we used 80% as the cutoff of sequence
identity to consider if two sequences are redundant or not, which is the
standard cutoff value used in the rMSA pipeline. We observed a weak
trend that shallowMSAs suffer inmodeling results. Out of 23 targets in
the test set with less than 100 Nfs in their MSAs, 39.3% of the targets
had anRMSD larger than 6Å. In the validation set, out of 31 targetswith
less than 100 effective counts, 45.2% of the targets had anRMSD larger
than 6 Å.

Effect of recycles
Turning our attention back to Table 1, in the middle block labeled as
Baseline + , we attempted to improve the modeling accuracy of the
NuFold baseline model by increasing the MSA depth by adding
metagenome sequences and by increasing the number of recycles.

It has been reported that the increasing the number of recycles in
general improves structure prediction accuracy in the case of
proteins22,35. Recyclemixes the output atomic coordinates and internal
representation vectors from the previous run with the original input
and uses themas input for the network (the green box in Fig. 1). During
training, zero to three recycles were randomly selected for each batch.
In inference, we used three recycles in the baseline model. Here we

Fig. 1 | Overview of NuFold. a The architecture of NuFold. NuFold is an end-to-end
architecture for RNA tertiary structure prediction, taking target sequence infor-
mation and generating corresponding full-atom tertiary structures. The query
sequence is initially used to construct an MSA, which, along with predicted sec-
ondary structure information, serves as input to the NuFold network. The NuFold
network comprises three components: Preprocessing, EvoFormer, a transformer
model that extracts co-evolutional information fromMSA and embeds it into both
single and pair representations; and the structuremodule, which further processes
the embedded information into 3D structures. These processes are iteratively
performed in a recycling process to refine predictions. b The network predicts two

key components for full-atom structure prediction: the translation and rotation of
the base frame, along with a set of torsion angles derived from the base frame.
These torsion angles are used to extend new atoms. c Representing two puckering
conformations, C3’-endo and C2’-endo conformations. Green and magenta struc-
tures represent ground truth and structures built by NuFold, respectively. NuFold
predicts torsion angles not only for the main chain or chi angles but also for the
ribose ring, allowing for the reproduction of sugar-puckering formations. RMSD of
the structures builtwere0.04Å and0.03Å, respectively, for C3’-endo andC2’-endo
conformations.
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investigated the effect of up to 30 recycles in RMSD of the predicted
structures.

In Fig. 2d, we examined how the average RMSD and pLDDT, the
predicted LDDT (local Distance Difference Test)36, which is a measure
of the network’s self-evaluation of the model accuracy changed over
30 recycle iterations. In both test (cyan) and validation (orange) cases,
the average model accuracy in RMSD (solid lines) improved as more
recycles were applied but up to around 10 (the lowest averaged RMSD
was achieved at the eighth recycles in the test set and at the eleventh
for the validation set). But after that point, the RMSDwent worse again
with more recycle iterations. On the other hand, pLDDT sharply
increased up to around five recycle iterations and continuously went
higher as more recycles were accumulated (dashed lines in Fig. 2e, f).
Thus, obviously themodel becomes overconfident at later iterations of
recycles.

In almost all the cases a better model (with a smaller RMSD) was
generated in extended iterations of recycles compared to the baseline
model that performs three recycles (Fig. 2e). The average RMSD of the
best model among extended recycles was 6.38Å, which is a 0.6 Å
improvement from that of the baseline model (6.98 Å). However,
selecting the best structure is not easy because pLDDT almost
monotonically increases with recycle iterations and does not precisely
indicate the best structure (Fig. 2d). In Fig. 2f, on the test set, we
selected the highest pLDDT structure from the 8 to 14 recycles, which
is ±3 recycles around the 11th recycle, which yielded the lowest average
RMSD in the validation set. This strategymade a small improvement in
an average RMSD to 6.87 Å, a 0.11 Å improvement from the baseline.

Effect of using metagenome
Subsequently, we usedmetagenome sequences for MSA construction.
The quality of metagenome sequences is not as good as curated
sequences in UniProt but it is known that increasing the MSA depth
and diversity generally improves modeling accuracy for proteins25,26.

In order to use metagenomic data for MSA, we first created a
metagenomic sequence database by combining several metagenomic
data sources. We constructed a metagenome sequence database by

combining NCBI env_nt, TARA Ocean Metagenome37, MGnify MAG38,
and all MGnify contigs, which resulted in a total size of 3.0 Tb. These
sources were not included in the rMSA pipeline that we initially used
and were 3.2 times larger than the databases used in the original rMSA
setting (940Mb). To search the metagenome database we con-
structed, we first used the query RNA sequence to search the meta-
genome database with BLASTn and created a covariance model (CM)
with Infernal from the results. Then, we used the CM as input for
Infernal’s cmsearch to search the same metagenomic database. We
combined the resulting metagenomeMSA with the original MSA from
rMSA pipeline in two ways, a simple concatenation, named “Concat”
and a filtered Concat MSA that removed redundancies with hhfilter.
This version is named “Filtered”.

In Fig. 2g, we examined how much sequences were increased in
the metagenome MSAs. increase of sequences observed in metagen-
ome the results were shown in Fig. 2g. When we compare the filtered
MSA with the original MSA, the depth of MSA increased for 94.4% of
the cases (34 out of 36 cases). However, a substantial increase of the
MSA depth was observed mainly for cases when the original MSAs
already had enough sequences, e.g. over 5000. Out of 25 targets with
less than 5000 sequences in their original MSAs, only 15 targets had
more than 10 sequence increase.

Next, we examined whether we could utilize metagenome MSAs
to improve modeling performance. We ran the baseline NuFold with
three metagenome MSAs and the original MSA, generating four
structure models. We then selected the model with the highest
pLDDT. In Fig. 2h, we compared the RMSD of the selected structure
to the structure generated from the original MSA (Fig. 2i). This pro-
tocol achieved a better or equivalent RMSD for 34 targets (94.4%),
with an overall average RMSD improvement of 0.3 Å. The gain
(improvement) in RMSD relative to the change in MSA depth was
investigated in Fig. 2i. Increasing the MSA depth did not show a clear
improvement in RMSD, but it was evident that the RMSD worsened
when the depth decreased. In this experiment, we usedmetagenome
MSAs only as inputs in inference. Training or refining the NuFold
model with metagenome data may enhance the interpretation of

Table 1 | Overall performance of NuFold on the test set using different models

NuFold Variations Ave. RMSD (Å) Ave. GDT-TS # of Correct targets VS Baseline (win/tie / lose)

RMSD-centric (Baseline) 6.98 0.443 25 / 36 -

GDT-TS-centric 7.06 0.441 25 / 36 2 / 30 / 4

(Baseline + )

Baseline + Recycles 6.87 0.444 25 / 36 3 / 31 / 2

Baseline + Metagenome 6.68 0.453 25 / 36 5 / 29 / 2

Baseline + Recycles + Metagenome 6.67 0.456 25 / 36 6 / 28 / 2

(Small Models)

24 Evoformer Blocks + 50% self-distillation 7.28 0.454 24 / 36 9 / 19 / 8

24 Evoformer Blocks + 75% self-distillation 7.98 0.445 24 / 36 7 / 20 / 9

Population-based:

Best in the population 5.62 0.490 27 / 36 16 / 20 / 0

Largest cluster (centroid) 7.77 0.440 25 / 36 2 / 26 / 8

Largest cluster (pLDDT) 7.80 0.439 25 / 36 2 / 26 / 8

Highest pLDDT 6.87 0.452 25 / 36 7 / 24 / 5

# of correct targets: The count of targets for which the model achieved a Root Mean Square Deviation (RMSD) of less than 6Å out of the 36 test target RNAs. VS Baseline: the comparison of RMSD
results with those of a baseline, distinguishing between cases where the model’s RMSD is better, equal to, or worse than the baseline. A target is considered tied when its RMSD is less than 0.5 Å
compared to thebaseline structure. The “RMSD-centric”model, selected at the 146,287th trainingstep,exhibited the smallest averageRMSDon thevalidationdataset. Similarly, the “GDT-TS-centric”
model, chosen at the 145,263rd training step, demonstrated the highest average GDT-TS on the validation dataset. The second block of Baseline+ shows results of the baseline model with an
increased MSA from metagenome database search and with an increased number of recycles to 30 from 3. In the + Recycle models, a structure with the highest pLDDT was selected from those
generated from 8 to 14 recycle iterations (this method and its motivation is discussed later in detail). In the +Metagenome models, a structure with the highest pLDDT was selected from those
generated from 3 metagenome MSAs and the original MSA. The number of recycles was set to 3. The last block with four rows presents results of the population-based methods. The Best in the
population row shows the best (lowest RMSD, highest GDT-TS) from all the 385 structure models. In the “largest cluster (centroid)” approach, structure models were clustered based on structural
similarity using LB3Dclust43, and the structure closest to the averaged structure of the cluster was selected from the largest cluster. In the “largest cluster (pLDDT)” approach, the structure with the
highest pLDDT within the largest cluster was chosen. The “Best pLDDT” indicates the structure with the highest pLDDT among the 385 generated structures, without applying clustering. The best
result in each metric is shown in bold (the best in the population values were excluded from the comparison).
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metagenome data and potentially lead to further performance
improvement.

Finally, we combined the recycling strategy and the use of meta-
genome MSAs. As performed above, using each of four variations of
MSAs, the highest pLDDT structure model was selected from the
recycle iteration of 8 to 14, then, again the highest pLDDT model
among the four structures was selected. This combined approach
yielded the best results, an average RMSD of 6.67 Å and an average
GDT-TS of 0.456, as reported in Table 1, Baseline+Recycles+
Metagenome.

Effect of secondary structure prediction accuracy
We also examined how the accuracy of the secondary structure pre-
diction affects modeling accuracy (Fig. 3). In addition to IPknot,
MXfold239 and SPOT-RNA40 were used for this analysis.

For this experiment, we used the same network model that was
trained with IPknot prediction. We did not newly train the network
specifically with predictions by each method. Figure 3a–c show the
RMSDof the test targets relative to the F1 score of secondary structure
prediction. With MSA input, a moderate correlation was observed
between the F1 score of predicted secondary structure by SPOT-RNA

Fig. 2 | The effect of the target length, the MSA depth, recycling, and meta-
genome MSAs on the modeling accuracy. a–c 36 targets in the test set (cyan
circles) and 48 targets in the validation set (orange triangles) are plotted. a RMSD
(Å) relative to the length of query RNA sequence and RMSD. b RMSD (Å) relative to
the raw count of sequences inMSAs. c RMSD (Å) relative to the number of effective
sequences (Nf) inMSAs.dThe averageRMSDofgenerated structures relative to the
number of recycles (solid lines, left axis, Å) and pLDDT (dashed lines, right axis).
The testing data and validation data were shown in cyan and orange, respectively.
e The prediction performance comparison between the Baseline model, which
utilized three times recycling, and the best structure for each target in all 30
recycle. The performance was measured by RMSD (Å). f The prediction

performance comparison between the Baseline model and the best pLDDT model
from 11 ± 3 recycles. The performance was measured by RMSD (Å). g The depth of
MSAs by themetagenomedatabase search relative to the originalMSAs.MetaOnly,
the MSA from the metagenome search; Concat. is a simple concatenation of the
metagenome MSA and the original MSA; Filtered, redundant sequences are
removed from the Concat MSA. h The performance comparison between the
baseline and the selected structure based on the pLDDT score. The source of the
MSA of the selected structure is indicated by different symbols. i Performance
changes by differences in MSA depth. A positive ΔMSA indicates that the selected
MSA contains more sequences than the baseline MSA.
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and the RMSD of the predicted tertiary structure, whereas only a very
weak correlation was observed for the other two. Pearson’s correlation
coefficient was −0.104, −0.174, and −0.595, for IPknot, MXfold2, and
SPOT-RNA, respectively. In Fig. 3d–f, we removed theMSA input to try
to see a clearer effect of the secondary structure prediction accuracy
to the modeling performance. However, the modeling accuracy
dropped substantially without MSA, and only a weak correlation was
observed. Pearson’s correlation coefficient was -0.245, -0.197, and
-0.322, for IPknot, MXfold2, and SPOT-RNA, respectively. Figures 3g, h
compare the baseline NuFold with NuFold with two extremes of sec-
ondary structure information: the perfectly accurate information
computed from the native structure (Fig. 3g) and no secondary
structure information (Fig. 3h). It turned out that secondary structure
information did not make much improvement in RMSD from the

baseline NuFold. Out of 36 targets, 24 were a tie (i.e. RMSD difference
less than0.5Å) in Fig. 3g while 23 targets were a tie in Fig. 3h. As shown
in Supplementary Table 2, the addition of predicted or true secondary
structure information improved RMSD on average when compared to
Nufold without secondary structure information. However, the
improvement was not statistically significant in nearly all cases, except
for the prediction with IPknot prediction with no MSA input.

Training with different amounts of self-distillation data
To examine how prediction performance varies with different
amounts of self-distillation data, we trained NuFold from scratch using
50%, 33%, and 0% (i.e., no self-distillation data) of the self-distillation
dataset and compared the results with the baseline NuFold, which was
trained on 100% of the distillation data (Fig. 4). In each batch, the ratio

Fig. 3 | The effect of the secondary structure prediction accuracy. Modeling
results (RMSD) of testing targets are shown relative to the F1 score of the predicted
secondary structures. The baseline NuFold (Table 1) was used with secondary
structure prediction using a IPknot; bMXfold2; c SPOT-RNA. Modeling accuracy of
NuFoldwithoutMSA input was reported with secondary structure prediction using

d IPknot; eMXfold2; f SPOT-RNA. g Comparison between the baseline NuFold with
prediction using IPknot and with the correct secondary structure information
computed from the PDB files. h Comparison between the baseline NuFold with
prediction without secondary structure prediction.
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of PDB data to self-distillation data was maintained at 1:3, consistent
with the baseline NuFold training. For this analysis, we trained the
model with reduced self-distillation data for approximately one
month,which is about 25%of the timeused in theoriginal training. This
allowed us to observe the trend in loss function values. As shown in
Fig. 4, both the FAPE loss and the three evaluation metrics improved
with more self-distillation data. This indicates that using a larger
amount of self-distillationdata,whichexposes the network to a greater
variety of data, is indeed beneficial.

Smaller network models
We also trained smaller models than the baseline NuFold. The baseline
NuFold has the same size of parameters as the original AlphaFold, with
48 blocks of EvoFormer and 8 blocks of Structure Module. But as
available training data is substantially smaller than proteins, we
thought simplifying network wouldmake training easier. We prepared
models with a half size of Evoformer, 24 blocks, and trained with two
size variations of self-distillation data in eachbatch, 75%and 50% to the
original training data from PDB. 75% is the same as the amount used in
the baseline NuFold. Results are shown in Small Models section in
Table 1. As shown, the average RMSD of the two small models were
slightlyworse than the baseline. On the other hand, their average GDT-
TSwas, oppositely, slightly better. Thus, 24blocksmaybe sufficient for
RNA structure prediction with the currently available data size for
future work.

Population-based approaches
Lastly in Table 1, we tested population-based approaches. In a
population-based approach, which is also often called an ensemble-
based approach, wegeneratemany structures and select a structure as
the final prediction using a selection criterion. Population-based
approaches have been successful in protein structure prediction
field41,42.

We took NuFold models at 385 different checkpoints during
training and ran all of them for each target. Then, 385 structures
were clustered using LB3Dclust43 with an RMSD cutoff of 1.0 Å.
Then, one structure was selected using three different strategies: In
the first strategy, from the largest cluster, the structure closest to
the average of the all the cluster members was selected. In the
second strategy, from the largest cluster, a structure with the
highest pLDDT was selected. In the third strategy, the structure
with the highest pLDDT was selected from the entire pool of
structures.

As shown in the row of Best in the population (Table 1), the
structure pool includes a better-quality structure than the baseline by
more than 0.5 Å RMSD for 16 out of 36 cases and the average RMSD
improved substantially from 6.98 Å to 5.62 Å. However, the two
approaches that use clustering resulted in worse than Baseline in all
metrics. On the one hand, simply selecting a structure from the pool
using pLDDT outperformed Baseline, improving the RMSD by 0.12 Å
on average and GDT-TS by 0.009.

Fig. 4 | The effect of the size of self-distillation in training. Loss functions are
shown when NuFold was trained using different amounts of self-distillation data:
100% (blue), 50% (orange), 33% (green), 0% (red). In each batch, the ratio of PDB
entries to the distillation datawas kept at 1:3 as in the baselineNuFold training. Loss

values were computed on the validation data set at each step during training.
a FAPE Loss (the lower, the better); b RMSD (Å) (the lower, the better); c LDDT Cα
(the higher the better); d GDT-TS (the higher the better).
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Case studies
In this section, we discuss several illustrative examples of predicted
RNA structures (Fig. 5). The first example (Fig. 5a) is a 76 nt-long tRNA
from Escherichia coli (PDB ID: 2DER chain C). NuFold achieved a full-
atomRMSDof 2.88 Å for this target. This structurewas very accurately
modelled except for the deviation of the 3’ end (in red), including the
bases at the anticodon loop. Figure 5b is riboswitch forphosphoribosyl
pyrophosphate (PPRP) (PDB ID: 6CK4 chain A)modelled at anRMSDof
2.64 Å. This structure has a pocket for recognizing the ligand PRPP in
the area surrounded by blue, orange, and yellow chains. NuFold
accurately constructed the overall structure as well as this functionally
important region ligand binding site. The next example (Fig. 5c) was a

prediction target rp12 inRNA-Puzzles, a 125-base ydaO riboswitch. This
was a difficult target with a novel topology at the RNA-Puzzles Round 3
in 2014 when this target was presented44. At that time even the best
(lowest) RMSD among all models was over 10 Å. NuFold was able to
model the topology correctly, yielding an all-atomRMSDof 3.55Å. The
fourth example (Fig. 5d) is another RNA-Puzzles target, rp06. This
target is 168 nt-long, the longest in the test datasetmodelled below6Å
by NuFold (3.10 Å). At the time of RNA-Puzzles round 2, this target had
a top all-atom RMSD of 11.4 Å, marking a significant advancement by
NuFold. The evaluation report of RNA-puzzles indicated that the
absence of a ligand to fill the riboswitch pocket could be the cause of
incorrect predictions45, although NuFold was able to understand the

Fig. 5 | Case studies of the predictions of NuFold. The native structures and
predicted structures are superimposed and shown in grey and rainbow, respec-
tively. The 5’-terminal and 3’-terminal are shown in blue and red, respectively.
a tRNA-Glu of Escherichia coli (PDB: 2DER chain C). 76 nt, RMSD: 2.88Å. b PPRP
riboswitch. (PDB: 6CK4 chain A). 117 nt, RMSD: 2.64 Å. c RNA-puzzle target, rp12.
ydaO riboswitch. 125 nt, RMSD: 3.55Å. d RNA-puzzle rp06. Adenosylcobalamin
riboswitch. 168 nt, RMSD: 3.10 Å. e partial structure of the 23S rRNA. (PDB: 5ML7
chainA)96nt. Anexample that improvedby increasing the numberof recycles. The

prediction of baseline is shown on the left (RMSD: 8.70Å) and the prediction with
more recycles is on the right (RMSD 3.39Å). f twister ribozyme. (PDB: 4OJI chain A)
54 nt. An example that improved by using a metagenome MSA and recycles. Left,
the baseline model (RMSD: 4.14 Å); right, the improved model (RMSD 2.23Å).
g RNA-puzzle rp05. lariat capping ribozyme. 188 nt. Left, the native structure;
center, the baseline model (RMSD: 22.2 Å); right, model using metagenome MSA
with more recycles (RMSD: 11.7 Å). h CRISPR RNA. (PDB: 4U7U chain L). 61 nt,
RMSD: 33.0 Å.
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conformation from the non-redundant training set without consider-
ing the bound ligand.

The next three examples are cases where additional effort over
the baseline, i.e. using metagenomes and more recycling, were effec-
tive. The first one is 23S rRNA (PDB ID: 5ML7 chain A) (Fig. 5e), a 96 nt-
long structure featuring a pseudoknot structure between the middle
section (green) and the region of the first stem (red + blue). The
baseline method (left) accurately predicted local structures but failed
to correctly predict thepseudoknot, resulting in a large gap in its place.
This led to an RMSD of 8.70 Å. Through increased recycling, the
pseudoknot was almost accurately formed, resulting in an improved
RMSD of 3.39 Å. Figure 5f is a twister ribozyme, another target with a
pseudoknot (between the middle of the structure in green and the
other region in the first stem in red). The baselinemodel shown on the
left has a decent RMSD of 4.14 Å, whichwas further improved to 2.23 Å
by using a metagenome MSA and more recycling.

Figure 5g are models of an RNA-Puzzles target, rp05. It is 188 nt-
long, lariat capping ribozyme, which has a unique circular fold with a
single pseudoknot. The baseline model (the middle panel) had 33.8%
of standard base pairs formed correctly but the overall fold was not
correctly built, including the characteristic pseudoknot. That resulted
in a large RMSD of 22.2 Å. Using a combination of a metagenomeMSA
andmore recycling, NuFoldwas able to formthepseudoknot structure
correctly; however, the spatial arrangement of the orange region and a
stem with red and blue regions was still not quite right, resulting in an
RMSD of 11.7 Å.

As the last example (Fig. 5h), we show a target with the largest
RMSD in the test set. This is CRISPRRNA (crRNA), a component of an E.
coli CRISPR/Cas complex, whose structure has been solved with 11
other proteins. The RMSDof thismodel was 33 Ådue to the long 5’ end
tail, which has a different conformation from the crystal structure. But
the conformation of this tail is due to interactions with many other
proteins of the complex, and it is highly likely that this 5’ end tail forms
a different conformation in the isolated state. NuFold correctly
recognized base pairs at the 3’ end and folded it. As a result, the
fraction of correctly formed Watson-Crick base pairs (INF_WC score
used in RNA_Puzzles46) achieved 0.93.

Comparison with other methods
Here we compared the modeling performance of NuFold with five
existing methods on the 36 test set targets. Methods compared are in
two categories:methods based on energy-minimization, SimRNA13 and
FARFAR214, and recent deep learning-based methods, DeepFoldRNA16,
trRosettaRNA18, and RhoFold20. For NuFold, we show results from the
baseline method as well as the results of the pipeline using four dif-
ferent MSAs that combine metagenome MSAs and more recycling
(baseline + recycles +metagenome in Table 1). In Table 2, results of the
modeling are summarized with average values for the test set. In
addition to metrics that consider global or local backbone similarity,
RMSD, and lDDT, we also used the Interaction Network Fidelity (INF)
metric as used in RNA-puzzles assessment47. INF considers the entire

RNA structure as an interaction network consisting of Watson-Crick
(WC) interactions, non-WC interactions, and base stacking. INF_ALL
considers all three types of interactions while INF_WC and INF_stack
consider the specified interaction type only. INF is defined as the
Matthews correlation coefficient (MCC) of this network between the
reference and predicted structures. A high INF score indicates that
relative positions of bases in a model are well reproduced. Figure 6
shows the distributions of these metrics in the box plots.

NuFold clearly outperformed SimRNA and FARFAR2, two con-
ventionalmethods, which are top performers in RNA-Puzzles, in all the
metrics (Table 2, Fig. 6). When compared with deep learning-based
methods, NuFold showed slightly worse values overall in terms of
global (RMSD) and local main-chain structure, i.e. lDDT. On the other
hand, we found that NuFold performed as well or better than other
methods in terms of INF scores. For example, NuFold showed the
highest average INF_stack and INF_all scores among all the methods.
This may be perhaps due to the NuFold’s unique structure repre-
sentation, the nucleobase center representation,which places the base
frame at the C1’ atom, the connection to the base, and the use of all
atoms instead of the coarse-grained models more frequently used in
other methods16,18. Since C1’ is close to the base, the learningmay have
focused more on the correct placement of bases in RNAs.

Performance on RNA targets in CASP15
To further evaluate the performance of NuFold in comparison to
existing methods, we ran NuFold on twelve RNA targets in CASP15. As
the dataset used in NuFold development was constructed before the
CASP15 start date, it would be appropriate to compare NuFold with
CASP15 participants in the RNA category. Results are reported in
Supplementary Table 1 in Supplementary Fig. 3. LDDT, which indicates
local structure quality, and GDT-TS, which evaluates global structure
quality, are reported in Supplementary Table 1.

NuFold achieved the highest LDDT values among all submitted
server models for five out of twelve targets. When compared to the
highest-ranked server group, UltraFold_Server, NuFold outperformed
them on six of the twelve targets. In terms of GDT-TS, NuFold also
secured the highest values for five targets and outperformed Ultra-
Fold_Server on seven targets. If NuFold were ranked among the par-
ticipants (Supplementary Fig. 3), it would have been the top-ranked
automatic server and the leading group utilizing machine learning
techniques. Therefore, despite not excelling in all CASP15 targets,
NuFold would have been highly competitive in the group rankings.

Prediction of RNA dimers with linker trick
Lastly, we tried to model RNA dimers with NuFold. Since NuFold is
designed for single chain RNA structure prediction, we adopted the
linker trick48–50, where two sequences are connected by dummy
sequence and provided to NuFold as the input. The linker trick is an
idea that was applied to Alphafold when it first came out for protein
multimer structure prediction. We concatenated two RNA sequences
in a complex with a linker sequence of 10, 30, or 50 Ns in between,
where N is as an unknown nucleotide. The NuFold network is
expected to open a space for Ns but not to output any atom coor-
dinates for them. MSAs of the two RNAs are simply concatenated
with gaps placed at the linker nucleotides. For a RNAdimer target, we
applied the NuFold scheme with recycles and metagenomes. We
used four different MSAs containing metagenomes, and for each of
them output models from 8th to 14th recycles. This procedure was
repeated for the three different linker lengths, which yielded in total
of 84 ( = 4 × 7 x 3) structures. Then, the structure with the highest
pLDDT was selected.

We folded 11 RNA dimers with NuFold with the linker trick. These
dimers included all four dimer targets from the past RNA_Puzzles and
seven more dimers selected from PDB, which are RNA-only dimer
entries that have 10 or more interchain base pairs. Table 3 summarizes

Table 2 | The performance comparison between NuFold and
other methods

Name RMSD (Å) IDDT INF_WC INF_ALL INF_stack

NuFold (baseline) 6.98 0.72 0.83 0.77 0.78

NuFold (baseline +
recycles + metagenome)

6.67 0.73 0.85 0.77 0.77

SimRNA 18.86 0.51 0.64 0.63 0.66

FARFAR2 17.45 0.54 0.72 0.67 0.69

DeepFoldRNA 4.36 0.74 0.88 0.77 0.76

trRosettaRNA 4.28 0.81 0.78 0.67 0.67

RhoFold 5.10 0.69 0.89 0.76 0.74
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the results. For six targets, NuFold was able to fold into correct overall
topology, achieving an RMSD of within 6Å. In Fig. 7, we presented four
examples of RNA dimer models. The first two examples, Fig. 7a, b, are
successful cases. The first example (Fig. 7a) is a double strand helical
structure of dimerization initiation site of genomic HIV-1 RNA. This
regular structure iswellmodelled, including bases that flippedout from
the double strand structure, achieving an RMSD of 1.71Å. The second
example (Fig. 7b) is an RNA_Puzzles target r01, a regulatory motif from
the thymidylate synthasemRNA. This target also features double-strand
structure but with some irregularity in the local main-chain conforma-
tion.While overall double strandwasmodelledproperly, both the 5’ and
3’ ends of the two chains as well as the irregular main-chain con-
formation in the middle of the structure deviated from the reference
structure. these deviations resulted in an RMSD of 3.41Å. In both cases
(Fig. 7a, b), almost all the base pairs between chains were formed cor-
rectly, with 90.0 % (18/20) and 84.2 % (16/19) accuracy, respectively.

The third example (Fig. 7c) is a Lariat-capping ribozyme with
shortened DP2 stem loop, the largest dimer target with sequences 132
nt-long and 54 nt-long. For this dimer, both chains, major component
(green) and DP2 stem loop (cyan), were modelled overall correctly
with RMSDs of 4.13Å and 4.11Å, respectively. However, the relative
orientation was slightly wrong, resulting in an overall RMSD of 8.05Å

for the complex. Local structures are almost correctly built with only a
major difference of the angle of a stem relative to the other chain.
76.9% (10/13) of base pairs were formed correctly. The final example
(Fig. 7d) is a structure model of a hammerhead ribozyme with a syn-
thetic inhibitor strand, illustrating a case where NuFold failed to pre-
dict the correct dimer conformation. For this target, although
approximately half of the ribozyme chain (green) was correctly mod-
elled, NuFold missed most of the interchain base pairs, resulting in an
RMSD of 14.8Å.

In Table 3, we showed the length of the linker of the selected
models. In Supplementary Fig. 2, we present the distribution of pLDDT
andRMSDof all themodelswith three different linker sizes, 10, 30, and
50 nt. For most of the targets, pLDDT tends to decrease as the linker
length increases. Therefore, amodel with a 10nt linker was selected for
themajority, eight out of eleven targets. RMSD tends to increase as the
linker length increases (Supplementary Fig. 2). Consequently, the
selectedmodel by pLDDTwasbest or very close to the best formost of
the cases. Exceptions include 2NOK, where the lowest RMSD of 4.58Å
was found amongmodels with a 30nt-long linker, and 6IA2, where the
model with a 50nt linker had the lowest RMSD of 2.54 Å. For rp15 and
rp19, a model with a 30nt linker was selected, but there a lower RMSD
model with a 10nt linker existed.

Fig. 6 | Benchmark result to compare predictionmethods.Results on the 36 test
RNAs are shown in the box plot. Individual points show results of each test RNA.
The center line of the box shows themedian, two endsof the box show the first and

the third quantile, and the whiskers extend to the minimum and maximum values
within 1.5 times the interquartile range. Individual data points outside this range are
shown as outliers. a RMSD; b LDDT; c INF_WC; d INF_ALL.
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To summarize, NuFold showed the ability to fold RNA dimers
using the linker trick despite not being explicitly trained for complex
modeling. The results suggest that similar to AlphaFold2, NuFold
structure representation has the potential to predict multimer struc-
tures more accurately by explicitly modeling and training for complex
structures.

Discussion
In this work, we have introduced NuFold, a novel de novo RNA struc-
ture prediction method. NuFold is an end-to-end model that predicts
RNA’s all-atom structure from its sequence, offering a flexible
nucleobase center representation for precise torsion angle control in
the RNA backbone, which enables accurate structure description of
any RNA structures. The architecture of NuFoldwould be ameaningful
contribution to the community as most of the current RNA structure
prediction methods employ a coarse-grained RNA structure repre-
sentation. In addition, we investigated how various factors affect the
modeling performance, including the use of metagenomic MSA,
recycling, self-distillation data, and smaller models, which have not
been thoroughly examined in previous works. RNA tertiary structure
prediction is still far from perfection, and the thorough investigation
of the factors will be of great value for the evolution of the develop-
ment of future methods.

We observed a correlation between MSA depth and model accu-
racy. Additionally, we confirmed that introducing metagenomic MSA
and utilizing more recycling contributes to improved modeling accu-
racy. We also found that generating multiple models enabled us to
produce better structures. These findings are consistent with the
behavior of state-of-the-art prediction methods for protein structure.
Moreover, our analysis revealed that inputting secondary structure
predictions does not significantly improve tertiary structure prediction.
This alignswith findings from the AlphaFold2 paper, which showed that
adding templates as input did not substantially improve protein struc-
ture prediction accuracy22. We provided further discussion regarding
the predicted secondary structure input with Supplementary Fig. 4.

The comparison with other RNA 3D structure prediction methods
showed that NuFold performed clearly better than energy
minimization-based methods, but it performed slightly worse than
some recent deep learning-based methods. One possible reason is that
the training data size was not sufficient for this fully atomic detailed
model. The deficiency of training data is a challenge for any RNA
structure prediction methods, but it might be more critical for NuFold,
whichmodels full atom structures directly from a deep neural network.
To address this issue, it would be important to incorporate different
data modalities, such as experimental data that provide insights into
RNA secondary structure, such as DMS-MaPseq51 and SHAPE-MaP52.

Incorporation of multi-chains, RNAs and proteins, is another
future extension of NuFold as the conformation of an RNA is affected
by interactionswith othermolecules. In addition toRNAs andproteins,
modelingwith small compounds is an important extension asRNAs are
emerging targets for drug discovery.

Methods
Details of the NuFold architecture
The network architecture of NuFold is illustrated in Fig. 1a. In the pre-
processing step, which generates inputs for the network, NuFold incor-
porates predicted secondary structure information along with an MSA
for a target RNA. Instead of amino acids, NuFold considers 4+ 3 letter
types, which are four standard nucleotides, unknown, gaps, andmasked
position. MSAs are constructed via the rMSA pipeline28 with default
parameters. This pipeline identifies similar sequences from the RNA
central database, NCBI nt database53, and Rfam database10, which has in
total of ~490Mb of sequences, using BLAST54 and Infernal55, which
searches a database with a covariance model that embeds the sequence
consensus with a Hidden Markov model and RNA secondary structure.

The secondary structure of a target RNA is predicted using
IPknot29,30 as it can predict pseudo-knots. While AF2 relies on template
structures from the PDB,we included secondary structure information
because the availability of RNA structures in the PDB is limited. In AF2,
inter-residue distances and dihedral angles are derived from tem-
plates. For RNA, secondary structure provides base pair information,
analogous to residue contact information for proteins. To account for
the lack of confidence or significance scores in IPknot’s output, we
incorporated stochasticity in the IPknot pipeline. In the modified
IPknot, 10% of constraints in the integer programming are discarded
and base pairs are computed. This processwas repeated ten times, and
the resulting ten binary base-pairing matrices were averaged to pro-
vide the likelihood of base pairing between specific bases. The
resulting LxLmatrix, where L represents the length of the RNA chain, is
the input feature for the predicted secondary structure. The network
was trained with predicted secondary structure.

The EvoFormer block is essentially the same asAF2 except that we
consider the seven letters to represent RNA sequences. We also tried
smaller numbers of layers as we discuss later in the results.

In NuFold, we adopted C1’carbon to deal with tasks originally
associatedwith Cα for proteins in AF2, such as to compute lDDT-Cα, and
N1/N9 for tasks of Cβ, e.g. computing a distogram. We also modified
auxiliary heads that predict structural features of RNAs to guide training
to deal with RNA structures that are more flexible than proteins. The
number of the distogram heads was increased to predict distances
between three atom types, betweenC1’, C4’, andP, unlikeAF2which only
considers Cβ distances. Moreover, the network architecture of the aux-
iliary heads was changed to three convolutional layers instead of a single
linear layer in AF2.We also added another auxiliary head to predict inter-
nucleotide torsion angles, which helps the network to understand the
correct base orientations, which is a crucial detail to fold RNA. The inter-
nucleotide torsion angles were defined on C1’i-Ni-Nj-C1j’ atoms where i
and j are the index of nucleotides andN is the nitrogen in the base which
is connected to C1’. This network was implemented with the same linear
layer network as the distogram heads of AF2.

Training of NuFold
Some distinctive changes were introduced in the AF2’s training pro-
cedure for NuFold. Our loss function was:

Loss =0:3 Ldist + 0:3 L2Dangle + 1:0LFAPE + 2:0LMSA +0:1 Langle +0:01 LlDDT
ð1Þ

Ldist represents the aggregation of cross-entropy losses from
three distogram heads, aiming to predict 40 evenly spaced distance
bins spanning from 2Å to 22Å. L2Dangle represents a loss from an

Table 3 | Overall performance of NuFold on the 11 dimer
targets

Target ID Total Length Selected Linker RMSD (Å) GDT-TS

2NOK 44 10 5.26 0.540

2YIF 111 10 25.2 0.198

462D 46 10 1.71 0.826

6BGB 32 10 1.32 0.900

6G7Z 186 10 8.05 0.542

6IA2 38 10 3.13 0.684

7Y2P 26 10 0.84 0.952

rp01 46 10 3.41 0.647

rp15 68 30 14.8 0.335

rp19 62 30 12.6 0.347

rp20 68 30 20.1 0.415

Total length, the sumof the lengthsof twoRNA sequences (nt). SelectedLinker, the length of the
linker of the model selected by pLLDT.
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auxiliary head for predicting torsion angles between pseudo-bonds of
two bases. This is a new loss term specific for RNA structures, which
evaluates prediction of 24 even-sized bins with cross-entropy loss.
LFAPE , LMSA, Langle, and LlDDT encompass the Frame Aligned Point Error
(FAPE) loss, which is computed over backbone and sidechain atom
coordinates, MSA masked-nucleotide prediction loss, torsion angle
loss, which evaluates all torsion angle predictions betweenmain-chain
frames, and pLDDT local environment prediction accuracy loss36,
respectively. We retained these components in AF2 without mod-
ification. After the training with Eq. (1) was saturated, we applied a fine-
tuning training step. In the fine-tuning, we introduced a structural
violation loss, denoted as Lviol , which penalizes atom clashes and
irregular bond lengths.

Loss =0:3Ldist +0:3L2Dangle + 1:0LFAPE + 2:0LMSA +0:1Langle
+0:01LlDDT + 1:0 Lviol

ð2Þ

We used the Adam optimizer56 with a learning rate of 1e-3 for the
initial training phase and 1e-4 for fine-tuning. Unlike AF2, our training
did not incorporate a warm-up step. The batch size was set at 16, with
gradient accumulation and gradient clipping applied at 0.01.

Datasets
RNA tertiary structures were collected from the Protein Data Bank
(PDB)9 as of February 28th, 2022. Our selection criteria included
structures solved with X-ray crystallography or Cryo-electron micro-
scopywith a resolution better than 5.0Å and a sequence length ranging
from 10 to 1500 nucleotides. Then, we applied two structural criteria:
Since NuFold does not consider interactions with proteins or other
RNAs, we only kept RNA structures that have at least 10 consecutive
bases that are not in close spatial proximity (within 5.0 Å) to other RNAs
or proteins. We also required an RNA structure to contain one or more
standard Watson-Crick base pairs in regions that do not interact with
other RNAs and proteins. Applying these criteria yielded 3237 RNA.

To this set, we added 34 RNA chains that weremodeling targets in
the past RNA-Puzzles rounds47 and performed sequence clustering to
remove redundant sequences. We used single linkage clustering with
global sequence identity. Chains with a sequence identity exceeding
80% were grouped together. This process resulted in a total of 499
clusters. From these clusters, 403 (80.8 %), 48 (9.6 %), and 48 (9.6 %)
clusters were allocated for training, validation, and testing, respec-
tively. Then, from the test set, we excluded 12 RNA-Puzzles targets that
are multimers, since we primarily test the modeling performance for
monomer RNAs. This resulted in a final test size of 36 targets. The
clusters on the training dataset were expanded to encompass all the
structures, which are 2860 chains in the training dataset. During
training, each cluster in the training set was sampled with equal fre-
quency, but a sequence in a cluster was chosen randomly so that we
could usemore structures than using only a cluster representative. On
the other hand, one entry from each validation cluster was chosen
before the training has started and fixed, so that we always monitor
performance of NuFold on the same validation set.

We employed the bpRNA-1m32 dataset to construct a self-
distillation dataset following the principles of Noisy Student
learning24, which utilize the unlabeled data as training data by labeling
them using a teacher network that trained on the labeled dataset. The
need for a larger dataset was driven by the desire to enhance gen-
eralization performance, given the relatively small number of exam-
ples in the clean PDB dataset. Similar to our approach with the PDB
dataset, we conducted sequence clustering on the bpRNA-1m dataset
and selected 11197 sequences distinct from those in the PDB dataset.
Subsequently, we used trRosettaRNA18 to predict three-dimensional
structures for these sequences, focusing on those with one or more
Watson-Crick base pairs. This process yielded a total of 11101 struc-
tures, which served as our self-distillation dataset. In the NuFold
training, the ratio of PDB entries and self-distillation data was 1:3 in a
batch, i.e. self-distillation data comprised 75% of the training data in
each batch.

Fig. 7 | Examples of RNA dimer structure prediction. The native (gray and black)
and the predicted structure (rainbow, or green and cyan) are superimposed.
a dimerization initiation site of genomic HIV-1 RNA (PDB: 462D). 46 nt, RMSD:
1.71Å. b a regulatory motif from the thymidylate synthase mRNA. RNA-Puzzles

target rp01 (PDB: 3MEI). 46. nt; RMSD: 3.41 Å. c Lariat-capping ribozyme with DP2
stem loop (PDB: 6G7Z). 186 nt; RMSD: 8.05Å. d Hammerhead Ribozyme with a
synthetic inhibitor strand. RNA-puzzle target rp15. 68 nt; RMSD: 14.8Å.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used in this study can be obtained from public databases
freely. The RNA structure data used for training were obtained from
the RCSB PDB (https://www.rcsb.org/). The sequence data used for
self-distillation were obtained from the bpRNA-1m database (https://
bprna.cgrb.oregonstate.edu/). NCBI’s nt, Rfam, and RNAcentral
sequence databases used to construct the MSA can be downloaded
from their respective websites: https://ftp.ncbi.nlm.nih.gov/blast/db/,
https://rfam.org/, and https://rnacentral.org/. NCBI env_nt used to
construct the metagenomic MSA can be downloaded from the NCBI
FTP site: https://ftp.ncbi.nlm.nih.gov/blast/db/. Other databases for
metagenomic MSA construction can be found at EBI’s MGnify website
(https://www.ebi.ac.uk/metagenomics/). The PDB entries mentioned
in this study 2DER, 2NOK, 2YIF, 3MEI, 462D, 4OJI, 4U7U, 5ML7, 6BGB,
6CK4, 6G7Z, 6IA2, and 7Y2P were obtained by four-digit accession
codes in the Protein Data Bank repository (https://www.rcsb.org/). The
underlying data for Tables 1, 2, S2 and Figs. 2, 3, 4, 6, S1, S2, S3 are
provided in the Source Data file with this paper. Source data are
provided with this paper.

Code availability
The source code of NuFold is available via GitHub at https://github.
com/kiharalab/nufold/. All the code is also available via Zenodo at
https://doi.org/10.5281/zenodo.14498624 (ref. 57). Users can also use
NuFold through Google Colab Notebook without installment of soft-
ware at https://colab.research.google.com/github/kiharalab/nufold/
blob/master/ColabNuFold.ipynb. MC-annotate v1.5 (https://major.
iric.ca/MajorLabEn/MC-Tools.html) was used to analyze the RNA sec-
ondary structures. Numpy v1.23.4 (https://numpy.org/), Scipy v1.8.0
(https://scipy.org/), and BioPython v1.79 (https://biopython.org/) were
used to analyze the data. Matplotlib v3.5.2 (https://matplotlib.org/)
was used to render the graphs. Pymol v2.5.3 (https://www.pymol.org/)
was used for structure visualization.
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