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Apical and basal dendrites of pyramidal neurons receive anatomically and
functionally distinct inputs, implying compartment-level functional diversity
during behavior. To test this, we imaged in vivo calcium signals from soma,
apical dendrites, and basal dendrites in mouse hippocampal CA3 pyramidal
neurons during head-fixed navigation. To capture compartment-specific
population dynamics, we developed computational tools to automatically
segment dendrites and extract accurate fluorescence traces from densely
labeled neurons. We validated the method on sparsely labeled preparations
and synthetic data, predicting an optimal labeling density for high experi-
mental throughput and analytical accuracy. Our method detected rapid, local
dendritic activity. Dendrites showed robust spatial tuning, similar to soma but
with higher activity rates. Across days, apical dendrites remained more stable
and outperformed in decoding of the animal’s position. Thus, population-level

apical and basal dendritic differences may reflect distinct compartment-
specific input-output functions and computations in CA3. These tools will
facilitate future studies mapping sub-cellular activity and their relation to

behavior.

Neurons receive inputs arranged in a stratified manner, in which
synapses from specific afferent brain areas arrive onto different apical
and basal dendritic compartments. Beyond differences in the inputs
they receive, apical and basal dendrites may differ in their molecular
composition, structural and biophysical properties, and function'.
Dendritic activity in the form of dendritic spikes®® and other ionic
conductances®™ can tremendously enhance the computational capa-
city of individual neurons" s, However, these have primarily been
studied using single neuron recordings in brain slices or with calcium
imaging'®*° in sparsely labeled in vivo preparations” . While such
single-neuron approaches allow faithful tracking of the activity of
individual dendrites, they limit experimental throughput, are often
confined to only one dendritic compartment (apical or basal), and

provide limited insight into the population dynamics of large numbers
of dendrites. In vivo two-photon calcium imaging from densely labeled
preparations allows simultaneous recording of large populations of
neurons, which enables population vector decoding of behavior?*%,
and can yield insights into network properties and circuit-level func-
tion. Though calcium imaging provides subcellular resolution, thus far
studies have not fully utilized the ability to track large populations of
sub-cellular processes like dendrites over time.

A major limiting factor in understanding dendritic function in vivo
is technical, particularly when recording from dense populations.
Manually identifying regions of interest (ROIls) belonging to individual
neurons or dendrites can be tedious and time-consuming. While sev-
eral software suites have been developed to automate this process
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when recording from fields of view composed of cell bodies**?, den-
drites’ diverse shapes make morphology-based methods of dendritic
ROI detection less reliable. A proper estimate of the time-varying
fluorescence values from each ROI is also complicated by the highly
overlapping nature of dendrites and the smaller number of pixels per
ROI. Human screening of detected calcium transients can address
these problems, but the amount of manual labor and time needed
makes manual checking of dense datasets infeasible. Overcoming such
difficulties will tremendously expand the field’s ability to investigate
sub-compartment level population activity and behaviorally relevant
functional properties.

To address the segmentation and demixing problems inherent to
processing densely labeled dendritic populations, we developed an
automated detection algorithm flexible enough to identify dendritic
and somatic ROIs in dense datasets. The algorithm identifies initial ROI
estimates using minimal morphological assumptions and refines them
using constrained non-negative matrix factorization (CNMF)**, It
then screens putative calcium transients with an additional fitness
measure to eliminate spurious activity from undetected ROIls. To
demonstrate the efficacy and utility of this approach, we applied it to
several sets of data recorded from area CA3 of the mouse
hippocampus®, an area containing place cells important for spatial
navigation. Using this preparation, we characterized the spatial tuning
properties of soma, apical dendrites, and basal dendrites during a
simple navigation task. We find that apical and basal dendrites show
higher calcium event rates compared to soma with faster kinetics.
While all compartments show similar spatial selectivity within a sin-
gle day, apical dendrites have higher stability across days in a familiar
environment compared to basal dendrites. This results in CA3 apical
dendrites having a better population decoding accuracy of position
across days, indicating a functional divergence between sub-cellular
compartments of hippocampal pyramidal neurons for long-term spa-
tial representation.

Results

Dense dendritic fields of view are highly overlapping

To generate dendritic imaging data sets for developing and testing
our algorithm, we expressed GCaMP6f or 7b in hippocampal area
CA3a/b in mice using a range of virus titers to control the labeling
density (Fig. 1, Supplementary Fig. 1, Supplementary Table 1, see
Methods)®'*#%33*, At low titers, single neurons in a given field of view
(FOV) were labeled (Fig. 1d). To quantify the degree of overlap, human
experts manually labeled these datasets, identifying groups of con-
tiguous pixels with coordinated activity (Fig. le, see Methods). At
higher titers, neurons and dendrites were labeled so densely that most
ROIs overlapped with at least one other ROI, and most pixels were
covered by more than one ROI. Despite the highly overlapping nature
of dendrites in the more densely labeled samples, manual segmenta-
tion was possible because the neurons were sparsely active in time,
such that only a few neurons were active on any given frame (Fig. le,
Supplementary Movie 1), reducing the dense segmentation problem
into a series of sparse segmentation problems. In the eight mice with
the highest titer virus injected, a mean of 47% of the field of view was
covered with ROIs (Fig. 1f). Manual labeling of these datasets took
approximately 50 hours per field of view. Any given ROI at least par-
tially overlapped with a mean of 5 other ROIs, and a mean of 22% of
pixels belonged to a single ROI, demonstrating a high degree of spatial
overlap.

Dendritic NMF algorithm enables efficient ROI extraction

The effort required to manually curate densely labeled neuronal
datasets is massive, and the large amount of spatial overlap compli-
cates efforts to accurately estimate activity. Hence, we sought a
method to identify ROIs in an automated and unbiased way. CNMF***
has previously been used to identify ROIs and activities from partially

overlapping neurons, so we used it as a starting point for dendritic
segmentation. The goal of non-negative matrix factorization (NMF) is
to identify ROIs and corresponding fluorescence traces that best
approximate the original image stack. The objective function is the
following:

argmin||Y — AC|[{ +7/|CIf + Bllsum(A)|*;A20,C20 ()
AC

Here, Y represents the raw calcium imaging sequence, A repre-
sents the spatial footprints (ROIs), and C represents the fluorescence
traces for each ROI. Background fluorescence from out-of-plane neu-
ropil is accounted for by additional columns and rows in A and C,
respectively. The 17 and 8 terms are penalties to encourage sparsity in
the fluorescence traces and ROIs, respectively. This equation is solved
by iteratively solving for A and C, fixing one while optimizing the other
(see Methods). This process can identify large neural populations but
has not been systematically applied to densely-labeled dendritic
preparations.

We developed a pipeline of unique initialization and refinement
steps to be amenable to detecting soma and dendrites, which we call
dendritic-NMF, or d-NMF (Fig. 2). The algorithm consists of four broad
stages or steps: Initialization, Refinement, Merging, and Screening.

The Initialization stage is an important step for these types of
matrix factorization problems, as NMF is a non-convex problem with
many local minima®. ROI initialization was performed by identifying
contiguous regions of pixels active above a threshold (see Methods,
Supplementary Table 2a). Such guided initialization techniques can
improve performance and avoid the need to specify the number of
components to be identified, but can also be influenced by poor signal-
to-noise ratio (SNR) data. To address SNR issues, one can denoise data
by temporal smoothing, spatial smoothing, temporal downsampling,
or any combination of the three for the initialization step, tailored to
the dataset and scientific question at hand. While this is not a
requirement of the Initialization stage, d-NMF allows users to choose
these options at their discretion. In the results presented here, we
chose to temporally downsample the data from 30 Hz to 1.5 Hz for the
initialization step. d-NMF operates on the image sequence in patches
to reduce the memory and time requirements of the algorithm to
enable processing on standard desktop computers (Fig. 2a, see
Methods). Processing the image in patches had the added benefit of
incorporating multiple background sources for each image patch, to
better capture regional differences in neuropil signal.

The Refinement step can be performed on the original raw data or
downsampled and/or otherwise filtered data. Spatial footprints and
temporal traces were estimated by iterating through NMF until con-
vergence (Fig. 2b, Supplementary Table 2b) with no explicit constraint
on component size. In the final refinement step, ROIs were thresholded
and split into connected components (see Methods). These final
morphological operations ensured that all identified ROIs were rela-
tively compact and easily interpretable as neuronal structures. The
resulting ROIs also had the property that their activity was homo-
genous within an ROI. Any dendritic branch or portion of a large ROI
that had independent activity was identified as a separate ROI. (Sup-
plementary Fig. 2).

In the Merging step, we combine ROIs (Supplementary Table 2c)
that are likely to correspond to the same functional unit. Long den-
dritic branches may span multiple image patches (Fig. 2a) or may be
represented by multiple ROIs due to local variations in activity. The
algorithm offers users the ability to set a threshold correlation with
which to merge ROIs. A high threshold can result in a fine parcella-
tion of dendritic structure, preserving local differences in activity,
while a low threshold will merge ROIs with broadly the same activity.
We observed that a general rule on the lower bound of the merging
threshold is to identify when ROIs not belonging to the same neuron
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become linked together. This is indicated by a sudden drop in
minimum within-group correlations (Supplementary Fig. 3, see
Methods). Even if users decide not to merge ROIs, correlation-based
linkage information can aid in scientific interpretations at later

stages.

The Screening step provides a final stage to include or exclude
ROIs. The raw output of d-NMF contains any set of contiguous pixels
that had simultaneously high activity at least once, which can result in
false positives. In many brain regions, including the hippocampus,
excitatory neural activity is characterized by long periods of
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Fig. 1| Sparse and dense GCaMP expression in hippocampal area CA3.

a Representative confocal image of coronal section of mouse hippocampus,
showing site of viral injection and cranial window implant for imaging in area CA3 (1
of 15 replicates). GCaMP* CA3 pyramidal neurons are labeled in green.

b Experimental schematic of a mouse headfixed on a textured treadmill belt. c Left,
schematic of cranial window imaging setup. After aspirating the above cortex, a
glass coverslip is secured above area CA3, allowing simultaneous imaging of cell
bodies and dendrites. Right, maximum intensity projections of two sample fields of
view (FOVs) in area CA3 (2 of 18 FOVs). d Top, maximum intensity projection image

of a sample sparse FOV. Bottom, manually labeled regions of interest (ROIs)
overlaid on the maximum projection image (1 of 18 FOVs). e Top-left, maximum
intensity projection image of a densely labeled FOV, with many overlapping den-
drites. Other panels illustrate individual frames in the imaging sequence in which
dendritic and somatic ROIs can be clearly identified and labeled (1 of 18 FOVs).

f Quantification of labeling density. As the number of identified ROIs (left) or per-
centage of pixels covered (middle) increased, the Mean Overlap increased. Right, as
the Coverage increased, the percentage of pixels belonging only to one ROI
decreased. See Supplementary Fig. 1 for a list of all FOVs recorded in the study.

quiescence punctuated by short periods of activity, resulting in posi-
tive skewness values. Hence, we used the skewness of the extracted
calcium traces for each ROI (Fig. 2¢), to classify valid and invalid ROIs,
trained on manually-labeled data (see Methods). Skewness was a very
effective separator of valid and invalid ROIs (Fig. 2c), yielding com-
parable outcomes as signal-to-noise ratio (Supplementary Fig. 4). The
optimal skewness value was relatively close across the population of
fields of view, at 3.8, [3.2, 3.9]. Note that this cutoff value may vary
across brain regions, cell types, or fluorescent indicators. This process
yields interpretable ROIs (Supplementary Fig. 2) of varying shapes
without random initialization or needing to specify the number of
components to be detected beforehand. A comparison of the algo-
rithm design choices in various methods is summarized in Supple-
mentary Table 3.

To further validate the accuracy of d-NMF, we constructed syn-
thetic dense datasets using one of the sparsely labeled datasets (Fig. 3).
This sparse dataset had known ROI boundaries and temporal traces,
serving as a ground truth. By copying, rotating, and shifting the ori-
ginal movie, we constructed synthetic dense datasets with up to 200
neurons with a high degree of overlap between dendrites (see Meth-
ods). We found that as we added more duplicates, the quality of signals
decreased, due to the addition of more background from other ROIs
and additional neuropil (Fig. 3c). This had the result that adding
additional neurons beyond a certain point no longer yielded additional
detectable ROIs or even decreased the amount of ROIs with a high-
quality signal (Fig. 3d,e). Nevertheless, for ROIs with a signal quality
above 2 standard deviations, d-NMF maintained an F1 score (Supple-
mentary Fig. 5a, see Methods) of 0.8 out of 1, outperforming the out-
put of suite2p, another open-source analysis package® (Fig. 3f). This
serves as evidence that our method is sound and accurate at detecting
ROIs from dense fields of view.

d-NMF matches manual labeling and exceeds existing methods
To demonstrate the accuracy and utility of d-NMF in detecting ROISs,
we evaluated its performance with human-labeled ROIs used as ground
truth. At a wide range of imaging densities, d-NMF closely matched
manually-labeled ROIs (Fig. 4). Segmentation similarity between algo-
rithmic ROIs and manual ROIs was measured both based on a mor-
phology and overall pixel-by-pixel coverage (Supplementary Fig. 5, see
Methods).

We compared performance against CNMF, implemented with the
CalmAn software package?, as well as suite2p”, (see Methods). The
median F1 score using d-NMF was 0.45, exceeding that of CNMF (0.32)
and suite2p (0.42) (Fig. 4b, Left). Similarly, the True Positive Rate of
d-NMF (0.45) exceeded CNMF (0.21) and suite2p (0.31) (Fig. 4c). The
percentage of the FOV covered by ROIs (coverage) using d-NMF (27%)
was also higher than CNMF (14%), but not suite2p (28%) (Fig. 4d, Right).
In particular, CalmAn did not identify ROIs in particularly dense
regions of the FOV. While suite2p performed comparably with d-NMF
in sparse preparations (Fig. 4a, Left), dense preparations were more
completely labeled using d-NMF (Fig. 4a, Right). d-NMF performed
well on both sparse and dense datasets with a single set of parameters,
whereas other methods may need careful parameter tuning depending
on the density of the preparation. The success of d-NMF compared to
other methods is not due to systematic detection of a higher number

of smaller ROIs; ROI size was largely comparable across methods, with
several instances of ROIs identified spanning well over 100 pm (Sup-
plementary Fig. 6). Changes in parameter settings for CNMF and sui-
te2p led to small improvements in performance (Supplementary Fig. 7,
see Methods), so we compare to the highest performing version of
each in Fig. 4. d-NMF also matched or outperformed other methods
when applied to other types of independently imaged data, including
dendrites from motor cortex in macaque monkeys*, and entorhinal
cortex axons in mouse CAl (Supplementary Fig. 8).

Of great interest to the dendritic field is investigating localized
activity, generally represented by calcium transients with rapid kinet-
ics that remain confined to a small dendritic segment. We validated
that d-NMF was able to detect localized activity from two previously
published datasets, using calcium imaging in mouse hippocampal area
CAT* and voltage imaging in the visual cortex”, respectively. We also
identified local activity in a putative dendritic spine in our own data
(Supplementary Figs. 9, 10). To explore the bounds of activity in which
d-NMF could detect localized activity, we prepared synthetic datasets
by injecting calcium transient waveforms of different amplitude,
duration, and number into localized dendritic regions of interest with
known baseline activity. This analysis demonstrated that by analyzing
non-downsampled, 30 Hz data, localized transients as brief as 100 ms
in width® were sufficient to identify independent ROIs, provided the
transients were of sufficient amplitude to rise above the noise level
(Supplementary Fig. 11, Supplementary Table 4).

Higher sampling rates are generally required to detect rapid
events. However, a higher sampling rate comes at the cost of noisier
data, which may adversely impact ROI detection and refinement.
Indeed, in our hippocampal data, performing the Refinement step on
30 Hz data resulted in slightly lower coverage, though the overall
performance against manually-labeled data was relatively similar
(Supplementary Fig. 12) to temporally downsampled data. Addition-
ally, processing raw data increases both the size of files in memory and
computation time. Depending on the expected kinetics and spatial
extents of activity as well as the computing power available, users may
choose to downsample or filter in time, space, or both. Because we are
investigating dendritic activity, which may be rapid, all following
analyses are done on data extracted from non-downsampled,
30 Hz files.

A fitness trace to refine activity estimates and eliminate cross-
contamination

Densely labeled datasets present added difficulties in estimating the
fluorescence activity of each ROI due to overlapping sources. Given a
complete set of ROIs, NMF accurately de-mixes these signals and
properly assigns activity to each ROI. However, despite the best efforts
of manual labeling or automated labeling, some processes may go
unlabeled. This will lead to contamination of signals from identified
ROIs by unidentified ones. Such contamination can affect estimates of
activity rates, tuning properties, stability, or correlation with related
ROIs. While simply setting a high threshold for transient detection may
reliably screen out false transients, this runs the risk of excluding low-
amplitude calcium transients, which may represent different firing
modes such as localized events versus back-propagating action
potentials (bAPs), or single spikes versus bursts.
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To both evaluate the degree of contamination and to provide an
additional tool to correct this, we developed the concept of a Fitness
Trace for each ROI (Fig. 5a), defined as the frame-by-frame correlation
between the spatial footprint of that ROI with the fluorescence activity
from the video (see Methods). The intuition behind this trace is that
true activity in a given ROI occurs when all pixels show elevated
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activity, not just some. Significant calcium transients were detected by
thresholding the Fitness trace along with the original calcium trace
(Fig. 5b). Overall classifier performance was evaluated by computing
the Jaccard index (the size of the intersection divided by the size of the
union)® between detected events and manually-labeled true events
(see Methods). Across 9 different FOVs there was a relatively
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Fig. 2 | d-NMF pipeline. a Pictorial representation of the workflow. Image
sequences may be filtered and/or downsampled to reduce memory requirements
and improve signal-to-noise ratio. The downsampled image sequence is then split
into patches. Within each patch, ROI cores are detected and their spatial footprint
and temporal traces are iteratively estimated using sparse constrained NMF. Once
all patches have been processed, overlapping ROIs from neighboring patches are
tested to see if they can be merged. Finally, ROIs are screened for realistic activity
(see panel c). b Algorithmic sketch of the ROI detection (left) and refinement
(right). See Methods for further details. ¢ Top, illustration of accepting ROIs by
skewness. Left, a sample portion of a FOV containing a true ROI (orange) and false

ROI (brown). Scale bar: 15 pm. Example is 1 of 11 FOVs the following analysis was
performed on. Right, the activity trace for the true ROI, with a skewness value of
6.24, and the activity trace for the false ROI, with a lower skewness value of 0.58.
Bottom left, receiver operative characteristic (ROC) curves for individual FOVs
(light gray) overlaid with the mean ROC (thick black), parametrized on the skew-
ness cutoff of included ROIs. The mean False Positive Rate versus True Positive Rate
are plotted for four example skewness cutoff values. Bottom right, classifier per-
formance plotted against skewness cutoff. On average, a skewness cutoff of 3.8,
[3.2, 3.9] resulted in optimal performance across all tested fields of view.
n=11FOVs.

consistent optimal parameter range, at a AF/F threshold of 3.9z and a
Fitness threshold of 0.2.

An implicit requirement of the Fitness Trace is that the entire ROI
must be active for a calcium transient to be detected, which could
potentially discard localized dendritic activity and bias estimates. If
ROIs are too broadly defined, such that they span multiple branches
containing independent activity, this would lead to a bias to exclude
branch-independent transients. However, the d-NMF algorithm iden-
tifies ROIs precisely as groups of pixels with synchronous activity.
Dendritic branches that show independent activity are automatically
split off from other branches and analyzed as a separate ROI (Sup-
plementary Fig. 2). In this way, accurate ROI identification assists in
accurate transient detection.

We compared detection accuracy and the rate of detected tran-
sients from our optimized Fitness method to those of other event
detection methods (Fig. 5c). A widely used approach is to set a
threshold of 2 standard deviations above the mean on the raw AF/F
traces, with no de-mixing (with an additional false positive rejection
criterion, see Methods). We call this method 2z. We call our method
using optimal values for the AF/F threshold and Fitness threshold Dg;.
Event classification performance was significantly higher using Dg;,
(0.63) compared to 2z (0.31). Other detection methods incorporating
different elements of these two approaches achieved intermediate
results (Supplementary Fig. 13, Supplementary Table 5, 6). The use of
the Fitness Trace also was comparable to or outperformed other
related measures®® (Supplementary Fig. 13e-h, Supplementary Table 5,
6). More striking, the estimated calcium transient rate using 2z was
overestimated by more than a factor of 3, while Dg;, closely matched
the manually identified transient rate (Fig. 5c). This demonstrates that
accurate event detection and screening is a vital step in processing
data from densely labeled FOVs. Detected calcium transients spanned
a wide range of durations, with half-widths from 100 ms up to 10 sec-
onds. Transients in apical and basal dendrites were more rapid than
those in the soma (an average of 500 ms in apical and basal dendrites,
compared to an average of 850 ms in soma), with transients as fast as
100 ms in dendrites, which may be missed or severely reduced in
amplitude due to averaging when imaged at slower frame rates.

Spatial coding properties of dendrites in CA3

To demonstrate the utility of d-NMF, we analyzed the activity of
detected ROIs in relation to behavior as mice performed a random
foraging task on a textured treadmill belt (Fig. 6, see Methods). Somata
of pyramidal cells in area CA3 demonstrate place coding, where they
have reliable elevated activity levels in restricted regions of space.
Using d-NMF, across 8 mice we identified 709 total somatic ROlIs, 3139
apical dendritic ROIs, and 3999 basal dendritic ROIs. This allowed us to
examine and compare the activity and spatial tuning properties of
populations of apical and basal dendrites.

While spatial tuning in CA3 PN somata has been well described
through electrophysiology approaches*** and more recently with
Ca* imaging***, we know little about how reliably CA3 dendrites
encode place and their spatial tuning properties. Using our automated
approaches, we identified spatially tuned CA3 dendrites (place den-
drites) both in the apical and basal compartments (Fig. 6a-e). Dendritic

and somatic compartments had similar spatial tuning properties in
terms of the proportion of tuned ROIs (16-20%) and place field width
(~25cm) (Fig. 6e, Supplementary Table 7). Despite these similarities,
dendrites showed a number of differences from soma. Apical and basal
dendrites had higher activity rates than soma (0.7 events/minute
(apical) and 0.6 events/minute (basal) compared to 0.5 events/minute
in the soma, Fig. 6f, Supplementary Table 7), with faster kinetics
(Fig. 6g). Spatial information content was lower in dendrites (1.9 bits/
event) compared to soma (2.1 bits/event), possibly related to the dif-
ferences in activity rates (Fig. 6h). Apical dendrites, but not basal,
exhibited increasing event rates, thinner transients, lower spatial
selectivity, and a higher number of place fields as a function of distance
from the cell body layer (Fig. 6f-h, Supplementary Table 7, see
Methods).

Basic spatial tuning characteristics were not systematically related
to the ROI size or the number of overlapping ROIs (Supplementary
Fig. 14, Supplementary Table 8). Additionally, these results were not
biased by over splitting of dendrites into multiple compartments, as all
comparisons were similar when we merged ROIs with highly correlated
activity (see Methods, Supplementary Fig. 15, Supplementary Table 9).

To provide support that these findings were not influenced by the
dense recording preparation or our analytical approaches, we ana-
lyzed a subset of the data with neurons labeled sparsely with GCaMP,
manually identifying ROIs and calcium transients (Supplementary
Fig. 16). We found corroborating evidence of higher activity rate in the
apical and basal dendrites compared to soma as well as more rapid
calcium kinetics at farther distance from the soma. The similar findings
in dense and sparse data validate that we can accurately detect calcium
transients in the dense data.

Apical dendrites are more stable across days and provide better
place decoding

An advantage of optical recording techniques is the ability to track the
same ROIs across long timespans. Thus, we quantified the short-term
(within-day) and long-term (across-day) stability of apical dendrites,
soma, and basal dendrites in a familiar environment (Fig. 7, Supple-
mentary Table 10, see Methods). Within-day stability was not sig-
nificantly different across compartments when quantified using
Tuning Curve (TC) correlation (which quantifies stability per ROI), but
apical dendrites showed higher within-day stability than basal den-
drites when quantified using Population Vector (PV) correlation (which
quantifies stability of the overall spatial representation, see Methods).
More strikingly, apical dendrites were more stable across days com-
pared to basal dendrites using TC or PV correlation. We were not able
to extend these analyses to the sparse data due to the limitation of the
small amount of tuned neurons in that dataset. The differences in
across-day stability were not due to fields of view distorting across
days (Supplementary Fig. 17), or differences in ROI size or overlap
(Supplementary Fig. 18).

Because apical dendrites showed better across-day stability
compared to basal dendrites, we predicted that apical dendrites would
also outperform basal dendrites in population vector decoding. Thus,
we constructed population vector decoders using only apical den-
drites, soma, or basal dendrites, and tested their ability to decode
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Fig. 3 | Synthetic data demonstrates that d-NMF remains accurate at high
density. a Maximum projection images of movies generated by copying, rotating,
and shifting the movie in the first column. b ROIs derived from d-NMF for the
corresponding movie in (a). ¢ Frame of maximum activation for a sample ROl in the
corresponding movies in (a). The signal quality of this ROI is noted in the titles, and
decreases as more neurons are added to the synthetic data. d, The mean signal
quality of ROIs decreased as more neuron replicates were added to the synthetic
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data. Quality is defined as the mean z-scored value of all pixels at the ROI's most
active frame. e The area of ROIs with signal quality above a certain threshold (here
1.5z, 2z, and 3z) initially increased linearly but slowed down or decreased at higher
densities. f Left, restricted to ROIs with a signal quality >2z, true positive rate for
d-NMF (green) and suite2p (s2p, purple) as a function of the number of neurons in
the synthetic dataset. Right, F1 score for the same data. The d-NMF method
maintained high performance even for very dense datasets.

position within a session (Fig. 8a) or across sessions (Fig. 8b). There
was no significant difference between decoding accuracy within-day.
However, apical dendrites had significantly lower decoding error
compared to basal dendrites across days (Fig. 8c). Population vector
decoding accuracy is highly dependent on the number of sources used
to train the model, so we repeated the analysis using random subsets
of data. Consistently, we found no differences across groups for
within-day decoding (Fig. 8d), but a significant interaction effect of
compartment group and number of ROIs on across-day decoding, with

apical dendrites and soma showing significantly better decoding
accuracy compared to basal dendrites (Fig. Se).

Discussion

In summary, we developed a versatile algorithm and toolkit that
facilitates analysis of densely labeled fields of view containing both
apical and basal dendrites and cell bodies (Fig. 1), enabling large-
throughput in vivo investigation of dendritic activity. The algorithm
utilizes the well-validated mathematical framework of CNMF while
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Fig. 4 | d-NMF accurately labels ROIS with highest coverage. a 3 sample fields of
view illustrating segmentation results on sparse, medium, and dense data. Color
coded FOVs indicate ROIs identified via manual segmentation (blue), d-NMF
(green), CalmAn with default parameters (here labeled CNMF, gray), and suite2p
(magenta). Examples are 3 of 11 FOVs the analysis in this figure was performed on.
b The F1,,; score of identified ROIs (compared to manual labeling) for d-NMF
(green, 0.45, [0.42, 0.49]) was significantly higher (p =9.8x10™*) than that of CNMF
(gray, 0.32, [0.27, 0.38]), and significantly higher (p = 0.002) than suite2p (s2p,
purple: 0.42, [0.35, 0.45]). The F1 score of suite2p was also higher than CNMF
(p=0.014). ¢ The True Positive Rate (TPR ;) of identified ROIs (compared to

manual labeling) for d-NMF (0.45, [0.31, 0.48]) was significantly higher
(p=9.8x10"*) than that of CNMF (0.21, [0.18, 0.29]), and significantly higher
(p=9.8x10"*) than suite2p (0.31, [0.23, 0.35]), which was also higher than CNMF
(p=0.0068). d d-NMF had significantly higher overall coverage than CNMF, but
not suite2p (d-NMF Coverage: 0.27, [0.07, 0.55]; CNMF Coverage: 0.14, [0.09,
0.24]; suite2p Coverage: 0.28, [0.09, 0.48]; d-NMF vs CNMF: p = 0.0029; d-NMF vs
suite2p: p = 0.52; CNMF vs suite2p: p = 0.002). n =11 FOVs, two-sided Wilcoxon
signed-rank test for all. Values reported as median and 95% confidence interval of
the median.

providing automated initialization flexible enough to identify neural
processes of varied shape and size in sparsely- and densely-labeled
preparations (Figs. 2, 3, 4). The addition of the Fitness Trace post-hoc
helps screen out false calcium transients to more accurately estimate
dendritic event rates and tuning properties (Fig. 5). Using these tools,
we demonstrate spatial tuning in apical and basal dendrites of pyr-
amidal neurons in CA3 (Fig. 6). While the proportion of tuned ROIs and
within-day tuning properties were largely comparable across all com-
partments, basal and apical dendrites showed higher event rates than
soma. Dendritic event widths were noticeably thinner than soma, on a
population (dense data) as well as on an individual neuron level (sparse
data). By comparing longer-term population dynamics across days, we
demonstrate that apical dendrites are more stable than basal dendrites
(Fig. 7). This leads to better accuracy when constructing a population
vector decoder to predict the animal’s position (Fig. 8). These
population-level analyses would not be possible with sparsely
labeled preparations, and we were only able to take advantage of our
densely labeled preparations using the analytical tools we have
developed.

Densely labeled dendritic fields of view present a number of
challenges for existing automated detection methods, particularly the
initialization step. Initialization is often based on morphology, with

parameters to be set for the expected diameter of an ROI. This assumes
a uniform size of circular ROIs throughout the FOV, which is not the
case for dendrites. Seed pixels for initialization can be chosen from the
peaks of the correlation map, constructed by computing the average
correlation of a pixel with its neighbors®. However, thin dendritic
segments a few pixels wide may skew towards low correlation values
and be systematically missed compared to wider somatic ROIs. Fur-
thermore, overlapping dendrites result in pixels containing activity
from a combination of sources, which may obscure correlations within
individual branches. Random initialization does not suffer from the
drawbacks of morphology-based approaches, but there is no guaran-
tee of complete labeling or consistent labeling across iterations.
Additionally, the number of components must be specified for initi-
alization, which may vary over the field of view. One approach is to
over-specify the model and then discard unusable ROIs afterwards®,
but this comes at a higher computational cost. Additionally, unusable
ROIs may distort the spatial or temporal aspects of remaining, valid
ROIs, so a proper estimate of the number of components is important,
which we solve in a data-driven manner.

Though our approach utilizes NMF as the core extraction algo-
rithm, there are notable differences between our approach and other
published methods. Our initialization method is based on localized
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Fig. 5 | Fitness trace screens out false activity. a Top, raw fluorescence trace (z-
scored) of the ROI shown below. Example large amplitude true events, small
amplitude true events, and false events are marked in green circles, magenta cir-
cles, and gray crosses, respectively. Middle, the Fitness Trace computed from the
above fluorescence trace. Bottom, frames of large amplitude true events (green
circles), false events (gray crosses), and small amplitude true events (magenta
circles). b Left, classification performance, as measured by the Jaccard Index,
plotted as a function of threshold on AF/F and Fitness Trace (see Methods). The
global peak is indicated with a black circle. Right, the transient rate plotted as a
function of the same thresholds. c Left, classifier performance for d-NMF with
Fitness Trace (Dg;) compared to a simpler detection method (2z, see Methods). D
0.63, [0.54, 0.68]; 2z: 0.31, [0.24, 0.38]; D vs 2z: p=3.9x107, Right, the detected
event rate for the same 2 methods compared to manually classified events,

Transient Width (s)

illustrating the importance of correct classification. Manual: 0.64, [0.42, 0.77]
Events/minute, Dg;: 0.63, [0.51, 0.76] Events/minute; 2z: 1.94, [1.57, 2.13] Events/
minute; n=9 FOVs for all. Manual vs D p = 0.36; Manual vs 2z: p = 3.9x10°%; D vs
2z: p=3.9x107%; n=9 FOVs, two-sided Wilcoxon signed-rank test for all. Values
reported as median and 95% confidence interval of the median. d Left, Schematic
designating apical dendrites, soma, and basal dendrites. The half-width of detected
calcium transients spanned 2 orders of magnitude in apical dendrites, basal den-
drites, and soma, with a bias towards wider transients in the soma. Lines represent
histograms of events averaged over sessions. Open circles indicate the median
value for individual sessions. Filled circles indicate the median value across ses-
sions. Apical: 590, [460, 770] ms; Soma: 1400, [860, 2400] ms; Basal: 590, [400,
870] ms. Apical vs Soma: p = 7.8x107%; Apical vs Basal: p=0.95; Soma vs Basal:
p=7.8x10" n =8 sessions, two-sided Wilcoxon signed-rank test for all.

coactivity, and the number of components within a patch is discovered
from the data, rather than prespecified. This approach works in our
densely labeled datasets because soma and dendrites tended to be
sparsely active in time, such that only a few ROIs are active on any
given frame. This mimics the method by which manual segmentation is
done, and allows the identification of ROIs that may overlap with many
others (Fig. 4). We also enforce ROIs to consist of contiguous pixels, in
contrast to CNMF, which imposes no spatial constraints on the ROIs.
CNMF additionally constrains the temporal component by an auto-
regressive fit, while d-NMF has no constraint on the temporal com-
ponents. This allows for the possibility of calcium transients with
different dynamics to exist within a single ROI.

Different aspects of d-NMF could be used in conjunction with pre-
existing methods. Other segmentation software could be initialized
with the initial ROI cores or the final ROIs obtained after de-mixing. The
Fitness Trace (Fig. 5) could be used to screen any activity trace

regardless of the method used to obtain it*®, though it would be crucial
to verify that the underlying ROIs should not be further split into
independent units. Ultimately, different tools may be better suited to
different data sets, so it is worthwhile for investigators to be able to
combine the strengths of all available approaches.

As with any data analysis pipeline, the user takes on the respon-
sibility of curating the output of d-NMF to ensure the interpretability
and robustness of their results. For instance, depending on the
threshold specified for merging ROIs with similar activity, d-NMF can
give a very fine or coarse parcellation of the dendritic tree (Supple-
mentary Fig. 10). For those wanting to investigate changes in activity
along the dendrite, a high merging threshold would be best, but for
those wanting to capture the main global activity across an entire
branch, a more permissive merging threshold would be appropriate.
Furthermore, the specific optimal threshold may vary across fluor-
escent indicators, brain region, behavioral state, or species.
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Fig. 6 | CA3 dendritic spatial coding properties. a Left, Cell compartment sche-
matic. Right, sample FOV (1 of 8 used in this figure analysis) shows apical dendrites
(magenta), soma (green), and basal dendrites (blue). b Expanded views of sample
apical dendritic, somatic, and basal dendritic ROIs (Scale bars: 10 um) with activity
across time in corresponding colors. Position of the mouse is plotted in black.

¢, Top, middle, for the sample ROIs, AF/F is plotted against lap number and posi-
tion. The trial-averaged tuning curve is overlaid for each ROI. Bottom, all statisti-
cally significant tuning curves for apical, somatic, and basal ROIs across all mice,
demonstrating a relatively uniform tiling of the environment in each population.
d Sample FOV color-coded according to the position of peak activity for each ROI.
e Top, the percentage of ROIs that were tuned were similar across all 3 ROI types:
Bottom, for ROIs with statistically significant tuning, the width of place fields was
not significantly different between ROI types. fLeft, apical and basal dendrites had a
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significantly higher mean transient rate than the soma, but were not different from
each other. Right, apical, but not basal, dendrites showed increased transient rates
as a function of distance from cell body layer. g Left, apical and basal dendrites had
significantly higher transient widths compared to soma, but were not different
from each other. Right, apical dendrites showed a decrease in transient width with
increasing distance from the cell body layer (apical, p =3.3x10°, two-way ANOVA)
but not basal dendrites (basal, p = 0.48, two-way ANOVA). h Left, spatial informa-
tion content was lower in apical dendrites. Right, apical dendrites showed
decreasing information content with increasing distance to the cell body layer
(p=3.3x10", two-way ANOVA). Basal dendrites did not show such a relationship
(p=0.55, two-way ANOVA). Bar graphs indicate median and 95% confidence
interval of the median. n = 8 sessions for all comparisons. See Supplementary
Table 7 for summary statistics.

Additionally, if a dendritic branch is split into multiple ROIs, these will
not have independent activity, violating the assumptions of some
statistical tests. This can be addressed by calculating summary statis-
tics across ROIs for an entire FOV, or to merge or subsample ROIs with
similar activity and verifying that scientific results still hold. We

encourage such control analyses to be standard practice when per-
forming population imaging.

Large population recordings allow the use of fewer animals to
record from a given number of neurons, saving on time and
resources. For characterizing single dendrite properties, this is
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more stable across days. a Experimental timeline schematic. An environment was
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tracked over following two days, Familiar Day 1 (yellow) and Familiar Day 2
(orange). b Example apical, somatic, and basal ROIs demonstrating different short-
and long-term stability. Each column represents a different ROL Raw activity and
rate map for the first half of Familiar Day 1 (top row), second half of Familiar Day 1
(middle row), Familiar Day 2 (bottom row). Tuning curve correlation was compared
between First and Second Half of Familiar Day 1 Session (Within Day) and Familiar
Day 1and 2 (Across Day). ¢ Rate maps for all apical, soma, and basal ROIs in a single
FOV on Familiar Day 1 (left) and Day 2 (right). ROIs are sorted according to the
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maintained for Familiar Day 2. d Distributions of across-day tuning curve correla-
tions for data in (C) showing apical dendrites had higher correlation than soma or
basal dendrites. e Population vector overlap matrices for data in (C), titles stating
mean value across the diagonal. f Left, within-day tuning curve correlations were
not different across compartment type. Right, in contrast, higher across-day TC
correlations in apical dendrites compared to soma and basal dendrites (Apical vs
Basal, p =0.031). g Population vector correlations, apical dendrites significantly
more stable than basal dendrites within-day (Left, Apical vs Basal, p =0.023) and
across-day (Right, Apical vs Basal, p=0.031). Bar graphs indicate median and its
95% confidence interval values. n = 8 sessions for all comparisons in (f) and (g). See
Supplementary Table 10 for summary statistics.

particularly advantageous if a relatively small percentage of units
show tuning to a given stimulus or behavioral feature. This is the
case in CA3, where only ~20% of dendrites or soma show spatial
selectivity (Fig. 6). Methods of inducing selectivity through artificial
means**® can somewhat circumvent this, but the effects of these
manipulations may be limited or constrained®. Larger population
data not only add more power to the analysis but also provide
insights into functional heterogeneity and dynamics®® . Simulta-
neous longitudinal recording of multiple dendrites in the same
animal provides within-subject control on the effect of behavior on

dendritic activity, and large enough population recording enables
analysis of population-level stability (Fig. 7) and decoding of beha-
vior (Fig. 8)**”%, It is important to note, however, that increased
density does not come for free. When we constructed our synthetic
datasets by duplicating and shifting a field of view with a single
neuron, the overall signal quality decreased as more neurons were
added. This indicates that, for a given expected morphology and
distribution of cells, a sweet spot of labeling density may exist which
maximizes the number of usable neurons while minimizing the
number of animals needed.
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Fig. 8 | Population vector decoding for apical dendrites outperforms basal
dendrites. a Left, sorted rate maps of all ROIs from a single FOV in the first half and
second half of Familiar Day 1. The maps from Half 1 were used to train a decoder to
decode the position in Half 2. Right, example decoded position for the same FOV
using only apical, somatic, or basal ROIs. b Same as in (a) except data from the
entire Familiar Day 1 was used to train a model to decode Familiar Day 2. Note that
the error is generally larger compared to within-day decoding, and that apical
dendrites show the lowest decoding error. ¢ Left, within-day decoding error was
not significantly different across compartment types (Apical: 22, [11, 30] cm; Soma:
25, [23, 41] cm; Basal: 27, [15, 43] cm; Apical vs Soma, p = 0.078; Apical vs Basal,
p=0.55; Soma vs Basal, p=0.64, n =8 sessions, two-sided Wilcoxon signed-rank
test for all). Right, the across-day decoding error was lower for apical dendrites (35,
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[23, 43] cm) compared to basal dendrites (46, [36, 47] cm), with no significant
difference between apical dendrites and soma (43, [28, 44] cm) (Apical vs Soma,
p=0.11; Apical vs Basal, p = 0.023; Soma vs Basal, p = 0.25; n = 8 sessions, two-sided
Wilcoxon signed-rank test for all). d When controlling for the number of ROIs used
to decode position, soma had significantly better decoding than basal dendrites
(Apical vs Soma, p = 0.07; Apical vs Basal, p=0.57; Soma vs Basal, p = 0.013; two-
way ANOVA, see Methods). e Both apical dendrites and soma had better decoding
than basal dendrites across days when controlling for the number of ROIs used
(Apical vs Soma, p =0.10; Apical vs Basal, p=0.0499; Soma vs Basal, p=3.9x10"%
two-way ANOVA, see Methods). Values reported as median and 95% confidence
interval of the median.

Our results demonstrate that both apical and basal dendrites
show spatial selectivity on par with nearby soma (Fig. 6), and the apical
dendritic signal is more stable than the basal dendritic signal (Fig. 7).
Long-term recordings of large populations of neurons have revealed
changing neural representations over time, a phenomenon termed
representational drift’*>. This has been documented in the
hippocampus® as well as several other brain areas®” *>. Previous studies
have shown that population responses of areas CAl and CA3 of the
hippocampus are particularly unstable across several days***°, though
other regions of the hippocampal circuit are more stable, including the
dentate gyrus** and entorhinal cortex®. Different levels of stability in
apical and basal dendrites (Figs. 7, 8) suggest that representational

drift may not be homogenous across compartments of individual
neurons. This may be related to the segregated inputs received and the
varying functionality of CA3 as performing pattern completion or
pattern separation®°® by biasing propagation of inputs from apical or
basal dendrites. Different compartments are likely subject to differ-
ential gating by target selective GABAergic circuits or gradient dis-
tributions of channel conductances. A similar mechanism may be at
work in the neocortex, where anatomy®®”" and theory’>’* suggest that
bottom-up input arrives onto the basal dendrites while top-down input
arrives on to the apical dendrites, providing a spatial segregation
matching the functional segregation. Apical dendrites may also be
more stable due to integrating signals from several different inputs.
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The conjunctive activity of entorhinal cortex, dentate gyrus, and
recurrent collaterals may act to trigger supra-linear dendritic spikes”'®,
triggering long-term synaptic plasticity'*'®*”7>’® which could con-
tribute to increased stability”. Differences in task demands also affect
the representational stability of soma in CA1%, so the stability of den-
dritic compartments under different behavioral tasks should be
explored in the future.

It is also important to consider the contribution of forward-
propagating versus back-propagating signals in defining dendritic
activity. Proximal dendrites that are electrotonically close to the soma
are likely to be dominated by back-propagated activity. However, the
higher transient rates in apical and basal dendrites indicate a mixture
of localized and back-propagated activity. Distal dendrites may enjoy a
larger degree of independence because back-propagating action
potentials often decay with distance””. Localized spikes likely do
exist in hippocampal CA3 and CAl, supported by previous slice
studies®'®*¢78, Using calcium signals as an indicator of across-
compartment correlation should be done with caution though, as
calcium signals may reflect large bursts of activity more robustly than
single action potentials”. Future studies using voltage-sensitive indi-
cators or more sensitive calcium indicators in large populations should
provide higher temporal resolution into these questions. Due to these
considerations, d-NMF does not identify different event types but
rather provides the time-varying concentration of calcium in a given
ROI, de-mixed from the activity of overlapping ROIs. This is a critical
starting point before the identification of different event types can be
done. We have demonstrated using voltage imaging and synthetic data
that d-NMF can detect localized, thin transients if they are present.
Knowledge of the activity of neighboring, connected ROIs is necessary
to identify activity as local or more widespread.

Many valuable insights about dendritic function have been
gleaned without explicitly delineating local dendritic events from
back-propagating events, across different brain areas such as motor
cortex®>>”°, visual cortex***°%!, hippocampal CA1****?, and lateral
amygdala®. Definitively resolving back-propagating action potentials
from local dendritic activity requires deliberate experimental design
involving technically challenging approaches®*. For accurately dis-
sociating the source of dendritic activity (forward vs. back-propagat-
ing) one needs to establish ground truth with simultaneous dendritic
and somatic electrophysiology and imaging coupled with well-defined
stimulation protocols®***®. Given the slower kinetics and lower single
spike resolution of Ca*" indicators, resolving bAPs requires further tool
development such as in vivo optimized high signal-to-noise ratio vol-
tage imaging sensors®. The analysis tools presented here will syner-
gize with future developments in these experimental areas to enable
principled investigation into dendritic signaling.

This study examined the activity of ensembles of apical den-
drites, soma, and basal dendrites separately. In our dense datasets,
we already merge together ROIs of neighboring dendrites and soma
which have substantial spatial overlap and highly correlated activity.
Such ROIs obtained from merging the soma and dendrites indicate a
high degree of coupling between the soma and its proximal dendritic
branches, as would be expected from the diffusion of calcium over
short distances. But the possibility of dendrites exhibiting semi-
independent activity®*>*** from their cell bodies poses a challenge in
linking ROIs based on correlations alone. Additional structural mar-
kers would likely help in linking connected dendrites and soma.
Furthermore, many distal dendrites are connected to soma that are
not in the focal plane. This could be resolved with multi-planar
imaging in future studies. A more in-depth investigation of input-
output transformations at a sub-cellular level would require simul-
taneous measurement of connected dendrites and soma, as we
provided in our sparely labeled datasets (Supplementary Fig. 16). By
comparing the tuning properties of the apical dendrite, soma, and
basal dendrite of the same neuron within densely labeled fields of

view, one could learn about branch-specific®****%* versus branch

prevalent activity?>***' and soma-dendrite coupling dynamics while
sampling large populations. Such information has so far been limited
to very sparse preparations, which may overlook cellular hetero-
geneity within regions®=2,

The methods presented here were primarily tested on the calcium
activity of dendrites and soma measured with GCaMPéf in hippo-
campal area CA3. But the approaches are broadly applicable to any cell
or cellular process exhibiting dynamic fluorescence activity, including
axons'®%% and astrocytes’®” recorded with a range of different
genetically encoded calcium indicators’* or voltage indicators®*.
These different indicators have varying signal-to-noise ratios and
kinetics, so a reasonable parameter search may be necessary to obtain
the optimal performance of our tools. The rapid kinetics of voltage
indicators with respect to the speed of propagation within dendrites
may also result in the identification of finer-grained ROIs, as an
assumption of our mathematical model is that the signal in a given ROI
is uniform. Hippocampal area CA3 provides the geometrical advantage
of imaging large dendritic trees in a single focal plane, but our
approach would easily extend to brain areas such as retrosplenial
cortex with similar affordances, or those accessible with microprism
approaches®. Our method can also be utilized in more traditional tuft
dendrite or basal dendrite imaging, and could facilitate analysis of
sparsely labeled preparations as well. Clever intersectional genetic
approaches should be able to provide access to axonal input, dendritic
processing, and somatic output in a single preparation, and our tools
will facilitate the rigorous analysis of such datasets.

Methods

Animals

All experiments were conducted in accordance with the National
Institute of Health guidelines and with the approval of the New York
University Grossman School of Medicine Institutional Animal Care and
Use Committee (IACUC). Imaging experiments used mice on a C57BL/
6] background, from both sexes, 15-25 weeks old, housed on a
reversed light cycle.

Cranial window surgery

Surgery procedures were similar as described previously®. Mice were
anesthetized using isoflurane (1.5-2.5%), a 0.5 mm hole was drilled in
the skull above dorsal area CA3 of hippocampus (1.6 mm lateral, and
1.4 mm caudal of Bregma) and AAV virus was injected. For densely
expressing preparations, AAV1.CamKIl. GCaMP6f.WPRE.SV40 (Penn
Vector Core, titer: 2.76x10" GC/ml, 23 nL per site) was injected at two
sites (1.5 mm ML, 1.3 mm AP; 1.7 mm ML, 1.5 mm AP relative to Bregma;
1.8 and 2 mm Z depths below the dural surface, covering areas CA3a/b).
For sparser expression, we used a mixture of AAV1.CamKII-Cre (diluted
with ACSF) and AAVLSyn.Flex.GCaMP6f.WPRE.SV40 or AAV1.Syn.-
Flex,jGCaMP7b.WPRE at 23 nL per site, at different ratios® (see Sup-
plementary Fig. 1 for specific titers). After injection, a 3 mm glass
coverslip cranial window attached to a 1.7 mm deep stainless steel
cannula was implanted by performing a craniotomy centered around
the injection site and aspiration of the overlying cortex and external
capsule. The window was sealed to the skull using Vetbond, and a
custom-designed 3D-printed plastic head post was cemented over
the skull.

Immunohistochemistry

To verify our imaging was in area CA3 and not neighboring CA2, we
tested for localization of GCaMPéf and the CA2 marker PCP4°° (Sup-
plementary Fig. 1b) using immunohistochemistry of 50 um PFA fixed
horizontal slices in TBS. GCaMP-labeled neurons and were stained
using a chicken polyclonal anti-GFP primary antibody (1:1000; Invi-
trogen) with a donkey anti-chicken Alexa Fluor 488 dye-conjugated
IgG antibody (1:1000; Invitrogen). PCP4-positive neurons were stained
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using a rabbit polyclonal anti-PCP4 primary antibody (1:200; Invitro-
gen) with a goat polyclonal anti-rabbit Alexa Fluor 633 dye-conjugated
IgG antibody (1:400; Invitrogen).

Two-photon imaging

In vivo imaging was performed on head-fixed running mice as descri-
bed previously®****® using a dual resonant galvanometric laser scan-
ning two-photon microscope (Ultima, Bruker). The microscope was
coupled to a tunable Ti:Sapphire laser (MaiTai eHP DeepSee, Spec-
traphysics) at 80 MHz pulse repetition rates and <70 fs pulse width
with dispersion compensation, to excite GCaMP and tdTomato fluor-
ophores at 920 nm. Images were acquired at scan speeds of 30 fps,
using 512x512 frame size (1.085 mm/pixel resolution) with a resonant
scanning galvanometer system mounted on a movable objective
Ultima microscope, with an orbital nosepiece coupled to a 16X, 0.8NA,
3 mm water immersion objective (Nikon). The fluorescence signal was
detected using high-sensitivity GaAsP photomultiplier tubes (model
7422PA-40 PMTs, Hamamatsu). Recording sessions were ~-10 minutes
long, yielding datasets of ~10 GB.

Head-fixed spatial navigation

Mice were trained to perform a random foraging task by running head-
fixed on a 2-meter linear treadmill belt'®** to lick for randomly located
but uniformly distributed sugar-water (5% sucrose) rewards along the
track. The position of the mouse, and lap onset were measured using
an optical rotary encoder (S5-720, US Digital) and reading RFID tags
and reader (ID-20LA, SparkFun Electronics). Behavioral programs were
controlled with an Arduino Mega 2560 microcontroller. Behavior data
was acquired at a sampling rate of 10 kHz synchronized to the two-
photon imaging. Mice ran head-fixed on the same treadmill belt for
3 days to become acclimated to the textures and cues. The following
days (Days 4-7) were designated as familiar days for the purposes of
stability analysis. We always compared activity across consecutive
familiar days for each animal, either days 4&5, 5&6, or 6&7, taking data
recording and template matching artifacts into account.

Statistics
Unless otherwise stated, all data are reported as the median (M) and its
95% confidence interval [Lower, L and Upper, U bounds], calculated
through a resampling procedure previously described®. All statistical
comparisons were done using a two-sided Wilcoxon signed-rank (for
paired data) or rank-sum (for unpaired data) unless otherwise specified
(See section Subsampled Decoder).

All analyses were performed using custom-written codes in
MATLAB R2021a (MathWorks).

d-NMF

Initialization

Pre-processsing. Image stacks were motion-corrected for XY-motion
using NoRMCorre®’. For temporal downsampling, each downsampled
frame was computed as the mean of the surrounding frames, rounded,
and stored as unsigned 16-bit integers.

Division into Patches. Image stacks were divided into 81 patches of
64x64 pixel size, with an 8-pixel overlap.

ROI Core Detection. Within each patch, the image sequence was first
de-trended and transformed into AF/F values by subtracting and
dividing by the minimum value in a rolling 30-second window. The
activity threshold was set to 3 times the median AF/F for each pixel and
optionally passed through a temporal median filter. Connected com-
ponents of active pixels were then detected in the resulting
3-dimensional (X-Y-Time) image stack. Components with membership
> 30 pixels were projected into 2 (X-Y) dimensions. See Supplementary
Table 2a.

We merged components based on the Jaccard index (size of the
intersection divided by the size of the union) between components,
using a 0.5 merge threshold. This step merges ROIs that are active in
distinct time spans and are detected multiple times in the previous
step. Pixel values of each component are then normalized to sum to 1.
Two extra ROIs were included, one composed of all pixels not
belonging to any other ROI and the other composed of all pixels in the
area being considered, to model background neuropil fluorescence.

Refinement

Iteration and Activity Extraction. The following steps are the standard
fitting procedure for constrained non-negative matrix factorization’**?
(See Supplementary Table 2b) and are performed on the original
image sequence patch, without de-trending or AF/F transformation.
An image patch with t time steps and d x d pixel size is stored as a
matrix Y € RY*9%¢_ This is reshaped into the matrix Y' € R” **. The
objective function is the following:

argmin |[Y' — AC|I; +7//CIIZ + | /sum(A)| % A20,C>0
A C

where |||l denotes the Frobenius norm. For k components, A € RY <k
represents the spatial footprints (ROIs), and € € R*** represents the
time-varying activity for each ROL n and f are regularization terms to
enforce sparsity of the temporal components (€) and spatial
components (A), respectively.

The algorithm then iterates over solving for € and A while enfor-
cing non-negativity. The optimal solutions for C and A are as follows:

C = max ((ATA + ql)(YTA)*o) Q)

A= max(ch(ccT +p1), 0) 3)

Where I represents the identify matrix, and 1 represents a matrix with
each element equal to 1.

At each iteration n, C and A are then updated from their current
values with a learning rate of a (here, 0.5):

C,. tl=(1-aC,+aC @

A, =1-mA, +aA’ )

After convergence, the resulting ROIs are passed through a
2-dimensional median filter of size 3x3, and the top 10% of pixel values
are kept. Resulting ROIs are split into contiguous components, and
final time courses are calculated by updating C from the final ROIs with
a learning rate of a=1. Only ROIs > 30 pixels are included.

Merging

Combining Results from Patches. After all image patches are pro-
cessed, the resulting ROIs are evaluated to be merged. The temporal
traces are detrended by subtracting the minimal value in a rolling
30 second window. In data presented here, ROIs were merged if their
temporal components had a correlation coefficient above 0.8, and
they shared at least 1 pixel in membership. The spatial and temporal
components of merged ROIs are then updated according to the
algorithm in Supplementary Table 2c.

Merging Threshold Analysis. We present a method to estimate a
lower bound of a useful merging threshold in Supplementary Fig. 3.
This lower bound allows users to avoid linking ROIs from different
neurons. Above this lower bound, the choice of merging threshold is
up to the user, depending on the scientific question. For a given FOV,
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all pairwise correlations between the detrended activity traces of ROls
were computed. Then, for a range of threshold values from 1 to O (in
steps of 0.01), we merged ROIs with correlations above that value. To
estimate how well the clustering worked, we identified the cluster with
the largest number of member ROIs. We defined the minimum corre-
lation as the lowest correlation value between ROIs in that cluster. This
approach is similar to complete-linkage hierarchical clustering'®’, with
distance inversely proportional to correlation. We observed that all
FOVs had a critical value below which the minimum correlation sub-
stantially decreased. This corresponded to ROIs from different neu-
rons becoming linked. We estimate this as the lower bound on an
interpretable merging threshold for that FOV.

Screening

Skewness Classification. The d-NMF output contains a mixture of
valid and invalid ROIs. To automatically classify ROIs as valid or invalid,
we computed the skewness of the extracted temporal traces after de-
trending with a rolling 30-second window. For ground truth, human
labelers manually screened all extracted ROIs and labeled them as
‘valid’ or ‘invalid’ based on morphology. Using skewness as a threshold
value, we quantified the performance of the classifier using two
metrics: the area under the ROC curve plotting the True Positive Rate
versus the False Positive Rate, and the Jaccard Index, computed as TP/
(TP +FP +FN), where TP is the count of True Positives, FP is the count
of False Positives, and FN is the count of False Negatives (Fig. 2c).

Signal-to-noise ratio. We also tested the efficacy of the signal-to-noise
ratio as a classifier threshold (Supplementary Fig. 4). For a de-trended
calcium trace, the signal-to-noise ratio was defined as SNR=P/M,
where P is the 99.9" percentile of the trace, and M is the median
absolute deviation of the trace (median(|x - median(x)|)).

ROI Comparisons

Manual Labeling. Human experts manually labeled ROIs using FIJI
software'” on 20X temporally downsampled image stacks to generate
ground truth labeling data. Image stacks were inspected frame-by-
frame for neural segments showing synchronous activity. Dendritic
branches were split up into multiple ROIs at branch points. Addition-
ally, labelers were instructed to break up long dendritic branches into
smaller ROIs about the length of the soma (approximately 33 um).

CalmAn Parameters. The python implementation of CalmAn*® was
run on the motion-corrected, downsampled image stacks using default
parameters using the sparse_nmf initialization procedure. Patch sizes
and overlaps were chosen to be 64 x 64 and 8 pixels to match those
used by d-NMF. Only those ROIs labeled as valid were used for analyses
(Fig. 4). K=15 or 30 components per patch (number of clusters para-
meter) were chosen to be estimated, giving results for CNMF-15 and
CNMF-30, respectively, in Supplementary Fig. 7. We compared against
the higher-performing CNMF-30 in Fig. 4.

suite2p Parameters. Suite2p was run on the motion-corrected,
downsampled image stacks using pre-configured parameters for
dendrites and axons. All labeled ROIs were used for analysis (Fig. 4).
Three settings of suite2p were run, with different values for the
threshold parameter: 1, 0.75, and 0.5, giving results for s2p-1, s2p-0.75,
and s2p-0.5, respectively, in Supplementary Fig. 7. We compared
against the higher-performing s2p-0.75 in Fig. 4.

F1 score for model comparison. The output of d-NMF, CNMF, and
suite2p were compared to manually labeled data in a pixel-wise fash-
ion. The metric used was the F1 score, calculated as

_ . Precision*Recall

Fl=2r———— "
Precision + Recall

(6)

This measure is a combination of recall (True Positive Rate, TP/
(TP+FN)) and precision (Positive Predictive Value, TP/(TP + FP)), as
human-labeled datasets may have incomplete labeling, which would
yield poor estimates of false positives. The True Positive Rate and
F1score computed pixel-wise are denoted TPR,,« and Fl,, respectively.

The pixel-wise metric defined above has advantages in its flex-
ibility. It is agnostic to how a neuron may be parceled up, and quan-
tifies completeness of labeling and accuracy of the placement of ROIs.
It is most interpretable for sparsely labeled datasets, but has draw-
backs when applied to densely labeled datasets. Namely, a single ROI
covering all pixels of all neurons in the field of view will achieve the
same score as a set of individual ROIs for each dendritic branch. Hence,
we defined a second metric based entirely on ROl morphology.

Algorithmically defined ROIs can often span multiple dendritic
branches or encompass soma and proximal branches (Supplementary
Fig. 6). To define ROIs in a systematic manner, we performed a mor-
phological split operation on all ROIs (Supplementary Fig. 5), drawing
boundaries at branch points and separating putative somatic regions,
defined by connected groups of pixels with a radius of at least 10 pixels
(11 um). Resulting ROIs with a size less than 30 pixels were discarded.

Manually-drawn ROIs that sub-segmented a dendritic branch were
first merged together and then put through the same morphological
split operation. This ensured that manually drawn ROIs followed the
same well-defined guidelines across labelers. For each ROl in set A, we
found the ROl in set B that had the highest spatial correspondence, as
computed by the Jaccard index (size of the intersection divided by size
of the union). We then define a pixel in an ROI as “covered” if it
intersects with the matching ROI.

If A is the manually-drawn ground truth and B is a test set, define:

True Positive (TP) as the number of pixels that are covered in ROIs
in set A

False Negative (FN) as the number of pixels that are not covered in
ROIs in set A

False Positive (FP) as the number of pixels that are not covered in
ROIs in set B

The True Positive Rate (TPR) and F1 score are then computed
accordingly. These measures computed ROI-wise are denoted TPR,;
and Fl1,,;, respectively.

Construction of Synthetic Data

Movie Generation. To validate the accuracy of d-NMF, we constructed
a series of synthetic datasets using one of our sparse FOVs (Fig. 3). To
define ground truth, we took FOV2 (Supplementary Fig. 1), manually
drew ROIs, and computed the activity of those ROIs by averaging over
member pixels. A template movie was constructed by shifting the
movie by -100 pixels in the Y dimension and -40 pixels in the X
dimension, to center the visible neuron. This template was then
modified by shifting the X-dimension of the entire movie by a random
amount -50 to 50 pm, shifting the Y-dimension by -50 to -50 pm, then
rotating by a random angle between 0 and 360 degrees. The altered
template was then shifted in time by a random amount between -250
and 250seconds. The ground truth ROIs and activity traces were
modified accordingly. ROIs that fell outside of the original 512x512
pixel frame after shifting and rotating were discarded. The frames from
this new movie were then added to the original template. This process
was repeated 200 times, to generate synthetic movies with 1 to 201
neurons.

ROI Signal Quality. The overlaying of movie replicates increased the
noise present in each pixel, which had the potential to degrade overall
signal quality of the known ROIs. To quantify this degradation, we
computed the signal quality of each ROI in our synthetic datasets
(Fig. 3c-e). For a given ROI, the frame of maximum activity was iden-
tified from its ground truth activity trace. From the z-scored movie, the
mean value of pixels within that ROI at that frame was computed to
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define the ROI signal quality. This value gets smaller as more neurons
are added to the synthetic data, an unavoidable consequence of add-
ing uncorrelated variables.

Evaluating Performance. Because different methods or experi-
menters may segment dendrites into more fine or coarse-grained ROls,
we defined an approach to compute the similarity between ground
truth ROIs and ROIs obtained through automated methods. To do this,
we introduce the concept of Coverage.

Define 2 sets of ROISs, set A and B and their corresponding activity
traces. For any ROI; in set A, identify all ROIs in set B that 1) Spatially
overlap ROI; and 2) Are correlated in time above a value of 0.5. This
excludes contributions from unrelated crossing ROIs. Take the union
of these ROIs, and quantify the pixels covered by that union. Repeat
this process by covering B with A. Define classification accuracy in a
similar fashion as above:

If A is the ground truth and B is a test set, define:

True Positive (TP) as the number of pixels that are covered in ROIs
insetA

False Negative (FN) as the number of pixels that are not covered in
ROIs in set A

False Positive (FP) as the number of pixels that are not covered in
ROIs in set B

The True Positive Rate and F1 score (Fig. 3e) are then computed
accordingly, denoted as TPR,, and Fl.,,, respectively.

Note this measure differs from the ROI-based measure above
because we know the ground truth activity to use to link together ROIs
and thus are not restricted to choosing a single ROI with the highest
overlap.

In Fig. 3f, these values were only computed for ROIs with a mini-
mum Signal Quality of 2.

Temporal Fidelity Testing Using Synthetic Data
To test the limits of d-NMF in detecting localized activity, we generated
synthetic data in two ways. For Supplementary Fig. 11a-b, entirely
synthetic data was simulated in a dendritic segment 6 pixels in width
by 90 pixels long, diagonally embedded in a 64 x 64-pixel space.
Background fluorescence was generated independently for each pixel
by drawing from an exponential distribution with mean 7, raised to the
power of 1.8, to match the statistics of noise observed in our data.
Calcium transients were simulated by a difference of exponentials
of the form

A(e—t/r _ e—4t/r)/B (7)

Where B is chosen to normalize values such that the peak of the
waveform has amplitude A. When simulated at 30 Hz, a transient
characterized by the time constant T has a full width at half max of
approximately 1/10 seconds.

3 transients with 7=24 (2.4-second half-width), A=700 were
generated across the entire synthetic dendrite to provide global
activity. A variable number N of additional transients with variable
values of A and T were present in a portion of the dendrite with variable
length L. The full array of parameters is listed in Supplementary
Table 4.

Each parameter combination was simulated 5 times, resulting in
5200 simulations to generate Supplementary Fig. 11b.

Data for Supplementary Fig. 11d was generated in a similar fash-
ion. A patch of dendrite from FOV 2 (Supplementary Fig. 1) was taken
as background activity, and calcium transients were added to the
movie only for pixels belonging to a small branch. The array of para-
meters is listed in Supplementary Table 4.

Each parameter combination was simulated 5 times, resulting in
3600 simulations to generate Supplementary Fig. 11d.

Spatial accuracy was computed as the maximum correlation
coefficient between any detected ROI and the target ROl Temporal
accuracy was computed as the proportion of injected transients that
were detected in the ROI with the highest spatial correlation with the
target ROI. Total accuracy was calculated as the product of these two
measures.

Fitness Trace

To generate ground truth data to evaluate the Fitness Trace (Fig. 5), 90
ROIs generated from d-NMF (30 apical dendrites, 30 soma, and 30
basal dendrites, when possible) were chosen at random from 9 FOVs.
Their activity traces were re-estimated by taking a weighted average
across the ROI, which was then de-trended using a rolling minimum of
30-second frames, then z-scored. Putative transients were identified as
contiguous time bins where the z-scored trace exceeded 1 standard
deviation. These event detection criteria were meant to be permissive,
to include examples of valid and invalid transients. Transients were
then manually reviewed and classified as valid or invalid using a pre-
viously published graphical user interface®.

The image stack was de-trended and transformed into AF/F
values, then z-scored across time. For a given ROI, a rectangular
bounding box was defined around all non-zero values with a padding
of 3 pixels in each dimension. The Fitness Trace for a given ROl at time ¢
was defined as the correlation coefficient between the z-scored image
stack at time t and the ROI, calculated only using the pixels in that
bounding box.

Transient Detection Methods. To describe the different detection
methods (Fig. 5, Supplementary Fig. 13), it is useful to define two types
of activity traces. The first is the activity trace arrived at through d-
NMF, that is, a signal de-mixed from overlapping sources; we denote
this as De-mixed AF/F. The second is a simple signal obtained through
taking a weighted average across all of the pixels of an ROI. We denote
this as Simple AF/F. Detection method differences are summarized in
Supplementary Table 5. Unless otherwise noted, activity traces are all
de-trended by subtracting the rolling minimum across 30 seconds,
then z-scored.

Sparse Data Processing

In addition to expressing GCaMP, animals used for the Sparse Data
analyses (Supplementary Fig. 16) expressed a Cre-dependent tdTo-
mato. ROIs were manually drawn and the time-varying activity in the
green (G) and red (R) channels was computed by a simple average and
temporally smoothed by convolving with a Gaussian kernel with
0 =33 ms. The activity of a given ROI (S) was then defined as the ratio of
the calcium-dependent green fluorescence versus the calcium-
independent red fluorescence (G/R)®. This step was critical to cor-
rect for motion in the Z plane. Calcium transients were manually
identified and verified with the original image stacks for each ROl in the
Sparse Data.

Spatial Tuning Properties

Single session analyses (Fig. 6, Supplementary Figs. 11-12) were per-
formed on data from Familiar Day 1. Behavioral data was first down-
sampled to match the frame rate of imaging. Only data during
movement (speed > 2 cm/s) was used for all spatial analyses. To con-
struct firing rate maps, the track was divided into 40 equally spaced
bins of width 5cm. Occupancy and transient event count were com-
puted, circularly smoothed with a Gaussian smoothing kernel of width
5cm, and then divided to compute the rate.

ROIs were manually classified as apical dendrites, soma, or basal
dendrites based on position in the field of view. ROIs encompassing
both a soma and one or more dendritic branches were classified as
soma. In all other instances we treat apical dendrites, soma, and basal
dendrites as independent populations, without assigning parent soma
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to individual dendrites. Thus, when we refer to apical dendrites or
basal dendrites, we are referring to dendrites, which are some distance
from their parent cell body, which is often not visible in the same field
of view.

We used two measures to quantify the degree of tuning of each
rate map. Maps were divided into 40 bins as described above. Spatial
information content'* was computed as

N
Info Content = P;R; log,R; (8)

i=1

Where P; is the normalized occupancy in the ith bin, such that the
sum across all P;=1, and R; is the normalized value of the rate map in
the ith bin, such that the sum across all R;=1.

Sparsity was computed as

(Z:'V:I Ri) ’ )

Sparsity=1— ~——~—~*-
N3 R

Where R; is the value of the rate map in the ith bin.

Each ROI served as its own control to determine the statistical
significance of spatial tuning. For each ROI, the transient times were
shifted between -166 and 166 seconds (500 total shifts per ROI). The
information content at a shift of O was then normalized to the 99"
percentile of information content at non-0 shift. A normalized infor-
mation content value greater than 1 indicated significant tuning.
Additionally, a minimum of 4 transients must have been detected for
an ROI to be called significantly tuned.

Tuning Parametrization. Tuning curves were parametrized as a mix-
ture of Von Mises functions, as described previously'®. Rate maps were
circularly smoothed with a sigma of 15 cm (3 bins), and the curve was fit
by increasing the number of Von Mises functions until the residuals
were below 25% of the maximum value of the original rate map. Place
field width was defined as the width of a fitted component at 50% of the
component’s amplitude (i.e. full width at half max). For ROIs with
multiple place fields, their width was defined as the mean width of all

place fields.

Merging ROIs to Address Oversplitting. It is likely that extended
dendrites could be split into multiple ROIs, especially if a portion of the
dendrite dives out of the focal plane or if it is obscured by another
neuron. This could lead to a problem of oversplitting, where multiple
dendrites from the same neuron with highly correlated signals con-
tribute multiple times to statistical estimates. To investigate if this
biased our results, we merged dendritic ROIs with highly correlated
activity into single ROIs (Supplementary Fig. 15, Supplementary
Table 9). Correlation was calculated on a smoothed binary activity
vector. This avoids issues of correlation being affected by different
decay time constants or contaminated activity from overlapping
dendrites. Dendrites of the same type (apical or basal) were merged if
their activity was correlated above a value of 0.7. When 2 or more ROIs
were merged, the statistics (activity rate, information content, rate
map, etc.) were computed as the median value of the statistics of the
ROIs being merged.

Quantifying Overlap

We defined two ROIs as overlapping if they shared at least 8 pixels and
had a correlation coefficient between their activity traces less than
0.75. This avoids inflating the overlap amount from ROIs that are part
of the same dendritic tree.

Distance Dependence

Distance dependence in the sparse dataset was defined as the path
distance from the center of a neuron’s soma to the center of an ROI,
only traversing ROIs that belong to that neuron.

To quantify distance-dependence in the dense dataset, a line was
fit to the center of all somatic ROIs to define the cell body layer. Dis-
tance to any dendritic ROl was defined as the tangential distance to the
cell body layer, as not all dendritic ROIs could be directly traced back
to their parent soma.

Stability

Within-day stability (Fig. 7) was assessed by splitting the data from
Familiar Day 1 in half. Rate maps were re-estimated for each ROI using
only the data in each session half. The tuning curve (TC) correlation
was defined as the correlation coefficient between the tuning curves
for each half. This measure was computed for each ROI and then
averaged to obtain a single value for the session. To be included in the
calculation for TC correlation, an ROI must have had a minimum of 4
calcium transients and be significantly tuned across the entire session.
Population vector (PV) correlation was computed by constructing the
rate estimates of all ROIs for a given position bin in the first half and
taking the correlation coefficient between that vector and the corre-
sponding vector in the second half. This yields a value for each position
bin, which was then averaged to obtain a single value for a session. To
be included in the calculation for PV correlation, an ROl must have had
a minimum of 4 calcium transients, with no criteria for significant
tuning.

To quantify across-day stability (Fig. 7, Supplementary Figs. 14-15),
image stacks from Familiar Days 1 and 2 were stitched into a single
image stack and motion-corrected together. d-NMF was then run on
the combined image stack to obtain ROIs that spanned both sessions.
Stability analysis was then performed as for within-day estimates. To
be included in across-day stability analyses, an ROl must have had at
least 4 detected calcium transients in both days and significantly tuned
in at least one day. The activity criterion ensured that correlation
estimates were not skewed by ROIs that were not visible on one of the
recording days.

Structural Stability. To verify that differences in tuning stability were
not due to the inability to track ROIs across days, we additionally
quantified the structural stability of ROIs (Supplementary Fig. 17). For
each ROI we took the average of frames at which significant calcium
transients were detected for Familiar Days 1 and 2. The structural sta-
bility was defined as the correlation coefficient between these avera-
ges, using only data within the modified boundary of the ROI The
modified boundary of an ROI was defined by first thresholding the ROI
above 20% of its maximum pixel intensity, then dilating the resulting
mask by one pixel.

Population Vector Decoding

To test the impact of increased across-day stability in apical den-
drites, we performed population vector decoding in a manner
similar to that described previously*® (Fig. 8). A separate decoder
was constructed for each FOV for each of apical dendrites, soma,
and basal dendrites. Template tuning curves for each ROI were
constructed as above. For within-day decoding, data from the first
half of Familiar Day 1 was used to define the template. For across-
day decoding, all data from Familiar Day 1 was used to define the
template. As above for defining Population Vector correlations, only
ROIs that were active in both days and significantly tuned in at least
one day were included for decoding.

Time-varying rate vectors for each ROI were constructed using
data from either the second half of Familiar Day 1 (within-day decod-
ing) or all data from Familiar Day 2 (across-day decoding), using 33 ms
bins smoothed with a Gaussian smoothing kernel with 6 =667 ms. For
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each time point in the decoded portion of the data, the decoded
position was the position corresponding to the highest correlation
with the template matrix. Any time points with zero activity across all
relevant ROIs had an undefined correlation with any position. The
most recently decoded position was copied in to those undefined
frames.

Decoding error was defined as the median absolute error between
decoded position and actual position, defined circularly so the
beginning of the track (position 0 cm) and the end of the track (posi-
tion 200 cm) were O cm away.

Subsampled decoder. The performance of a population vector
decoder is highly dependent on the number of units used to construct
it”>. To control for variation in the number of ROIs across compart-
ments, we constructed additional population vector decoders using
subsets of eligible ROIs (Fig. 8d,e). For each session and compartment
type (apical, soma, basal), we randomly selected (without replace-
ment) 5,15, 25, 35, 45, 55, or 65 ROIs if available to decode position and
record decoding error. This process was repeated 100 times and the
median value across the 100 iterations was used as the decoding error
of the subsampled classifier.

The statistical significance of decoding for subsampled decoders
was assessed using a two-way ANOVA with the number of ROIs as a
continuous predictor, the ROI type (Apical, Soma, or Basal) as a cate-
gorical predictor, and the decoding error as the dependent variable.
The p-values reported in Fig. 8 are the p-values for an interaction effect
between the number of ROIs and the ROI type, performed in a pairwise
manner (Apical vs Soma, Apical vs Basal, Soma vs Basal).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Downsampled (1.5Hz) imaging data and intermediate data analysis
files generated in this study have been deposited in the Zenodo
database: https://doi.org/10.5281/zenodo.14207307 and https://doi.
org/10.5281/zenodo.14207412. The raw, 30 Hz imaging data are avail-
able under restricted access due to large file sizes, and access can be
obtained by request to the corresponding authors, with an expected
timeframe of two weeks for response.

Code availability

Code and data needed to generate the figures in this study can be
downloaded from Zenodo: https://doi.org/10.5281/zenodo.14207307
and https://doi.org/10.5281/zenodo.14207412. The most updated ver-
sion of the d-NMF code is available at https://github.com/basulab-nyu/
d-NMF.
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