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There is a growing demand for low-power, autonomously learning artificial

intelligence (Al) systems that can be applied at the edge and rapidly adapt to
the specific situation at deployment site. However, current Al models struggle
in such scenarios, often requiring extensive fine-tuning, computational
resources, and data. In contrast, humans can effortlessly adjust to new tasks by
transferring knowledge from related ones. The concept of learning-to-learn
(L2L) mimics this process and enables Al models to rapidly adapt with only
little computational effort and data. In-memory computing neuromorphic
hardware (NMHW) is inspired by the brain’s operating principles and mimics
its physical co-location of memory and compute. In this work, we pair L2L with
in-memory computing NMHW based on phase-change memory devices to
build efficient Al models that can rapidly adapt to new tasks. We demonstrate
the versatility of our approach in two scenarios: a convolutional neural net-
work performing image classification and a biologically-inspired spiking neural

network generating motor commands for a real robotic arm. Both models
rapidly learn with few parameter updates. Deployed on the NMHW, they
perform on-par with their software equivalents. Moreover, meta-training of
these models can be performed in software with high-precision, alleviating the
need for accurate hardware models.

Contemporary artificial intelligence (Al) models often rely on deep
learning'?, resulting in intense computational requirements that
become increasingly difficult to fulfill with current technology. This
stands in contrast to a growing demand for low-power, autonomously
learning Al systems that can be deployed at the edge, without access to
large compute clusters. The number of applications for such systems is
rapidly increasing and includes mobile devices, autonomous mobile
robots and vehicles, smart sensors, and even the Internet of Things.
Due to its energy efficiency, neuromorphic hardware (NMHW) is a
promising solution for these scenarios®”. In particular, there were

several recent breakthroughs in analog in-memory computing neuro-
morphic hardware systems®'°. They utilize analog memristive
devices™” arranged in a crossbar configuration, enabling the execu-
tion of matrix-vector multiplication (MVM)—the central operation in
deep learning—in constant time, showcasing remarkable performance
and efficiency. However, the limited precision of NMHW, attributed to
device and circuit non-idealities, necessitates the adoption of
hardware-aware training routines”, chip-in-the-loop fine-tuning
approaches®*%, or the integration of accurate hardware models dur-
ing training. Moreover, edge applications often demand online
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adaptation, yet neuromorphic hardware systems are typically tailored
towards inference applications where no or only very little adaptation
is needed, as these adaptations can compromise the high energy
efficiency.

To equip neural networks with rapid learning capabilities,
requiring only few adaptation steps and that are also robust to hard-
ware non-idealities, we propose in this article the application of
learning-to-learn (L2L; also known as meta-learning)**° to neuro-
morphic hardware based on phase-change memory (PCM) devices?. In
L2L, neural networks are first optimized to become good learners for a
family of related tasks in a meta-training phase and in a subsequent
adaptation phase tuned for a particular task, leveraging prior acquired
knowledge. In contrast to standard learning approaches, where the
neural network becomes specialized for one particular task, L2L
through its two phases can enable rapid adaptation to a concrete task
of the application that is a member of a larger family of tasks. The initial
meta-training phase can be done off-chip with arbitrarily complex
learning algorithms and large datasets, while in the concrete applica-
tion, the meta-trained system can be adapted by updating only few
parameters. Our approach is perfectly suited for PCM-based neuro-
morphic hardware, because (1) the network architecture can be trained
in a meta-training phase in software, transferred once to the hardware,
and then only a tiny fraction of the network needs to be updated
during the adaptation phase, (2) the learning rule for the parameter
updates during the adaptation phase becomes simple and could
potentially be implemented directly on the neuromorphic hardware in
future generations, and (3) the PCM devices are non-volatile, once
adjusted to specific classes, the system can perform inference over an
extended period of time.

Learning-to-learn has been widely studied in the field of machine
learning (ML)*?. However, although L2L has been proposed as an
efficient way to enable rapid learning in neuromorphic systems’, only
few studies in this direction have been carried out so far’**°. Bohnsting]
et al.”® evaluated an L2L approach using a single-layer spiking neural
network on basic Markov decision processes and a bandit task. Wu
et al.”’ proposed a hybrid learning approach where parameters of local
plasticity rules are meta-learned and combined with global plasticity.
They implemented their model on the Tianjic neuromorphic
platform®. Studies, where L2L was applied to simulated memristor
models, are described in refs. 31,32. Zhang et al.”» demonstrate an L2L
algorithm for artificial neural networks and demonstrate it on the
Omniglot and the MinilmageNet datasets. However, the authors utilize
a software tool to simulate the PCM devices and also update the entire
network architecture during meta-training and task adaptation. In
the Supplementary information, we added a detailed table, comparing
related works leveraging learning-to-learn and neuromorphic hard-
ware. To the best of our knowledge, no application of L2L to physical
memristor-based in-memory neuromorphic hardware has been
reported so far.

To demonstrate the versatility of our approach we evaluated two
L2L methods in two types of neural network models using the PCM-
based in-memory computing neuromorphic hardware introduced in
ref. 21. First, we applied model-agnostic meta-learning (MAML)?, an
L2L algorithm that optimizes initial weights of a neural network to
enable few-shot adaptation of the network with a small number of
gradient updates, to a convolutional neural network (CNN) for few-
shot image classification. Since this algorithm necessitates extensive
meta-training, we perform the meta-training phase in simulations and
transfer the resulting weight values to the memristive crossbar. The
adaptation phase is then performed directly on the neuromorphic
hardware. Evaluations on the Omniglot dataset® showed that this
approach leads to excellent classification performance, on par with
pure software solutions, despite the fact that synapses are realized
with low-precision PCM devices. Interestingly, our results also show
that meta-training is quite robust with respect to the software model of

the hardware. In particular, we found that expensive and slow
hardware-in-the-loop training is not necessary, and even a relatively
crude software approximation of the hardware achieved good results,
alleviating the need for accurate hardware models.

To complement the ML scenario, in the second application, we
considered a recurrent spiking neural network (SNN). Recurrent SNNs
are of particular interest since spike-based communication is highly
energy efficient, and therefore a promising alternative to the energy-
demanding contemporary Al solutions***. One fundamental problem
in the application of recurrent neural networks in edge applications is
that standard gradient-based learning algorithms, such as error back-
propagation through time (BPTT), are not well-suited as they cannot
simultaneously process and learn from incoming data streams. To
address these issues, the research community has developed online
learning alternatives to BPTT**¥, that equip neural networks with this
capability. Therefore, in this work we pair L2L with an online learning
algorithm, e-prop™®, to build an energy-efficient system utilizing PCM-
based neuromorphic hardware, that can rapidly adapt to new tasks
online. In this algorithm, a teacher SNN, the Learning signal generator
(LSG), generates learning signals that are used to update the weights of
a second SNN called the trainee. In the meta-training phase, the initial
weights of the trainee as well as the weights of the LSG are optimized.
Then the initial weights of the trainee are ported to the neuromorphic
hardware and a single update is performed to adapt the trainee to the
current task. We used this setup to enable the SNN to learn to generate
motor commands for a robotic arm to produce a target trajectory from
a single exposure as proposed in refs. 36,38. In addition to simulations
and experiments with the neuromorphic hardware, we also tested the
model with a real robotic setup. Underpinning our findings of the first
task, we found that meta-training can be performed in full-precision
software, without the need for detailed hardware models, and that the
single update on the neuromorphic hardware allows the robot to
accurately track the target trajectory.

Results

Learning-to-learn and neuromorphic hardware

Learning-to-learn is a technique that aims to generalize the learning
processes across multiple related tasks from a distribution of tasks,
often termed the task family. It is based on the observation that in
humans and animals, learning generally is not centered solely around
acquiring knowledge or skills for a specific task, but rather on the
development of strategies that enable learning new skills both more
effectively and efficiently in the future’****°. Therefore, meta-
learning aims to consolidate previously gained experience from dif-
ferent tasks to enable more rapid learning of new tasks requiring
minimal new data.

In contrast to other approaches, such as standard supervised
learning, meta-learning is carried out in two phases, the meta-training
phase and the adaptation phase, see Fig. 1a. In the meta-training phase,
which is performed in software, indicated with green color in the left
part of Fig. 1a, all parameters of the neural network are trained through
m iterations of a meta-training procedure that includes both an outer
training loop and an inner training loop (see below). After meta-
training, the model is deployed onto, potentially many, neuromorphic
hardware instances, where all weights of the network are mapped to
the hardware, see yellow color in the right part of Fig. 1a. In the fol-
lowing adaptation phase, each hardware instance is adapted to an
individual task from the task family. In this phase, the parameter
update algorithm is very simple (it is given by the inner training loop
only, as described below) and these updates are performed directly on
the NMHW, to adapt a small fraction of the model for each individual
task (indicated with the dashed rectangle in Fig. 1a).

The two levels of optimization used in the meta-training phase,
the inner and the outer loop are illustrated in Fig. 1b and in more detail
in Fig. 1c. They can be described as follows:
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Fig. 1| Overview of learning-to-learn with neuromorphic hardware. a General
training strategy. Left: the meta-training phase is performed with all network
weights kept in software (green), involves many iterations, and all weights are
updated (dashed rectangle). Right: after meta-training, the model is deployed onto,
potentially many, NMHW instances, where the weights are located on the hardware
(yellow). Then, the adaptation phase is carried out, performing task-specific
adaptation involving only a few iterations of a simple learning procedure. Impor-
tantly, this process only updates a fraction of the weights of the network archi-
tecture (dashed rectangle), and the updates are performed on the NMHW, without
requiring a re-mapping of the entire network. b The general structure of meta-
learning approaches used in this article. The inputs to the inner loop (gray box) are
the initial parameters 6 and the task inputs from a task 7 ;. Based on these inputs, a
fraction of the neural network is updated n times. In every iteration of the outer
loop, a new task 7; from the task family #(7) is selected, the inner loop is executed,

and the initial parameters 0 are updated based on the errors of the inner loop. The
goal is to find initial parameters @ such that a few inner loop updates lead to good
results on any task from (7). ¢ Unrolled meta-learning procedure that highlights
the differences between task-specific adaptation of weights in the inner loop and
the meta-parameters in the outer loop. d Schematic depiction of a phase-change
memory device and its inner workings. Information is stored in the phase config-
uration of the material and electrical pulses can be used to switch between the
amorphous and the crystalline phase. e The employed NMHW comprises a crossbar
array structure where at each intersection four PCM devices (4R) and eight control
transistors (8T) are located. Two PCM devices represent positive weights (BL") and
two represent negative weights (BL"). The weights of a neural network are mapped
onto the crossbar structure and the network inputs are provided to the positive
devices using (WL") and to the negative devices using (WL").

Inner loop (task-specific learning): This part of the meta-learning
procedure, illustrated in the gray box of Fig. 1b, is responsible for
learning a specific task. While relying on previous experience from
other related tasks, the model in the inner loop learns the current task
with access to a limited set of training examples. The goal is to improve

task-specific performance via fast adaptation of the model parameters
@ through n updates.

Outer loop: in the outer loop, indicated by the outer black arrow
in Fig. 1b, the model learns across multiple tasks with the goal of
identifying common sub-structures and potential differences between
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them. This is done by adapting the meta-parameters and implicit
learning strategies based on the models output and the task perfor-
mance observed during the inner loop. Thus, instead of optimizing the
performance for an individual task, the goal of the outer loop is to
improve the ability of the model to adapt to new tasks more effectively
and efficiently.

Different meta-learning methods have been developed and they
can broadly be classified into model-based methods, initialization-
based methods, and parameter-generation-based methods.

Model-based methods include memory-augmented model archi-
tectures or external memory modules that are inherently well-suited
for learning from a limited amount of data. Memory-augmented neural
networks” use a differentiable external memory module to store and
fetch information from a small number of previously seen examples
enabling rapid adaptation to new tasks.

Initialization-based methods are centered around the idea that
there exists a learnable initialization of the model parameters that
allow fast adaptation to new, unseen tasks. Model-agnostic meta-
learning® is a method aiming to find initial model parameters that can
be efficiently updated with a small number of gradient steps on
new tasks.

Parameter-generation-based methods train networks that gen-
erate and predict parameters for a trainee network, enabling adapta-
tion to new, unseen tasks. This can be facilitated in two ways: Either the
parameters are generated directly and fed into the trainee network® or
indirectly by learning an optimizer that can then change the trainee
network’s parameters**?’,

In this work, we apply L2L techniques to an in-memory computing
neuromorphic hardware, utilizing PCM devices. Phase-change mate-
rials belong to a class of materials that allow to storage information in
their phase configuration. When electrical pulses are applied to the
cells, they can gradually transition from an amorphous phase to a
crystalline phase, or rapidly back from the crystalline phase to the
amorphous phase, illustrated in Fig. 1d. The neuromorphic platform
we used in this work comprises two computational cores. Each core
contains a crossbar array structure of size 256 x 256, where at each
intersection 4 PCM devices (4R) and eight control transistors (8T) are
located. The weights of the various neural networks used in this work
are mapped onto this crossbar structure as illustrated in Fig. 1e. More
details about the hardware can be found in the Section “Neuromorphic
hardware” in “Methods”.

In particular, we investigated two different L2L methods applied
to two different tasks to demonstrate rapid learning in PCM-based
NMHW. In the first approach, we applied the initialization-based
approach MAML to meta-train the weights of a convolutional neural
network that could then be easily adapted to new tasks from the same
domain. In the second approach, we utilized a parameter-generation-
based method, which enabled a biologically-inspired spiking neural
network to generate motor commands that produce a target trajectory
using only a single adaption step.

Few-shot image classification with PCM-based neuromorphic
hardware

We first investigated whether L2L could be utilized to enable few-shot
image classification in a PCM-based NMHW. To this end, we utilized
model-agnostic meta-learning and tested the system on the Omniglot
dataset®™. As an initialization-based L2L algorithm, the central idea
behind MAML is to determine initial model weights such that they can
be adapted to a new task using only a small number of weight updates.
This approach is model-agnostic insofar as it can be used for any model
that can be trained with gradient-based algorithms.

As described in Section “Learning-to-learn and neuromorphic
hardware”, the training is carried out in two nested loops: the outer
loop and the inner loop, see Fig. 2a. In the inner loop (gray box in
Fig. 2a), the initial model parameters 8°, obtained from the outer loop,

are updated for a specific task 7;, sampled from the task family 7 (7).
We denote the model parameters optimized by the outer loop with
0= 6°. Further, we denote the parameters after the j-th inner loop
update with @’ and the output of the model with parameters 6’ asf ;.
For each new task 7 ;, we have Ny,¢, data points D, = {x@,y®} with
network inputs X and corresponding targets y“’. The adaptation
process involves computing the task-specific updated parameters §/*1,
using gradient descent on the loss L7 (f 4,), which compares the model
output f,; to the targets ¥, The inner loop update for a single step
can thus be expressed as

07"'=07 —avVy,Lr (fo), @

where a is the learning rate for the task-specific update. In our setting,
this update is repeated n =4 times in the inner loop.

Algorithm 1. Our model-agnostic meta-learning setup for few-shot
classification. For the Omniglot task, the cross-entropy loss function is
used.
Input: F(7): Family of tasks
Input: «, 8: learning rates
Input: n: number of inner loop gradient steps
Randomly initialize 0;
while Meta-Training do
Sample Niasks tasks T; ~ F(T);
foreach 7; do
Sample Ngata data points Dy, = {:c(d).,y(d)}
from T;;
for j from 0 ton — 1 do
Evaluate Vg; L7, (fe;) using D7; and the
cross-entropy loss L7;;
Compute adapted parameters:
07— 07 — Vg L. (fei);
end
Evaluate data points DZ- = {m<d), y(d)} from
T; using 8™ for the outer loop update.

end
Update 6 <— 0 — Vg Y, L7,(for) using each
Di-

end

In the outer loop (outer black arrow in Fig. 2a), the initial para-
meters @ of the model are then optimized such that learning of new,
unseen data D from the same tasks 7; in the inner loop is more
efficient. Therefore, the meta-training objective can be formally
expressed as

0= argmin > Lr(fo) )

T~F(T)

where 0" refers to the parameters after the last inner loop update.
Note that 8" depends implicitly on 8. This optimization problem is
solved using the ADAM optimizer* across unseen tasks sampled
from a task distribution F(7). See “Algorithm 1” for a detailed
description of the interplay between meta-training and evaluation.
Intuitively, this combination of outer and inner loop updates creates
a path traversing through the parameter space, which is visually
depicted in Fig. 2b. The initial parameters 6 provide a good starting
point for all tasks in the task family #(7), which is then adjusted to
the specific task T; with only four parameter updates leading to @',
followed by @, 6%, and so on until . Further details on the learning
algorithm can be found in the Section “Few-shot image classifica-
tion” in “Methods”.
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The Omniglot dataset® employed in this task is one of the most
commonly used benchmark datasets for few-shot image classification
that was specifically designed for understanding the few-shot learning
capabilities of humans. The dataset contains 1623 grayscale images of
handwritten characters originating from 50 different alphabets, with
only 20 examples per character. We closely followed the experi-
mentation protocol from™** that describes an N-way classification

problem with K shots. Here, K examples of N different classes are
provided to the model during a training step with the goal to classify
new, unseen examples of the N different classes.

In our setup, we performed 5-way 5-shot classification with n=4
gradient update steps in the inner loop. To illustrate the progress of
the inner loop, we show in Fig. 2c the classification of the NMHW-based
model after the individual updates. In particular, five new character
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Fig. 2 | Few-shot image classification on Omniglot with MAML. a lllustration of
the inner and outer loops in the MAML setup. In the inner loop, a software model
was used for meta-training. The evaluation was performed both in software and in
NMHW. For the inner loop training, we performed four gradient updates.

b Schematic depiction of the movement in parameter space during MAML. The
initial parameters @ are optimized in the outer loop (bold trajectory) and the inner
loop performs four task-specific adaptation steps (small arrows) such that the
model achieves high classification accuracy. c lllustration of the input data from the
Omniglot dataset for the 5-way 5-shot classification task on the left and the corre-
sponding ground-truth targets on the right. A typical evolution of the classification
performance of the model in the inner loop with 4 updates is illustrated in the

middle. d Architecture of the four-layer convolutional neural network with a dense
layer on top that is employed to solve the classification task. Only the dense layer,
marked in yellow, is updated during the inner loop training, while the rest of the
architecture remains fixed. e Schematic depiction of the mapping of the neural
network to the NMHW. The convolutional layers are split into two parts and spread
across the two crossbar arrays of the NMWH. f Evolution of the loss during outer
loop training of a 4 bit (orange) and a 32 bit (blue) model in software.

g Classification accuracy of the various models on 100 new unseen tasks.

h Classification accuracy of the various models during inner loop training. Results
with the label “NMHW” have been collected employing the NMHW described in
Section “Neuromorphic hardware” in “Methods”, with the mapping illustrated in (e).

classes were presented to the network, with five examples for each
class in a random order, see Fig. 2c (left). The classification outputs
after each of the four gradient updates in the inner loop are illustrated
in Fig. 2c (middle): incorrect classifications are marked with red font on
white squares and correct classifications with black font on colored
squares. One can see that with each gradient update, the classification
becomes more accurate.

We leveraged a CNN with four convolutional layers and a dense
layer at the output, as depicted in Fig. 2d (see Section “Few-shot image
classification” in “Methods” for a detailed network description). We
mapped the individual kernels of the convolutional layers and the
dense layer onto the crossbar arrays of the NMHW as illustrated in
Fig. 2e. The convolutional kernels of the CNN were flattened, then split
into two parts and distributed across two chips, see Section “Deploying
models on the neuromorphic hardware” in “Methods” for further
details. Although we mapped the entire CNN onto the NMHW, only the
weights of the last dense layer, marked in yellow, in Fig. 2d were
updated in the inner loop. These weights account for less than 1% of
the entire CNN and thus dramatically simplify the inner loop training,
as this approach avoids the need for backpropagation of gradients
through the (neuromorphic) network. In particular, the update that
has to be performed on the NMHW reduces to a simple delta rule®.
More precisely, let f,; , be the [-th output of the CNN, yﬁd’ be the
corresponding target for the d-th training example (where the class is
indicated in standard one-hot encoding), and A, the k-th output of the
max-pooling layer. Then the change of the corresponding weight 0y
from the pooling layer to the output layer is given by

Aby=a (yfd) ~fo ,) hy. 3)

Meta-training typically necessitates a large number of training
iterations. In our case, we used 30,000 outer loop iterations, which
makes it infeasible to directly use the hardware during this phase.
Instead, we carried out the meta-training phase entirely in software
and did not consider hardware-aware training or accurate hardware
models. To demonstrate that these techniques are indeed not needed
with our approach, we also performed outer loop training with a lim-
ited weight-precision of 4 bit and later compared the classification
accuracies. These 4 bit weights aim to simulate the neuromorphic
hardware used in this work, as an effective 4 bit equivalent precision
has been demonstrated in previous works***. In particular, we con-
sidered two cases: first, we trained a software model with 32 bit
floating-point weights (“32 bit” setting). This model does not take into
account the limited precision of PCM devices in the hardware. Second,
we trained a network that employed 4 bit quantized weights with
stochastic rounding (“4 bit” setting). Importantly, during outer loop
training, no additional hardware-aware training technique was
employed. Figure 2f shows the training and validation loss of the
model during meta-training in software. The 32 bit version and the 4
bit version converged rather smoothly, and as expected the final
training loss of the 4 bit model with 0.241 + 0.008 was higher than the
loss of the 32 bit model with 0.163 + 0.008.

After meta-training we tested the few-shot learning capabilities of
the models on 100 new unseen tasks (each task with 5 classes, i.e., 500
novel classes in total). In software, the achieved classification accura-
cies for the 32 bit and the 4 bit model were not significantly different,
see left two bars in Fig. 2g. In addition to the evaluation of the software
models, we also evaluated these models after porting them onto the
NMHW, as described above. In the inner loop, inference was per-
formed leveraging the crossbar arrays for efficient MVMs, updates for
the dense layer were computed, and the corresponding weights were
re-programmed onto the NMHW. For a detailed investigation of the
weight distributions of the NMHW model, see Supplementary Fig. 1.
Interestingly, the classification accuracies of the 32 bit and the 4 bit
models ported onto the hardware were on-par with the software ver-
sions (Fig. 2g, right two bars). We can furthermore observe that the
accuracy of the model that was trained on full-precision floating point
weights in software was on-par with that of the model trained with 4 bit
weights. Both results combined indicate that for this task, meta-
training of a hardware-accurate model is not necessary. This is quite
advantageous as one does not have to develop an accurate software
model of the NMHW for meta-training.

As described above, we performed four consecutive updates of
the network (each one containing a batch of 25 examples, 5 examples
for each of the 5 classes). An analysis of the network performance after
each individual gradient step is shown in Fig. h. We observe that the
classification performance of the NMHW models during the first two
gradient steps lacks behind the software models, but after the third
and fourth gradient steps, the performance is on par. One example
few-shot learning trial with NMHW (32 bit) is also shown in Fig. 2c.
Moreover, in every gradient step only 1120 PCM devices, the dense
layer, of a total of 342,720 PCM devices are updated, see Fig. 2e.
Updating parameters stands out as one of the most energy-intensive
operations and it could compromise the energy efficiency of the sys-
tem—see Section “Neuromorphic hardware” in “Methods”. Therefore,
the rapid learning with only a small number of gradient steps alongside
with the consideration that only a few PCM devices are updated in each
step, proves particularly beneficial for NMHW.

We investigated whether a similar rapid learning performance can
be obtained without the meta-training phase. Therefore, we used
backpropagation (BP) in the adaptation phase and trained the same
network from scratch on the 25 train images, and evaluated its gen-
eralization performance on the test images. Even though all models
learn to classify the train images very quickly, i.e., with only very few
gradient steps (Supplementary Fig. 2a), the BP-trained network exhi-
bits significant overfitting leading to poor generalization performance
to the test images (Supplementary Fig. 2b).

We also tested our approach on the more demanding CIFAR100-
FS dataset*, a few-shot learning dataset derived from CIFARIOO.
Similar to the case of the Omniglot dataset, Fig. 3a shows on the left the
5 input images from 5 classes, with their classes shown explicitly on the
right. The middle part illustrates one example for the inner loop
training with 5 update steps. For this more complex dataset, a bigger
network architecture is required to achieve high accuracy*. In
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particular, we employed a CNN with four convolutional layers with 256
hidden channels each and two dense layers with biases on top, one
with 256 output units and 1 with 5. The architecture is schematically
depicted in Fig. 3b. Importantly, similar as for the Omniglot dataset, we
only trained the weights and the biases of the last dense layer, marked
in yellow, during inner loop training. The weights are updated
according to Eq. (3) and the biases are updated according to Eq. (11).
Because this network architecture is too large to fit onto our prototype
NMHW, we leveraged a hardware-accurate emulator of the PCM
devices for our experiments*’, denoted with “EM-NMHW”. This emu-
lator was calibrated on one million PCM devices***° and models all
their major non-idealities, such as various noise effects. Therefore, it
closely matches the behavior of the NMHW that we utilized and several
works have already demonstrated equivalent accuracy between soft-
ware, the emulator, and the real hardware*®*°. Similarly, as for the
Omniglot dataset, we evaluated two cases: first, a high-precision
floating point model (“32 bit” setting) as well as a configuration with 4
bit quantized weights and stochastic rounding (“4 bit” setting).
Importantly, during outer loop training, only pure software has been
used and neither the emulator nor any other additional hardware-
aware training technique was employed. Figure 3c shows the loss
curves for the 32 bit and the 4 bit model during meta-training for
37,000 outer loop iterations. Compared to Fig. 2f, the loss curves
exhibited more noise and slower convergence with final training losses
of 0.353 £ 0.008 and 0.559 + 0.009 for the 32 bit version and the 4 bit
version, respectively. After meta-training we evaluated the models on
100 new unseen tasks (each task with 5 classes, i.e., 500 novel classes in
total). Figure 3d shows the testing accuracy of the various models after
the meta-training phase. As one can see, the emulated hardware model
performed on-par with the full-precision software model. Again, 4 bit
meta-training did not improve performance compared to meta-
training with full precision. Figure 3e shows the accuracy evolution
during inner loop training. We consistently observed accuracies close
to 100% already after the fourth gradient step. Thus, we also evaluated
the same “EM-NMHW (32 bit)” model with only 4 updates in the inner
loop. We found that it performs on-par with the model that uses 5
updates, a green bar in Fig. 3, and a green curve in Fig. 3e.

In summary, these results showcase that L2L can be effectively
applied to NMHW without the need for complex hardware models.
Moreover, it enables rapid learning of new tasks using only 4 para-
meter updates.

Rapid online learning of robot arm trajectories in biologically
inspired neural networks

Algorithm 2. Natural e-prop for one-shot learning

Input: F(7): family of tasks
Input: «, 8: learning rates
Randomly initialize 8, 1;
while Meta-Training do
Sample Niasks tasks T; ~ F(T);
foreach 7; do
Compute trainee output fg;
Compute LSG output Lt;
Compute eligibility trace e
Compute updated trainee parameters:
0l —6—-ad,L'ee
Evaluate task 7; using 8! for the meta update.
end
Update 8 < 0 — Vg >, L7;(0,9);
Update 9 ¢ — BV 3, L7:(0",9);
end

t.
)

Biology offers endless inspiration for the design of intelligent com-
puting systems. In fact, the human brain exhibits unrivaled abilities in
terms of learning from limited data and rapid adaptation to new tasks.
It has been proposed that these capabilities arise from the utilization of
prior accumulated knowledge through evolutionary processes and L2L
has been used to model such capabilities”. In contrast to neurons in
conventional artificial neural network models, biological neurons
integrate synaptic inputs over time and communicate binary events,
so-called spikes, to other neurons within recurrent networks. Mathe-
matical models for such neurons, termed spiking neurons, have been
developed®® and spiking neural networks are networks composed of
spiking neurons®>”'. Therefore, we explored in a second experiment
the applicability of L2L to recurrent SNNs with a biology-inspired meta-
learning approach leveraging NMHW. In particular, we utilized the
biologically plausible learning algorithm natural e-prop®. Natural
e-prop was designed based on two observations about learning-related
synaptic plasticity in the brain. First, molecular processes in synapses
store information about local events such as pre- and post-synaptic
activity that is relevant for future synaptic weight updates. These
molecular traces are called eligibility traces™. Second, specialized
brain areas produce learning signals that are communicated to
synapses throughout the brain, for example in the form of dopamine
release or neuronal firing®. In natural e-prop, these learning signals are
generated in a dedicated SNN, the learning signal generator. The
learning signals are communicated to the trainee, another SNN that
adapts its synaptic weights based on these signals, and eligibility traces
that are computed based on local signals at its synaptic connections.
Fig. 4a shows an illustration of the L2L setup with natural e-prop and
Fig. 4b shows a more detailed depiction of the LSG and trainee. Further
details about the network architecture and the SNN dynamics can be
found in the Section “One-shot learning via natural e-prop” in
“Methods”.

We denote the synaptic weights of the trainee and the LSG with @
and ¢, respectively. One inner loop trial consists of one simulation of
the SNNs for T time steps. In each time step ¢, the output of the LSG
gives rise to one learning signal L] for each neuron [ in the trainee
network. In the trainee, each synapse lk from neuron k to neuron [
updates its eligibility trace e, (see Section “One-shot learning via
natural e-prop” in “Methods”). The eligibility traces are combined with
the learning signals to obtain the updated weights

O =6 —ay_Lie, 4)
t

where 6y is the initial weight. To simplify the notation, let @ denote the
vector of all synaptic weights in the trainee, and e’ denote the vector of
the corresponding eligibility traces at time ¢. We define the vector of
learning signals L, where L] is the learning signal corresponding to 6,.
Then, we can write

1_
0—0—azt:L‘®ef, (5)

where © denotes the component-wise product of the vectors. After
the update, the trainee is run again (without any parameter changes)
and its output is used to compute a loss.

In each outer loop training iteration, a task 7; ~ F(7) is chosen,
the inner loop is performed, and the parameters of the LSG as well as
the initial weights of the trainee are updated based on the loss of the
inner loop. The process of the inner and outer loop learning is illu-
strated in Fig. 4a, see also “Algorithm 2”.

The meta-training objective is to find the optimal initial
parameters 0 for the trainee and the parameters @ of the LSG that
minimize the average loss across several tasks, which can be
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Fig. 3 | Few-shot image classification on CIFAR100-FS with MAML. a lllustration
of the input data from the CIFARIO0-FS dataset for the 5-way 5-shot classification
task on the left and the corresponding ground-truth targets on the right. A typical
evolution of the classification performance of the model in the inner loop with 5

updates is illustrated in the middle. b Architecture of the four-layer convolutional
neural network with two dense layers on top. Only the last dense layer, marked in
yellow, is updated during the inner loop training, while the rest of the architecture
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3

Gradient step
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remains fixed. ¢ Evolution of the loss during outer loop training of a 32 bit model
(blue) and a 4 bit model (orange) in software. d Classification accuracy of the 32 bit
software model and the emulated hardware model with 4 and 5 inner loop updates
on 100 new unseen tasks. e Classification accuracy of the various models during
inner loop training. Results with the label “NMHW” have been collected employing
the NMHW described in Section “Neuromorphic hardware” in “Methods”.

formally expressed as

6,¢=argmin Y £, (6

09 1. Fm

(6)

=argmin > L, @)

0-ad L'oce ).
09 7 F ( Z )
Note that the learning signals L’ generated by the LSG depend on the
parameters g, whereas the eligibility trace € arising from the trainee
depends on the parameters 8. We performed this optimization using
the ADAM optimizer.

We tested this setup on the task to learn to generate motor
commands for a robotic arm that produces a target trajectory from a
single exposure as proposed in refs. 36,38. In addition to experiments
with the neuromorphic hardware, we also tested the model in a real-
world robotic scenario employing the ED-Scorbot robotic arm (see
Fig. 4c and Section “The ED-Scorbot robotic arm” in “Methods”).

In this task, the input to the trainee consisted of a clock-like input
signal provided by five input neurons where the neurons were
sequentially activated, each for 50 ms. This indicated the approximate
temporal position within the 250 ms long target trajectory. The output
of the trainee consisted of 2 neurons that encoded the motor com-
mands, i.e., the angular velocities for two of the five joints of the robot,
the base joint and the shoulder joint (see Fig. 4b). The input to the LSG

was the same clock signal plus the target 3D trajectory in Euclidean
coordinates encoded by 53 input neurons. The LSG provided 250
learning signals through its output neurons (see Section “One-shot
learning via natural e-prop” in “Methods” for details). The LSG and the
trainee were first executed for 250 ms with these inputs, thus making
the target trajectory available to the LSG. Then, the weights of the
trainee were updated and the trainee was run for another 250 ms with
the same clock-like input signal. The goal was that after this single
update, the trainee controlled the robot such that it performed the
target trajectory. Note that while the target trajectory was given in
Euclidean coordinates, the output of the trainee was angular velocities
for joints.

Again, meta-training was performed with a software model of the
hardware, where we used full-precision floating point weights. In this
phase, we also used a simulation model for the robot (see Section “The
ED-Scorbot robotic arm” in “Methods” for details). In the inner loop
update and during testing after meta-learning, only the input weights
6" and the recurrent weights 6 of the trainee network were adapted.
These weight matrices were mapped onto a single core of the NMHW
after meta-training, see Fig. 4d. Non-plastic weights were kept in
software.

Figure 5a shows the network output and the robot trajectory after
meta-training but before the one-shot update. The angular velocity
commands for both joints are depicted in the first two panels and the
executed trajectory in the Euclidean space is depicted in the rightmost
panel. The network output of the full-precision model (32 bit) is
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Fig. 4 | Concept and network architecture for rapid online learning of motor
commands with neuromorphic hardware. a Learning-to-learn setup with natural
e-prop. The inner loop consists of two phases. Weight updates are based on
learning signals L’ and eligibility traces e’ after the first phase. In the second phase,
the produced robot arm trajectory of the updated recurrent SNN is validated
against the target trajectory. The resulting error is used for the outer loop update.
After meta-training, the software model for the robot is replaced by the real robotic
arm (c). b Network architecture. The network architecture consists of two

components, the learning signal generator and the trainee. The trainee produces
the motor commands as well as implicitly the eligibility traces. The learning signal
generator produces the learning signals which are combined with the eligibility
traces to form the gradient updates in the inner loop. ¢ A schematic depiction of the
robotic arm following a target trajectory indicated with a black line. The joints
controlled by the trainee are the base joint marked in blue and the shoulder joint
marked in orange. d Schematic depiction of the mapping of the input weights g™
and the recurrent weights 8" onto the crossbar array structure of the NMHW.

illustrated in blue, the output of the model employing the NMHW in
orange and the target in black. One can see that the angular velocities
produced by the models are close to zero and the robot arm hardly
moves. This indicates that the network does not have any particular
prior for a target trajectory. Figure 5b shows the behavior of the model
after the one-shot update for one example target trajectory. On the left
two panels, one can see the angular velocity output of the networks. To
quantify the agreement between the model outputs and the target
angular velocities, we evaluated three additional trajectories, see
Supplementary Figs. 3, 4, and 5. The root-mean-squared error (RMSE)
between the 32 bit model and the target angular velocities for the two
joints was (0.0381+0.0070) rad/s and (0.0363+0.0057) rad/s
respectively. The RMSE of the NMHW model was (0.1274 + 0.0811)
rad/s and (0.0668 + 0.0079) rad/s for the two joints respectively.
These small differences indicate a good overlap of the produced
angular velocities with their corresponding targets, which can also be
observed visually.

The produced trajectory in the Euclidean space is shown on the
right. The green curve represents the trajectory produced by the
NMHW model which was then executed by the ED-Scorbot. Similar to

the angular velocities, there is a good agreement between the target
trajectory and the ones produced by the models as well as by the ED-
Scorbot. Supplementary Video 1 shows the robot performing the tra-
jectory shown in Fig. 5b. We measured the RMSE deviation between the
target trajectory and the trajectories of the models and computed the
mean and standard deviation across the 4 trajectories. The 32 bit
model deviated on average by (2.2136 +1.1003) cm, the NMHW model
by (6.6921 +3.3971) cm, and the ED-Scorbot by (7.8242 +2.5005) cm.
Although the deviation of the NMHW is larger than the one of the
software model, its small value is still remarkable given the large
reduction of bit precision of weights in a recurrent SNN. For a detailed
investigation of the weight distributions of the NMHW model, see
Supplementary Fig. 6.

In summary, our results from the second task demonstrate that
L2L can be combined with online learning and applied to recurrent
spiking neural networks with PCM-based synapses on in-memory
computing NMHW to rapidly learn the generation of motor com-
mands. Importantly, a single inner loop update step is sufficient to
tune the network for a particular target trajectory, which enables
efficient realizations with NMHW.
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Fig. 5 | Results of learning motor commands with neuromorphic hardware.

a Angular velocities and trajectories in the Euclidean space of the meta-trained
network in software (blue) and with NMHW (orange) before the inner loop update.
b Angular velocities and trajectories in the Euclidean space of the networks after

one-shot learning. The green trajectory shows the trajectory of the ED-Scorbot. The
result with the label “NMHW” has been collected employing the NMHW described
in Section “Neuromorphic hardware” in “Methods”.

Discussion

In this work, we demonstrated rapid learning on a PCM-based in-
memory computing platform through the concept of L2L. As a result,
the neuromorphic hardware can not just address a single task, but
rather quickly adapt to and solve any instance from a family of related
tasks. We showcased its versatility using two different network archi-
tectures and tasks.

Firstly, we trained a convolutional neural network with MAML to
solve few-shot image classification on the Omniglot dataset. MAML
enables the optimization of initial model weights such that a new task
can be learned with a small number of online weight updates which
makes it particularly appealing for usage on neuromorphic hardware.
Moreover, we adapted MAML to further reduce the number of
required weight updates by only adjusting the weights of the dense
layer. Thus, the weight update on the NMHW reduces to a simple delta
learning rule, and only a small number of PCM devices are updated. We
have found that the software-trained models ported onto the neuro-
morphic hardware performed on par with evaluations done solely in
software which highlights that accurate hardware models are not
necessary in this task. Furthermore, MAML can in principle be applied
to any model that is trainable with gradient-based optimization.
However, standard methods like BPTT are problematic in the neuro-
morphic context as they cannot be implemented efficiently on hard-
ware. By training only the weights of the dense layer in the inner loop,
we avoided this issue as no backpropagation of errors is necessary in
this case. An interesting alternative would be to consider MAML in
combination with hardware-friendly learning algorithms such as

e-prop**, OSTL¥, or OSTTP” in the inner loop. Especially variations of
OSTL or OSTTP may prove beneficial, as they allow to train multi-
layered networks in a fully forward manner, avoiding update locking
problems of BPTT that would otherwise hinder the efficient training of
the convolutional neural network. With these algorithms, the full
potential of the NMHW can be leveraged.

From the biological perspective, meta-training can be interpreted
as an evolutionary process that shapes neural circuits of the brain to
become efficient learners for behaviorally relevant tasks”. It was pro-
posed in ref. 19. That biological learning may rely on three loops: aloop
on the time scale of evolutionary processes, a loop on the time scale of
the lifetime of the animal, and a fast loop for learning individual tasks.
We did not consider the second loop explicitly. In principle, our outer
loop could subsume both, the second loop and the first evolutionary
loop. Nevertheless, it would be interesting to model a secondary loop
explicitly where in particular unsupervised learning could play a
prominent role.

In our second task, we explored the biological perspective in
greater detail and trained a spiking neural network to produce motor
commands to control a robotic arm. In particular, we used natural
e-prop to mimic the brain’s ability to quickly adapt to new tasks. By co-
training a learning signal generator that generates the updates for the
synaptic weights of the trainee network, a new target trajectory for
robotic arm can be learned with just a single weight update. Similarly
to the Omniglot few-shot image classification in our first task, the
meta-training was carried out in software without a precise model of
the hardware. Before the adaptation phase for evaluation, the trainee
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network weights were transferred onto the neuromorphic hardware,
and weight updates were performed on the NMHW. The trajectories
generated by the network executed on the neuromorphic chip closely
matched the trajectories of the high-precision software model both
with the simulation and the real robot. Spiking neural networks have
complex dynamics compared to feed-forward networks, such as CNNs.
Therefore, it is more surprising than in the first task that the inac-
curacies of the low-precision analog PCM weights only weakly influ-
enced network performance. It is possible that the learning-to-learn
procedure resulted in a robust network that is less prone to variations
of the NMHW. However, more analysis would be needed to draw reli-
able conclusions.

In addition to the initialization-based L2L method investigated in
the first task and the parameter-generation-based L2L method of the
second task, another interesting direction for future research emerges
from the model-based L2L methods. In recent years, memory-
augmented neural networks have gained traction in the ML
community®** as well as in the SNN community®. One of their main
advantages compared to other neural networks is the ability to expli-
citly store information or associations in an external memory and
retrieve it at a later time. One can envision that not solely task-specific
information is stored in this memory, but rather information that is
important for a family of related tasks, which then gets optimized
through L2L. However, such memory-based approaches typically
require a controller to perform the read and write operations lever-
aging the external memory, which typically is a (complex) neural net-
work involving complicated update rules, e.g., an LSTM network
trained with BPTT. Hence, they may require a powerful CPU to carry
out the computations. Nevertheless, in-memory computing archi-
tectures based on PCM devices, such as the one that we employed in
our work, are well-suited to represent the external memory*°, and
hence would also present a good candidate for model-based L2L
with NMHW.

To conclude, our consistent findings across two tasks demon-
strate that L2L can enable PCM-based neuromorphic hardware to
rapidly adjust to new tasks with only very few training examples and
update steps. This is especially striking in the case of the motor com-
mand generation, as there is only a single update involved, which leads
to a very light computational load. Notably, our findings underline the
robustness of both learning-to-learn frameworks when considering
hardware variability, revealing that direct, time-intensive hardware-in-
the-loop training, or accurate models of the hardware, can be sub-
stituted with simple software approximations without sacrificing per-
formance. Moreover, the capabilities of NMHW and in particular the
matrix sizes that they can represent have recently increased
significantly™. This allows larger and more complex network archi-
tectures to be mapped and further boosts the application ranges of
L2L on NMHW. Therefore, this work lays the foundation for a pro-
mising direction for efficient neural network training on neuromorphic
hardware, emphasizing the viability of simulation-based meta-training
followed by few on-chip parameter updates.

Methods
Neuromorphic hardware
In conventional computing architectures, also referred to as von
Neumann architectures, the memory and processing units are sepa-
rate, necessitating frequent data transfers between them which leads
to latency and energy inefficiencies. In contrast, in this work, we
employ an analog in-memory neuromorphic hardware. This NMHW is,
inspired by the human brain and integrates computation and storage
in the same physical location, thus constituting an example of a non-
von Neumann computing architecture.

More specifically, the employed NMHW leverages the analog
properties of memristive devices, such as PCM and resistive random-
access memory, to encode information, such as the weights of a neural

network, in their conductance. When these devices are arranged in a
crossbar topology, matrix-vector multiplication can be carried out by
encoding the matrix elements in the conductance of the devices and
the vector elements in voltage stimuli, applied on the rows of the array.
According to Ohm’s and Kirchhoff’s laws, the induced currents on the
columns of the array are proportional to the result of the matrix-vector
multiplication. This type of computation is highly efficient as it elim-
inates the need to transfer the matrix elements, it is highly paralleliz-
able, and it takes place in the analog domain. Given the prevalence of
matrix multiplications in the majority of contemporary Al workloads,
analog in-memory computing emerges as a promising candidate for an
efficient Al hardware platform.

In our experiments, we utilize the NMHW platform described in
ref. 21. This platform consists of two PCM-based cores, each featuring a
256 x 256 crossbar array. Each unit cell adopts a 4R8T differential
configuration, employing two devices to represent positive weights
(BL") and two devices for negative weights (BL"), for a total of 262,144
devices per core. Furthermore, each core incorporates 256 digital-to-
analog converters responsible to provide input stimuli to the array
employing signed 8 bit pulse-width modulation. In particular, two
distinct input lines are used to provide inputs to the devices repre-
senting positive (WL") and negative (WL") weights, enabling multi-
phase MVM operations. In this work, we utilize 4-phase MVM opera-
tion, applying only just one sign of inputs to one sign of weights per
phase, for increased precision’. Finally, 256 analog-to-digital con-
verters are employed to digitize the induced current, alongside a local
digital processing unit tasked with performing affine correction post-
digitization and converting the output to its 8 bit representation. Each
core of the platform operates independently, controlled by an
onboard field-programmable gate array (FPGA) module, and is
abstracted as an 8 bit IN/8 bit OUT MVM unit for the purposes of
this work.

The cores were fabricated at 14 nm, with the PCM inserted in the
backend of line at IBM Research at Albany NanoTech. The PCM devices
are of mushroom-type and comprise a ring heater for the bottom
electrode, doped Ge,Sb,Tes as the phase-change material, and a top
electrode film stack, which is subtractively patterned to form the
mushroom top. More details can be found in ref. 10. The conductance
of the PCM device is tuned by changing the relative volume of the
material in the crystalline and amorphous phases, which correspond-
ingly exhibit high and low conductance. This modulation is achieved
through the application of specialized electrical stimuli during the
programming phase. Given the highly stochastic nature of this pro-
cess, an iterative read-write verify algorithm is employed to fine-tune
the conductance of the devices. Note that we use two devices to
encode a weight, selecting the pair that corresponds to its sign, while
the remaining two devices are maintained in a highly resistive RESET
state to prevent any current flow. The details of our programming
algorithm are elaborated upon in ref. 44. Additionally, post-program-
ming, the PCM devices are subject to temporal conductance drift. To
address this, we implement an affine correction for each column within
the local digital processing unit of the core'.

Deploying models on the neuromorphic hardware

The deployment of neural networks on our platformiis facilitated by an
automated software stack, which leverages PyTorch model definitions
and its runtime. This stack treats the platform outlined in Section
“Neuromorphic hardware” as two distinct 8 bit IN/8 bit OUT MVM
units, and allocates all MVM operations to them while performing all
other operations on the host machine. The deployment flow followed
by the stack is described in the following.

Initially, the model is parsed to identify all layers containing MVM
operations. Subsequently, these layers are assigned to the two cores
and mapped to distinct regions on their crossbars. For linear layers, the
mapping process is straightforward, as we place the weight arrays
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without additional processing in the crossbars. In the case of con-
volutional layers, we adopt the im2col strategy, where the filters are
flattened into a single-weight array, and the patches of the input fea-
ture maps are transformed per the im2col scheme®. In both cases, if
the resulting weight array exceeds the size of the crossbar in any
dimension, the software stack fragments it into segments that fit
within the array (see Fig. 2e). During inference, the stack combines the
partial results from the fragmented arrays accordingly.

Following this, the software stack conducts various post-training
hardware-related calibration steps to ensure maximum MVM
precision®, and programs all weight arrays onto the two cores. Finally,
the stack utilizes the PyTorch runtime to execute each MVM-
containing module on the neuromorphic hardware. Modifications to
the PyTorch runtime have been implemented to enable parallel
execution of layers across the two cores in a pipelined fashion, when
permissible by the mapping.

The ED-Scorbot robotic arm

The ED-Scorbot platform® is derived from a modified Scorbot ER-VII
commercial robot, and it operates on an event-driven neuromorphic
system. These modifications enable the robot to be controlled using
spike-based motor controllers. The ED-Scorbot is equipped with six
degrees of freedom (DoF), which are generally referred to as joints.
Each joint is capable of rotating using a DC motor. This motor is
equipped with a dual optical encoder, which is utilized to accurately
determine the present location of the joint. The previous control cir-
cuitry of the Scorbot ER-VII was replaced by a Zynq-7100 FPGA board®?,
optocoupled logic for electromagnetic isolation from the motors, and
anew 12V power supply. This new controller setup on the ED-Scorbot
implements six spike-based proportional-integrative-derivative (SPID)
controllers®. The reference given to the SPID as input can be provided
as a digital signal that represents the target position of the respective
joint. The main advantage of controlling the robot with spike-based
controllers compared to a classic digital controller, is the reduced
power consumption and the lower latency®>. When approaching the
target position, the SPID controller will produce less activity the closer
the joint is to its commanded position. Ideally, a joint that has reached
its desired position will make the SPID controller not fire any spike,
until the commanded position is changed.

For the 3D control of the robotic arm, we used the two first joints
of the robot (base and shoulder), while all other joints were fixed.
Trajectories to be executed by the robot or the robot model were
provided by the trainee SNN in the form of angular velocities for the
two controlled joints of the robot. These velocities were converted to
instantaneous angles for each joint at a time step of the SNN (the time
step was 1 ms).

For outer loop training, 3D robot arm trajectories were executed
in Python via the forward kinematics model described below (egs.
8-10). To speed up training, the commanded angular velocities and
corresponding instantaneous angles were immediately applied to each
joint, i.e., each joint instantaneously reached its commanded position
at each time step. This trajectory was then used to calculate the loss
function for the outer loop updates.

For evaluation after outer loop training, both the simulated model
and the real robot arm were used. For the simulated robot, the angles,
calculated from the angular velocities produced by the SNN, were
converted to Euclidean coordinates of the end-effector via the forward
kinematics model. At each SNN time step, the coordinates were
recorded and used for evaluation. The mean-squared error between
the target trajectory and the commanded trajectory in Euclidean space
was used to evaluate the performance of the SNN.

For evaluation utilizing the physical robot, the angular velocities
for the joints were provided to the robot through a file-based protocol.
First, they were translated into joint angles and then converted to
spike-reference values. Those served as inputs for the SPID which then

controlled the joints of the robot. These target joint angles for each
SNN time step were applied for 250 ms in order to allow the robot to
reach the position. This means that the trajectory which lasted 250 ms
in the time scale of the SNN (250-time steps, each 1ms), lasted
approximately one minute in real-time when executed on the physical
robot. The measured positions of the robot joints were recorded at
every time step and used to compute the Euclidean coordinates of the
tip of the arm, employing the forward kinematics of the robot. Again,
the mean-squared error between the target trajectory and the com-
manded trajectory in Euclidean space was used to evaluate the per-
formance of the SNN.

The formulation for the forward kinematics of the ED-Scorbot
robotic arm based on the Denavit-Hartenberg (D-H) matrix is given by

X =a;c(6) +a,c(6,6,) — a;5(6,05)c(6,) + a;c(6,6,05)
+a,(—5(6,05)c(6,) + c(6,0,65))c(0,) — d,5(6;) (8)
+0,(—5(0,)c(6,65) — 5(63)c(0,0,))s(64) — d35(6,),

Y=a;5(6)) + a,c(6,0,) — a35(6,0,05) + a;s(6,)c(6,65)
+a,(—5(6,0,05) +5(6,)c(0,05))c(6,) + d,c(6;) 9)
+a,(—5(6,6,)c(0;) — 5(6,05)c(6,))c(6,) + d5c(6y),

z= — 4,8(6,) — a35(6,)c(05) — a35(03)c(6,) + a,(s(6,65)

10
— €(0,05))s(8,) + ay(—s(6,)c(63) — s(05)c(6,))c(6,) + d, a0

where for the sake of clarity and brevity, we represent cos and sin
functions with the letters ¢ and s, respectively, and multiplications of
cosine and sine functions are expressed as in this example:
cos(6;) cos(6,) =c(6,6,). Table 1 shows D-H parameters for our setup.

Few-shot image classification

In this work, we demonstrate few-shot image classification with MAML
on two datasets. In the first case, we used the Omniglot dataset and
followed the architecture outlined in ref. 22. We used a convolutional
neural network with four blocks consisting of convolutional layers with
3 x 3 convolutions and a stride of 2, followed by a ReLU non-linearity
and a batch normalization. The output of these four blocks was passed
into a max-pooling layer, with a size of 2 x 2 and a stride of 1, followed
by a dense output layer with a softmax activation. Compared to?, the
four convolutional layers have been reduced from 64 filters to 56 filters
in order to fit the network onto the NMHW described in “Neuro-
morphic hardware”, see Fig. 2d for an illustration of the network
configuration. The network was trained using the cross-entropy loss.
The meta-training was performed for 30,000 iterations with a batch
size of 40 and learning rate = 0.001, while the inner loop performed
n=4 gradient update steps with learning rate a=0.1. After meta-
training, the models were evaluated for 100 tasks. Note that during
inner loop training, as well as during the evaluation, only the weights of
the dense layer were adapted.

In the second case, we used the more demanding CIFAR100-FS
dataset*®, a few-shot learning dataset derived from CIFAR100. For
this dataset, we used a convolutional neural network with four blocks
consisting of convolutional layers with 3 x 3 convolutions, a stride of

Table 1| Denavit-Hartenberg parameters of the ED-Scorbot
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2256 hidden channels, followed by a ReLU non-linearity and a batch
normalization. The output of these four blocks was passed into a
max-pooling layer with a size of 2 x 2 and a stride of 1. On top of that,
we used two dense layers with biases, one with 256 output units and
one with 5. Finally, we used a softmax activation on the 5 output units
to obtain class probabilities. The network was trained using the
cross-entropy loss. The meta-training was performed for 37,000
iterations with a batch size of 4 and learning rate §=0.001, while the
inner loop performed n =5 gradient update steps with learning rate
a = 0.1. After meta-training, the models were evaluated for 100 tasks.
Note that during inner loop training, as well as during the evaluation,
we only updated the weights and the biases of the last dense layer.
The weights were updated according to eq. (3) and the biases
according to

Ab, = a(yﬁd) —fon).

Because we realized that the accuracy during inner loop training
reached close to 100% already after the fourth gradient update, we also
evaluated the same model with only 4 inner loop gradient
update steps.

an

One-shot learning via natural e-prop

In natural e-prop, a learning signal generator SNN and a trainee SNN
operate jointly. While the trainee produces the functional output, the
LSG produces learning signals that are employed to form the weight
updates of the trainee. During the meta-training phase, the LSG and
trainee network are jointly trained on a family of tasks. During this
phase, the weights of the LSG initial weights of the trainee are trained
using BPTT. In the inner loop, only the weights of the trainee network
are adapted utilizing the learning signals emitted by the LSG and the
eligibility traces of the trainee.

We considered SNNs for both, the LSG and for the trainee net-
work. The trainee was composed of 250 leaky integrate-and-fire (LIF)
neurons, followed by a linear readout layer. It received a clock-like
signal that was the same across all trials. The goal of the trainee was to
produce motor commands in terms of angular velocities ®* such that
the produced trajectory " by the robotic arm matches the target
trajectory y". See Fig. 4a, b for an overview. The LSG was composed of a
mix of LIF and adaptive leaky integrate-and-fire (ALIF) neurons,
received the same clock-like signal as the trainee and additionally, the
target trajectory ). It consisted of 800 neurons in total where 30% of
the population were ALIF neurons. In contrast to the trainee, the task
of the LSG was to produce suitable learning signals, so that after a
single update of the weights of the trainee, the target trajectory could
be followed.

Both SNNs were simulated in discrete time with a resolution of
1ms and synaptic delays were fixed to 1 ms. For the LIF neurons, the
membrane voltage uj and the presence of output spikes (zf=1)
evolved according to

t+1 _ 5 rec ¢ in_t t
ytt=puie Y 0z Y Ohxt — Zfuy,
i# i

vV — vy
Zi=H|(- ,
Uth

where x; =1 indicates an input spike from neuron i at time ¢, vth is the
spike threshold, 6; and 6 are the weights for recurrent and input
neurons between neuron i and neuron j, respectively. The membrane
decay factor y is defined by exp(— f—;), where 6t is the simulation time
step and 7, is the membrane time constant. The neuronal reset was
realized using the term —z}uth. The Heaviside step function H is

defined as H(x) =1, ¢ and is not differentiable. This can be resolved by

12)

13

t_

using a pseudo-derivative given by hj =Amax(0,1— | Uf'u‘:‘“|), where 1is
a dampening factor that controls the slope of the pseudo-derivative.
The eligibility traces of LIF neurons can be written as
e =Ry, . y*" 2t which corresponds to a low-pass filtered version
of the pre-synaptic spikes. Thus, the weight updates for the recurrent
weights and input weights can be formulated as

MG = —ad Lik > vtz (14)
t t'<t
AR = —ay Lk Yy xd, (15)
t <t
where the learning signal L} is given by
Li=aLi ™+ > giee. (16)
i

Here, the constant a. denotes the learning signal decay rate, y; refers
to the output weights, and &' is the output of neuron i of the learning
signal generator. The learning signal can be interpreted as a low-pass
filtered version of the learning signal generator output.

For the ALIF neurons, the evolution of the membrane voltage uj is
equivalent to the LIF neurons as described above, but the threshold A}
is adaptive and evolves according to

Aj = v +Baj, 17)
where vth is the baseline threshold, § is the threshold increase con-
stant, and aj is the threshold adaptation given by

Ut — At
a}ﬂ:pa;"'H(J J ,
12
th

8)

with the decay factor p = exp(— %f), the discrete-time step 6t =1ms, and
the adaptation time constant 7.

The weight update above describes the inner loop update of the
meta-learning procedure. For the outer loop, the initial weights of both
the trainee and the learning signal generator were optimized via
backpropagation through time. The loss function for the outer loop is
given by

1. 2 1 g ’
ﬁTi _ Z <§ <y€est _ygest) + E ((Diest - ¢€e5t> > + Ereg

T
2
t
Zj> ftarget) ’
¢

where P, Veosr, @Eest and @, refer to trajectories and angular velo-
cities at test time after a single weight update of the trainee. The
additional loss term £, implements a firing rate regularization®® with
target firing rates of fiurgec =10 Hz (20 Hz) with regularization coeffi-
cients of €=0.25. T denotes the duration of a single trial.

This optimization problem was solved with the ADAM optimizer,
across tasks sampled from a task distribution F (7). See “Algorithm 2”
for a detailed description of the interplay between the meta-training
and the inner loop updates. The model was trained for 100,000
iterations with mini-batches of 90 trajectories. The Adam optimizer
used a learning rate of 0.0015 with a learning rate decay factor of 0.99
after 500 training iterations and an inner loop learning rate of 0.0001.
The membrane time constant of 20 ms, a refractory time of 5ms, a
dampening factor of 0.3, a threshold increase § of 1.6, and an adap-
tation time constant of 600 ms were used for both the LSG and trainee

19)

Ereg =€ z ( <i‘t : (20)

J
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neurons. A threshold voltage vth of 1.3 (0.6) was used for the LSG
(trainee) network.

The clock-like input signal was realized using 5 input neurons that
fired with 100 Hz for 50 ms each one after another in a sequence for a
total of 250 ms. The target angular velocities of the robot arm were
generated using a Wiener process W, where Wo=0and W,_, — W, ~
N(0, u) at time ¢ with a variance u of 0.09. The realization of the Wiener
process was then smoothed using a Hann window w(n)

w(n):l—lcos( 21m>
M—-1

@n

with a length of M =120 steps via a convolution (W = w)[¢]. In addition,
safeguards were introduced that prevented the robot arm from per-
forming trajectories that could cause damage to the robotic platform.
Based on the forward kinematics model described above in Section “The
ED-Scorbot robotic arm” the positions of the end-effector were
computed in Euclidean coordinates and passed to the LSG. To convert
the Euclidean coordinates into a series of spike trains, the following
procedure was carried out: Each dimension of the Euclidean space was
discretized into 16 regions. Each region was represented by the activity of
asingle neuron with a firing rate of 100 Hz. Therefore three neurons were
active at any given moment encoding the position of the end-effector.
The use of the NMHW in this task was as follows. After meta-train-
ing, the input weights 8" and the recurrent weights 8 of the trainee
network were mapped onto a single core of the NMHW after meta-
training, see Fig. 4d. Non-plastic weights were kept in software. For
testing, the hardware was then used to compute all MVMs needed to
execute the trainee SNN. After the presentation of the target trajectory in
the first 250 ms, weight updates were computed and the corresponding
PCM devices on the hardware were updated. Then, the trainee was again
executed for 250 ms with the clock input using the NMHW for the MVMs.

Data availability

The Omniglot data for Fig. 2 and CIFARIOO-FS data for Fig. 3 are pre-
sented in ref. 33 (https://github.com/brendenlake/omniglot) and in
ref. 46 (https://github.com/bertinetto/r2d2?tab=readme-ov-file). The
data for the robotic task generated in this study can be re-created by
using the Source Code files provided in an open-source repository
along with this manuscript®.

Code availability

We have published the source code that allows the reader to repro-
duce our results of the paper under the Apache-2.0 license on GitHub.
It can be accessed using®.
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