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AlphaFold prediction of structural
ensembles of disordered proteins

Z. Faidon Brotzakis 1,2,3, Shengyu Zhang1,3, Mhd Hussein Murtada 1,3 &
Michele Vendruscolo 1

Deep learning methods of predicting protein structures have reached an
accuracy comparable to that of high-resolution experimental methods. It is
thus possible to generate accurate models of the native states of hundreds of
millions of proteins. An open question, however, concerns whether these
advances can be translated to disordered proteins, which should be repre-
sented as structural ensembles because of their heterogeneous and dynamical
nature. To address this problem, we introduce the AlphaFold-Metainference
method to use AlphaFold-derived distances as structural restraints in mole-
cular dynamics simulations to construct structural ensembles of ordered and
disordered proteins. The results obtained using AlphaFold-Metainference
illustrate the possibility of making predictions of the conformational proper-
ties of disordered proteins using deep learning methods trained on the large
structural databases available for folded proteins.

The application of deep learning methods to the protein folding pro-
blem has transformed our ability to generate accurate models of the
native states of proteins from the knowledge of their amino acid
sequences1–5. The initial predictions of the native structures of proteins
have also been recently extended to protein complexes5–7.

These advances have prompted the question of whether it is
possible to use this type of approach for the prediction of the con-
formational fluctuations of the native states of folded proteins8–16, and
more generally for the characterisation of the structural properties of
the native states of disordered proteins17–20. Support for this idea
comes from the observation that AlphaFold performs as well as cur-
rent state-of-the-art predictors of protein disorder21,22. It has also been
reported that the predicted aligned error (PAE) maps from AlphaFold
are correlated with the distance variation matrices from molecular
dynamics simulations9, suggesting that AlphaFold provides informa-
tion about the dynamics of proteins in addition to their structures.

Since the native states of disordered proteins can be represented in
terms of ensembles of conformations with statistical weights obeying
the Boltzmann distribution17,19,23,24, a relevant goal is to extend AlphaFold
to predict structural ensembles. In thiswork, wepropose an approach to
perform this task. We base this approach on the observation that

AlphaFold can predict inter-residue distances even for disordered pro-
teins, despite having been trained on folded proteins.

The possibility of performing predictions about disordered pro-
teins based on the information available for ordered proteins is
important. This is because it enables the transfer to disordered pro-
teins of inter-residue distance information derived from folded pro-
teins. For the training of deep learning methods, large numbers of
high-resolution structures of folded proteins are available in the Pro-
tein Data Bank (PDB)25. By contrast structural ensembles of disordered
proteins have been determined in much lower numbers and with less
accuracy23, making it challenging to use them to train deep learning
methods. As an alternative, training on model structural ensembles
derived from molecular simulations has been reported26,27.

In the AlphaFold pipeline, the predicted inter-residue distances
are provided in the formof a distancemap (or distogram), fromwhich
the structure of a protein can be constructed1. Currently, however,
structure predictions by AlphaFold for disordered proteins are not
fully consistent with small-angle X-ray scattering (SAXS) data18. This is
because, for a disordered protein, the prediction problem consists in
the translation of the predicted distance map into a structural
ensemble, rather than a single structure. There are many well-
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established ways to reconstruct a structural ensemble from a dis-
tance map.

Here we show that it is possible to use the predicted distances as
structural restraints in molecular dynamics simulations, so that the
resulting structural ensembles are consistent with the predicted
distances24,28,29. Since our aim is to generate structural ensembles of
proteins that contain disordered regions, we implemented the struc-
tural restraints according to themaximumentropyprinciplewithin the
metainference approach28. We illustrate the resulting AlphaFold-
Metainference approach for a set of well-studied highly disordered
proteins30 as well as for proteins that include both ordered and dis-
ordered domains, including TAR DNA-binding protein 43 (TDP-43),
which is associated in amytrophic lateral sclerosis (ALS)31, ataxin-3,
which is linked with Machado–Joseph disease (also known as spino-
cerebellar ataxia type 3)32, and the humanprionprotein33, whichcauses
Creutzfeldt–Jakob disease and related prion diseases34.

Results
AlphaFold predicts accurate inter-residue distances
The AlphaFold-Metainference method that we report in this work is
based on the observation that AlphaFold can predict the average
values of inter-residue distances for disordered proteins (Fig. 1 and
Supplementary Fig. 1). This feature may have not been evident so far
likely because the reconstruction of individual structures from dis-
tance maps currently provided by AlphaFold is tailored toward the
prediction of structured native states1.

SAXS-derived distance distributions. Since obtaining experimental
information about inter-residue distances for disordered proteins is
challenging24, comparing predicted and measured inter-residue dis-
tances requires some considerations. In techniques that exploit
labels, such as fluorescence resonance energy transfer (FRET) and

paramagnetic relaxation enhancement (PRE) in nuclear magnetic
resonance (NMR) spectroscopy, the presence of the labels themselves
could affect the properties of the conformational ensembles35–37. Here,
we used small-angle X-ray scattering (SAXS) data and NMR diffusion
measurements, which offer label-free information about inter-residue
distance distributions in disordered states of proteins. Our results
show that there is a good agreement between the AlphaFold predic-
tions of distancedistributions and the SAXS-derived ones for a set of 11
proteins for which both SAXS measurements NMR diffusion mea-
surements are available, and add a folded protein (ubiquitin,
PDB:1UBQ [https://doi.org/10.2210/pdb1UBQ/pdb]) as control (Fig. 1
and Supplementary Fig. 2). Since AlphaFold predicts distances up to
about 22Å (see Methods), the AlphaFold-predicted distance distribu-
tions do not cover the entire SAXS-derived distributions. To obtain the
SAXS-derived distance distributions from the SAXS profiles, we used a
method described previously38 (see Methods). The AlphaFold-derived
distance distributions (distograms) are shown in Supplementary Fig. 3.
We found a comparable value ofDKL (0.037) for ubiquitin with respect
to the 11 highly disordered proteins (DKL range: 0.008–0.096) (Fig. 1),
further indicating that AlphaFold predicts inter-residue distances with
comparable accuracy for ordered and disordered proteins.

Distance maps derived from molecular simulations. For further
validation, we analysed recently reported structural ensembles of Aβ39

and α-synuclein40 obtained using all-atom molecular dynamics (MD)
simulations, and coarse-grained simulations using CALVADOS-2 (C2),
which are in good agreement with experimental data. The distances
predicted by AlphaFold are in good agreement with those back-
calculated from the MD ensembles of Aβ and α-synuclein (Supple-
mentary Fig. 1A, B) and from the CALVADOS-2 ensembles (Supple-
mentary Fig. 1C–M). Since AlphaFold predicts distances up to about
22 Å, this correlation stops at around this value.

Fig. 1 | Comparison of inter-residue distance distributions obtained by SAXS
and predicted by AlphaFold for highly disordered proteins. A–K Results for a
set of 11 highly disordered proteins for which both SAXS and NMR diffusion mea-
surements are available36. SAXS-derived inter-residue distance distributions are
shown in black, and AlphaFold-predicted average inter-residue distance distribu-
tions are shown inblue. The cut-off distance in theAlphaFoldpredictions is 21.84Å,

so the blue lines stop at this value. For comparison, we report the Kullback–Leibler
divergence (DKL) between SAXS and AlphaFold-predicted average inter-residue
distance distributions The proteins shown are: ANAC046 (A), A1 (B), ProTα (C),
GHR-IDC (D), tau (E), Sic1 (F), DSS1 (G), NHE6cmdd (H), RS (I), Hst5 (J), and α-
synuclein (K). L For comparison, we show the results for a folded protein
(ubiquitin).
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SAXS validation of highly disordered structural ensembles
As mentioned above, the use of SAXS measurements enables the cal-
culation of pairwise distance distributions (Fig. 2A–K, black curves).
We compared these experimentally-derived distance distributions
with those obtained from structural ensembles determined from the
AlphaFold-Metainference simulations (Fig. 2A–K, green curves) (see
Methods) for the 11 highly disordered proteins described above. We
chose this set of proteins because of the availability of SAXS data, and
the range of length (24–414 residues) and scaling exponent ν
(0.49–0.62) (seeMethods and Supplementary Fig. 4). For comparison,
we also show the distance distributions obtained using CALVADOS-2
(Fig. 2A–K, orange curves) and directly from the AlphaFold-derived
distance distributions generated from individual AlphaFold structures
(Fig. 2A–K, purple curves). To provide a quantitative comparison, we
show that AlphaFold-Metainference and CALVADOS-2 provide struc-
tural ensembles in better agreement with SAXS data compared to
individual AlphaFold-derived structures (Fig. 2L). Together with the
comparison of the radius of gyration (Rg) values from AlphaFold-
Metainference and AlphaFold with experimental SAXS values (Sup-
plementary Fig. 4), these results indicate that individual AlphaFold
structures of are not in good agreement with experimental SAXS data.

We further compared the structural ensembles using NMR che-
mical shifts, which were back-calculated at each time step using
CamShift41,42 (Supplementary Fig. 5). Although the structure-based
predictions of chemical shifts can be made only with considerable
errors41,42 (Supplementary Fig. 5, grey bars), as an illustration we found
that theHN chemical shifts for Sic1, fromAlphaFold-Metainference are
marginally more accurate than those from CALVADOS-2, while in all
other cases we could not reliably rank the performances of the two
approaches (Supplementary Fig. 5).

We further show how the highly disordered proteins described
above span values for the scaling exponent ν that deviate from the
Flory value for random coils (ν = 0.5) (Supplementary Fig. 4B). For

these highly disordered proteins, AlphaFold-Metainference generates
structural ensembles in better agreement with the Rg values derived
from SAXS experiments. These results further illustrate how, when
AlphaFold-predicted distances are applied as structural restraints in
molecular simulations through the AlphaFold-Metainference
approach, they generate accurate distance distributions (Fig. 2).

We also show the sequence separation of theAlphaFold-predicted
distances that are used as restraints in AlphaFold-Metainference after
introducing a filtering criterion described (see Methods, Supplemen-
tary Fig. 6). For these proteins, AlphaFold-Metainference tends to
improve the agreement with the experimental SAXS data compared to
CALVADOS-2, as measured using the Kullback–Leibler distance (see
Methods) (Fig. 2L). Thisfinding canbe attributed to the introductionof
short-range distances restraints (Supplementary Fig. 6).

SAXS validation of partially disordered structural ensembles
To illustrate the application of AlphaFold-Metainference to partially
disordered proteins, we considered a set of 6 proteins that contain both
ordered and disordered domains, spanning a range sequence lengths,
and for which SAXS data are available for validation (see Methods).

We first present the results for TDP-43, a multifunctional RNA-
binding protein with a modular structure that allows it to engage in
various cellular processes, including transcription, pre-mRNA splicing,
and mRNA stability31. TDP-43 is also associated with ALS and other
neurodegenerative diseases31. The sequence of TDP-43 comprises 414
amino acids, which form different domains (Fig. 3). These domains
include a folded N-terminal domain (residues 1–76), a disordered
region (residues 77–105), a folded RNA recognition motif (residues
106–176), a second disordered region (residues 177–190), another
folded RNA recognition motif (residues 191–259), and an long dis-
ordered C-terminal domain (residues 274–414), which contains a
glycine-rich region, is involved in protein-protein interactions, and
harbors most of the mutations associated with ALS43. Because of the

Fig. 2 | Comparison of pairwise distance distributions for highly disordered
proteins from SAXS data and from structural ensembles obtained by mole-
cular simulations. A–K Experimental pairwise distance distributions obtained by
SAXS (SAXS, black lines) are compared with those directly calculated from the
AlphaFold single-structure predictions (AF, purple lines), and the AlphaFold-
Metainference structural ensembles (AF-MI, green lines). For comparison, the

pairwise distance distributions obtained using CALVADOS-2 are also shown (C2,
orange lines). The proteins are the same shown in Fig. 1A–K. L Quantitative
assessment using the Kullback–Leibler divergence of the agreement between
experimental and calculated distance probability distributions between SAXS and
AlphaFold single-structure (purple), CALVADOS-2 (orange), and AlphaFold-
Metainference (green).
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presence of three disordered regions, the direct use of AlphaFold from
the AlphaFold Protein Structure Database44 results in a predicted
structure spanning high accuracy regions with high Predicted Local
distance difference test (pLDDT) confidence score at the N-terminal
domain and RNA recognition motifs (pLDDT>90) and low pLDDT
confidence score for disordered regions (pLDDT< 50) (Fig. 3A) leading
to an overall low agreement with the SAXS data (Fig. 3C and Fig. 6D),
with a high DKL value (0.582). However, when applied our filtering
criteria (see Methods) to select AlphaFold-predicted distances, fol-
lowed by applying AlphaFold-Metainference with these distance
restraints, we obtained a structural ensemble (Fig. 3B), which is in
better agreement with the SAXS data, as measured by a DKL value of
0.018 (Fig. 3C and Fig. 6D).

To explore further the possibility of using AlphaFold-
Metainference to predict structural ensembles of partially dis-
ordered proteins, we then analysed ataxin-3. The structure of this
protein consists of an N-terminal Josephin domain (residues 1–182),
and a long, disordered C-terminal domain that hosts the poly-Q tract32

(Fig. 4). Again, because of the presence of long disordered regions, the
use of AlphaFold from the AlphaFold Protein Structure Database
resulted in a predicted structure (Fig. 4A) not in good agreement with
the SAXS data (Fig. 4C and Fig. 6D), with DKL value of 0.653. However,
when applied our filtering criteria to select AlphaFold-predicted dis-
tances for the AlphaFold-Metainference simulations, we obtained a
structural ensemble (Fig. 4B) in better agreement with the SAXS data,
as quantified by a DKL value of 0.020 (Fig. 4C and Fig. 6D).

Next, we report the results that we obtained using AlphaFold-
Metainference for human prion protein, which has been intensively
studied because of its role in Creutzfeldt–Jakob disease and related
prion diseases34. This protein comprises a highly disordered
N-terminal region that contains a series of octapeptide repeats
involved in binding metal ions, and a folded C-terminal region that
consists of three α-helices and two short β-strands (Fig. 5). The long,
disordered N-terminal region makes it challenging to use AlphaFold
directly from the AlphaFold Protein Structure Database. The structure
predicted in this way (Fig. 5A) is not in good agreement with the SAXS
data (Fig. 5C), with a DKL value of 0.1. However, when applied our
filtering criteria, we obtained a structural ensemble (Fig. 5B) in better
agreement with the SAXS data, as quantified by a DKL value of 0.053
(Fig. 5C and Fig. 6D).

Other 3 proteins (CbpD,H16, and PC) thatwe studied are shown in
Fig. 6A–C. Overall, these results show that in all cases the agreement
between experimental and back-calculated inter-residue distance dis-
tributions is very good, andmuch improved with respect to AlphaFold
individual structures from the AlphaFold Protein Structure Data-
base (Fig. 6D).

To compare the structural ensembles generated by using
AlphaFold-predicted distances as structural restraints within the
AlphaFold-Metainference approach and those generated using CAL-
VADOS-2, where only the folded domains were restrained (RMSD-C2),
we calculated the respective DKL values (Fig. 6D). We found that for
four (ataxin-3, CbpD, H16, and PC) of the six proteins analyzed,
AlphaFold-Metainferenceperformsbetter thanRMSD-C2,while for the
remaining two (TDP-43 and human prion protein) the two methods
produce comparable structural ensembles, a result that can be
attributed by the relatively low number of long-range restraints from
the AlphaFold predictions (Supplementary Fig. 6).

Discussion
We described the AlphaFold-Metainference method of generating
structural ensembles representing the native states of disordered
proteins and of proteins containing disordered regions. Themethod is
based on the observation that the inter-residue distances predicted by
AlphaFold are relatively accurate even for disordered proteins
(Figs. 1 and 2 and Supplementary Fig. 1), so that they can be used as
structural restraints in molecular dynamics simulations within the
metainference framework (Figs. 3–6).

The finding that AlphaFold can predict inter-residue contacts for
disordered proteins, despite the absence of disordered proteins in the
AlphaFold training dataset, may perhaps seem surprising. Since deep
learning methods are known for not being able to readily generalise to
cases not encountered during training, this resultmay indicate that the
types of interactions between residues that stabilise the native states of
disordered proteins do not fundamentally differ from those that sta-
bilise the native states of folded proteins, but they may just be collec-
tively less stable. This possibility is also consistentwithprevious studies
that reported that proteins in unfolded states sample preferentially
intermolecular contacts present also in their native states45–49.

To generate structural ensembles, AlphaFold-Metainference
translates the AlphaFold distograms into structural ensembles using
the predicted distances as structural restraints in molecular dynamics
simulations24,28,30. We also showed previously that the predicted dis-
tance maps can be employed in a reweighting approach, where one
can use as starting point structural ensembles obtained by molecular
dynamics simulations50.

Overall, the results that we presented illustrate the use of deep
learningmethods originally developed for predicting the native states of
folded proteins to generate structural ensembles representing the
native states of disordered proteins. The scope of protein structure
predictions based on deep learning can thus be considerably extended.
We note that the use of all-atom force fields could increase the accuracy
of the resulting structural ensembles, although at the price of longer

Fig. 3 | Structural ensemble of TDP-43 predicted using AlphaFold-
Metainference. A An individual structure of TDP-43 predicted by AlphaFold46. The
colors correspond to the predicted local distance difference test (pLDDT) score of
AlphaFold, which is used to evaluate the accuracy of the predicted structure. The
presence of long regions of low pLDDT score (red) indicates that the disordered

regions are not well predicted. B Structural ensemble of TDP-43 predicted by
AlphaFold-Metainference. C Comparison between the pairwise distance distribu-
tions obtained by SAXS (black) with those predicted by AlphaFold single structure
(purple) and by AlphaFold-Metainference (green).
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simulation times, and that combining AlphaFold-predicted distances
with experimental data, including NMR spectroscopy, SAXS, and cryo-
electron microscopy (cryo-EM), would also be possible using the
metainference framework.

Methods
AlphaFold-predicted distances
Average inter-residue distances were predicted through the distogram
head of AlphaFold1. These distances are defined between the β carbon
atompositions for all amino acid types except glycine, for which the α
carbon atom positions were instead used. The multiple sequence
alignment (MSA) was conducted by MMseqs251 (default setting) on
BFD/MGnify3 and Uniclust3052. Model 1.1.1 of AlphaFold (default
setting)1 was used for the predictions, with no structural templates.
AlphaFold provides distributions of inter-residue distances into 64
bins of equal width, covering the range from 2.15625 to 21.84375 Å,
with the last bin also including distances longer than 21.84375 Å. For
each pair of residues (i and j), AlphaFold predicts the probability pb

ij
that their distance is within bin b. The predicted distance d̂ij and the
standard deviation σij of the predicted distribution of the distances
between residue i and j are calculated by

d̂ij =
X64

b= 1

dbpb
ij ð1Þ

σij =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X64

b= 1

db � d̂ij

� �2
pb
ij

vuut ð2Þ

where db represents the central value of bin b.

Metainference
Metainference is a Bayesian inference method that enables the deter-
mination of structural ensembles by combining prior information and
experimental data according to the maximum entropy principle28. In
this work, we implemented this method by using the distogram (or
distance map) dAF predicted by AlphaFold as pseudo-experimental
data. By design, metainference can disentangle structural hetero-
geneity from systematic errors, such as force field or forward
model inaccuracies, random errors in the data, and errors due to the
limited sample size of the ensemble28. The molecular simulations are
carried out according to the metainference energy function,
E = � kBT log pMI

� �
, where kB is the Boltzmann constant, T is the

temperature, and pMI is the metainference, maximum-entropy-com-
patible, posterior probability

pMI X,σSEM ,σBjD� �
=
YNR

r = 1

p Xr

� �YND

i= 1

pðDj X,σSEM
i ,σB

r, iÞpðσr, iÞ ð3Þ

In this formula, X denotes the vector comprising the atomic
coordinates of the structural ensemble, consisting of individual repli-
cas Xr (NR in total), σSEM the error associated to the limited number of
replicas in the ensemble, σB the random and systematic errors in the
prior molecular dynamics force field as well as in the forward model
and the data, and dAF the AlphaFold distogram. Note that σSEM is cal-
culated for each data point (σi

SEM), while σB is computed for each data
point i and replica r as σr,i

B. The functional form of the likelihood

Fig. 5 | Structural ensembleofhumanprionproteinpredictedusingAlphaFold-
Metainference. A An individual structure predicted by AlphaFold46. The colors
correspond to the predicted local distance difference test (pLDDT) score of
AlphaFold. The presence of long regions of low pLDDT score (red) indicates that

the disordered regions are not well predicted. B Structural ensemble predicted by
AlphaFold-Metainference. C Comparison between the pairwise distance distribu-
tions obtained by SAXS (black) with those predicted by AlphaFold single structure
(purple) and by AlphaFold-Metainference (green).

Fig. 4 | Structural ensemble of ataxin-3 predicted using AlphaFold-
Metainference. AAn individual structure of ataxin-3 predicted by AlphaFold46. The
colors correspond to the predicted local distance difference test (pLDDT) score of
AlphaFold. The presence of long regions of low pLDDT score (red) indicates that

the disordered regions are not well predicted. B Structural ensemble of ataxin-3
predicted by AlphaFold-Metainference. C Comparison between the pairwise dis-
tance distributions obtained by SAXS (black) with those predicted by AlphaFold
single structure (purple) and by AlphaFold-Metainference (green).
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p(dAF |X, σiSEM, σr,iB) is a Gaussian function

p dAF jX, σSEM
i , σB

r, i

� �
=

1
ffiffiffiffiffiffi
2π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσB

r, iÞ
2 + ðσSEM

i Þ2
q exp � 1

2

dAF
i, j � dijðXÞ2

ðσB
r, iÞ

2 + ðσSEM
i Þ2

2
666

3
777 ð4Þ

wheredi,j(X) represents the forwardmodel for data point i,j, namely the
i,j distance calculated in the structural ensemble. Formultiple replicas,
the metainference energy function is

EMI X , σð Þ= EMD Xð Þ+ kBT
2

XNR ,ND

r, i

di � f i Xr

� �� �2

σB
r, i

� �2
+ σSEM

i

� �2 + Eσ ð5Þ

where Eσ corresponds to the energy term associated with the errors

Eσ = kBT
XNR ,ND

r, i

� log σB
r, i

� �
+
1
2
log σB

r, i

� �2
+ σSEM

i

� �2h i
ð6Þ

Finally, EMD corresponds to the potential energy function of the
molecular dynamics force field, which in this case is the CALVADOS-2
force field53. While the space of conformations Xr is sampled through
multi-replica simulations (in this study we used six replicas) the error
parameters for each datapoint σr,i

B are sampled through a Gibbs
sampling scheme at each time step28. The range of the error sampling
was [0.0001,10] and the associated trialmove error perturbationof the
Gibbs sampling was 0.1. The error parameter due to the limited num-
ber of replicas used to estimate the forward model (σSEM) was calcu-
lated on the fly by window averaging every 200 steps of molecular
dynamics.

Selection of AlphaFold-predicted distance restraints
The AlphaFold-predicted distance maps corresponding to the pro-
teins presented in the main text are shown in Supplementary Fig. 3.
Since AlphaFold is not trained to predict distances above 21.84 Å, we
excluded distances with pi, j r ≥ 21:84Å

� �
>0:02. For the selected dis-

tances, there is a good correlation between the AlphaFold-predicted
distances with those back-calculated from molecular dynamics
simulations and from CALVADOS-2 (Supplementary Fig. 1). In addi-
tion, we further selected the distances using the predicted alignment
error (PAE) of AlphaFold, which provides a metric of accuracy for
predicted distances (Supplementary Fig. 8). For this purpose, we used
as benchmarking comparison a subset of 6 proteins for which
CALVADOS-2 results in relatively large deviations from the experi-
mental Rg values54 (Supplementary Fig. 7). This approach led us to
define the following distance selection criterion. For hydrophilic
proteins (as measured by a Kyte–Doolittle hydropathy score← 1.4),
which tend to be more disordered, with at least a 5-residue stretch
with a predicted local distance difference test (pLDDT) score > 75,
AlphaFold-predicted distances with PAE < 10 are selected. Otherwise,
distances with PAE < 5 are selected. Furthermore, as the CALVADOS-2
coarse-grained model used in the AlphaFold-Metainference simula-
tions does not maintain the secondary structure, we employed the
pLDDT score to select the inter-residue distances corresponding to
structured regions. Sequence regions of at least two consecutive
residues with a pLDDT score > 0.75 were considered structured
regions, and restrained to the AlphaFold-predicted structure by using
an upper root mean square distance (RMSD) wall. The residue dis-
tances corresponding to these structured regions were excluded
from the distance restraints set. This selectionmay not benecessary if
one uses all-atom force fields that are able to maintain the protein
secondary structure.

Fig. 6 | Comparison of SAXS-derived and AlphaFold-predicted pairwise dis-
tancedistributions forpartially disorderedproteins.A–C Experimental pairwise
distance distributions obtained by SAXS are shown in black, by AlphaFold indivi-
dual structures (AF) in purple, and by AlphaFold-Metainference structural ensem-
bles (AF-MI) in green. The proteins shown are CbpD (A), H16 (B), and PC (C).

D Comparison of the Kullback–Leibler distances between AlphaFold individual
structures (AF) and SAXS (purple), CALVADOS-2 with RMSD restraints (RMSD-C2)
and SAXS (blue), and AlphaFold-Metainference (AF-MI) and SAXS (green) for the 6
partially disordered proteins shown in Figs. 3–6.
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Generation of the structural ensembles
To sample efficiently the conformational space of disordered proteins
using average inter-residue distances predicted by AlphaFold as struc-
tural restraints, in this work we implemented AlphaFold-Metainference
with coarse-grained simulations within the metainference framework
(the use of all-atom simulations is also possible, although more com-
putationally expensive). To carry out this procedure, we implemented
the CALVADOS-2 force field53 into OpenMM55, thereby enabling the use
of PLUMED56, where corresponding code is available in GitHub (https://
github.com/vendruscolo-lab/OpenMM-Plumed-MPI). After generating
the CALVADOS-2 force field for each protein sequence by using a pre-
viously reported procedure53, we performed a short energy minimiza-
tion of 100 steps. Then, all molecular dynamics simulations started from
the structures predicted by AlphaFold. The simulations were performed
in theNVTensemblewith 106 steps per replica (six replicas in this study),
starting with different initial positions obtained from the energy mini-
mization step, with parameters (temperature, pH and ionic strength)
reported inTable S1.Weused the Langevin integratorwith a time stepof
5 fs and friction coefficient of 0.01 ps−1. The Cα-based model was
implementedusing theCALVADOS2parameters and functional forms53.

For thehighlydisorderedproteins andpartially disorderedproteins
considered in this work, we then used PULCHRA57 to generate all atom
representations of all the structures in the coarse-grained ensembles,
followed by an energy minimization using GROMACS58. PULCHRA is a
fast and robust method for the reconstruction of full-atom structures
that starts froma reducedprotein representations such asCA atoms and
applies molecular a mechanics force field and a subsequent backbone
and side chain optimization to generate full atom representations47. This
procedure is available athttps://github.com/vendruscolo-lab/AlphaFold-
IDP/blob/main/backmap/backmap_abeta_c2/script.sh.

We implemented the parallel bias metadynamics59 the since the
timespan of conformational transitions of disordered proteins exceed
the μs timescale. The biasing collective variables (CVs) and metady-
namics parameters are reported in Table S1. To generate the final
unbiased structural ensembles while taking into consideration the
parallel bias metadynamics weights, we adopted a previous
protocol60,61. First, the replicas (six per simulation in this study) were
concatenated into a single trajectory followed by generation of the
final metadynamics bias per frame by increasing the bias deposition
pace. Secondly, we generated the Torrie Valleau weights for each
frame of the single trajectory employing the per-frame-bias value. The
final structural ensembles were generated by resampling the con-
catenated trajectory by these Torrie Valleau weights. For the con-
vergence analysis, we divided the per-replica trajectories into five
segments of increasing coverage and used the respective Torrie Val-
leau weights to plot time five time-dependent free energy projection
estimates along the biased CVs (Supplementary Fig. 9), after removing
the first 10% of the trajectory per-replica as equilibration. The combi-
nation of metadynamics with the CALVADOS-2 coarse-grained model
enables the rapid convergence of the structural ensembles.

Pairwise distance distribution functions
The pairwise distance distribution functions in Figs. 2–6 were con-
structed for AlphaFold-Metainference, CALVADOS-2 and AlphaFold as
follows. For AlphaFold-Metainference and CALVADOS-2, we calculated
for each conformation in the structural ensemble the inter-residue
distances and binned them in a normalized histogram, respectively
into the green curves (AF-MI) or the orange curves (CALVADOS-2). For
the individual structures from the AlphaFold Protein Structure Data-
base (purple curves), we calculated the inter-residue distances and
binned them in a normalized histogram.

Comparison of SAXS distributions
The agreement between SAXS-derived (P rð Þ) and simulated (Q rð Þ) pair-
wise distance distributions were calculated using the Kullback–Leibler

distance

DKL P rð Þ, j,Q rð Þð Þ=
XN

i = 1

P ri
� �

log
P ri
� �

Q ri
� � ð7Þ

Proteins simulated with AlphaFold-Metainference
For the study of highly disordered proteins, we used a previously
reported set of 11 proteins for which SAXS measurements are available
(Fig. 1A–L). For the study of partially disordered proteins, we used a set
of 6 proteins of varying sequence length (L), radius of gyration (Rg), and
for which SAXS measurements are available (Figs. 3–6): TDP-4362, an
ataxin-3 variant containing a 16-residue-long poly-Q tract (ataxin-3,
SASDJ47)32, humanprion protein (prion, SASDNB8 [https://www.sasbdb.
org/data/SASDNB8/])33, chitin-binding protein D (CbpD, SASDK42)63,
exon1 of a non-pathogenic form of huntingtin containing a 16-residue-
long poly-Q tract (H16, SASDQR8)64, and human vitamin K-dependent
protein C (PC, SASDJC6)65. The SAXS profiles for these proteins show a
characteristic partially disordered protein profile, that is a combination
of a bell-shape and a plateau that slowly decays to zero (Figs. 3–6).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the data from the MD simulations, including the coordinate file of
the final output for each MD simulation, as well as the PLUMED input,
output and analysis files, are available at https://doi.org/10.5281/
zenodo.14712644. SASBDB codes of previously published small angle
scattering data used in this study are SASDJ47, SASDNB8, SASDK42,
SASDQR8 and SASDJC6. The PDB code of the previously published
structure used in this study is 1UBQ. Source Data are provided as a
Source Data file. Source data are provided with this paper.

Code availability
The code to prepare an AlphaFold-Metainference simulation can be
found at https://github.com/vendruscolo-lab/AlphaFold-IDP. A tutorial
for runningAlphaFold-Metainference simulations is available at https://
github.com/vendruscolo-lab/AlphaFold-MetaInference-Tutorial/tree/
main and https://www.plumed-tutorials.org/lessons/24/014/data/
NAVIGATION.html66.
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