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Enhancers serve as pivotal regulators of gene expression throughout various
biological processes by interacting with transcription factors (TFs). While

transcription factor binding sites (TFBSs) are widely acknowledged as key
determinants of TF binding and enhancer activity, the significant role of their
surrounding context sequences remains to be quantitatively characterized.
Here we propose the concept of transcription factor binding unit (TFBU) to
modularly model enhancers by quantifying the impact of context sequences
surrounding TFBSs using deep learning models. Based on this concept, we
develop DeepTFBU, a comprehensive toolkit for enhancer design. We
demonstrate that designing TFBS context sequences can significantly mod-

ulate enhancer activities and produce cell type-specific responses. DeepTFBU
is also highly efficient in the de novo design of enhancers containing multiple
TFBSs. Furthermore, DeepTFBU enables flexible decoupling and optimization
of generalized enhancers. We prove that TFBU is a crucial concept, and
DeepTFBU is highly effective for rational enhancer design.

Precise regulation of gene expression is essential in complex biolo-
gical processes such as development and differentiation’* Central to
this regulation is the binding of transcription factors (TFs) to
enhancers™*. Deciphering the activity of enhancers*® provides insight
into the fundamental principles of gene regulation’ and facilitates the
design of synthetic enhancers for manipulating gene expression in
genetic engineering and gene therapy applications®’. Con-
ventionally, the transcription factor binding sites (TFBSs), particu-
larly TF binding motifs that usually range from 5 to 20 base pairs, are
acknowledged as key determinants of TF binding to enhancers'*™"
Studies have shown that arranging multiple TFBSs within a DNA
sequence can improve its function as an enhancer” ™. The orienta-
tion and sequential order of TFBSs also significantly influence
enhancer activity'®. Leveraging these properties, manipulating TFBS
arrangements and combinations on DNA sequences is widely used in
designing synthetic enhancers”,

However, DNA sequences with identical TF binding motifs can
exhibit different TF binding behaviors across the genome®. This varia-
bility emphasizes the critical role of the context sequences surrounding
these motifs in determining TF binding efficacy and enhancer
activity® . For example, short tandem repeats within these context
sequences may influence TF binding by directly interacting with TFs”
and acting as DNA antennae to attract them”*%, Intrinsically disordered
regions (IDRs) of TFs help recognize certain context sequences to
facilitate TF binding®. Factors such as the local DNA shape””?, the
presence of weak binding sites***, and other TFBSs within the context
sequences™* may also collectively influence TF binding. Our recent
research demonstrated that enhancer activity can be significantly
improved by designing sequences between TFBSs to fit the common
characteristics of strong enhancers*. These findings collectively high-
light the limitation of models that focus solely on TF binding
motifs***¢, However, unlike TF binding motifs, which can be explicitly
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described and visualized, the complex features within the context
sequences make it difficult to assess their impact on TF binding and
enhancer activity. Therefore, there is an urgent need for a quantitative
method to characterize the impact of context sequences on TF binding
and enhancer activity across different TFs and cell types. This would
facilitate the understanding of gene regulation and the rational design of
full-length synthetic enhancers with desired functions.

To address these challenges, we proposed the concept of the
transcription factor binding unit (TFBU) for modularized enhancer
modeling and design. The TFBU concept integrates the effect of the
core TFBS and its surrounding context sequences (TFBS-context). This
integration enables the quantitative evaluation of a long DNA
sequence’s potential to bind targeted TF and drive transcription
(enhancer activity) in specific cell types. Using deep learning models,
we identified key patterns in the TFBS-context from chromatin
immunoprecipitation sequencing (ChIP-seq) data that influence TF
binding. These models facilitate the rational design of synthetic
enhancers with desired functions, expanding the design scope for
specific TFs from core TFBSs to entire enhancer sequences. Based on
the TFBS-context models, we developed a series of enhancer design
methods and integrated them into a toolkit named DeepTFBU.

We measured the enhancer activity of over 36,000 sequences
designed by DeepTFBU to validate our enhancer modeling and
design strategy under various scenarios. Our results demonstrated
that the sequence patterns of functional TFBS-contexts can be spe-
cific to TFs and cell types. Designing the context sequence within a
TFBU can significantly modulate the enhancer activity for most TFs
(82.9%, 97/117). For a single TFBU, such design can achieve an aver-
age enhancer activity increase of over 20-fold without introducing
other obvious TFBSs. It can also produce cell type-specific enhancer
activity up to 60-fold. Moreover, the TFBU-based strategy can be
extended to the de novo design of enhancers containing multiple
TFBSs. We showed that designing context sequences can improve
the activity of typical synthetic enhancers containing tandem repeats
of TFBSs by over 30-fold. Finally, we proposed a flexible and gen-
eralized framework for enhancer optimization by decoupling the
enhancer effect into individual TFBUs. Using this framework, we
elevated the activity of the cytomegalovirus (CMV) enhancer by 60%
with only a few mutations. This demonstrates that enhancer
sequences can be modularized into TFBUs and redesigned with
TFBUs in an intuitively understandable and modularized bottom-up
manner. All these results proved that the TFBU is a crucial concept
for modeling and designing enhancers and DeepTFBU is a powerful
toolkit for rational enhancer design.

Results
Overview of DeepTFBU
We proposed the concept of TFBU to quantify the capability of DNA
sequences to be bound with TFs and the subsequent impact on
enhancer activity. This concept forms the foundational support for the
DeepTFBU toolkit. In this work, the typical length of TFBUs was set to
be 168 base pairs, based on the restriction of massively parallel
reporter assays (MPRA) experiment and the model performance (see
Section “Methods”). Each TFBU consists of two parts: the core TFBS
and its context sequence denoted as TFBS-context (Fig. 1a). To eval-
uate the binding effect of a TFBU, we separately quantified the
matching scores of both parts for a certain TF. The matching score of
the core TFBS is directly calculated using a position probability matrix
(PPM, see Section “Methods”). Unlike the core TFBS, the TFBS-context
includes complex and implicit features that cannot be directly quan-
tified. To address this, we employed deep learning models to extract
the TF-specific preferences for TFBS-context in the human genome,
thus obtaining the TFBS-context matching score.

The deep learning model takes one-hot encoded TFBS-context
sequences as input and processes them through several layers. First,

1D convolution layers followed by 1D pooling capture local sequence
patterns. These features are then passed through a bidirectional LSTM
layer, which captures long-range dependencies in both directions
along the sequence. Finally, Dense Blocks integrate these features and
output the TFBS-context matching score (Fig. 1c, Supplementary
Fig. 1). This architecture enables the model to capture both local and
global features of the TFBS-context, enabling us to quantitatively
evaluate whether certain TFBS-context sequences facilitate TF binding
and consequently impact enhancer activity.

In training the TFBS-context deep learning model, we utilized
ChIP-seq data as the primary information source. ChiP-seq data
directly reflect the binding states of a certain TF across the genome,
thereby indicating the binding preference of this TF. We obtained
ChlIP-seq data for 198 TFs in the HepG2 cell line from the ENCODE
database”. To identify sequence patterns conducive to TF binding, we
selected positive samples within the peaks identified by ChIP-seq and
negative samples outside these peaks. We created a TFBS-context
dataset for each TF by constructing candidate samples and balancing
properties between positive and negative samples (Fig. 1b, see Section
“Methods”). We trained 198 TF-specific TFBS-context models to cap-
ture the binding preference and quantitatively evaluate the TFBS-
context score for the corresponding TF. The evaluation on the test set
showed the binding preference patterns of each TF were stably cap-
tured by the model (with the area under curve (AUC) values sig-
nificantly higher than 0.5, one-tailed ¢-test p-value <0.05, mean AUC
values ranging from 0.5611 to 0.9595, Supplementary Data 1).

Since TF binding preference impacts enhancer activity?, TFBUs
can serve as an elementary feature for enhancer design. We imple-
mented this by combining TFBS-context models with a genetic algo-
rithm (Fig. 1c). For a given DNA sequence segment, the TFBS-context
model assigns a matching score. This score forms the basis for a task-
specific evaluation metric. At each optimization step, the genetic
algorithm introduces mutations and recombination into the sequen-
ces. The TFBS-context model then calculates the evaluation metric for
each sequence, selecting those with higher scores to proceed to the
next round. Through successive cycles of mutation, recombination,
and selection, the algorithm converges on a set of optimized sequen-
ces, which serve as designed enhancers. This algorithm is flexible and
can accommodate various optimization objectives. Based on this
algorithm, we developed a series of enhancer design strategies and
integrated them into the DeepTFBU toolkit (see Section “Methods”).
To validate our design methods and to avoid the complexities inherent
in the genome, we constructed the designed sequence into plasmids
for enhancer activity measurement (Fig. 1d).

In the following sections, we will evaluate the function of TFBUs in
enhancer modeling and design using DeepTFBU (Fig. 1le). First, we
designed enhancers with a single TFBU and demonstrated that
designing TFBS-context can modulate enhancer activity for most TFs.
Next, we successfully designed cell type-specific enhancers by intro-
ducing cell type-specific TFBS-context models. We then designed
enhancers containing multiple TFBSs by applying joint optimization of
TFBUs with the TFBS-context model. Finally, we deciphered the
enhancer function using a flexible framework based on TFBS-context
model and optimized the existing strong enhancer with this frame-
work. All these designs were validated with biological experiments.

Manipulating TFBU sequences can significantly regulate
enhancer activity

To measure the effect of TFBUs on enhancer activity, we conducted an
MPRA experiment. We chose ELF1, HNF1A, and HNF4A, known as key
regulators in the HepG2 cells'**, to validate the effect of the core TFBS
and the TFBS-context separately. To validate the effect of the core
TFBS, we selected mutated core TFBS sequences for each TF and
inserted them into various TFBS-contexts (see Section “Methods”).
Consistent with previous reports, the enhancer activity was correlated
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b lllustration of selecting training samples for the TFBS-context model. Both
positive and negative samples were from accessible genome regions with high
motif PPM matching scores. The GC content distribution and the histone mod-
ification state were balanced between positive and negative samples. Then the core

PPM score ‘ ‘ ‘

coe i

[1 | [ T1
ACGTTAAGNNNNNICACGTAGC

Dense_LSTM model
Seperately trained for each of 198 TFs
Candidate negative samples

TFBS-context
score

Input Output

GC content balance
Histone state balance

Mask core motif ACGTGCACT .~ AC CACT

CTCCA CAT\\CTCTA CAT
ACGT (’IACTQAC T Z}ACT

Model guided
genetic algorithm

——+— ——1—
——+— — 11—
——}+— —_

negative samples Random TFBS-context High score TFBS-context

Multi-TFBU based strong D pl

—{TFBs }-{TFBS |- TFBS L

Fixed core motifs

with TFBUs

-

Given enhancer

modularized
with TFBU

TFBS1 TFBS24TFBS3|

optimize with intergrated
TFBU-based model

multiple-objective
TFBU optimization

TFBS }-{TFBS |- TFBS -Il |_’

TFBS in these DNA fragments were masked to form TFBS-context datasets for the
deep learning model. ¢ Optimizing TFBS-contexts by genetic algorithm with the
guidance of the TFBS-context model. The TFBS-contexts deep learning model is TF
specific, and was separately trained for each TF. d Illustrations of evaluating the
TFBU’s function. The TFBUs were inserted into the plasmid as enhancers to validate
their enhancer activity. e Illustrations of tasks based on the concept of TFBU.

with the core TFBS match score. We observed a significant correlation
between the mean enhancer activity and the core TFBS match score in
the logarithmic scale. (Pearson correlation coefficients (PCCs): 0.7410
for ELF1, 0.9360 for HNF1A, 0.7899 for HNF4A, Supplementary Fig. 2a).
Besides, the relative ranking of these different core TFBSs tended to be
similar with different TFBS-contexts (Supplementary Fig. 2b). This
suggests that the effect of the core TFBS on enhancer activity is gen-
erally consistent with different context sequences.

To determine whether designing TFBS-context can impact
enhancer activity, we generated a series of high-scoring TFBS-con-
text sequences for the selected three TFs using the TFBS-context
model (see Section “Methods”). As controls, we also selected two
genome region sequences previously validated to have no enhancer
activity in the HepG2 cell line™'°. Employing the same core TFBS (the
consensus motif sequence), the measured enhancer activities of the
optimized TFBS-context for ELF1 and HNF1A were significantly higher
than those of the control sequences (fold change: 3.31 for ELF1, 3.30
for HNF1A, one-tailed t-test p-value<0.05, Fig. 2a). To further
investigate the relationship between TFBS-context score and the
enhancer activity, we generated a range of TFBS-context sequences
and selected TFBS-context sequences from the genome with varying
scores (see Section “Methods”). The method for designing TFBS-
context with aimed scores is incorporated as the SigTFBU module in
DeepTFBU). The MPRA experiment results showed a strong corre-
lation between the mean enhancer activity and the TFBS-context
scores of sequences (PCC: 0.8091/0.8444 for ELF1 generated/

genome TFBS-context, 0.9670/0.9344 for HNF1A generated/genome
TFBS-context, 0.9699 for HNF4A genome TFBS-context, Fig. 2b, d).
We noticed that the generated TFBS-context sequences for HNF4A
with the highest scores collapsed into repeated fragments of the
HNF4A TFBS, resulting in a notable decrease in enhancer activity.
After filtering out sequences with all obvious TFBSs in TFBS-context
(see Section “Methods”), the optimized HNF4A TFBS-context showed
significantly higher activity compared to the control sequences (fold
change: 2.87, one-tailed t-test p-value <0.05, Fig. 2a), and the PCC
between the mean enhancer activity and the scores of generated
TFBS-contexts for HNF4A also significantly improved (PCC from
0.6781 to 0.9626, Fig. 2c). Notably, the enhancer activity of opti-
mized TFBS-contexts for ELF1 and HNFIA was not significantly
affected after filtering out sequences with obvious TFBSs (Fig. 2a),
and the PCC between mean enhancer activity and TFBS-context
score was also consistent (from 0.8091 to 0.8136 for ELF1, from
0.9670 to 0.9632 for HNF1A). These results demonstrated that
designing TFBS-context can significantly modulate the enhancer
activity, and the function of TFBS-contexts could be achieved with-
out the presence of other obvious TFBSs.

To understand the key DNA features contributing to the
enhancer activity of TFBUs, we conducted further analysis focusing
on the patterns in TFBS-context, including the TFBSs of other TFs,
the DNA shape patterns, the count of weak binding sites of the core
TF, and the DNA secondary structure features. Since it is reported
that the TFBSs of HNF4A and FOXA2 tend to show co-occurrence in
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Fig. 2 | MPRA experiments indicate the TFBS-contexts significantly influence
enhancer activity. a The enhancer activity measured from the MPRA experiment.
The control denotes control backbone sequences, with/without a diagonal shadow
in control bars denotes the control backbone is inserted/not inserted with a core
TFBS; the optimized denotes optimized TFBS-context inserted with a core TFBS;
without other TFBS means the optimized TFBS-contexts with other obvious TFBS in
them were filtered out; negative control denotes negative control sequences from
genome, including control backbone sequences not inserted with a core TFBS. Each
sample in optimized groups is the average of three biological replicates for a TFBU.
Each point in control groups denotes one biological replicate for the control
sample. The box plots in a show the median (center line), interquartile range
between QI and Q3 (box limits), minimum and maximum values within 1.5 times the
IQR from Q1 and Q3 (whiskers), and outliers (hollow circles). b-d The enhancer

TFBS-context score

TFBS-context score

activity (y-axis) of TFBUs (TFBS-context with consensus motif as core TFBS) with
different predicted values from models (x-axis). Each point denotes the average of
three biological replicates for a TFBU. The model-generated TFBS-contexts are
shown in b, ¢ and genome TFBS-contexts are shown in d. The gray points denote
TFBS-contexts with obvious TFBSs in them and were ignored when calculating the
PCC in (c). Two outliers with extremely large measured enhancer activity were
removed in (d). e Top: the illustration of points in the volcano plot. Bottom left: The
volcano plot for the enhancer activity of optimized TFBS-context against the
control backbone. Each point denotes the result for a TF. Bottom right: The volcano
plot after filtering out TFBS-context with obvious TFBS in them. Error bars in

a-d denote mean + s.d. of corresponding groups. Source data are provided as a
Source Data file.

natural functional regulatory elements®, we first analyzed the FOXA2
binding sites in the TFBS-context of HNF4A. In the HNF4A’s TFBS-
contexts with the top 10% enhancer activity, we observed sig-
nificantly higher FOXA2 TFBS matching scores compared to the
bottom 10% (independent one-tailed t-test for the max matching
score, p-value<0.05, Supplementary Fig. 3a top). This observed
trend aligned with the model predicted value (independent one-
tailed ¢-test for max matching score, p-value < 0.05, Supplementary
Fig. 3a middle and bottom), indicating that the model extracted such
synergistic effect accumulated in the process of evolution, which is

involved in the TFBS-context containing other TFBSs. Subsequently,
we extended the analysis to encompass the TFBS signal of all TFs
within the TFBS-contexts containing obvious TFBSs (see Section
“Methods”). Visualization of the TFBS signal in TFBS-contexts
revealed distinct patterns between those TFBS-contexts with high
and low enhancer activity (Supplementary Fig. 3b). Several TFs with
varying TFBS matching scores have been previously reported to
interact with the core TF of the corresponding TFBU*** (e.g., the KLF
family with ELF1, NR2F2 with HNF4A; Supplementary Table 1). Fur-
thermore, it is reported that the DNA shape of the context sequence
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surrounding the TFBS and the presence of weak binding sites may
influence TF binding®>**2, Therefore, we analyzed these two features
within the TFBS-context sequences. The result showed both the DNA
shape feature (Supplementary Fig. 3c) and the count of weak binding
sites of the core TF (independent two-tailed t-test p-value <0.05,
Supplementary Fig. 3d. see Section “Methods”) exhibited differences
between TFBS-contexts with high and low enhancer activity. We also
analyzed the R-loop features and non-B motif features of the DNA
sequences (see Section “Methods”). We found that, for ELF1 and
HNF1A, the probability of R-loop formation in high enhancer activity
TFBS-contexts is significantly lower than in low enhancer activity
TFBS-contexts (independent two-tailed t-test p-value < 0.05). HNF4A
exhibits an opposite trend, but the effect is not as significant as the
other two TFs (see Supplementary Data 2). In the analysis of non-B
motifs within the DNA sequences, we observed that in ELF1, the
proportion of TFBS-contexts containing G-quadruplex motifs is sig-
nificantly higher in those with low enhancer activity, while in HNF4A,
the proportion of TFBS-contexts containing short tandem repeat
motifs is higher in those with high enhancer activity (two-tailed
Fisher’s exact test p-value < 0.05). These results collectively indicated
that explicit features like TFBS composition, along with known and
unknown implicit or weak features such as DNA shape patterns, the
count of weak binding sites of the core TF and DNA structure fea-
tures, may all contribute to the enhancer activity of the entire TFBU.

The effect of TFBS-context on enhancer activity is significant for
most TFs

We have demonstrated that designing TFBS-context can significantly
modulate enhancer activity for the selected three TFs. Consequently,
we investigated whether such effects could be generalized to other
human TFs. We first tested if high enhancer activity TFBS-contexts are
exchangeable across different TFs. We selected several high-scoring
TFBS-contexts and exchanged their core TFBSs to form TFBUs (see
Section “Methods”). The experiment results revealed that the TFBS-
contexts yielding strong enhancer activity varied among different TFs
(Spearman’s rank correlation coefficient: 0.6880 between ELF1 and
HNFI1A, 0.7221 between ELF1 and HNF4A, 0.6743 between HNFIA and
HNF4A, Supplementary Fig. 4). Given that enhancer activity generated
by TFBS-context appears TF-specific, we then aimed to verify if the
influence of TFBS-context on enhance activity is universal for TFs. We
designed another MPRA library containing TFBS-contexts of more TFs.
From 198 TFs with available ChIP-seq data of HepG2 cells in the
ENCODE database, we selected 118 TFs by removing TFs with similar
binding motifs. For these 118 selected TFs, we generated high-scoring
TFBS-context sequences with the TFBS-context model and aimed to
compare their enhancer activity with the control sequences™® as
described in the above section (see Section “Methods”).

The MPRA experiment results indicated that the enhancer activity
generated by high-scoring TFBS-context for 105 out of 117 TFs (one TF
missed when constructing the library) exhibited a significant increase
compared to the control sequences (89.74%, one-tailed t-test p-
value < 0.05, fold changes range from 1.16 to 22.03, Fig. 2e bottom
left). These results demonstrated that the enhancer activity of TFBU
can be significantly modulated by designing TFBS-context for most
TFs, and the TFBS-context model successfully captured the patterns
conducive to transcription for these TFs.

We then tested whether TFBS-context could still function without
the presence of other obvious TFBSs. After filtering out TFBS-contexts
containing other obvious TFBSs (FIMO* adjusted p-value threshold le-4,
see Section “Methods”), the enhancer activity increased significantly for
55 out of 68 TFs (80.88%, one-tailed t-test p-value < 0.05, fold changes
range from 1.16 to 20.95, Fig. 2e bottom right). We also filtered out TFBS-
contexts containing other TFBSs with a stricter criterion (FIMO adjusted
p-value threshold 2e-3, see Section “Methods”), the result showed the
enhancer activity increased significantly for 72 out of 90 TFs after the

stricter filtering (80.00%, one-tailed t-test p-value < 0.05, fold changes
range from 1.14 to 5.10, the range of samples being statistically analyzed
has been expanded due to the insufficient number of samples, see Sec-
tion “Methods”). This reaffirmed that the enhancer function of TFBUs
could be achieved without the presence of other obvious TFBSs within
the TFBS-context. For some TFs, their generated TFBS-contexts all con-
tained other TFBSs. This may be due to that other TFBSs exist near their
core TFBSs in the natural genome, and such features were captured by
the deep learning model.

The TFBS-context can generate cell type-specific enhancer
activity

After verifying the TF-specific effect of TFBU, we investigated whether
the same TFBU had different effects across cell types, thereby facil-
itating the design of cell type-specific enhancers. To compare the
binding preference of TF in different cell types, we trained additional
TFBS-context models using ChIP-seq data obtained from the K562 cell
line. Using the previously examined ELF1 as an example, we observed a
significant correlation between the TFBS-context scores derived from
the model trained on K562 data and the model trained on HepG2 data
(PCC: 0.7259, Supplementary Fig. 5). However, notable distinctions
were also observed in the preferred TFBS-context sequences between
these two cell lines, which were effectively captured and modeled by
our TFBS-context models. This contrasts with the core TFBS, which
usually exhibits no significant differences between cell types. Conse-
quently, we leveraged the discrepancies in ChlP-seq data across dif-
ferent cell types for a given TF to design TFBS-contexts with cell type-
specific enhancer activity.

To assess the cell type-specificity of a particular TF, three models
were built to evaluate TFBS-contexts. The first and second models were
TFBS-context models trained on HepG2 and K562 data, respectively, to
evaluate the functionality of TFBS-context in specific cell types. The
third model was the HepG2 vs K562 model, which was designed to
evaluate whether the TFBS-context met the requirements for cell type
specificity. To generate cell type-specific TFBS-contexts, the genetic
algorithm was applied by utilizing the combination of outputs from
these three independent models as the loss function (see Section
“Methods”, Fig. 3a). The method for designing cell type-specific
enhancers is incorporated as the CSpTFBU module in DeepTFBU.

To evaluate the cell type-specific enhancer activity achieved
through our design method, we selected four TFs with high activity in
HepG2 or K562 cell lines according to the model performance and the
MPRA experiment result. Initially, for each TF, we designed 10 cell
type-specific TFBS-contexts for a certain cell type and selected 10 cell
type-specific TFBS-contexts from the genome with models. These
TFBS-contexts were all inserted with the consensus motif as core TFBS
to form TFBUs. We examined their enhancer activity in both types of
cells using flow cytometry (see Section “Methods”). The experiment
result showed both the generated and selected TFBS-contexts exhib-
ited significant cell type-specific enhancer activity in the expected cell
line for all four TFs (paired one-tailed t-test p-value < 0.05, mean fold
changes range from 7.63 to 27.43, max fold change of single TFBS
range from 27.51 to 80.29, Fig. 3b, c).

Subsequently, to ensure the cell type-specific enhancer activity of
TFBUs is achieved by manipulating the flanking sequences of the core
TFBS rather than generating functional sequences independent of the
core TFBS, we scrambled the core TFBS of each TFBU (see Section
“Methods”). This resulted in a noticeable decrease in both enhancer
activity levels and fold change (fold change decrease range from 2.18
to 19.94, Fig. 3b, ¢), indicating that the cell type-specific enhancer
activity of TFBUs depends on the presence of the corresponding core
TFBS rather than solely on TFBS-context. Additionally, to ensure the
cell type-specificity was not generated by simply adding other TFBSs,
we filtered out TFBUs containing other obvious TFBSs in their TFBS-
context (FIMO adjusted p-value threshold 1e-4, see Section
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Fig. 3 | Cell type-specificity generated by TFBU. a lllustration of measuring TFBS-
context’s cell type-specificity with deep learning models. b Measured enhancer
activity of TFBUs in different cell lines. The generated denotes the designed TFBS-
context with the models; genome denotes TFBS-context selected from the genome
sequence by the models; -SC denotes the core TFBSs were scrambled. The fold
value is the mean activity fold change across cell types. The p-values are based on a
paired one-tailed t-test, where ns represents not significant. ¢ The fold change of
the enhancer activity of TFBUs across cell types. The yellow bar denotes the TFBU'’s
core TFBSs were scrambled. The fold value denotes the mean effect on the fold

change caused by scrambling the core TFBS. The p-values are based on a paired
one-tailed t-test, where ns represents not significant. d The fold change of the
enhancer activity across cell types before/after filtering out TFBUs with obvious
TFBSs in their TFBS-context. The fold value was calculated with the mean value of
each group. The box plots in b—-d show the median (center line), interquartile range
between Ql and Q3 (box limits), minimum and maximum values within 1.5 times the
IQR from Q1 and Q3 (whiskers), and outliers (hollow circles). Each point in

b-d denotes the average of three biological replicates. Source data are provided as
a Source Data file.

“Methods”), and the cell type-specific enhancer activity was not sig-
nificantly influenced (independent one-tailed ttest p-value>0.1,
Fig. 3d). We then filtered out TFBUs containing TFBSs in their TFBS-
context with the stricter criterion (FIMO adjusted p-value threshold 2e-
3, see Section “Methods”). Among all TFBUs tested for cell type-spe-
cificity, only five samples were retained after the stricter filtering, but
they still showed cell type-specificity (fold changes range from 3.70 to
71.21). All these results demonstrated that TFBUs can generate cell
type-specific enhancer activity by designing proper TFBS-contexts,
and the cell type-specificity of TFBUs can be achieved without the
presence of obvious TFBSs in their TFBS-context.

Joint optimization of TFBUs enables the de novo design of
enhancers containing multiple TFBSs

In the preceding sections, we demonstrated the significant impact of a
single TFBU on enhancer activity. Here, we aimed to elevate the
enhancer activity of DNA sequences containing multiple core TFBS
using the TFBS-context model. Enhancer sequences typically contain
several potential TFBS. These binding sites, along with their respective
TFBS-contexts, may overlap with each other. This means that the same
sequence segment may be shared by multiple TFBUs and will occupy
different positions within different TFBUs. To maximize overall
enhancer activity, sequence design should optimize all TFBUs simul-
taneously. Therefore, each position should be evaluated based on the

scores of all overlapping TFBS-contexts, ensuring compatibility among
key TFBSs and elevating total enhancer activity. We explored whether
multiple TFBUs within the DNA sequence could be individually
addressed yet jointly optimized to generate DNA sequences with
enhanced enhancer activity (Fig. 4a, b).

Previous work reported that stronger enhancer activity could be
achieved by arranging multiple TFBSs within a DNA sequence” ™.
Further studies extended such strategy into more specialized
applications* and proposed certain interval sequences for the design
of synthetic enhancers*'. Here we adopted the interval sequence
between tandem repeats of TFBSs proposed in previous work*** as
the baseline (Fig. 4b top). We fixed eight core TFBSs on the given
sequence and optimized the TFBS-context of these TFs while keeping
the core TFBSs unchanged. Through the implementation of joint
optimization (see Section “Methods”), we obtained optimized enhan-
cers containing multiple high-scoring TFBUs (Fig. 4b middle). Specifi-
cally, we selected four TFs exhibiting significantly improved predicted
enhancer activity for optimization. The flow cytometry results showed
that for 3 out of the 4 selected TFs, the mean enhancer activity of the
context-optimized sequences was significantly higher than that of the
baseline sequence (one-tailed t-test p-value <0.05, mean optimized
fold change: 13.01 for GATA2, 2.20 for ONECUT2, 2.01 for SIX1,
Fig. 4c, d). Moreover, there were consistently context-optimized
sequences exhibiting higher enhancer activity compared to the
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Fig. 4 | Result for joint design of multiple TFBU. a Illustration of jointly designing
multiple TFBU. b Illustration of enhancer sequences in different groups. ¢ The
measured enhancer activity of different groups. Error bars denote mean = s.d. for
three biological replicates. d The measured enhancer activity distribution. The fold
value was calculated with the mean enhancer activity of each group. The dashed
line denotes the enhancer activity of the baseline. The p-values are based on a
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one-tailed t-test, where ns represents not significant. The box plots show the
median (center line), interquartile range between Q1 and Q3 (box limits), minimum
and maximum values within 1.5 times the IQR from Q1 and Q3 (whiskers), and
outliers (hollow circles). Each point denotes the average of three biological repli-
cates. Source data are provided as a Source Data file.

baseline sequence (fold change for highest optimized enhancer: 43.16
for GATALI, 3.68 for ONECUT2, 5.79 for SIX1, 1.71 for TEAD3, Fig. 4c).
Next, we asked whether stronger enhancer activity could be
achieved with fewer core TFBSs and thus a larger context sequence
design space (Fig. 4b bottom). We reduced the number of fixed core
TFBSs by half and conducted optimization on the enhancers.
Remarkably, for all four selected TFs, the context-optimized sequen-
ces with only half the number of core TFBSs exhibited significantly
higher mean enhancer activity compared to the baseline sequence
(one-tailed t-test p-value < 0.05, mean optimized fold change: 31.42 for
GATA2, 3.50 for ONECUT?2, 3.48 for SIX1, 1.98 for TEAD3, fold change

for highest optimized enhancer: 109.38 for GATAI, 7.34 for ONECUT?2,
6.28 for SIX1, 3.59 for TEAD3, Fig. 4c, d). Additionally, they tended to
show higher enhancer activity compared to sequences with more core
TFBSs (fold change of mean enhancer activity: 2.41 for GATAL, 1.59 for
ONECUT2, 1.73 for SIX1, 3.24 for TEAD3, Fig. 4d). These observations
suggested that the enhancer activity can be elevated by simultaneously
designing the TFBS-context of multiple core TFBSs, and higher
enhancer activity could be achieved with a proper balance between the
number of core TFBSs and the design space. The method for the de
novo design of enhancers containing multiple TFBSs is incorporated as
the DeMulTFBU module in DeepTFBU.

Nature Communications | (2025)16:1469


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-56749-2

TFBU-based modeling promises a flexible framework for
enhancer decoupling and optimization

In the generalized form, enhancers typically contain multiple TFBSs of
various TFs, and enhancer sequences lengths may vary considerably. In
practical applications, modeling and optimizing enhancers of varying
lengths present significant challenges. Enhancer activity data obtained
through high-throughput strategies such as MPRA typically have con-
straints on sequence lengths, making it difficult to accurately predict
and optimize the activity of longer enhancers with the currently avail-
able datasets. To fit this generalized scenario, we decoupled enhancers
into basic units with TFBUs and developed a flexible framework for
modeling and optimizing enhancers beyond the length constraint.

We first generated TFBU-based features to decouple enhancer
functions. As discussed earlier, both the matching score of core TFBS
and the score of TFBS-context contribute to the enhancer effect of a
TFBU. Therefore, we used these scores to form the basic feature of
enhancers for estimating enhancer activity (Fig. 5a). For a given
enhancer sequence, we identified the position with the highest core
TFBS matching score for each of the 198 TFs with available ChIP-seq
data and extracted their corresponding TFBS-context. By multiplying
the core TFBS score with the corresponding TFBS-context score, we
obtained the overall TFBUs score. The TFBU-based feature of this given
enhancer sequence can be represented by concatenating all TFs’ core
TFBS score, TFBS-context score, and the overall TFBUs score.

To evaluate the efficacy of our decoupling strategy, we extracted
the TFBU-based feature of DNA sequences in the MPRA library con-
taining 118 TFs’ TFBUs and trained a linear regression model to predict
the enhancer activity of DNA sequences. Results on the independent
test set showed that the performance of the linear regression model
using TFBU-based features is even better than that of typical deep
learning models using original sequences as input**** (PCC:
0.7942 + 0.0002 Fig. 5b). We also used samples for a specific TF as the
independent test set to evaluate the model’s performance on unseen
TFs. The results demonstrated considerable variability in the perfor-
mance across different TFs (Supplementary Fig. 6). The linear regres-
sion model using TFBU-based features still outperformed the deep
learning model that used original sequences as input. This indicates
that the enhancer sequence can be decoupled into basic units made up
of TFBUs effectively. Together, all TFBS-context models and the linear
model form a comprehensive TFBU-based framework for enhancer
modeling and optimization, which is incorporated as the Mod-
OptTFBU module in DeepTFBU.

To validate the function of our TFBU-based framework in
enhancer optimization, we conducted experiments to optimize the
CMV enhancer by introducing mutations guided by the framework®*c.
Initially, we visualized the contribution of each nucleotide base of the
CMV enhancer as determined by the framework. The results revealed
that the framework could identify several significant motifs on the
original CMV enhancer (Fig. 5e). Subsequently, we selected the top 10
mutations predicted to elevate the enhancer activity and constructed
corresponding mutant enhancers for experimental evaluation. The
mean enhancer activity of 8 mutant enhancers was found to be higher
than that of the original enhancer (with the highest enhancer activity
elevated to 1.41-fold, Fig. 5c). Analysis of the framework-learned fea-
tures indicated that the mutant enhancer with the highest mean
enhancer activity primarily increased the activity by enhancing the
core TFBS score of the key TF RFX5" in HepG2, which is also validated
by visualizing the contribution of each nucleotide base (Fig. 5f).
Additionally, we also observed one mutation successfully increased
enhancer activity mainly by enhancing the TFBS-context score of
HNF4A. Finally, we introduced more mutations to achieve higher
predicted scores greedily with up to 15 mutations and tested 10 opti-
mized CMV enhancers with experiments. The activity of the optimized
CMV enhancers showed a significant improvement (independent one-
tailed t-test p-value < 0.05, with the highest enhancer activity elevated

to 1.59-fold, Fig. 5c, d). We also observed that the score of typical core
TFBSs of key TFs in HepG2, such as NFIB*® (Fig. 5g), contributed to the
increase in enhancer activity by taking both the effect of core TFBS and
TFBS-context into account. All these results demonstrated that the
enhancer activity can be improved with the framework based on the
TFBU effects.

Discussion

In this work, we proposed the concept of TFBU to modularly model
and design enhancers. We successfully quantified the TF-specific and
cell type-specific functions of TFBS-context using deep learning
models. Our results indicated that designing TFBS-context can reg-
ulate enhancer activity for most TFs, and the TFBU-based methods
enable enhancer design for various situations. These findings
demonstrated that the TFBU can serve as a fundamental concept for
enhancer modeling and design. We effectively decoupled enhancer
sequences into basic units composed of TFBUs, providing a perspec-
tive for understanding transcription initiation. Based on the TFBU
feature, we can develop a quantified system to describe and compre-
hend the fundamental code of life.

The length of TFBU was set to be 168 bp in this study, which was
jointly determined by the model’s performance and the constraints of
MPRA experiments. Theoretically, longer sequences can provide more
information. However, excessively long sequences may introduce
noises unfavorable to sequence design and synthesis. As shown in
Supplementary Fig. 7, the 168 bp length appears to contain substantial
relevant information for predicting enhancer activity without intro-
ducing significant noise associated with excessively long sequences.
However, this does not imply that 168 bp is the optimal length. The
optimal TFBU length is difficult to determine in practice, and it may
also vary for different TFs. Our explorations of various lengths for TF
binding predictions reveal that the elbow points differ among TFs, with
a range from 100 bp to 300 bp as shown in Supplementary Fig. 8. We
conclude that while the 168 bp length is effective for most TFs, the
optimal TFBU length remains to be determined through further sys-
tematic studies.

We demonstrated that properly designed TFBUs could generate
significant cell type-specific transcription activity. The divergence in
cofactors or post-translational modification of TFs across cell types
may be the source of such specificity*’. We applied the TFBS-context
model to analyze an enhancer with liver cancer cell-specific activity,
which was validated in vivo®. The result showed that for the key TF
HNF4G in hepatocytes, its TFBS-context score in HepG2 cells was
nearly maximal (0.9998), while in healthy liver cells, the score was
below 0.6. This indicates the potential of TFBU for in vivo applications.
We also verified that joint optimization of TFBUs is effective in the de
novo design of enhancers containing multiple TFBSs. These approa-
ches can be combined for rational enhancer design in complicated and
crucial tasks, such as constructing artificial gene circuits and precision
therapies, thereby demonstrating strong potential for practical
applications.

When designing enhancers containing multiple TFBSs, we found
that simply increasing the number of TFBSs does not necessarily result
in stronger enhancer activity. There is a trade-off between the number
of TFBSs and the design space within the same sequence length. Fur-
thermore, for different TFs, whether to introduce adjacent TFBS within
their TFBS-context may also vary. For some TFs, their TFBS-context
tends to include homologous or synergistic TFBS. This design strategy
is more suitable for these TFs. We observed that, for certain TFs, their
high-scoring TFBS-contexts frequently contain TFBSs that resemble
those of their own (see Section “Methods”, Supplementary Data 3).
This suggests that for these TFs, the presence of similar binding sites
around their TFBS increases the likelihood of binding to the DNA
sequence. On the other hand, the experimental results showed that,
for certain TFBSs, there is a tendency for other distinct TFBSs to
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Fig. 5| Decoupling the enhancer effect into the combination of individual TFBU
effects and optimizing the existing strong enhancer with the TFBU-based fra-
mework. a lllustration of decoupling the enhancer effect into individual TFBU
effects. b The performance of modeling the enhancer activity with different fea-
tures. The dashed lines denote modeling enhancers with natural language pro-
cessing models. Error bars denote mean = s.d. for ten computational replicates.

¢ The measured enhancer activity of optimized CMV enhancers. Error bars denote
mean + s.d. for three biological replicates. d Comparison of enhancer activity
between optimized CMV enhancers with one nucleic acid base mutation and more

mutations for higher predicted score. The p-value is based on a one-tailed ¢-test.
The box plots show the median (center line), interquartile range between Ql and Q3
(box limits), and minimum and maximum values (whiskers). Each point denotes the
average of three biological replicates. e The importance of each nucleic acid base in
CMV enhancers evaluated by the model and important regions as key TFBSs. f The
one nucleic acid base mutation caused the highest enhancer activity increase
strengthened the core motif signal of RFX5. g The mutation caused a high enhancer
activity increase during the greedy optimization strengthened the core motif signal
of NFIB. Source data are provided as a Source Data file.

appear in their TFBS-context. These observations suggest the potential
for interactions between these TFs in vivo, and indicate that the TFBS-
context model has the potential to capture the synergistic functions of
different TFs.

We successfully decoupled and optimized the existing strong
enhancer using our TFBU-based framework. This framework is not
restricted by a specific sequence length, and as TFBU data accumu-
lates, the efficiency and quality of such optimization will continue to
improve. This decoupling and optimization is designed for the general
form of enhancers. For applications with strong prior knowledge, such
as when there are multiple TFBSs for a particular TF on an enhancer,
although the information of these binding sites will be reflected in the

TFBS-context scores, the sequence optimization effect may not be as
good as the joint optimization of multiple TFBS-contexts mentioned
above. Therefore, when there are several known crucial TFBSs on an
enhancer sequence, using the joint optimization of multiple TFBU
would be more appropriate. Users can choose the proper strategy in
the DeepTFBU toolkit according to the specific situation for aimed
enhancer design.

During transcription, the binding of TFs is crucial’. By evaluating
the binding signal across the genome, we made the explicit and
implicit factors in TFBS-context measurable. When searching for
binding sites, TFs typically undergo a process involving three-
dimensional diffusion and one-dimensional search, during which
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non-specific binding occurs before specific binding®. Some studies
suggest that when TFs search for potential binding sites, certain con-
text sequences could attract TFs to relatively proximal regions or
prolong the time TFs spent in corresponding regions®, resulting in
different binding states with the same core motif. Additionally, TFs
may also show the tendency of non-specific binding with certain
context sequences before specifically binding to the core motif*%
Proper TFBS-context may increase the binding probability of certain
TF by prolonging the one-dimensional diffusion when searching for
specific binding sites or facilitating the non-specific binding of TF. Our
experiment results suggest that weak binding sites in the TFBS-context
can affect the function of TFBU. It is conceivable that weak binding
sites resembling the core TFBS may potentially exhibit synergistic
effects that facilitate TF binding, and weak binding sites associated
with other TFs may also enhance TF binding through various interac-
tions. The explicit and implicit factors on the DNA sequence were
captured and integrated by TFBS-context models, thus facilitating
quantitative evaluation of TFBS-context and modularized rational
enhancer design.

The process of gene regulation may involve the synergistic action
of multiple binding events, and TFs may cooperate through direct or
indirect mechanisms to interact with the enhancer®. The concept of
TFBU is suitable for modeling these patterns. By estimating the
matching score of each TF to the enhancer sequence, the modularized
features offered by TFBU can effectively model the function of
enhancers. Previous work employed machine learning and deep
learning algorithms to predict TF binding and model enhancers using
features like k-mers, TFBS, and biophysical information®*, or by
establishing end-to-end models with DNA sequences®******, In con-
trast, our work introduces the idea of modularizing enhancer with
functional units, and the core TFBSs and their context sequences were
modeled separately. This concept evaluates the functional units for
each TF, and the sequences surrounding TFBSs are flexibly reused in
the evaluation for different TFs. Additionally, this approach does not
impose strict requirements on the length of enhancer sequences,
making it a flexible approach that can leverage existing enhancer data
for different designing tasks.

In our previous work*, we successfully elevated the enhancer
activity through designing sequences between TFBSs by leveraging
the common characteristics of natural enhancers extracted with a
deep learning model DeepSEED. This approach is applicable with the
sequence data providing the general pattern information of target
gene regulatory elements. In this work, we emphasized the influence
of TF-specific and cell type-specific preferences for the context
sequences surrounding the core TFBS. This enables detailed and
precise modeling of the sequences beyond the core TFBSs and can
serve as generalized fundamental features of enhancers with the
support of numerous publicly available data. This method also
enables the precise design of gene regulatory elements tailored to
specific TFs and cell types. In future research, by leveraging more
information on TFs and TFBU properties, we could construct a more
detailed and comprehensive TFBU system, thereby facilitating more
precise DNA sequence modeling and regulatory elements designing
based on TFBU.

Methods

Cell lines

The cell lines used in this study were the liver cancer cell line HepG2
and the chronic myelogenous leukemia cell line K562 obtained from
the Pricella Life Science&Technology. The cells HepG2 and K562 were
maintained in DMEM (GIBCO, 11965118) and IMEM (GIBCO,
31980030) respectively, supplemented with 10% FBS (GIBCO, 16000-
044), 1x NEAA (GIBCO, 11140050), and 0.5% penicillin-streptomycin
(Solarbio, P1400) at 37 °C and 5% CO,. Sex was not considered in
this study.

MPRA library design

The TFBU sequences in the MPRA library are all in the form of TFBS-
context + core TFBS. There are two typical sources of TFBS-context:
one is the TFBS-context generated by the genetic algorithm with the
guidance of the deep learning model, and the other source is the TFBS-
context from the genome. For TFBS-context generated by the genetic
algorithm, there are already masked regions and the core TFBS can be
directly inserted into the masked regions to form the TFBU sequence.
For TFBS-context from the genome, when inserting core TFBSs into
the genome sequences, the center part of the genome sequences was
replaced by the core TFBS to form TFBU sequences.

The MPRA library of the three functional TFs (ELF1, HNF1A, HNF4A)
in the HepG2 cell line contains the following sequences: (19288 in total,
Supplementary Data 4).

For each TF, 2000 TFBS-contexts with different TFBS-context
scores were generated with the genetic algorithm. 4000 genome
TFBS-contexts with different TFBS-context scores were selected from
the TFBS-context samples. The consensus motif sequence was inserted
into these TFBS-contexts as the core TFBS to form TFBUs. (6000*3
TFs=18000).

To evaluate the effect of the core TFBS, for each TF, 10 mutated
core TFBS sequences with the most occurrences in the ChIP-seq data
were inserted into 25 TFBS-contexts with different scores as the core
TFBS. (10*25*3 TFs = 750).

To validate whether the preferred TFBS-context is the same across
different TFs, for each TF pair, 80 TFBS-contexts were inserted with the
consensus motif sequences of the two TFs as core TFBSs. (80*2*3 TF
pairs - 14 repeated=466).

Two genome region sequences previously validated to have no
enhancer activity in the HepG2 cell line*'**°*! were selected as control
backbone sequences. The consensus motif sequence was inserted into
these control backbone sequences as core TFBS to form the control
samples. (2*3 TFs = 6). And 66 control sequences were added to this
library (including 3 additional negative control sequences™®?).

The MPRA library of the 118 TFs contains the following sequences:
(18,000 in total, Supplementary Data 5).

For each TF, 20 genome TFBS-contexts were selected from the
positive TFBS-context samples, and 20 genome TFBS-contexts were
selected from the negative TFBS-context samples. 110 TFBS-contexts
with different TFBS-context scores were generated with the genetic
algorithm. (150*118 TFs =17700).

Two genome region sequences previously validated to have no
enhancer activity in the HepG2 cell line™*'® were selected as control
backbone sequences. The consensus motif sequence was inserted into
these control backbone sequences as core TFBS to form the control
samples. (2*118 TFs = 236). And 64 control sequences were added to
this library.

MPRA library construction and cloning

MPRA plasmid libraries were generated as previously described®. Two
libraries oligos were synthesized by TWIST Bioscience as 198 bp in
length containing 168 bp of designed sequence and 15 bp of adapter
sequence at both 5 and 3’ end. Oligos were cloned into the pMPRAL
plasmid (Addgene ID no. 49349) to measure the activity of designed
sequences. The plasmid and primer sequences used in this study are
detailed in Supplementary Data 6.

The 20 bp barcodes were added by performing 6 emulsion PCR
reactions by DNA emulsion and purification Kit (EURX, E3600). Each
reaction was a 50 pL water phase in the volume containing approxi-
mately 10 - 10° copies of oligo, 25 uL NEBNext® Ultra™ Il Q5® Master
Mix (NEB, M0544S), 2puM Library F and Barcode R primers, and
0.01 mg/ml of the acetylated BSA (Aladdin Scientific, A397958). The
emulsion preparation process follows the manufacturer’s protocol.
The 350 pL of Emulsion mixture was equally divided into 4 PCR tubes
and cycled with the following conditions; 95 °C for 2 min, 20 cycles
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(95°Cfor10s, 67 °C for 30's, 72 °C for 15s), 72 °C for 5min. The PCR
reaction was cleaned up using the attached purification kit, then
concentrated with Zymo Clean and Concentrator Kit (Zymo research,
D4014), eluting into 10 pL of Ultra-pure H,O0.

To create pMPRAI-oligo library, barcoded oligos were inserted
into sfil digested pMPRA1 by Gibson assembly (NEB, E2621) using 1.1 pg
of barcoded oligos and 1pg of digested pMPRALI in a 60 pL reaction
incubated for 60 min at 50 °C. The reaction was cleaned with Zymo
Clean and Concentrator Kit and elution in 10 pL of Ultra-pure H,O. All
of the ligated vector was then transformed into 100 pL of NEB10-beta
(Biomed, BC401-01) by electroporation. The estimated transformation
efficiency is ~3 x 10° CFU, each oligo has ~200 barcodes on average.

The miniP-EYFP cloned into the pMPRA1-oligo to create the final
library. pMPRAI-oligo plasmid was digested by AsiSI (NEB, R0630).
miniP-EYFP was cloned from the plasmids with NEBNext® Ultra™ Il Q5®
Master Mix (NEB, M0544S) for 35 cycles using primers EYFP_F and
EYFP_R at 1 uM. 6.6 pg of miniP-EYFP fragments and 2 pg of digested
pPMPRAL-oligo plasmid in a 100 uL Gibson assembly reaction for
90 min at 50 °C. The reaction was cleaned with Zymo Clean and Con-
centrator Kit and elution in 40 pL of Ultra-pure H,0. To remove the
remaining uncut plasmids, the 40 U of AsiSI, 20 U of RecBCD (NEB,
MO0345), 20 pL 10 mM ATP, and 20 pL 1x rCutSmart Buffer were incu-
bated in a 200 pl reaction for 4h at 37°C. The product was con-
centrated by Zymo Clean and Concentrator Kit (Zymo research,
D4014) and eluted into 10 pL of Ultra-pure H,O. All of the ligated
vector was then transformed into 100 pL of NEB10-beta (Biomed,
BC401-01) by electroporation. The estimated transformation effi-
ciency is >10” CFU.

MPRA transfections, RNA extraction and cDNA synthesis

In transfection experiments, approximately 6.5 x 10 HepG2 cells were
plated in 15 cm cell culture plates (NEST Biotechnology, 715001) and
grown to 60-70% cell density for ~24 h. On the day of transfection,
media was replaced with 30 mL fresh complete DMEM followed by
transfection with 87.5puL of Lipofectamine 3000 (Invitrogen,
L3000150) and 35 pg of DNA using the manufacturer’s protocol. Cells
were incubated with transfection reagents for 24 h to RNA Extraction.
Three separate transfection replicates were performed.

Total RNA was extracted from cells using Qiagen RNeasy Midi Kit
(Qiagen, 75144) following the manufacturer’s protocol including the
on-column DNase digestion. A second DNase treatment was per-
formed on the purified RNA using 10 pL of Turbo DNase (Life Tech-
nologies, AM2238) in 500 pL of total volume for 1h at 37°C.
Subsequent wash steps concentrated isolated RNA with Qiagen
Minelute Cleanup Kit (Qiagen, 74204) and elution in a total of 50 pL of
RNA-free H,0. Next, 25 pL of isolated RNA was converted to cDNA with
Transcript Il one-step gDNA Removal and cDNA Synthesis SuperMix
(TransGen Biotech, AH311) and a primer specific to the 3'UTR
(MPRA_V3_Amp2Sc_R) in 120 pL reaction following the protocol. The
cDNA reaction mixture was cleaned with Zymo Clean and Con-
centrator Kit (Zymo research, D4014) and elution in 30 pL of RNA-
free H,0.

Sequencing preparation

To determine oligo/barcode combinations within the MPRA pool,
the 4 separate amplifications with 200 ng of pMPRA1l-oligo in a
100 pL NEBNext® Ultra™ II Q5® Master Mix (NEB, M0544S) PCR
reaction containing 0.5 uM of MPRA_v3_Amp2Sa_lllumina_F and
Illumina_Universal_Adapter_R primers under the following condi-
tions: 98°C for 30s, 6 cycles (98°C for 10 s, 65°C for 20s, 72°C
for 30 sec), 72 °C for 2 min. The reaction was cleaned with Zymo
Clean and Concentrator Kit and elution in 30 pL of Ultra-pure
H,0. Sequencing indexes were then attached by Illumina_Multi-
plex_F and Illumina_Universal_Adapter R primers. This process
utilized 20 pL of the eluted product, and the reaction conditions

were adjusted, reducing the number of cycles to 5. All of the
reactions were run on a 1% agarose gel and then purified by a
Multifunctional DNA purification Kit (Aidlab, DR0303).

The condition of sequencing preparation of the pMPRA1-oligo-
miniP-EYFP plasmid same as the pMPRAIl-oligo except the MPRA -
v3_lllumina_EYFP_F and Illumina_Universal_Adapter R primers used in
the first PCR reaction.

The 10 pL of cDNA from three separate transfection replicates
were amplified with NEBNext® Ultra™ 11 Q5® Master Mix (NEB, M0544S)
using primers MPRA_V3 lllumina EYFP_F and Illumina_Universal A-
dapter R at 0.5pM in 50 pL reaction with the following conditions:
98 °C for 30s, 12 cycles (98 °C for 10 s, 65 °C for 20's, 72 °C for 30's),
72 °C for 2 min. The reaction was cleaned with Zymo Clean and Con-
centrator Kit and elution in 40 pL of Ultra-pure H,0. Sequencing
indexes were then attached by Illumina_Multiplex_F and lllumina_Uni-
versal_Adapter R primers, with all of the eluted product in 100 pL
reaction under the following conditions: 98 °C for 30 s, 6 cycles (98 °C
for10s, 69 °Cfor 205,72 °Cfor 30 s), 72 °C for 2 min. The reaction was
cleaned with Zymo Clean and Concentrator Kit and elution in 20 pL of
Ultra-pure H,O for final sequencing.

All of the samples were sequenced using 2 x 150 bp chemistry on
lllumina NovaSeq instruments through the sequencing service by
Azenta company.

Flow cytometry and data analysis

HepG2 and K562 cells were transfected using Lipofectamine 3000
(Invitrogen, L3000150) following the manufacturer’s guidelines.
For each transfection experiment, approximately 1.9 x 10° cells
were suspended in 1 mL of complete medium and plated into each
well of a 12-well plate (NEST Biotechnology, 712002). The cells
were then incubated at 37 °C and 5% CO, for approximately 24 h
to achieve around 70% confluency. On the day of transfection, the
existing medium was replaced with 1 mL of fresh culture medium.
The transfection mix for each well was prepared using 3 pL of
Lipofectamine 3000 (Invitrogen, L3000150) and 1.5 pg of plasmid
DNA carrying the candidate enhancer, adhering strictly to the
protocol provided by the manufacturer.

Cells were harvested to assess the fluorescence expression of
candidate enhancers. For HepG2 cells, the adherent cells were trypsi-
nized using 0.25% trypsin-EDTA (GIBCO, 25200072). The suspended
cells were then transferred to a 15 mL centrifuge tube and centrifuged
at 300 x g for 5 min at room temperature to pellet the cells. For K562
cells, the suspended cells were directly centrifuged at 300 x g for 5 min
at room temperature to pellet the cells. Then, the cells were washed
with 1 mL of DPBS (GIBCO, 14190144). This washing step was repeated
once to remove any residual trypsin and serum. The cells were resus-
pended in DPBS to a total volume of 300 pl, ready for analysis.

For flow cytometry analysis, the resuspended cells were analyzed
using LSRFortessa flow cytometer (BD Biosciences). The instrument
settings for fluorescent protein detection were as follows: excitation at
488 nm, emission filtered through a 530/30 filter, and photomultiplier
tube (PMT) voltage set at 200V for EYFP measurement. For each
sample, approximately 1 x 10° cell events were collected. The raw data
were processed using FlowJo (Version 10.8.1) for downstream analysis.
For data analysis, raw data were filtered through the FSC and SSC to get
the single cells (Supplementary Fig. 9). The EYFP mean was normalized
by the CMV enhancer-promoter as the activity of the designed
sequences (CMV enhancer-promoter as 100). Three independent bio-
logical replicates were performed for each sequence. All of the flow
cytometry results are shown in Supplementary Data 7.

MPRA data processing

The enhancer activity of DNA sequences in the MPRA library is
obtained by calculating the ratio of the corresponding relative abun-
dance of RNA to the corresponding relative abundance of DNA®*. For
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each barcode, the relative abundance in DNA-seq and RNA-seq is
quantified as the normalized read counts with Eq. (1):

barcode read counts <106

Normalized read counts =
total sample reads

@

The barcodes mapped to more than one enhancer are filtered out.
For a certain DNA sequence, the normalized read counts of all bar-
codes mapped to it are used to calculate its enhancer activity with Eq.

2):

>~(RNA counts for all enhancer barcodes)
> (DNA counts for all enhancer barcodes)

Enhancer activity =

(03

The enhancers with less than three barcodes and enhancers
whose summed normalized RNA counts or DNA counts is less than 0.1
were filtered out to reduce the noise. The mean enhancer activity of
the biological replicates is calculated as the final enhancer activity. The
correlation of different replicates is shown in Supplementary Fig. 10.
All of the MPRA results are shown in Supplementary Data 8, 9.

Core TFBS matching score calculation

The matrix information of core motifs is from the JASPAR database®>®.
For each TF, the position frequency matrix (PFM) is firstly transformed
into the original PPM,, (in the size of L, x4, where L, denotes the
original length of the motif). Then the information content of each
position in PPM, is calculated by:

N
IOgZN - (_ anIngpn> (3)

n=1

where N = 4(denotes 4 kinds of nucleic acid bases), p,, is the probability
of the n-th nucleic acid base at this position. To get more solid infor-
mation and increase the sequence designing space, we choose part of
PPM,, from the first position with information content larger than 0.3
to the last position with information content larger than 0.3 as the final
PPM (in the size of L x 4) that we use in this work. The threshold of 0.3
is adjustable and can be increased or decreased according to specific
application requirements. Alternatively, users can also choose not to
set a threshold and use the entire PPM,, directly.

With a given PPM of a TF and a DNA segment C of length L, the
core TFBS matching score of this TF is calculated as:

L
Hi:IPPMi‘C” @)
[T+, max(PPM,)

SCOTE =

where PPM; denotes the probability vector of PPM at the position i, C;
denotes the nucleic acid base at position i.

When searching for the position with max matching score of a
given TF on a sequence, the S, of all possible DNA segments of
length L form this DNA sequence and its reverse complement
sequence are calculated, and the max one is selected as the max
matching score and the corresponding DNA segment is selected as the
core TFBS.

For TFs with multiple PFMs in the JASPAR database, we prioritized
selecting the latest version of the PFM. Additionally, we used the motif
enrichment tool STREME® to perform motif enrichment analysis on
the ChIP-seq data we used. If a PFM significantly deviates from the
latest version, we replace it with a PFM that more closely matches the
motifs enriched from the ChIP-seq data we used. The PFM matrix IDs
used in this work can be found in Supplementary Data 10. Further-
more, since the ChIP-seq data used in this work are all specific to a
particular TF, we did not utilize the PFMs for Homo-/Hetero protein
complexes from the JASPAR database in this research.

Preparation of dataset for deep learning model

To train the deep learning models, we constructed separate datasets
for each TF using data from the ENCODE*"***° database. For each TF,
we generated positive samples, derived from ChIP-seq data, and
negative samples, derived from ATAC-seq and ChIP-seq data. We used
the bed narrow peak files in this work.

In generating positive samples, for each peak identified in the
ChIP-seq data, we used the PPM corresponding to the TF to find the
location within the peak with the highest matching score, marking it as
the core TFBS. If multiple positions yield the same highest score, the
position closest to the summit of the peak is chosen as the core TFBS.
The context sequence of the selected core TFBS is taken as a positive
sample of the TFBS-context.

Negative samples were generated from ATAC-seq data by select-
ing peaks from regions that do not overlap with any peaks in the ChIP-
seq data. The same method used to define positive samples (using the
PPM and context sequence extraction) was applied to derive the
potential negative TFBS-context samples from these ATAC-seq peaks.

To prevent the model from focusing on simple features, we
balanced the dataset for GC content and histone modification states.
First, the GC content was calculated for each sample. Additionally,
samples were labeled based on their histone modification states for
H3K4me3 and H3K4mel. Negative samples were selected to ensure
that the distribution of GC content and the number of samples with
specific histone modification states matched between positive and
negative sets.

For the dataset of cell type-specific models, we followed a similar
procedure to derive positive samples of both cell types from the ChIP-
seq data. Then the positive samples of both cell types were balanced by
GC content and histone modification states to form the dataset of the
cell type-specific model.

The TFBU information
The length of TFBU is set to be 168 bp in this work, this is mainly
decided by the MPRA experimental restriction. We tried to model the
experiment result with different TFBU lengths. The result showed that
longer TFBUs will provide more information, but the length of 168
could cover most information. The model’s performance shows a
saturation trend before the TFBU length of 168 (Supplementary Fig. 7).
We use a DenseNet-LSTM-based model to predict whether a TFBS-
context sequence is favorable for TF binding, and it’s set to be a binary
classification model. The TFBU is transformed into one-hot encoding,
with the core TFBS masked by Ns (which is [0, 0,0, 0] in one-hot
encoding). The core TFBS is in the middle of TFBU. When the length of
core TFBS is singular, the TFBS-context part on the 5’ side of core TFBS
will contain 1 more nucleic acid base than the TFBS-context part on the
3’ side of core TFBS.

Sequence design and optimization

The genetic algorithm is applied for sequence generation. In the
genetic algorithm, the maximum population size is set to 2000. Each
iteration selects the top 30% of the parent samples as elite parents, and
will generate new samples equivalent to 30% of the current population
size. The algorithm runs for up to 300 iterations, a number experi-
mentally validated to ensure convergence for our design tasks.

In each iteration, half of the new samples are derived from elite
parents, and the other half from non-elite parents. For each parent
sample, random mutation and recombination occur with equal
probability. In mutation, a random base is selected from the parent
sample to mutate. In recombination, the parent sequence is recom-
bined with another randomly selected sequence from the current
samples pool, with each position in the new sequence equally likely
to come from either parent. Sequences with top evaluation scores,
based on the evaluation metric, are selected for the next round of
iterations.
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The TFBS-context models trained with data from ChIP-seq
experiments are binary classification models with an output range
from [0, 1]. When optimizing sequences with a certain aim, the genetic
algorithm is applied to the initial sequence by introducing mutation
and reorganization in the region except for the fixed core TFBS. To
avoid the bias introduced by the randomness during model training,
the mean score of 10 models trained with the same data is used in this
work to evaluate the score of a given sequence. The sequence segment
same as the core TFBS was avoided from appearing in the TFBS-
context. For different tasks, the evaluation metric is different, but the
aim is always set to maximize the corresponding metric like:

Seq = argmaxs.qMeric(Seq) S)

When optimizing the TFBS-context of a given TF, the evaluation
metric is the score of this TFBS-context as:

Metric(Seq) = Score(TFBS_context) (6)

The difference between the GC ratios of the generated sequences
and the mean GC ratio of the training data should be less than 10%. The
Levenshtein distance between each pair of sequences finally selected
should be equal to or larger than 50.

When optimizing the sequence with multiple core TFBS, the
evaluation metric is the sum of scores of all the TFBS-context of these
core TFBSs as:

Metric(Seq) = Z Score(TFBS_context) @)

The lower bound of Levenshtein distance in this task is set to be 5
in the situation with 8 core TFBSs and set to be 10 in the situation with
4 core TFBSs. The interval sequence segments between core TFBSs
were avoided to be all the same to facilitate the construction of the
optimized sequences.

When optimizing the cell type-specific TFBS-context, there are
results from three models that should be taken in the metric. The score
of the HepG2 model denotes the score that the TFBS-context is func-
tional in the HepG2 cell line. The score of the K562 model denotes the
score that the TFBS-context is functional in the K562 cell line. The
score of the specific model denotes the relative specificity of the TFBS-
context, and is set to be 1 as HepG2-specific, 0 as K562-specific. The
metric for HepG2-specific TFBS-contexts is:

Metric(Seq) = Scorey,g,(TFBS_context) — Scoreysq, (TFBS_context)
+Scoregyeiric(TFBS_context)
®)

The metric for K562-specific TFBS-contexts is:

Metric(Seq) = Scoresq, (TFBS_context) — Scoreye,,(TFBS_context)
— Scoregyecinc(TFBS_context)
)

The upper bound of the GC ratio difference between generated
sequences and the training data is set to be 10%. The lower bound of
Levenshtein distance in this task is set to be 30.

The strategy for designing cell type-specific TFBS-contexts can
also be generalized to more general scenarios. For cases involving
three or more cell types, the cell types where expression is desired are
denoted as active_types (number of active_types denoted as n), and the
cell types where expression is undesired are denoted as mute_types
(number of mute_types denoted as m). Using the method described
above, a TFBS-context model is trained for each cell type, as well as a
specificity model between active_types and mute_types. The

evaluation metric is defined using the following formula:

n
Metric(Seq) = %Z Score,crive_type,(TFBS-context)
i=1

1 m
“m Z Scoremute_typej (TFBS_context) + Scoregpeis.(TFBS_context)
j=1

10)

By applying this metric with the genetic algorithm, it is possible to
design enhancers with specificity in multi-cell-type contexts.

Features of TFBS in TFBS-context

The motif analyzing tool FIMO** is applied to search for the TFBS in the
TFBS-context sequence against the reference of human TF motif
matrixes from JASPAR database. The p-value threshold is set to be le-4
as default (adjusted for multiple motif comparisons using the
Benjamini-Hochberg method™). For each of the three key TFs, we
selected the top/bottom 100 sequences with the highest/lowest
enhancer activity from the sequences whose TFBS-context contains
TFBS to represent TFBS-context with high/low enhancer activity.
The TFBS matching scores for TFs whose PFMs are available in
JASPAR database were calculated to form the feature vector. The fea-
ture vectors were visualized with the dimension reduction algorithm
UMAP”.

In the analysis of high-scoring TFBS-contexts designed for 118 TFs,
we used the TOMTOM?” tool to compare other obvious TFBSs found
within the TFBS-contexts against the core TFBS. We applied TOM-
TOM’s default threshold, considering matched TFBSs as similar bind-
ing sites to the core TFBS. We then increased the recognition threshold
to 0.95, and any TFBSs that still failed to match under this threshold
were classified as distinct binding sites from the core TFBS. The
detailed results are listed in Supplementary Data 3.

Identification of TFBS in TFBS-context
To assess whether the TFBS-context can still function in the absence of
obvious TFBS, we applied the same method described in the previous
section to search for obvious TFBS within the TFBS-context. Sequences
that did not contain identifiable TFBS after this search were considered
to be TFBS-context without obvious TFBS.

On the basis of the aforementioned, we also determined a more
stringent criterion for filtering out TFBSs. We increased the default
p-value threshold of FIMO by 20 times (from 1e-4 to 2e-3), hoping to
use this more relaxed threshold to filter out more potential TFBSs. At
this threshold, the blank control sequences, previously reported as
lacking enhancer activity and used as blank backbone for TFBS
effect, were all detected to contain potential match sites. Addition-
ally, we randomly extracted 168bp DNA sequences from each
accessible region in HepG2 cells that did not exhibit ChIP-seq bind-
ing signals. At this threshold, more than 88% of these randomly
extracted sequences were found to contain potential match sites.
These results suggest that even in randomly extracted non-binding
regions, this threshold can identify potential binding sites in the
majority of sequences. We adopted this threshold as a more strin-
gent criterion to filter out TFBSs, believing that this criterion can
filter out most of TFBSs.

Since TFBSs are considered a crucial component of TFBU func-
tionality in designing TFBUs, we didn’t directly filter out TFBSs during
the design process. This resulted in many sequences optimized for 118
TFs contain TFBS under the stricter criterion. In the analysis of these
optimized results under the stricter criterion, we expanded the sta-
tistical scope and included all TFBU samples with a TFBS-context score
greater than 0.5. This ensured that as many TFs as possible had at least
10 samples for statistical evaluation.
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DNA shape feature of TFBS-context

Previous studies have reported that the DNA shape surrounding TFBS
may influence the binding of TFs****?°, Therefore, we analyzed the
patterns of DNA shape, hoping to see if there is a difference in the DNA
shape patterns between TFBS-context sequences with high enhancer
activity and those with low enhancer activity.

Since the TFBS in the TFBS-context is a relatively strong feature to
DNA shape, to avoid being masked by the feature of TFBS, the feature
of DNA shape is generated with TFBS-contexts that don’t contain
obvious TFBS. The TFBS-contexts with top/bottom 10% enhancer
activity that don’t contain obvious TFBS are selected to generate the
feature of DNA shape.

The minor groove width (MGW), roll, propeller twist (ProT), and
helix twist (HelT) were calculated as the feature of DNA shape”. The
feature vectors composed of these features were encoded by the
unsupervised learning model based on contrastive learning and
visualized with the dimension reduction algorithm UMAP. Since DNA
shape is a high-dimensional feature that cannot be directly visualized
for comparison, UMAP can help us intuitively visualize whether the
DNA shape of TFBS-contexts with high enhancer activity and low
enhancer activity have different distributions in the latent space.

The definition of weak binding sites

Weak binding sites are defined based on the p-value of the matching
degree between a DNA sequence and the corresponding PPM. For a
given TF and its PPM, we use the FIMO tool to search for potential
match sites within the sequences. The potential match sites with p-
values greater than 0.0001 and less than 0.001 are defined as weak
binding sites. Here, we only consider the PPM of the core TFBS used in
generating TFBS-contexts, without taking into account redundant
PPMs for the same TF (specific matrix IDs can be found in Supple-
mentary Data 10). The TFBS-contexts with top/bottom 10% enhancer
activity are selected to count the number of weak binding sites.

DNA structure features of TFBS-context
We further analyzed the DNA structure features of the TFBS-contexts
which don't contain obvious TFBS. In the analysis of DNA structure,
similar to the analysis of DNA shape, we selected samples with top/
bottom 10% enhancer activity for each TF. We first utilized an algorithm
called R-looper™ to calculate the probability of R-loop formation within
these TFBS-contexts. The parameter for the size of the superhelical
domain was set to auto, and we used the other default parameters of
R-looper for the calculations. R-looper can provide the probability of
forming an R-loop at each base in a sequence. For each sequence, we
selected the maximum value as the probability of forming an R-loop in
that sequence. After calculating the probabilities for all sequences, we
compared those from the top/bottom 10% enhancer activity sequences.
Next, we employed the alignment tool provided by Non-B DB”
to identify non-B motifs within these sequences. For each of the
seven types of non-B motifs, we applied Fisher’s exact test to assess
whether there was a significant difference in the proportion of
sequences containing that type of non-B motif between TFBS-
contexts with top/bottom 10% enhancer activity.

Scrambling a TFBS

In designing cell type-specific TFBUs, we scrambled the core TFBS as a
control group. The scrambling is realized by introducing mutations at
several positions within a TFBS, ensuring that the mutated TFBS no
longer matches any TFBS motifs in the JASPAR database while intro-
ducing as few mutations as possible. We used the TOMTOM tool to
evaluate whether the scrambled sequences still matched any other
known TFBS motifs. To maximize the distinction between the scram-
bled sequences and other TFBS motifs, we set the TOMTOM recogni-
tion threshold to 0.95. The core TFBS sequences before/after the
scramble are as follows: BHLHE40: TCACGTGA/TCAGTTAA; GABPA:

ACCGGAAGAG/ACCGGCCAAG; GATA2: CTTATCT/CTTCGCT; SPIL:
CCCCGCCCCC/CCAAGACCCC.

Sequence in the task of multiple TFBU optimization
The interval sequence between multiple TFs proposed by Tim Lu is
applied in this task to form the sequence in the control group. The
form of the sequence is:

TFBS-AGA-TFBS-TCG-TFBS-GAC-TFBS-CTA-TFBS-ACT-TFBS-TGC-
TFBS-GTA-TFBS-G.

Here TFBS is the consensus sequence of the corresponding motif.
One thing should be noticed is that in our method, the positions with
information content less than 0.3 at both sides of the motif are taken as
a part of TFBS-context, which means that the interval sequence that we
optimize may be a little longer than 3 bp. To validate whether stronger
enhancer activity could be achieved with fewer core TFBSs, we set
another group where the 2nd, 4th, 6th, and 8th TFBSs are not taken as
core TFBS as are changeable during the optimization.

Decoupling enhancers into individual TFBUs

The maximum core TFBS matching score may occur at any position
within the sequence. If the position is not at the middle of our experi-
mental TFBU, the context sequence of the selected core TFBS would not
be covered with the origin TFBU. To address this issue, we appended the
sequence connected to TFBU on the plasmid at both ends when getting
the context sequence of the selected core TFBS. When a TF’s highest
TFBS matching score occurs at multiple positions on a sequence, only
the position with the highest TFBS-context score is considered.

Statistics
Statistics were calculated using Scipy’®. Detailed statistics information
was provided in the Supplementary Data 2 for statistic information.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All the enhancer activities data generated in this work are provided in
Supplementary Data 7-9. The list of data from ENCODE used in this
work is provided in Supplementary Data 11. The TFBS-context deep
learning model weights for the 198 TFs are available in the ZENODO
database via https://doi.org/10.5281/zenodo.10931825”. The raw
sequence data reported in this paper have been deposited in the Gen-
ome Sequence Archive (GSA)® in National Genomics Data Center”,
China National Center for Bioinformation / Beijing Institute of Geno-
mics, Chinese Academy of Sciences under accession codes: GSA:
CRAO015817, GSA-Human: HRA007140. The minimal dataset supporting
the results and analysis in this study has been deposited in the figshare
database [https://doi.org/10.6084/m9.figshare.263547251°. Source data
are provided with this paper.

Code availability

Detailed codes and the required files for the DeepTFBU toolkit and
related analyses are publicly available and has been deposited in
Github at https://github.com/WangLabTHU/DeepTFBU, under
Apache-2.0 license. The specific version of the code associated with
this publication is archived in the Zenodo repository and is accessible
via https://doi.org/10.5281/zenodo.14552321%.
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