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Unravelling single-cell DNA replication
timing dynamics using machine learning
reveals heterogeneity in cancer progression

Joseph M. Josephides & Chun-Long Chen

Genomic heterogeneity has largely been overlooked in single-cell replication
timing (scRT) studies. Here, we develop MnM, an efficient machine learning-
based tool that allows disentangling scRTprofiles fromheterogenous samples.
We use single-cell copy number data to accurately perform missing value
imputation, identify cell replication states, and detect genomic heterogeneity.
This allows us to separate somatic copy number alterations from copy number
changes resulting from DNA replication. Our methodology brings critical
insights into chromosomal aberrations and highlights the ubiquitous aneu-
ploidy process during tumorigenesis. The copy number and scRT profiles
obtained by analysing >119,000 high-quality human single cells from different
cell lines, patient tumours and patient-derived xenograft samples leads to a
multi-sample heterogeneity-resolved scRT atlas. This atlas is an important
resource for cancer research and demonstrates that scRT profiles can be used
to study replication timing heterogeneity in cancer. Our findings also highlight
the importance of studying cancer tissue samples to comprehensively grasp
the complexities of DNA replication because cell lines, although convenient,
lack dynamic environmental factors. These results facilitate future research at
the interface of genomic instability and replication stress during cancer
progression.

DNA replication is a fundamental biological process in which a cell
creates an identical copy of its genome to ensure the accurate trans-
mission of its genetic information to daughter cells during the synth-
esis (S) phase of the cell cycle. Despite the robustness and tight
regulation of this process, errors can occur leading to inexact, over- or
under-replication. Therefore, genomic alterations, includingDNAcopy
number variations (CNVs)1–4, point mutations5–7, and other structural
variants, are also common in normal cells8–13. CNVs refer to abnormal
fluctuations in the number of copies of specific genomic regions and
can be caused by various cellular processes, such as DNA replication
errors, lack of replication factors, chromosomal instability, and DNA
damage14. Dysregulation of DNA replication is associated with various
human diseases, including cancer15,16. Replication stress, which occurs

when cells encounter obstacles that prevent the successful execution
of the replication programme, can cause genomic instability and
promote tumorigenesis, making it a hallmark of cancer14,17. The study
of CNVs and DNA replication alterations is particularly important in
cancer because they can affect gene expression and function, poten-
tially leading to tumour initiation, progression and therapy resistance.
They also serve as biomarkers for cancer diagnosis, prognosis, and
treatment response18,19. However, methods specifically adapted to
study DNA replication in cancer cell populations are lacking due to the
high intra-tumoral heterogeneity.

CNV detection from next generation sequencing (NGS) data has
traditionally involved measuring the number of DNA copies per
genomic regionusingbulk sequencingdata. This hasbeen and remains
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a popular approach to identifyingCNVs in cancer samples. However, in
bulk sequencing, the genetic material of different cells is mixed and
sequenced, thus providing only an average image of the genomic
alterations across all tumour cells. This approach may not allow the
identification of subcloneswith distinct genomic profiles that could be
critical for understanding CNV origin and evolution in cancer.
Although efforts have been made to develop innovative mathematical
and computational approaches to estimate tumour purity and lever-
age variant allele frequency in bulk sequencing data, the accurate
detection of intra-tumoral genomic heterogeneity20,21, an important
aspect of evolving tumour populations11,22, is still challenging because
bulk data do not provide single-cell resolution. Therefore, this classical
approach might not capture the full degree of genomic heterogeneity
in tumours, limiting the identification of genomic changes that are
necessary to understand and study cancer progression, drug resis-
tance and therapeutic bottlenecks.

Recently, the advent of single-cell technologies has revolutionised
cancer research. Particularly, single-cell genomics has enabled the
study of cancer heterogeneity and the identification of rare cell
populations that may be responsible for tumour initiation and therapy
resistance. This technology has been used to characterise CNVs and
other genomic alterations in individual cells, revealing the extent of
intra-tumoral heterogeneity and clonal evolution in cancer22–30. This
has led to the discoveryof genomic subpopulations (i.e. groups of cells
with distinct CNV signatures compared with other cells from the same
sample). Yet, intra-tumoral heterogeneity is still overlooked when
studying DNA replication.

Replication Timing (RT) is a keymetric in DNA replication studies.
RT refers to the order in which different genomic regions are copied
during the S phase of the cell cycle. RT is highly regulated and corre-
lates with other cellular processes, including gene expression31, DNA
methylation32, chromatin structure33 as well as the 3D organisation of
chromosomes34. Single-cell whole genome sequencing (scWGS) has
allowed upgrading RT studies and the emergence of more detailed
analyses of mammalian replication dynamics at the genome-wide
level32,34–38. Until recently, single-cell RT (scRT) studies were limited by
the number of cells that could be analysed in each sample due to
technical constraints. Some recent studies that have overcome these
hurdles32,37,38 confirmed that cell-to-cell heterogeneity can be observed
in a single sample. We previously showed that it is possible to distin-
guish subpopulations based on their CNVs and extract distinct repli-
cation patterns using scWGS data from a single heterogenous cell line
sample37. However, this process was not automated and consequently,
RT profiles are not routinely disentangled in tumours.

Here, to democratise RT studies in complex cancers, we develop a
machine learning-based tool that we called Mix ‘n’Match (MnM). This
automated tool exploits the CNVs of single cells in mixed cell popu-
lations to cluster cells based on similarity, thus reconstructing sub-
populations and discovering replication states in silico. By grouping
cells into subgroups based on their cell cycle phase (replicating versus
non-replicating) and genomic composition, we observe distinct RT
trajectories for different subpopulations from cell lines and tumour
samples. We rigorously train a ready-to-use supervised machine
learning model to identify replicating cells and apply unsupervised
learning to identify cell subpopulations. By analysing 119,991 human
single cells, we provide a large source of heterogeneity-resolved scRT
profiles, which unravels replication timing dynamics and reveals an
additional layer of heterogeneity in cancer progression.

Results
Accurate copy number imputation of unsynchronised
single cells
Due to technical limitations, scWGS frequently has a lower read cov-
erage across the genome (i.e. <1X, Supplementary Tables S1-3) com-
pared to bulk sequencing, resulting in regions of copy number data

missing randomly across the genome. To address this issue, we used
the k-Nearest Neighbors (KNN) imputation technique, a data comple-
tion method that considers the closest cells in terms of genome-wide
copy number profiles39. To take into account rareCNVs and replication
events, we used a weighted copy number distance for the KNN
imputation that generated an imputed value proportional to the clo-
seness of the genome-wide copy number profiles between cells based
on Euclidean distances (Fig. 1a, b). For eachmissing value, we used the
existing copy numbers of the closest five single-cell profiles for the
same region to fill in the missing data (see Methods for details).

We proceeded to empirically validate this method by simulating
sparse single-cell copy numbermatrices. We introduced random voids
within the 100 kb window single-cell matrix of a mixture of replicating
and non-replicating MCF-7 cells (n = 2321 cells; n = 1288 genomic
regions), a breast cancer cell-line with a large number of CNVs (mean
ploidy: 3.73)37, after removing all regions that already contained
missing values. We randomly removed between 5% to 55% of copy
number values through increments of 5%. The KNN imputation
method predicted and integrated thesemissing values with an average
accuracy of 83.96%, thereby reconstructing the single-cell copy num-
ber landscape. Our findings showed an invariance rate, defined as the
total percentage of intact values in the whole matrix, ranging from
99.21% to 90.92% for 5% to 55% of missing values, respectively (Sup-
plementary Fig. S1a). These values were significantly higher (paired t-
test, p = 7.67e-24 and p = 5.34e-25, respectively) than the median
(ranging between 97.44% and 71.80%) and the random invariance rates
(ranging between 96.12% and 57.25%), underscoring the robustness of
the KNN approach. Furthermore, the imputed values with an absolute
difference of ≤1 copy number, compared with the original values,
ranged between 99.92% and 99.01%, indicating that the vast majority
of the errors introduced through this process were not radically
inaccurate, evenwhenmore than half of the dataset containedmissing
values. We repeated the evaluation of the KNN imputation method
using scWGS data of HeLa S3 cervical cancer cells (mean ploidy: 2.87,
n = 459 cells) and JEFF B cells (mean ploidy: 1.94, n = 952 cells) (Sup-
plementary Fig. S1b, c) and obtained similar invariance rates
(99.28–91.33% and 99.61–95.43%, respectively). These random simu-
lation results confirmed that our KNN imputationmethod can robustly
produce accurate results using scWGS data obtained from normal and
cancer cell types with various ploidy levels.

To extract as much information as possible from our scWGS data,
we applied the KNN imputation method to all datasets used in this
study (Supplementary Table S1). The imputed values represented only
0.84%, 0.68% and 1.11% of all copy number values for HeLa S3, JEFF B
and MCF-7 cells, respectively. The mean percentage of missing values
in the datasets analysed in this study was 0.43% (Supplementary
Table S1), suggesting that based on the simulation, the imputed value
fidelity was always high (>99%).

Deep learning model for single-cell DNA replication state
classification
Sorting cells by their replication state determined by fluorescence-
activated cell sorting (FACS) can induce errors40. Therefore, it would
be interesting to further validate such replication states by other
means. Some computational methods (such as Kronos scRT) can do
this validation22,37,38, but they require manually established thresholds
or additional information (e.g. GC content and intra-cellular variability
measurements) that is not always directly accessible. To create a
method that can bypass the need ofmetadata, we amalgamated single-
cell copy numbers, issued from datasets with replication states infer-
red fromFACS35, Kronos scRT37, or their intersection32,38, depending on
the extraction methods, and harvested the labelled replication states
to create a deep learning model based only on single-cell DNA copy
numbers (Fig. 1c). Data integration resulted in 5,250 replicating and
2,273 non-replating cells from six cell line types (Supplementary
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Table S2). We hypothesised that the different ploidy landscapes of the
selected cell lines would make this prediction tool universal and
adapted to any ploidy state.

We then split our dataset (80:20 ratio) to create a training dataset
and a test dataset. To prepare the model to handle noise from lower
quality datasets, we applied data augmentation for the training dataset
by replicating and artificially altering half of its cells to induce a ran-
dom noise of ±1 copy number sporadically. We trained the model for
copy numbers in 25, 100 and 500 kb bins that resulted in accuracy
rates of 97.94%,98.54% and98.14% for replication state classification in
the test dataset, respectively. Therefore, we selected the 100 kb bin
size (best accuracy and spatial resolution) for the downstream ana-
lyses. To quantify how well our 100 kb model performed compared
with FACS, we calculated the discordance percentage between our in
silico predictions and the FACS metadata of three cell types: wild-type
(WT) HCT-116 colon cancer cells (n = 713), HCT-116 double knockout
(DKO1) cells in which both the maintenance DNA methyltransferase
DNMT1 and the de novo DNA methyltransferase DNMT3B were
knocked out (n = 668), and GM12878 B cells (n = 3180). We observed
that FACS misclassified 17.67% of WT HCT-116, 27.70% of DKO1 HCT-
116, and 25.72% of GM12878 cells (Fig. 2). These results demonstrate

that evenwhen taking into account the 1.56% error rate of ourmodel, it
generated results with higher accuracy compared with FACS for cell-
phase sorting, in accordance with previous estimations38.

Unsupervised machine learning for cancer subpopulation
discovery
Our next goal was to detect copy number differences among cells, a
crucial factor in cancer emergence and progression. To achieve this,
we created a 3-step framework to detect genomic subpopulations, i.e.
groups of cells with distinct CNV signatures compared with other cells
from the same sample (Fig. 1d–f). The autosomal copynumbers of non-
replicating cells, determined by our replication state classifier,
underwent dimensionality reduction by uniform manifold approx-
imation and projection (UMAP), to be represented in a two-
dimensional (2D) space. Then, we used the 2D cell coordinates in
these new representations to detect cell subpopulations using density-
based spatial clustering of applications with noise (DBSCAN), an
unsupervised spatial clustering algorithm. AlthoughUMAP is relatively
stable because it is a stochastic algorithm41 that can generate non-
representative distances of high-dimensional data, we repeated the
UMAP/DBSCAN steps another six times using random seeds ranging

Fig. 1 | Machine learning techniques used inMnM. a, b Copy number imputation
with k-Nearest Neighbors (KNN). Single-cell copy number data in a matrix or a BED
file are used as input and the missing copy number values marked as a question
mark (a) are filled in by KNN imputation (b). c Deep learning model for the single-
cell replication state classifier. The trained deep learning model includes one input
layer and three hidden layers. The output layer is loaded and used to predict the

replication states of single cells. d–f Subpopulation discovery in three steps.
Dimensionality reduction is performed with UMAP and non-replicating cells in two
dimensions to provide representative lower dimensions of the copy number data
(d). DBSCAN clusters the data based on the UMAP coordinates (e). This allows
matching replicating cells to the corresponding non-replicating subpopulations
with KNN after a second 10-dimension UMAP dimensionality reduction step (f).
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between 3 and 230. The number of sub-populations was counted for
each seed. If the predominate number of clusters was not found in the
original iteration, the seed would change to the first of the six random
seeds that encountered the predominate number of clusters. Sub-
populations were iteratively merged when they presented a median
copy-number identity >98.5% in a prioritised (decreasing identity)
order. Finally, replicating cells were included and a second dimen-
sionality reduction step down to 10 dimensions allowed the KNN
algorithm to match replicating cells to their corresponding non-
replicating subpopulations.

To validate this method in distinct genome-wide CNV landscapes,
we mixed JEFF B (n = 1455 cells) and HeLa (n = 752 cells) cell copy
number data and analysed them as if they were a single sample, with
the expectation that the two cell lines would be correctly dis-
tinguished. We first observed that replicating cells from both cell lines
were visually distinguishable in the 2D landscape (Supplementary
Fig. S2a–c). After running our 3-step subpopulation detector
(Fig. 1d–f), we confirmed that without providing any information on
the cell origins, both replicating (Supplementary Fig. S2c) and non-
replicating cells (Supplementary Fig. S2d) werematched back into two
populations that corresponded to JEFF B and HeLa cells with high
accuracy (99.83% and 99.82% for HeLa and JEFF B cells, respectively).
Furthermore, we found that female-derived JEFF B cells harboured

only one chromosomeXcopy (Supplementary Fig. S2d), insteadof two
copies, a phenomenon compatible with acquired monosomy X.

Fast and accurate subpopulation discovery and replication
analysis
We integrated ourmachine learning approaches to provideMnM (Mix
‘n’ Match), a stand-alone and ready-to-use computational tool, which
unifies these techniques under one programme. Copy number impu-
tation, replication state classification and subpopulation detection,
taken together, allowed scRT extraction from heterogenous cell
populations and related downstream analyses, for in vivo and in vitro
samples.

We previously reported the identification of two subpopulations
of MCF-7 cells, a breast cancer cell-line with unstable aneuploidy37. We
nowusedourMnM tool to automatically detect subpopulations froma
single-origin MCF-7 cell sample (n = 2768). We identified the two sub-
populations based on sub-chromosomal (Fig. 3a) and whole-
chromosome (Fig. 3b) copy number differences. These two sub-
populationswere also separated in theUMAP lower-dimensional space
(Fig. 3e). We then used the same method with WT HCT-116 cells and
discovered the existence of two subpopulations (Fig. 3f), which was
previously unreported32. Unlike the MCF-7 cells, these HCT-116 cell
subpopulations could only be distinguished at the sub-chromosomal

Fig. 2 | Widespread misclassification of DNA replication states by FACS for the
HCT-116 WT, HCT-116 DKO1 and GM12979 cell lines. Partial discordance for the
replication states of single cells between the FACS results and the supervised deep
learning method developed here. FACS sorting of G1 cells (upper panels) and of S
cells (lower panels) from wild-type (WT; left) and double knock-out of the

maintenance DNA methyltransferase DNMT1 and the de novo DNA methyl-
transferase DNMT3B (DKO1; centre) HCT-116 cell andGM12878 (right) cell samples.
Coloured dots indicate the MnM replication state predictions. Source data are
provided as a Source Data file.
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level (Fig. 3c, d), suggesting that the observed local CNV changes were
due to DNA repair pathways alterations rather than global genome
instability. This is in line with the fact that the HCT-116 cell line har-
bours a defective mismatch repair pathway (due to a homozygous
mutation of the mismatch repair gene MLH1 on chromosome 3) and
exhibits microsatellite instability42,43, two possible causes of this
phenomenon.

Besides its high accuracy, MnM is a fast tool with a runtime of
7m:22 s to analyse 713 WT HCT-116 cells in 100 kb bins running on a
macOS 13.5.2 computer system with six cores of an Intel i5 processor.

To determine whether our subpopulation discovery method can
be applied to scWGS data obtained and analysed with different tech-
niques, we reanalysed published copy number data of 43,106 cells
processed in ref. 26, with many originating from ref. 22. These data
were aligned to the hg19 human genome and generated with
HMMCopy in 500 kb bins, a reference genome and copy-number
estimator that were different from those of the data used for training
the deep learning model. Upon visual inspection of the single-cell
genome-wide copy number heatmaps (Supplementary Fig. S3), we
observed that there were copy number signatures specific to different
subpopulations. We concluded that our approach is robust and

efficient even when using scWGS data aligned to different reference
genomes (hg38 and hg19), obtained with different techniques (10x
scCNV solution and DLP+), split in different bin sizes (100 kb and
500 kb), and processed with different copy number calling methods
(Kronos scRT and HMMCopy).

DNA replication timing retains high fidelity despite CNVs
We then split the copy number data by subpopulation and provided
the detected cell phases to Kronos scRT to obtain the RT profiles. As
the calculated copy numbers were relative, copy numbers of MCF-7
(Fig. 4a, b) and HCT-116 (Fig. 4c, d) cells in early and late S phase were
corrected in 200 kb bins. We observed that the S/G1-phase borderline
was non-linear on the bin-to-bin variability scale (Fig. 4a–d). This sig-
nifies that the separation of the replication states with previous com-
putational methods using linear techniques and a unique cut-off37,38

introduced a larger error rate. For each subpopulation,we inferred and
visualised the scRT profiles (Fig. 4e, f). Despite the presence of
genome-wide CNVs, the pseudo-bulk RT profiles of the two MCF-7
subpopulations had a Spearman correlation of 93.6% (Fig. 4g) and
were also highly correlated with the bulk RT profile (Spearman cor-
relations of 92.8% and 94.4%, respectively). As expected, due to the

Fig. 3 | Genomic heterogeneity detected in individual samples of cancer
cell lines. a–d Genome-wide copy numbers (a, d) and their median number per
chromosome (b, c) in MCF-7 (a, b) and WT HCT-116 (c, d) cells. e, f Reduced

dimension planes by UMAP showing the subpopulation clustering ofMCF-7 (e) and
WTHCT-116 (f) cells based on their copy number profiles. Source data are provided
as a Source Data file.
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Fig. 4 | Uncovering the single-cell Replication Timing (scRT) of heterogenous
cancer cell lines. a–d Early (green) and late (purple) S-phase cells fromMCF-7 (a,b)
and S phase FACS-predicted WT HCT-116 (c, d) populations are corrected (b, d)
from raw scCNV data (a, c) that display non-replicating (blue) and replicating
(green) cells. e, fChromosome 16 scRT landscapes ofMCF-7 (e) andWTHCT-116 (f)

cells display minor differences between subpopulations. Bulk replication timing
(RT) and pseudo-bulk RT data are displayed in the upper window. Correlations
between pseudo-bulk subpopulation scRT and bulk RT data for MCF-7 (g) and WT
HCT-116 (h) cells. Source data are provided as a Source Data file.
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smaller copy number signatures, the HCT-116 cell profiles were also
highly correlated with a Spearman correlation of 97.5% (Fig. 4h).

Replication timing heterogeneity in a patient tumour sample
As RT has not been studied in heterogenous tumours, we used the
same methods to discover cell phases and subpopulations using
published data obtained from a triple-negative breast cancer (TNBC)
tumour sample (SA1135). As in the original study22, we discovered one
diploid and three aneuploid subpopulations in non-replicating cells
(n = 58, 54, 55, 26, respectively; Fig. 5a, b). Among the 347 cells that
passed the quality control, 152 were replicating; this proportion of
replicating cells was larger than in the cell line models, in agreement
with the persistent proliferation of TNBC cells. We then calculated the
scRT profiles for each subpopulation. We considered that sub-
populations 1 (n = 13 cells) and 3 (n = 29 cells) did not have a repre-
sentative S-phase landscape (Fig. 5d) and disregarded them. On the
other hand, subpopulations 2 (n = 36 cells) and 4 (n = 74 cells) showed
distinct RT programmes, indicating a deregulated replication pro-
gramme in vivo. The Spearman correlation value for the RT profiles of
subpopulation 2 and 4 from the same tumour was 73.3% (Fig. 5c),
which is close to the previously reported correlation coefficient range
(Pearson r: 0.76–0.86) for RT profiles of cell lines fromdifferent breast
cancer subtypes44. Our results demonstrate thatRTprofiles canbevery
heterogeneous in cell subpopulations from the same cancer sample.

The scRT atlas reveals cell type and tumour-specific
relationships
We then tested ourmethods using other datasets. In total, we analysed
the copy numbers of 119,991 quality-controlled cells originating from
92 different samples spanning across 21 different cancer cell lines, 35
patient tumour samples and 19 patient-derived xenograft (PDX) sam-
ples (Supplementary Table S3). In some cases, we discovered large
copynumber differences in the same cell line using data obtained from

different publications. The HeLa and MCF-7 cell lines displayed a dif-
ferent karyotype depending on their origin, suggesting that extensive
cultureof cancer cell lines can induce important copy number changes
(Supplementary Fig. S3). It is unlikely that these differences were the
result of the different scWGS techniques used for data generation orof
confounding batch effects because the HCT-116 cells from two differ-
ent publications32,38 had the same karyotype. Importantly, the
observed results from HeLa and MCF-7 cells are in line with previous
studies reporting karyotypic heterogeneity among and within differ-
ent HeLa45 and MCF-7 strains46. In addition, the presence of these two
MCF-7 cell subpopulations was confirmed experimentally by FISH37.

We computed the pseudo-bulk RT profiles when we had enough
cells to reconstruct a representative S-phase landscape. This was
determined either by software failure or visual inspection of the
ploidy/copy-number variability plots (i.e. Fig. 2) tomake sure that cells
were either in mid-S phase or in early and late S phase. When this was
not the case, we did not consider the (sub)populations for RT profile
generation.We used 41 (sub)populations and calculated the Spearman
correlation for each pair (Fig. 6). Unlike the two subpopulations from
the same MCF-7 cell sample, we noticed that the RT profiles of MCF-7
samples from different laboratories only presented a Spearman cor-
relation of 84.5%, on average. As this cell line has a variable karyotype,
we speculated that these RT profile differences could be caused by
widespread copy number differences. Indeed, we discovered that, in
MCF-7 cells from different laboratories, the median copy number per
chromosomewas the sameonly in 11 and 13 chromosomes (in function
of theMCF-7 cell subpopulation; Fig. 4, Supplementary Fig. S3). On the
other hand, the RT profiles of JEFF B and GM lymphoblastoid cell lines
displayed high Spearman correlation coefficients, all >90%, regardless
of the sample origin. Although both H7 human embryonic stem cells
(hESCs) and GM12892 lymphoblastoid cells presented a perfectly
diploid karyotype (Supplementary Fig. S3), the Spearman correlation
coefficients for their RT profiles were lower (79%), illustrating that in

Fig. 5 | Unravelling the scRTdata of cell subpopulations from the human triple-
negative breast cancer sample SA1135. a Major differences in the median DNA
copynumbersper chromosome for the four subpopulations.bReduceddimension
UMAP plane of the copy numbers of the single cells from the tumour sample.
c Spearman correlation between the subpopulations 3 and 4. d Chromosome

21 scRT landscapes in the four subpopulations, with the pseudo-bulk replication
timing (RT) data from the scRT profiles in the upper windows. FNA: Fine-Needle
Aspiration (cell collection technique). Source data are provided as a Source
Data file.
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addition to CNVs, scRT profiling can be used as a cell-type specific
biomarker, which can help to determine the potential origin of
tumour cells.

To better examine the similarities and differences of the various
RT profiles of the scRT atlas, we generated RT trajectories using
potential of heat-diffusion for affinity-based trajectory embedding
(PHATE)47 to visualise the local and also the global structure of the RT
landscapes. Initially, we generated the RT trajectories in the well-
characterised cell lines of this study (Fig. 7a, c) and found distinct RT

dynamics for different cell types, consistent with previous findings37.
Notably, the trajectories of the lymphocyte lines (i.e. JEFF, GM12891,
G12892) and HCT-116 cell subpopulations reflected the closeness of
correlations observed in the scRT atlas (Fig. 6), whereas MCF-7 cell
subpopulations showed slight divergences, as previously reported37.
We then extended this analysis to the breast cancer samples and PDXs
of the atlas (Fig. 7b, d). We observed a general conservation of RT
profiles by tumour; however, we also detected RT profile divergences
during PDX passaging (e.g. TNBC PDX SA609), reflecting RT profile

Fig. 6 | The scRT atlas reveals cell-type specific relationships of DNA replica-
tion. Spearman correlations between the 41 scRT pseudo-bulk profiles extracted
from human cell lines, patient tumours and patient-derived xenograft (PDX) sam-
ples. Samples were ordered by hierarchical clustering using the second version of
Ward’s minimum variance method (Ward.D2). Cell subpopulations from the same
sample are indicated with an S after the sample name (e.g. S1, S2). Cell origins
(tissue) are given in brackets after the sample name. PDX samples are identified as

sample_numberXmouse_passage. hESC: human embryonic stem cells; RPE: retinal
pigment epithelial cells; TNBC: triple-negative breast cancer; ERpos: oestrogen
receptor positive; PDX: patient-derived xenograft; HGSOC: high-grade serous
ovarian carcinoma; hTERT: human telomerase reverse transcriptase. FNA: fine-
needle aspiration (cell collection technique). Source data are provided as a Source
Data file.
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evolution during cancer progression. Notably, the trajectories uncov-
ered subtle shifts in RT patterns, suggesting that RT profiling can
capture genomic changes during tumour progression.

To assess whether there was a significant difference in RT trajec-
tories among subpopulations, we collected the scRT trajectory coor-
dinates from Fig. 7b, grouped by subpopulation and used them for a
permutation test (see Methods), a non-parametric method that does

not assume specific data distributions and allows the randomisation of
group (i.e. cell-type/subpopulation) labels. In agreement with our
previous report37, the trajectories of the two MCF-7 cell subpopula-
tions were significantly different (p =0.004). We generated pairwise p-
values for each (sub)population (Supplementary Fig. S4) and demon-
strated that the RT trajectories of some tumour samples (e.g. TNBC
PDX SA501 and PDX SA532, ER-positive breast cancer) did not change

Fig. 7 | The scRT trajectories reflect relationships between cell types and cell
subpopulations. a scRT trajectories of different cell lines; each point represents a
single cell (colour and shape in function of the cell type). b scRT trajectories of
breast cancer samples, including PDX, Fine-Needle Aspiration (FNA) samples, and
cell lines. Data of representative cell lines are included for comparison. c scRT

trajectories of different cell lines, coloured according to the percentage of cell
replication (DNA content replicated). d scRT trajectories of breast cancer samples,
coloured according to the percentage of cell replication. Cell type colours and
shapes are indicated in the internalfigure legendscorresponding to (a, c) and (b,d),
respectively. Source data are provided as a Source Data file.
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through PDXpassaging,while in other samples (e.g. TNBCPDXSA609)
they constantly changed. Furthermore, the breast cancer sample
SA1135 showed an RT trajectory change between subpopulations.
Altogether, these results show that RT subpopulation extraction can
be used to study RT dynamics during cancer progression in vitro (i.e.
cell lines) and in vivo or ex vivo (i.e. tumour/PDX samples).

Discussion
In thiswork, wepresent amachine learning-based approach to identify
single-cell replication states and genomic subpopulations in single
heterogenous samples, shedding light on an additional layer of het-
erogeneity in cancer progression. Our tool, MnM, is designed to
accurately establish single-cell replication states and identify genomic
subpopulations based on the DNA copy numbers of a mixture of het-
erogenous cells issued from a single sample. By leveraging this infor-
mation, MnM disentangles heterogeneity, aligning replicating and
non-replicating cells in each subpopulation. The validation of each
MnMstepdemonstrated remarkable accuracy inmissing copy number
imputation and cell replication state classification. Considering that
the data used in our current study present a low rate of missing copy
number values (median = 0.34% in the present study), the KNN
approach used here is robust enough for imputation without a high
computational cost. For more sparse data, other deep learning
approaches (such as Generative Adversarial Nets)48,49 could also be
considered. We also confirmed that with subpopulation clustering,
MnM can efficiently detect the number of different cell types and as
well as the underlying subpopulations in a single sample.

Our study underlines the FACS limitations for cell cycle phase
detection (at least for the scWGS data with available FACS sorting data
included in the current study), revealing error rates that ranged from
17.7% to 27.7%, in accordance with previous estimations38. Although in
some cases single cells are sorted into the different cell cycle phases
before sequencing, and the latest version of cell sorting machines/
methods can providemore accurate results, we believe that cell-sorted
metadata should always be verified computationally to avoid erro-
neous conclusions. Our replication state classifier was only trained on
the hg38 reference genome; however, this method can easily be
extended to other genomes and used routinely. Furthermore, in some
cases, FACS metadata may not exists (e.g. unsorted samples), such as
in the caseof hESCs and tumour samples that contain a limited number
of cells that one cannot afford to lose in additional analyses (e.g. FACS).
Therefore, in silico predictions are valuable for these cases. None-
theless, we acknowledge that the amount of data used here to com-
pare our model is limited and as a result, it would be interesting to
further test ourmodel usingnew scWGSdata as they becomeavailable.

Another noteworthy finding was the identification of chromoso-
mal aberrations inmost samples.Wediscovered that the JEFFB cell line
had lost one copy of the chromosome X, a phenomenon correlated
with mitotic errors occurring during ageing50. We also detected
important chromosomal aberrations in cell lines and tumour samples
(Supplementary Fig. S3), further underlining the importance of DNA
copy number screening. Aneuploidy is an omnipresent trait in tumour
genomes10,51. The presence of genomic instability in cancer has been
recognised for a long time52–54; however, its exact role in tumour
development remains ambiguous. In fact, the omnipresence of aneu-
ploidy in tumours prompts discussion on its dual role as a tumour
promoter and suppressor55,56. As discussed by others10, copy number
gains might amplify the expression of tumour-promoting genes (i.e.
oncogenes) or might stem from the disruption of cell cycle check-
points, a commonoccurrence in advancedmalignancies57,58. In specific
cases, aneuploidymight surprisingly exert tumour-suppressive effects.
For example, genomic instability could decrease tumour fitness56,59,60

and individuals with Down syndrome, arising from the triplication of
chromosome 21, are less susceptible to developing solid tumours61.

The robustness of the DNA replication machinery is a cor-
nerstone of cellular integrity. Its deregulation can lead to geno-
mic instability, a cancer hallmark. Many pioneering studies
revealed the important links between the DNA RT programme
and cancer mutation rates, signatures and structural
variants9,44,62–64. However, due to the lack of RT data directly
measured in tumour samples and despite a general association
observed between the RT programme and genetic alterations in
cancer, few studies have been able to analyse how the RT pro-
gramme plasticity and changes interact with the mutational
landscape in cancer and contribute to cancer development. In a
recent study44, Dietzen and colleagues focused on RT alterations
by comparing RT data from lung and breast cancer cell lines and
matched normal cell lines. They showed that RT is altered rela-
tively early during cancer development/progression and that this
plays an important role in shaping the cancer mutational land-
scape. Interestingly, they found that regions changing from late
to early replication contain genes that are overexpressed in can-
cer and present a preponderance of APOBEC3-mediated mutation
clusters associated with driver mutations. These results suggest a
direct role of RT in tumour development/progression. In the
present study, we observed a remarkable contrast between cell
models and patient-derived samples in terms of RT alterations.
Cell models exhibited relatively modest changes in DNA replica-
tion dynamics. These cell lines, cultured in controlled conditions,
often are simplified representations of cellular systems. Con-
versely, in patient tumour samples, we identified substantial dis-
ruptions in DNA replication patterns. These observations
resonate with the importance of the tumour microenvironment
and its intricate interplay with replication stress and thus geno-
mic stability. The RT dynamic disparities between cell lines and
patient samples highlight the need of integrating complex,
patient-specific factors to understand DNA replication mechan-
isms in the context of cancer progression. Until now, only RT data
from cancer cell lines were available and previous studies
neglected the intra- and inter-tumour heterogeneity. Here, we
provide a tool that allows generating unique data on
subpopulation-resolved RT profiles from tumour samples. These
results show that this tool can facilitate the exploration of the
intra-tumour RT programme heterogeneity and its relationship
with genomic alterations in individual patient tumours.

Despite advances in scWGS studies, there are still challenges in
achieving complete genome coverage due to the low read depth. As
new methods are emerging, notably a recent report of long-read sin-
gle-cell sequencing65, future studies will be able to thoroughly inves-
tigate the precise relationship between mutational landscape,
aneuploidy and replication programme. Eventually, the imminent
generation of higher resolution scRT data will allow addressing the RT
differences in homologous chromosomes. This underlines the need of
detailed analyses of the replication synchronicity of alleles, an even
more complex task for aneuploid polyallelic cancer cells.

In conclusion, we developed a machine learning-based tool
(MnM) to democratise scRT subpopulation detection from DNA copy
numbers and also built a large scRT atlas for the community. This
could be a valuable resource for future research. This tool can con-
tribute to our understanding of cancer emergence and progression.
For instance, this tool allowed obtaining evidence of a further layer of
widespread heterogeneity in cancer progression, based on the DNA
replication patterns. Lastly, our results underline the necessity to
consider tumour samples in order to fully understand themechanisms
governing DNA replication during cancer development/progression.
Indeed, cancer cell lines are an easier research model, but they lack
some critical environmental factors that contribute to cancer
development.
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Methods
MnM: mix ‘n’ match single cells
MnM consists of three main steps: passing single-cell copy number
data through (i) KNN imputation formissing copy number values, (ii)
a supervised replication state classifier (to separate replicating from
non-replicating cells), and then (iii) an unsupervised subpopulation
detector (see below for details). The programme can load a BED file
containing DNA copy numbers for each genomic region (obtained
with scWGS data) with cell indices, or alternatively, a matrix with
genomic regions as headers (chr:start-end) and individual cell iden-
tifiers as row indices (Fig. 1a). Missing copy numbers are filled-in with
KNN imputations (Fig. 1b), and the cell replication state is predicted
using a pre-trained and ready-to-use deep learningmodel (Fig. 1c, d).
Then, copy numbers of non-replicating cells undergo a lower
dimensional space transformation to discover underlying sub-
populations by unsupervised clustering (Fig. 1e). Lastly, replicating
cells are matched with their corresponding non-replicating popula-
tions in a dimensionality-reduced landscape (Fig. 1f) for further
analyses, such as scRT extraction or identification of the different
CNV subpopulations in the non-replicating cells. A schematic repre-
sentation of MnMmain steps (Fig. 1) illustrates that the combination
of deep learning, UMAP, DBSCAN and KNN algorithms allows unco-
vering replication states and subpopulations from single-cell whole-
genome copy number calling data (detailed in the following
sections).

scWGS demultiplexing
The BAM files of hg19-aligned GM12878 B-cell data from ref. 38.
were obtained, sorted by read name with samtools66 sort (v. 1.16.1;
option -n) and converted to fastq files with samtools fastq (options
-T CB --barcode-tag CB) to transcribe the barcodes to the fastq
headers from the BAM headers for alignment to the hg38 reference
genome, as indicated below. These files were demultiplexed with
demultiplex67 demux (v 1.2.2; options -m 0 --format x). Data for
other cell types obtained from the 10X Chromium Single Cell CNV
solution from ref. 28,32,38. (Supplementary Table S3) were
acquired as fastq files and demultiplexed using demultiplex demux
(options -r -e 16) with barcodes extracted from the first 16 bp of
forward reads. All extracted barcodes were filtered based on the 10X
barcode whitelist.

Barcode validation
10X single-cell data were considered for the analysis if they origi-
nated from valid barcodes that were identified as follows. Data were
prepared by counting the number of lines of each demultiplexed
fastq file and then divided by 4 to reflect the number of total reads
per single cell. The resulting list containing the number of reads per
barcode was then used to separate corrupted or low-read (invalid)
barcodes from qualitative (valid) barcodes using a custom R68

(v4.0.4) script (see 'Code Availability'). Barcodes containing less
than 30,000 reads were not considered qualitative due to the very
low number of reads and were systematically removed to eliminate
any noise in the initial peak and with the goal of only keeping a
mixture of two distributions (valid and invalid barcodes). The em
command from the cutoff R library (v0.1.0) was used to identify the
cut-off point of 2 log-normal distributions of the read counts
from the Expectation-Maximisation (EM) algorithm for each
demultiplexed file.

EM included two stages: the expectation step (E-step) and the
maximisation step (M-step), which occurred after initialisation of
the μ and σ parameters (see below) for the 2 log-normal dis-
tributions (D1 and D2). The probability density function (PDF)
used in the E-step (formula 1), which represented the probability
of observing a particular read count per barcode (continuous
random variable) given the following parameters, of the log-

normal distribution can be described as:

fðxjμ,σÞ= 1

xσ
ffiffiffiffiffiffi
2π

p e� lnx�μð Þ2=ð2σ2Þ ð1Þ

where:
• x represents the read count of the barcode,
• μ represents the mean (also called location parameter),
• σ represents the standard deviation (also called the scale
parameter).

Using this, γi (formula 2), which represents the probability that
barcode read count i belongs to the valid distribution was calculated
as:

γi =
fðxijμD2,σD2Þ

f xijμD2,σD2

� �
+ f xijμD1, σD1

� � ð2Þ

where:
• f ðxijμD2,σD2Þ is the PDF of the log-normal distribution with
parameters μD2,σD2 evaluated at the read count xi for the valid
distribution (D2),

• f ðxijμD1, σD1Þ is the PDF of the log-normal distribution with
parameters μD1, σD1 evaluated at the read count xi for the invalid
distribution (D1).

The E-step computed the expected value of any missing data
points and calculated the probabilities of the missing or overlapping
data given the estimates of μ (formula 3) and σ (formula 4). Then, the
M-step updated the parameters of the log-normal distributions using
the estimated probabilities as follows:

μnew =
PN

i= 1γilnxiPN
i= 1γi

ð3Þ

σnew =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i = 1γiðlnxi � μnewÞ2PN

i= 1γi

vuut ð4Þ

The E- and M-steps were repeated iteratively until the estimated
probabilities γi converged (when the parameters and probabilities
stopped changing between iterations). The exact cut-off value
between D1 and D2 was obtained with the cutoff command from the
same package, with D1, the lower read count distribution, belonging to
the Type-I error. Only the barcodes with a number of reads superior or
equal to the EM cut-off value were considered valid and those with a
lower read number were discarded. Histograms containing repre-
sentations of the read counts and cut-off values were systematically
generated for visual inspection and validation. The valid barcodes
were retained with their respective reads as fastq files that corre-
sponded to the single cells used for mapping and additional analyses.

Read mapping
The scWGS data of MCF-7 breast cancer37, JEFF B37, HeLa S3 cervical
cancer37, andhTERT-RPE1 retinalpigment epithelial cells35 were aligned
to the UCSC human reference genome hg38, as previously reported37,
using the Kronos FastqToBam module. The reads of other single-cell
fastq files were trimmed and filtered by quality score with Trim
Galore69 (v0.6.4; options –fastqc, –gzip, --paired when paired-end data
were used or omitted otherwise, and --clip_R1 16 except for GM12878
cells that were originally aligned to the hg19 genome) based on
Cutadapt70 (v3.7) and FastQC71 (v0.11.9) andmapped to theUCSC hg38
reference genome with BWA mem72 (v0.7.17; option -M). Mate coor-
dinates were corrected using samtools fixmate (option -O bam) when
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data were frompaired-end sequencing. Then, all BAM files were sorted
by coordinates with samtools sort (-O bam) before read duplicate
removal with Picard73 MarkDuplicates (v2.26.11; options ASSUME_-
SORT_ORDER=coordinate, METRICS_FILE) via java (v19; options
-Xmx16g -jar). MultiQC74 (v1.10.1) was used to visually inspect the
single-cell data quality.

Copy number matrix organisation
Copy numbers from the resulting single-cell BAM files were estimated
with the Kronos scRT Binning and CNV commands in 20 or 25 kb
windows (see code for details). Problematic genomic regions were
masked with the v2 hg38 ENCODE blacklist75. The resulting copy
number BED files were regrouped by sample and used as input for
further analyses and visual representations withMnM and the random
seed set to 18671107.

Genomic regions from all MnM input files were rearranged in
100 kb non-overlapping genomic windows (as a median of the copy
numbers from the input file that overlapped with the 100 kb window
by at least 50%) delimited by the chromosome sizes of the hg38
reference genome provided by bedtools76,77 and in 25 kb and 500 kb
replication state classifier models. Then, MnM automatically pro-
cessed the data by temporarily removing windows containing no data.
Any remaining sporadic missing values were filled in with the inte-
grated sklearn KNN imputation algorithm39 (options n_neighbors = 5,
weights = ‘distance’). The nearest neighbours were defined as the five
closest cells based on the Euclidean distance of the genome-wide copy
numbers (distances calculated in pairs for genomic regions that were
not missing in both cells). A weighted average of copy numbers from
the region of the closest neighbours was used as the imputation value.
The imputation method can be described as follows:

X̂ ij =

Pnneighbours

k = 1 wik � XkjPnneighbours

k = 1 wik

ð5Þ

where:
• X̂ ij (formula 5) represents the imputed value for the copy number
of the region j in cell i,

• Xkj denotes the value of region j in the k-th neighbour,
• nneighbours is the number of nearest neighbours considered for
imputation. Here n=5,

• wik represents the weight assigned to the k-th neighbour for cell i
based on the Euclidean distance.

This imputation method was also used for the imputation of
5–55%, in intervals of 5%, of single-cell copy number values that were
randomly selected and removed after the elimination of any windows
containing missing values of an S-phase-enriched MCF-7, HeLa S3 or
JEFF B cell population37. A random imputation method (where each
missing copy number value was substituted by a randomly selected
non-missing value from the matrix) and a median imputation method
(where the median of each genomic region was imputed) were
implemented for comparison with the KNN imputation method under
the same random seed (see code for details). Accuracy was calculated
as the percentage of identity of the imputed values compared with the
original values. Similarity was calculated as the percentage of values
that differed less than ±1 copy number for KNN imputations compared
with the original values. Invariance was calculated matrix-wide as the
percentage of unchanged copy numbers after imputation.

Replication state classifier
To organise the data for the replication state classifier, cell cycle
phases were extracted with Kronos scRT (for HeLa, MCF-7 and JEFF B
cells37), only from the FACS metadata (for hTERT-RPE1 cells35) or from
the intersection of common replication states from the FACSmetadata
and Kronos scRT (for HCT-116 colon cancer and sorted GM12878

cells32,38; Supplementary Table S2). The resulting single-cell copy
number matrices were concatenated. Partially or completely missing
regions (i.e. any genomic region containing at least one missing copy
number value) were removed and only autosomal data were retained.
Eightypercent of the cellswereused as trainingdata and the remaining
20% were used as testing data. To allow the replication state classifier
to distinguish noisy copy number profiles of non-replicating cells (e.g.
from low-quality cells or technical noise) from those of replicating
cells, data augmentation was performed as follows to reduce over-
fitting. Half of the CNVs from cells in the training dataset were ran-
domly selected and copied. For each of these copied cell CNV profiles,
noise was induced by altering the copy numbers by ±1 in 5–75% of the
genomic regions selected from a uniform distribution.

The replication state classifier was built using a Sequential archi-
tecture, a feed-forward neural network. The model was designed with
the Keras78 Python library (v2.13.1) to facilitate the construction of a
linear stack of neural network layers, each connected to the next one.
The single-cell copy number matrix of the training dataset, which
contained the six cell types and the simulated data, was used as input.
The sequence of layers for hierarchical feature extraction and pre-
dictive modelling consisted of three hidden layers with 64, 32 and 16
units, respectively. These layers facilitated the extraction of increas-
ingly complex and abstract representations of the input copy number
profiles. The model terminated in an output node with a single unit,
using a sigmoid activation. This configuration was suitable for binary
classification tasks, enabling the model to produce a probability esti-
mation in a [0,1] range. Upon construction, the model was compiled
with a binary cross-entropy loss function to optimise the network
performance concerning binary classification. An ‘adam’ optimiser,
which is efficient and adaptive on learning rates, was used to optimise
the parameters throughout training. To avoid overfitting, an early
stoppingmechanismwas implemented on an epoch-based patience of
15 iterations.

After training completion, the resultingneural networkmodel and
the list of genomicwindows comprised in thematrixwere saved. Then,
the model was integrated and automatically loaded with MnM to
predict the single-cell binary replication states (Replicating/S-Phase,
Non-Replicating) of the scWGS data from cell lines, patient tumours
and PDX samples. When a region required by the model was not pre-
sent, MnM compensated for the missing values by using linear inter-
polation from both directions. Compensating for thesemissing values
ensured the continuity and integrity of replication state predictions.

Subpopulation discovery
Starting with non-replicating cells, the number of variables was
reduced from the number of autosomal regions to two dimensions
with UMAP41. Then, the DBSCAN algorithm79,80 was used to detect the
number of groups in this reduced dataset with min_samples = 10% of
the total cell number. The epsilon (ϵ) parameter (formula 6) was cal-
culated as follows:

ϵ=
max UMAP1ð Þ �min UMAP1ð Þ
max UMAP2ð Þ �min UMAP1ð Þ × 1:25 ð6Þ

where UMAP1 and UMAP2 correspond to UMAP first and second out-
put parameters, respectively. Epsilon was always restricted between
1.25 and 2 and at least 10 cells were required to form a subpopulation.
UMAP was repeated with six randomly generated seeds and the most
frequent number of subpopulations, as defined with DBSCAN, was
retained. Subpopulations discoveredwithDBSCANwere redefined and
merged iteratively in a descending similarity order if the median copy
numbers per region were 98.5% identical. Copy numbers of both
S-phase and non-replicating cells were reduced to ten UMAP
dimensions (second UMAP round) and then each S-phase cell was
matched to the closest non-replicating group with the sklearn nearest
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neighbour command (options n_neighbors = 50% of cells, metric =
'euclidean’). The minimum number of nearest neighbours was five
cells. Both UMAP rounds were performed using the single-cell copy
number matrices with the addition of five artificial cells stretching
from complete haploid to pentaploid profile for subpopulation
calibration.

DNA replication timing
Kronos scRTwasmodified to be compatiblewith R v4.0.5, ignore copy
number confidence during quality-control filtering, and produce an
extra metadata file that contained the cell diagnostic details. The
diagnostic module was used at the first stage for quality control based
on the number of reads per Mb under developer mode (option -d)
created for this purpose. Data were filtered and passed through MnM
for replication state classification and subpopulation detection. The
Kronos scRT WhoIsWho module was used to assign the cell cycle
phases from the replication state classifier or FACS data (see code for
details). Then, the diagnostic module was used a second time to cor-
rect the early and late S-phase copy numbers (option -C). For each
subpopulation and biological replicate, the copy number data were
split into different files with a custom Python (v3.9.11) code. Then,
Kronos scRT was used to calculate the RT profiles through the RT
module in 200 kbwindows. The resulting scRTbinaryvalueswere used
to produce scRT trajectories with the DRedmodule under the random
seed ‘18671107’ for reproducibility. Bulk RT profiles were lifted from
hg19 to hg38with the UCSC liftover tool81 after being converted to bed
files with bigwigtobedgraph82. RT trajectories were generated in R (v
4.3.3) with PHATE47 (v1.0.7) using the same methods for distance
matrix generation as previously described37 (using simple matching
coefficient distances).

Statistics
Imputationmethodswere comparedwith two-sided paired t-tests with
the Python (v3.11.8) scipy.stats.ttest_rel function (v1.12.0). Permutation
tests on the trajectories were carried out using a custom Python code
with 1,000 permutations. The observed test statistic (formula 7) was
calculated as the absolute mean of the sum of differences in means
between subpopulations for both PHATE coordinates:

Observed statistic =
X

groups

�xgroup � �ygroup
���

��� ð7Þ

where �xgroup and �ygroup are the means of the PHATE1 and PHATE2
coordinates for each subpopulation, respectively.

The permutation test was executed by randomly shuffling the
group labels by keeping the PHATE coordinates intact. The permuta-
tion test statistic was computed using the shuffled data in the same
way as the observed statistic. This allowed calculating the p-value
(formula 8) as follows:

Permutation test p� value =
P

permuted permuted statistic≥observed statisticð Þ+ 1
number of permutations + 1

ð8Þ

Pseudo-bulk, scRT, and bulk RT correlations were calculated with
the Spearman method as previously detailed37 and scRT correlation
clustering for the scRT atlaswasorderedwith theWard.D2 hierarchical
clustering method.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The 10x barcode whitelist can be found at https://github.com/
TheKorenLab/Single-cell-replication-timing/blob/main/align/10x_
barcode_whitelist.txt, the human reference genome hg38 at https://
support.illumina.com/sequencing/sequencing_software/igenome.
html, and the genomic blacklist at https://github.com/Boyle-Lab/
Blacklist. Published scWGS datasets can be found in the Gene
Expression Omnibus (GEO) under the accession numbers GSE18617337,
GSE15801132, GSE10855635 and in the Sequence Read Archive (SRA)
under PRJNA77077238. Access to BC Cancer datasets is controlled and
requires a data access agreement which can be found at the European
Genome-Phenome archive (EGA) under the accession number
EGAS0000100319022. Processed scCNVdata from ref. 26. canbe found
at https://zenodo.org/record/6998936. Bulk RT profiles wereobtained
under accession numbers GSE34399 for MCF-7 and GSE158011 for
HCT-116 cells. The liftover chain file is available at https://hgdownload.
cse.ucsc.edu/goldenpath/hg19/liftOver. Source data can be accessed
at https://doi.org/10.5281/zenodo.14260088. The scRT/scCNV atlas
generated in this study can be found on MnM’s GitHub page [https://
github.com/CL-CHEN-Lab/MnM/tree/main/scRT_scCNV_Atlas]. The
source data for generating Figs. 2–7 and all Supplementary Figs. are
provided as a Source Data file and archived on Zenodo (https://doi.
org/10.5281/zenodo.14260088).

Code availability
The MnM source code is available at https://github.com/CL-CHEN-
Lab/MnM under General Terms of License (GTL, Version 2 - 2024/01/
02) and archived on Zenodo (https://doi.org/10.5281/zenodo.
14261500)83. It was registered with the French Agency for the Pro-
tection of Programs (APP) under registration number N°
IDDN.FR.001.340005.000.S.P.2023.000.31230. The GTL license on
the code (https://github.com/CL-CHEN-Lab/MnM/blob/main/
LICENSE) is an open-source license for academics, while Industrial/
commercial use of the software is restricted and requires a separate
agreement. This software was developed using Python and its asso-
ciated libraries, in compliance with their respective licences. The R
script to discover qualitative barcodes from single cells through the
expectation-maximisation algorithm, the Python script to split sub-
population and replicate copy number files, the related code scRT
files and scCNV matrices from the data can be found at the MnM
GitHub depository. Kronos scRT under GNU General Public License
(GPL-3.0 – 2007/06/29) can be found at https://github.com/CL-
CHEN-Lab/Kronos_scRT and the modified Kronos version used here
can be found at https://github.com/josephides/Kronos_scRT.
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