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Splicing diversity enhances the molecular
classification of pituitary neuroendocrine
tumors

Yue Huang 1,2,3,7, Jing Guo4,7, Xueshuai Han1,2,7, Yang Zhao1,2, Xuejing Li4,
Peiqi Xing 1,2, Yulou Liu4, Yingxuan Sun4, Song Wu3,5, Xuan Lv 1,2,3,
Lei Zhou1,2,3, Yazhuo Zhang 4, Chuzhong Li4,6 , Weiyan Xie 4 &
Zhaoqi Liu 1,2,3

Pituitary neuroendocrine tumors (PitNETs) are one of the most common
intracranial tumors with diverse clinical manifestations. Current pathological
classification systems rely primarily on histological hormone staining and
transcription factors (TFs) expression. While effective in identifying three
major lineages, molecular characteristics based on hormones and TFs lack
sufficient resolution to fully capture the complex tumor heterogeneity. Tran-
scriptional diversity by alternative splicing (AS) offered additional insight to
address this challenge. Here, we perform bulk and full-length single-cell RNA
sequencing to comprehensively investigate AS dysregulation across all PitNET
lineages. We reveal pervasive splicing dysregulations that better depict tumor
heterogeneity. Additionally, we delineate fundamental splicing heterogeneity
at single-cell resolution, confirming bulk findings and refining splicing dysre-
gulation varying among tumor cell types. Notably, we effectively distinguish
the silent corticotroph subtype and define a distinct TPIT lineage subtype,
which is associated with worse clinical outcomes and increased splicing
abnormalities driven by altered ESRP1 expression. In conclusion, our results
characterize the subtype specific AS landscape in PitNETs, enhancing the
understanding of the PitNETs subtyping.

The pituitary is the most critical endocrine gland in humans, regulating
key physiological functions by hormone secretion. Pituitary neu-
roendocrine tumors (PitNETs, also known as pituitary adenomas) are
among the most prevalent intracranial tumors originating from the
anterior pituitary gland (APG)1. The pathological classification of PitNETs
incorporates the expression of specific hormone genes and three
lineage-specific transcription factors (TFs), includingPIT1 (POU1F1), TPIT
(TBX19), and SF1 (NR5A1)2. While the tumors within the same lineage

have identical TF expressions, they exhibit variations in cellular func-
tions and tumorigenesis. The PIT1 lineage commonly exhibits excessive
hormone secretion, including somatotroph tumors (secreting growth
hormone, GH), lactotrophs tumors (secreting prolactin, PRL) and thyr-
otroph tumors (secreting thyroid-stimulating hormone, TSH). Mixed
somatotroph-lactotroph tumors secret GH and PRL (PG) and plur-
ihormonal PIT1 lineage tumors secret all three hormones (PIT1M). The
TPIT lineage tumors contain only one type, namely corticotroph tumors
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(secreting adrenocorticotrophic hormone, ACTH) and SF1 lineage con-
tain gonadotroph tumors (GO, secreting follicle-stimulating hormone,
FSH, and luteinizing hormone, LH)3. Null cell tumors (NULL) lack hor-
mone production or specific TF expression, whereas plurihormonal
tumors expressmultiple hormones with two ormore lineages2. But even
the same subtypes also exhibit diverse clinical manifestations. For
instance, functional corticotroph tumors demonstrate typical Cushing
symptoms because of ACTH oversecreting, while silent corticotroph
tumors (with ACTH expressing but without Cushing symptoms)
demonstrate more aggressive clinical behavior compared to other
subtypes4. The complex hormone secretion profiles and highly variable
clinical outcomes of these tumors present both requirements and
challenges formore precise subtype classification. However, to date, the
pathogenesis of most subtypes remains poorly understood and geno-
mic markers for characterization are still lacking.

Previous studies have predominantly focused on exploring
genetic features or overall gene expression for additional molecular
features of PitNETs1, overlooking co-transcriptional regulations.
Alternative splicing (AS) is an essential cellular process in eukaryotes
that generates multiple transcripts, diversifying final protein
products5. Beyond PitNETs, AS has been extensively studied in various
human tumors6, offering invaluable resources for a better under-
standing of inter-tumor heterogeneity and developing new therapies7.
However, the overall landscape of splicing changes in PitNETs has not
been thoroughly investigated so far.

Here, we characterize the alternative splicing landscape of Pit-
NETs using the PitNETs cohort with transcriptome sequencing,
including bulk (n = 268 patients) and full-length single-cell RNA-seq
(n = 195,720 cells) datasets from tumor tissues. Our analysis spans
almost all PitNET subtypes, allowing us to construct subtype-specific
splicing patterns and corresponding regulatory networks of RNA-
binding proteins (RBPs). In contrast to the expression of TFs, our
analysis more faithfully captures the transcriptomic diversity of Pit-
NETs, thereby better demonstrating inter-tumor heterogeneity. Nota-
bly, within the TPIT lineage, we identify a distinct splicing regulatory
pattern with significant clinical relevance. These findings are robustly
validated by an independent cohort of 180 pituitary tumors. Overall,
our study offers an enhanced approach to PitNET classification.

Results
PitNETs exhibit extensive splicing diversity
To obtain the global alternative splicing landscape of PitNETs, we
performed bulk RNA sequencing of 264 PitNET patients and 4 normal
samples, along with full-length single-cell RNA sequencing of 1,95,720
cells from 14 patients and 2 normal samples (Fig. 1a). In addition, we
collected an independent bulk RNA-seq dataset from 180 PitNET
patients as a validation cohort8. Patient distribution in the bulk dis-
covery cohort encompassed all clinicopathological subtypes, includ-
ing the three TF lineages, Mix, NULL, and 4 normal samples. Tumor
samples were further divided into 10 clinicopathologic subtypes,
including GH (n = 47), PG (n = 16), PRL (n = 26), TSH (n = 6), PIT1M
(n = 8), ACTH (n = 58), GO (n = 91), Mix (n = 9) and NULL (n = 3) (Sup-
plementary Fig. 1 and Supplementary Data 1). Three major lineages of
PitNETs can be effectively classified by the expression of lineage-
specific TFs2. Principal component analysis (PCA) based on the
expression of these TFs and related hormone genes, or global gene
expression, revealed three distinct groups corresponding to the three
major lineages (Supplementary Fig. 1b, 2 and Supplementary Data 2).
However, within each lineage, the individual subtypes could not be
clearly distinguished (Fig. 1b and Supplementary Fig. 2b). For instance,
within the PIT1 lineage, samples from the GH, PRL, and TSH subtypes
are intermixed and indistinguishable, whether classified based on TF
expression or global gene expression (Fig. 1b and Supplementary
Fig. 2b). This suggested that the extensive heterogeneity surpassed the
capacity of expression-based markers to accurately categorize more

specific subtypes. In addition,we found that subtype-specific hormone
genes are also commonly high-expressed in subsets of patients across
most subtypes (Supplementary Fig. 1c, d). Overall, theTF-based, aswell
as global gene expression-based classification showed a modest
agreement with the clinicopathological classification in both PIT1
lineage (adjusted rand index, ARI = 0.28 and 0.31) and TPIT lineage
(ARI = 0.35 and 0.36) (Fig. 1c and Supplementary Fig. 2c). Moreover,
PitNETs express a relatively small number of genes compared to 33
other cancer types fromTCGA (Supplementary Fig. 1e)9. Thesefindings
underscore the limitations of relying solely on gene expression to
characterize PitNET subtypes.

Compared to overall gene expression, splicing isoforms are not
only more abundant in terms of quantity but also encompass valuable
transcript structural information. Moreover, splicing-derived func-
tional diversity has been demonstrated to impact various cancer-
associated processes10, indicating the potential power of integrating
AS for a more accurate subtype classification. Alternative splicing
analysis in PitNETs was performed by rMATS, which detected a total
number of 1,43,601 alternative splicing events, primarily enriched in
exon skipping events (Fig. 1d and Supplementary Data 3). Approxi-
mately 88% of spliced genes (n = 13,641) have more than one splicing
event (Fig. 1e and Supplementary Data 3), and the number of events
was independent of the target gene expression (Fig. 1f). In line with
previous studies11–14, functional annotation of the genes with the most
splicing variants (≥30) indicated enrichment in the pathways such as
‘GTPase regulator activity’, ‘Protein metabolic process’, ‘Nitrogen
compound transport’, ‘Cell junction’ and ‘Developmental process’
(Fig. 1e). Collectively, these findings suggest that, beyond gene
expression, PitNETs exhibit a broader range of complex splicing
repertoire with potential function implications.

Splicing dysregulations faithfully recapitulate tumor hetero-
geneity of PitNETs
To investigate the power of splicing profiles for subtype classification, a
differential splicing analysis was performed on the bulk RNA sequencing
data from 264 PitNET patients and 4 normal samples. A total of 198
differential splicing events were identified across seven subtypes span-
ning three tumor lineages, based on comparisons of each subtype
against all other subtypes (Wilcoxon rank-sum test, P-value <0.001)
(Fig. 2a and Supplementary Data 4). Then we performed a global
subtype-specific differential gene expression analysis using the same
strategy as for differential splicing analysis, 340 differentially expressed
genes were identified (Wilcoxon rank-sum test, P-value <0.001) (Sup-
plementary Fig. 2a). Both global gene expression and splicing features
effectively captured the threemajor lineages. However, gene expression
features showed limited ability to differentiate subtypes within these
lineages, while splicing features demonstrated superior performance,
particularly in distinguishing more challenging subtypes (Supplemen-
tary Figs. 2c, d and 3a). This implies that alternative splicing provides
unique information to the transcriptomic diversity of PitNET subtypes,
independent of gene expression levels. Consistent with previous clinical
observations8, the majority of samples from the PIT1 lineage subtypes
both expressed and secreted hormones (93/103, 90%) (Supplementary
Data 1). In the SF1 lineage subtypes, all samples expressed hormones,
but none secreted them (91/91, 100%) (Supplementary Data 1). Most
samples in the TPIT lineage subtypes expressed but did not secrete
hormones (49/58, 84%) (Supplementary Data 1), and significant differ-
ences in splicing patterns were observed among them. Three samples
were clinically diagnosed as NULL subtypes with negative IHC results for
all hormones. However, our analysis showed that the NULL subtype
exhibited similar splicing characteristics to the silent TPIT lineage
patients (Fig. 2a), suggesting a potential origin of the NULL subtype.
Additionally, our results support the use of a specific panel of splicing
events for the diagnosis of the PG (mixed PRL and GH) subtype of
PitNETs (Fig. 2a and Supplementary Data 4). Furthermore, the PG
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subtype shared more common splicing events with the GH subtype in
comparison to the PRL subtype. These observations have implications
for better understanding the initiation anddevelopment of PG andNULL
subtypes. TF-based gene expression lacked the specificity to delineate
these subgroups, whereas splicing precisely captured their distinct
characteristics. These results were further validated in another inde-
pendent PitNETs cohort (Supplementary Fig. 3b, c). We observed highly
consistent PSI (Percentage Spliced In) changes of the shared 166 splicing
events between the discovery cohort and the validation cohort (Sup-
plementary Fig. 3e). Unlike our discovery cohort, the splicing char-
acteristics of the NULL subtype here were similar to those of the SF1
lineage, which suggested potential heterogeneity within the NULL sub-
type. Again, this validation cohort also confirmed that the splicing pat-
tern of the NULL subtypewas similar to those of the non-secreting silent
subtype.

Increasing evidence has highlighted the critical regulatory role of
RBP dysfunction in splicing across various human diseases15. There-
fore, we further investigated the expression changes of 1350 known
RBPs15 in PitNETs. We identified 185 differentially expressed RBPs
across all subtypes (Wilcoxon rank-sum test, P-value < 0.001) (Fig. 2b
and Supplementary Data 5). We also observed highly consistent
expression changes of the shared 151 RBPs between the discovery
cohort and the validation cohort (Supplementary Fig. 3f). Notably, an
almost identical pattern was observed between splicing disorder and
RBP dysregulation (Fig. 2a, b), and a strong correlation was also con-
firmed in the validation cohort (Supplementary Fig. 3c, d). This strong
consistency in each subtype suggested a close relationship between
splicing and RBP activity. We identified the top 15 RBPs from each
lineage that govern each specific splicing pattern and generated a
tightly connected regulatory network between RBPs and alternative

a

c

PR
L

PO
U

1F
1

PIT1 ARI = 0.28

PO
M

C
TB

X1
9

TPIT ARI = 0.35
b

−2.5

0.0

2.5

5.0

−2 0 2
Dim1 (35%)

D
im

2 
(2

6.
6%

)

TF lineage

TPIT

SF1PIT1

−2 0 2

Subtype

Dim1 (35%)

GH
PG
PRL
TSH
PIT1M
ACTH

GO
Mix
NULL
Normal

ACTH silent

d

0

2.5k

5.0k

7.5k

10k

SE A3 A5 RI

N
um

be
r o

f s
pl

ic
in

g 
ev

en
ts 12k

0 2k 4k 6k 8k 10k 12k 14k
0

50

100

150

N
um

be
r o

f s
pl

ic
in

g 
ev

en
ts

e

30

GO term P value

Protein metabolic process 6.17E-09
GTPase regulator activity

Nitrogen compound transport 1.78E-06
Cell junction 6.29E-06
Developmental process 8.01E-05

Genes

1.31E-09

0 1 2 3 4 5 >6
0

10

20

30

40

50
>60

f

N
um

be
r o

f s
pl

ic
in

g 
ev

en
ts

Gene expression

Discovery set
( RNASeq, 

268 samples)

Validation set 1
(RNASeq, 

180 samples)

Validation set 2
(SeekOne scRNA

16 samples
195,720 cells)

AS event

Sequencing

Su
rg

er
y

Tumor
samples

PitNETs

Improve subtype accuracy

SF
1

TP
IT

PI
T1

G
O

ACTH silent

ACTH
TSH
PRL

G
H

TF-based AS-based

Alternative splicing (AS)

Subtype-specific AS
and RBP expression

Subtype-specific AS
Regulatory Network

Validated

Single-cell 
AS pattern

Subtype-specific AS
agreed between bulk
and scRNA data

AS experiments

PIT1
TPIT
SF1
Mix
NULL
Normal

G
H

1
TS

H
B

TF
-b

as
ed

10
Exp

0

10
Exp

0
TF

-b
as

ed

Pa
th

ol
og

ic
al

TSH like 

PG like 

Normal like 

PRL like 

GH like 

TF-based

PRL
TSH
PIT1M

PG
GH
Normal

Pathological 

Pa
th

ol
og

ic
al

ACTH
ACTH silent
Normal

Pathological 

Normal like 

ACTH like 

silent
ACTH like

TF-based

Fig. 1 | PitNETs exhibit extensive splicing diversity. a Overview of the splicing
analysis in PitNETs. b PCA analysis of the TFs and related hormone gene
expression from 264 PitNETs and 4 normal samples. Each node indicates each
sample and node color indicates the classification based on clinicopathological
lineages (left) and subtypes (right). c Dendrograms show the consistency of TF-
based clustering and pathological classification in the PIT1 (left) and TPIT (right)
lineages. Unsupervised clustering was performed based on the expression of
lineage-specific TFs and related hormone genes. Subtype was assigned to each
cluster by the most prevalent pathological subtype of each individual.

Consistency was assessed by the Adjusted Rand Index (ARI). d Distribution of the
four types of alternative splicing events identified in PitNETs, including skipped
exon (SE), alternative 3′ splice site (A3), alternative 5′ splice site (A5), and retained
intron (RI). e Scatter plot showing the frequency of splicing events per gene,
sorted from highest to lowest. Genes with more than 30 splicing events (orange
color) are used for functional enrichment analysis. The P-values are calculated by
the one-sided hypergeometric test. f Scatter plot displaying the number of spli-
cing events for each gene (x-axis) along with the overall expression levels (y-axis).
Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-025-56821-x

Nature Communications |         (2025) 16:1552 3

www.nature.com/naturecommunications


splicing events (ASEs) based on correlation analysis (Fig. 2c and Sup-
plementary Data 6). To further validate these regulatory relationships,
we analyzed RNA-seq data from 17 RBP knockdown, knocked out, or
overexpression studies. In 82% of the datasets, at least half of the AS
events matched the predicted regulatory patterns (Supplementary
Data 6). Importantly, we experimentally validated some subtype-

specific splicing events in primary patient samples, such as NCAM1,
DENND1A and FBXO25 for theGHsubtype, EPB41L1 and ITGB3BP for the
PRL subtype, AKAP8L and NFE2L1 for the TSH subtype, APP andMCF2L
for the GO subtype, ENAH and ARFGAP2 for the functional ACTH
subtype, VTI1A, ARFGAP1 and LSR for the silent ACTH subtype (Fig. 2d
and Supplementary Fig. 3g). In conclusion, our study clarifies the
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heterogeneity of PitNET subtypes using splicing features, which can-
not be obtained by TF-based characteristics alone. Furthermore, we
uncover RBP regulatory networks governing these splicing disorders.

scRNA-seq confirmed the subtype-specific splicing landscape
AS events detected from bulk RNA-seq represent mixed signals aver-
aged over cell subpopulations, offering limited power to delineate the
fundamental splicing heterogeneity. In contrast, single-cell analysis
enables more precise identification of tumor cell populations for each
subtype, facilitating the discovery of splicing changes and dysregula-
tions within each pure cluster of different tumor cell types as well as
normal cells. Recent advancements in full-length capture techniques
have significantly improved read coverage across entire transcripts,
showing advantages in the detection of AS and isoform usage at the
single-cell level16. To further validate the precise splicing map of Pit-
NETs at single-cell resolution, we employed full-length single-cell RNA
sequencing on cells from 16 fresh samples, including GH (n = 3), PG
(n = 1), PRL (n = 2), TSH (n = 2), ACTH (n = 3), GO (n = 2), NULL (n = 1)

and normal pituitary samples (n = 2) (Supplementary Fig. 4a and Sup-
plementary Data 7). After quality controls, a total number of 195,720
cells were retained for subsequent analysis. (Supplementary Fig. 4b).
Based on the expression of marker genes (Supplementary Fig. 4c), 13
major cell clusters were identified by unsupervised clustering,
including cycling cells (CC), endothelial cells (EC), macrophage cells
(Macro), T lymphocyte cells (T cell), B lymphocyte cells (B cell),
fibroblasts (Fibro), PIT1 lineage normal cells (PIT1-N), somatotropes
(GH), lactotropes (PRL), thyrotropes (TSH), functional corticotropes
(ACTH), silent corticotropes (ACTHsilent) and gonadotropes (GO)
(Fig. 3a). As positive controls, lineage-specific TF genes were exclu-
sively expressed in three clusters of PitNET cells separately, indicting
the main three PitNET lineages (Fig. 3b). Normal cells from different
samples were consistently clustered together, suggesting no obvious
batch effects (Supplementary Figs. 4d and 5a). At the same time, our
findings showed that each tumor cell cluster predominantly derived
from patients of the corresponding subtype, indicating the PitNETs
heterogeneity (Supplementary Figs. 4e and 5b, c). The subtype-specific

Fig. 3 | Single-cell RNA-seq revealed transcriptome heterogeneity of PitNETs.
aUMAPplots show the 13 single-cell clusters of 195,720 cells from 16 samples. Dots:
single cells. Cell type is color-coded. b Scatter plots showing the expression of
known subtypemarkers, including keyTFs andhormonegenes. Light todarkcolors
indicate increasing expression levels. c Differential gene expression analysis shows

upregulated (in red) and downregulated (in blue) genes from each single-cell
cluster. d Functional annotation enrichment analysis of differentially spliced genes
in each subtype. The enrichment fold changes are displayed for each term. Source
data are provided as a Source Data file.
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differentially expressed genes and enriched molecular pathways are
consistent with observations fromprevious studies14,17–19 (Fig. 3c, d and
Supplementary Data 8). Collectively, our results indicate that the
identified cellular subpopulations at the single-cell level effectively
characterize their respective subgroups.

We further inferredCNVs to identify tumor cells of each subgroup
for splicing analysis (Supplementary Fig. 5d). Next, we aim to check
whether the subtype-specific AS landscape observed in bulk tissues
could also be reproduced at the single-cell cluster level. To this end, we
revisited the identified splicing events from bulk tissues and only
selected the events that also could be detected in the single-cell spli-
cing analysis. Then, we calculated the PSI values for this set of splicing
events in each cell population of PitNETs. Strikingly, the same splicing
pattern was replicated between single-cell clusters, with a perfect
matching of inter-tumor subtypes, indicating the high exclusivity of AS
changes within each heterogeneous tumor clone (Fig. 5a and Supple-
mentary Data 4). Significant splicing changes were observed across
various AS types, with cassette exon events being the most common
alterations, including changes on NCAM1, ITGB3BP, KHDRBS1, ENAH,
ARFGAP1 and MCF2L (Fig. 4b). Similar to the observation at the bulk
level, the analysis of RBP expression on single-cell clusters also
revealed a matched pattern to AS changes (Fig. 4c and Supplementary
Data 5). Notably, most splicing events (117/198, 59%) and RBPs
expression (108/185, 58%) exhibited increased differentiation between
subtypes at the single-cell level than the bulk level (Fig. 4a, c). This
indicates that AS captures the fundamental transcriptomic diversity
present in heterogeneous cell clones, while signals on bulk tissue may
result from amixture of cell types. For the remaining ASEs, 73% (59/81)
were not captured due to the low read depth in single-cell data (Sup-
plementary Data 9).

Next, we further explored the subtype-specific events that have
been validated at the single-cell level. Within the PIT1 lineage, we fur-
ther subdivided 38ASEs that tend to bemore commonlypresent in the
GH subtype, 15 ASEs in the PRL subtype, and 10 ASEs in the TSH sub-
type (Fig. 4d). The top splicing event in the GH subtype is the exon
inclusion of Neural Cell Adhesion Molecule 1 (NCAM1) gene. In 3836
cells where this event was detectable (with junction reads >5), NCAM1
displayed an increased inclusion level of the ninth exon in the GH
subtype (Fig. 4e, f). Previous studies have associatedNCAM1 in PitNETs
with growth hormone secretion regulation20. We knocked down the
aberrant exon in primary cells from GH subtype patients and found
that excessive secretion of growth hormone was significantly sup-
pressed. When overexpressing both long and short transcripts, only
the overexpression of the long aberrant transcript promoted GH
secretion, while the normal short transcript did not. This suggests that
altered NCAM1 splicing may be linked to the pathogenesis of the GH
subtype (Supplementary Fig. 6a, b). Similar functional changes were
observed in another abnormal exon inclusion of DENND1A (Supple-
mentary Fig. 6c, d). NFE2 Like BZIP Transcription Factor 1 (NFE2L1) is
implicated in invasive pituitary tumors and thyroid cell
proliferation21,22. Interestingly, NFE2L1 also showed a significant spli-
cing usage of a cassette exon in the TSH subtype (Fig. 4e, g). Likewise,
in TPIT and SF1 lineages,we found that 12ASEs of theACTH subtype, 21
ASEs of the silent ACTH subtype, and 15 ASEs of the GO subtype were
differentially spliced (Fig. 4h). The frequently reported ENAH event,
which impacts invasion23, is significantly associated with functional
ACTH cell cluster (Fig. 4i, j). The ADP Ribosylation Factor GTPase
Activating Protein 1 (ARFGAP1) gene is known to be required for GTP
hydrolysis24. We observed increased splicing of ARFGAP1 in the silent
ACTH subtype from the TPIT lineage (Fig. 4i, k). The aberrant long
transcript of ARFGAP1-L significantly promoted the EMT process in
silent ACTH patients, whereas the normal transcript did not lead to
notable changes (Supplementary Fig. 6e). Lastly, we summarized a
reliable list of such AS events that demonstrate significant exclusive
usage in one subtype versus all others. Ultimately, 45 high-confident

splicing events covering all tumor subtypes were confirmed (Fig. 4l, m
and Supplementary Data 4). The top splicing event involved the APP
gene and was mostly enriched in the GO subtype (Fig. 4m, n). We
observed that knocking down the aberrant splicing event of the APP
gene reduced EMT progression, suggesting decreased invasiveness
(Supplementary Fig. 6f). Importantly, these target genes harboring
subtype-specific splicing events did not exhibit differential gene
expression (Supplementary Fig. 7a–h). This suggests that changes in
transcript structure account for the subtype-specific diversity, while
the overall gene expression is unable to capture this. In conclusion, we
deciphered the fundamental intra-tumor heterogeneity by splicing
alternations at single-cell resolution, confirming the findings at the
bulk level, and refining splicing dysregulations across diverse tumor
cell clones.

ESRP1 is the key regulator of splicing diversity in shaping TPIT
heterogeneity
Tumors in the TPIT lineage of PitNETs are typically caused by ACTH-
hypersecreting corticotrophs, leading to metabolic disorders and
associated complications. While a more aggressive subtype of ACTH-
silent has been identified, the differences in molecular pathogenesis
between the two subtypes are still poorly understood.We next sought
to explore the regulatory mechanisms of the subtype-specific splicing
events within the TPIT lineage. We listed the top ten RBPs with the
most significant expression differences in the TPIT lineage (Fig. 5a).
ESRP1, MDN1, and TCF20 were previously identified in the regulatory
network constructed by bulk RNA-seq data (Fig. 2c). ESRP1 is a crucial
protein known for its role in regulatingCD44 splicing switch during the
EMT23, a process linked to tumor metastasis and therapy resistance in
pituitary tumors25. Notably, we observed a significant increaseof ESRP1
expression in ACTH-secreting cells compared to non-functional cells
(Fig. 5b). Surprisingly, ESRP1 binding motifs were found in 82% (27/33)
of TPIT lineage-associated splicing events, most of which have got
more than one binding motif (Fig. 5c). This indicates a collective reg-
ulatory role of ESRP1 on splicing events of TPIT lineage. By conducting
ESRP1 knockdown and overexpression experiments using primary
PitNET cells, we validated 85% (45/53) genes with associated splicing
events occurring in at least one experimental dataset (Fig. 5d and
Supplementary Data 10). TPIT lineage-associated splicing events,
including exon skipping in ARFGAP2 and ENAH, and exon inclusion in
ARFGAP1, showed significant correlations with ESRP1 expression
(Fig. 5e–g). These correlationswere consistently observed in our entire
discovery cohort of pituitary tumors as well as the validation cohort
(Supplementary Fig. 8a–f). Moreover, we confirmed differences in
ESRP1 expression in functional and silent ACTH patients by qPCR
(Fig. 5h) and validated its regulatory role in TPIT lineage-specific spli-
cing events by knocking down and overexpressing ESRP1 in primary
cells derived from TPIT patients (Fig. 5i and Supplementary Fig. 8g–i).
Further, in the PIT1 lineage, we identified the top 10RBPswith themost
significant expression differences (Supplementary Fig. 8j). STAU1 and
RBMX were also detected in our previous regulatory network (Fig. 2c).
Staufen homolog 1 (STAU1) is a highly conserved double-strand RNA-
binding protein known to regulate widely alternative splicing in adi-
pocyte differentiation26. Our results suggested that STAU1may serve as
a key regulator of PIT1 lineage-specific splicing events, showing a high
correlation with the PKP4 and OGA splicing events, validated in both
patient cohorts (Supplementary Fig. 8k–n). In conclusion, we clarified
the regulatory relationship between RBPs and splicing and confirmed
the pivotal role of ESRP1 in regulating TPIT lineage-specific splicing
events.

Clinical implications of TPIT lineage-specific splicing events
Finally, we want to investigate the clinical relevance of splicing char-
acteristics in the TPIT lineage. To this end, we gathered pertinent
patient clinical data, encompassing disease progression, invasion
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status, tumor size, and Ki67 values, which are all recognized indicators
of PitNET aggressiveness (Supplementary Data 11)14,17. Dysregulation of
ESRP1 has been linked to poor survival outcomes across various can-
cers such as breast cancer27 and prostate cancer28. Patients with lower
ESRP1 expression in the silent TPIT lineage demonstrated worse
progression-free survival (PFS) (Fig. 6a). Multivariable Cox regression
analysis of ESRP1 expression alongside clinical covariates further
identified ESRP1 expression as the most significant risk factor for
patient PFS (Supplementary Data 12). ESRP1-regulated splicing events

also exhibited a marked impact on PFS (Fig. 6b–d). These subtype-
specific events are associated with increased invasion (Fig. 6e), larger
tumor size (Fig. 6f), and higher Ki67 (Fig. 6g), respectively. These
findings emphasize the important clinical significance of subtype-
specific splicing characteristics as biomarkers for disease progression.
To assess the power of splicing features in guiding PitNET classifica-
tion, four TPIT lineage-specific splicing events including ARFGAP2,
ENAH, ARFGAP1, and VTI1A were selected for unsupervised clustering.
These events were selected by overlapping the top 10 differential AS
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Fig. 4 | Single-cell sequencing confirmed the subtype-specific splicing land-
scape. a Sankey diagram showing the changes in differential splicing events from
bulk to scRNA-seq data. Heatmap showing the 117 splicing characterizations in
the pseudo-bulk from scRNA-seq. b Read coverage showing the inclusion of
splicing events on single-cell clusters. c Sankey diagram showing the changes in
differentially expressed RBPs from bulk to scRNA-seq data. Heatmap showing the
108 dysregulated RBPs. d Ternary plot of the relative percentage of splicing
events based on their presentations in PIT1 patients. The PSI of each splicing
event is normalized across all subgroups. Each splicing event (node) has three
coordinates indicating that a% is the normalized PSI detected in GH clusters, b% is
the normalized PSI detected in PRL clusters, and c% is the normalized PSI
detected in TSH clusters. And a + b + c = 100. eUMAP plots showing cells from the
PIT1 lineage. f, g UMAP plots showing cells from the PIT1 lineage with detected
reads for the NCAM1 event (f) and the NFE2L1 event (g). h Ternary plot of the

relative percentage of splicing events based on their presentations in TPIT and
SF1 patients. i UMAP plots showing cells from the TPIT lineage. j, k UMAP plots
showing cells from the TPIT lineage with detected reads for the ENAH event (j)
and the ARFGAP1 event (k). l Venn diagram showing the overlap between differ-
ential splicing events verified by pseudo-bulk and single-cell level. P-values are
calculated by a two-sided Wilcoxon rank-sum test.m Differentially spliced events
verified by pseudo-bulk in subtypes are ranked by the P-values. P-values are cal-
culated by a two-sided Wilcoxon rank-sum test. n Box plot showing the APP
splicing events in the cells of all tumor clusters (n = 46,051). Different colors
represent different subtypes. The boxes indicate median (center), Q25, and Q75
(bounds of box), the smallest value within 1.5 times interquartile range belowQ25
and the largest value within 1.5 times interquartile range above Q75 (whiskers). P-
values are calculated by a two-sided Wilcoxon rank-sum test. Source data are
provided as a Source Data file.
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Fig. 5 | ESRP1 is the key regulator of splicing diversity in shaping TPIT het-
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ESRP1 between the silent and functional ACTH clusters. c Heatmap displaying
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changes in both bulk and single-cell analyses and targeted by ESRP1
from experimental validations (Fig. 5i). The ARI value derived from the
splicing features is 0.8, which is more than twice the accuracy (0.35)
calculated based on the expression of TFs and related hormone genes
(Fig. 6h). Interestingly, we further defined two subgroups within the
silent ACTH group based on splicing characteristics, defined as high

PSI and lowPSI groups (Fig. 6h). The high PSI group showedworse PFS
(Fig. 6i), and a higher risk of relapse (Supplementary Fig. 9a). In addi-
tion, we found a lower stromal, immune and estimate scores in the
high PSI group using the ESTIMATE algorithm (Fig. 6j, Supplementary
Fig. 9b and Supplementary Data 13). Reduced infiltration of stromal
cells and immune cells has been reported to be associated with worse
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outcomes in breast cancer, ovarian cancer, sarcoma, melanoma, and
lymphoma treatment29. This is consistent with the adverse prognosis
observed in the high PSI group (Fig. 6i). It suggests that a reduction in
infiltration may be a critical contributor to the progression of the
ACTH subtype. Further immune infiltration analysis revealed sig-
nificant differences in the populations of resting mast cells, gamma
delta T cells, and resting memory CD4+ T cells between the two
groups. (Supplementary Fig. 9c). Together, we havedefined a subset of
the silent ACTH patients characterized by increased splicing abnorm-
ality, and this subset of aggressive tumors is significantly associated
with dismal prognosis.

To explore the biological functions underlying the heterogeneity
mediated by splicing in silent ACTH, we conducted differential path-
way and expression analysis. The results revealed similar pathway
activities between the low PSI group and the functional ACTH (Fig. 6k).
Both the functional ACTH and the low PSI group showed a strong
consistency in their transcriptional programs, with both upregulated
and downregulated genes showing high similarity (Fig. 6l). Moreover,
we found that the low PSI group had higher POMC expression, which is
a marker gene for functional ACTH than the high PSI group (Supple-
mentary Fig. 9d). All of these results suggested that the low PSI group
of the silent ACTH shared similar molecular characteristics with the
functional ACTH, which typically has a better clinical outcome. In
summary, subtype-specific splicing features not only distinguish silent
subtypes from functional ACTHbut also stratify the silent subtype into
a high PSI group associated with the worst clinical prognosis in the
TPIT lineage (Fig. 6m). This insight underscores the potential of uti-
lizing splicing profiles to refine the classification of pituitary subtypes.

Discussion
PitNETs exhibit high heterogeneity, presenting diverse clinical mani-
festations and comprising various hormone-secreting cell types.
However, current pathological classification systems heavily rely on
TFs and hormone expression, which makes it difficult to comprehen-
sively capture the extensive heterogeneity of PitNETs. Since the third
edition of the WHO classification in 2017 abandoned Ki67, p53, and
other biomarkers as diagnostic markers for atypical pituitary adeno-
mas, there have been no recognized biomarkers that can reflect the
biological behavior of pituitary tumors. Thus, defining precise mole-
cular features for direct subtyping helps clinicopathological classifi-
cation, improving treatment accuracy and efficacy.

Previous studies have reported genetic features such as GNAS
mutations in the GH subtype and USP8 mutations in the ACTH
subtype30. Nevertheless, around 60% of tumors lack recurrent somatic
mutations31. Copy number alterations are also detected in PitNETs, yet
their role in tumorigenesis remains unclear32. Transcriptome analyses
have revealed distinct gene expression signatures in GH and ACTH
subtypes32. Recent studies have also proposed the analysis of the
proteome and epigenome of PitNETs14. However, the importance of
co-transcriptional regulation in biological processes has not been
emphasized in PitNETs. Previously, we identified a critical splicing
factor SF3B1 as the one most commonly mutated gene in the PRL
subtype33, indicating the potential role of alternative splicing in pro-
moting tumorigenesis of pituitary tumors. However, the full splicing
landscape of PitNETs remains unexplored in current research.

To explore the transcriptomic splicing features of PitNETs, we
collected 264 tumor samples spanning almost all subtypes, along with
4 normal samples from APG. In this study, we delineated the spectrum
of alternative splicing in PitNETs which was validated by an indepen-
dent cohort of 180 pituitary tumors. Additionally, we gathered full-
length single-cell sequencing data from various subtypes to further
characterize subtype-specific splicing features at single-cell resolution.
Tumors lacking evidence of lineage differentiation are classified as the
NULL cell subtype. Despite its rarity, this subtype has attracted atten-
tion due to its aggressive behavior and high recurrence rate34. The

origin of this subtype remains unclear. Through analysis of two bulk
RNA-seq datasets, we found similar splicing patterns between the
NULL subtype, silent ACTH, and GO subtypes separately. This still
suggests an unclear origin for the NULL subtype but indicates a close
relationship with the silent tumors. Maybe it originates from the
dedifferentiation of different lineage tumor cells. In addition, we
observed a higher proportion of cancer-associated fibroblasts (CAFs)
in single-cell data from a patient with a NULL subtype. CAFs have been
reported to modulate cancer metastasis, growth factor production,
and angiogenesis35, indicating a potential malignant cell origin for this
subtype. However, the role of CAFs in pituitary tumors is not fully
understood and further exploration is needed to clarify their impact
on the NULL subtype.

RBPs are pivotal regulators of alternative splicing and interact
with RNA to form ribonucleoprotein complexes. The expression of
RBPs provides further insight into the characterization of splicing
features in PitNETs. We constructed subtype-specific splicing reg-
ulatory networks within each lineage, revealing widespread dysregu-
lation of RBPs, indirectly confirming the splicing disruptions in
PitNETs. However, the underlying reasons for such dramatic changes
in RBP expression remain unknown. Possible explanationsmay include
activation of particular transcriptomic programs or altered epigenetic
regulations which require investigations in future studies. Notably,
utilizing splicing features enabled the effective identification of the
silent ACTH subtype within the TPIT lineage, a subtype challenging to
distinguish in the current pathological classification. We identified the
ESRP1 gene as a regulator of TPIT lineage-specific splicing events.
ESRP1, a key epithelial splicing regulatory factor, extensively partici-
pates in the EMT process, highlighting its strong association with dis-
ease progression in pituitary tumors. It is worth the effort to further
investigate the oncogenic role of ESRP1 by regulating key mis-splicing
defects that contribute to the carcinogenesis of corticotroph tumors.
ESRP1 dysregulation is enriched in samples with worse PFS in the TPIT
lineage. Importantly, we observed a correlation between ESRP1
expression and preoperative ACTH levels (Supplementary Fig. 9e),
indicating that measuring ESRP1 levels could provide additional gui-
dance for treatment selection.

Furthermore, within the silent ACTH subtype, we observed sig-
nificant differences in splicing patterns between the two identified
subgroups. The first subgroup, characterized by lower levels of spli-
cing alterations, showed similarities to functional ACTH in terms of
biological characteristics and clinical outcomes, indicating a potential
transitional state between functional and silent ACTH. As consistent
with previous literature reports, functional ACTH and silent tumors
can transform into each other36,37. Conversely, the second subgroup,
displaying higher levels of splicing alterations, exhibited poorer clin-
ical outcomes with higher recurrence rates, suggesting a more
aggressive tumor phenotype. These findings underscore the need for
further exploration into the underlying mechanisms of tumorigenesis
in these distinct subgroups, whichmay provide additional avenues for
personalized treatment strategies.

Although our study provided valuable insights into the alternative
splicing landscape of PitNETs, there are a few limitations. While our
cohort size is substantial, being exclusively sourced from the Chinese
population may limit the generalizability of our findings to people of
different ethnic groups. Additionally, due to the technical limitations
of single-cell sequencing, we cannot capture comprehensive splicing
information for every individual cell. To address this, we are actively
engaged in developing new methodologies for single-cell splicing
discovery. Lastly, although we have experimentally validated the
functional consequences of some splicing events, further investigation
is needed to fully elucidate the underlying mechanisms.

This study not only lays a theoretical foundation for the classifi-
cation and diagnosis of PitNETs but also suggests directions for opti-
mizing clinical treatment strategies and prognostic predictions.
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Especially for subgroups that are difficult to distinguish, such as silent
ACTH tumors, more precise diagnostics and treatment recommenda-
tions can be provided through splicing features. Overall, our study
advances our understanding of PitNETs biology, emphasizing the sig-
nificant role of splicing in shaping PitNET heterogeneity. Integrating
these splicing features could guide molecular classification and treat-
ment strategy for distinct PitNET subtypes, improving clinical
outcomes.

Methods
Study subjects
A total of 284 human pituitary tissue samples collected from Beijing
Tiantan Hospital were included in this study. All patients provided
written informed consent for the molecular characterization of their
tumor samples and for follow-upon their clinical information andwere
approved by the Ethics Committee of Beijing Tiantan Hospital. No
compensation was provided to the participants in this study. All 284
samples are Asian individuals, including 156 males and 128 females.
The sex and/or gender of participants were determined based on self-
report. The age of the PitNETs dataset ranges from 8 to 77 years
(female: 17–77; male: 8–75), with a mean age of 47.02 (SD 13.33). Two
cohorts of patients were recruited: one for bulk RNA-seq (264 PitNETs
and 4 normal samples) and the other for full-length single‑cell RNA-seq
analysis (14 PitNETs and 2 normal samples). All patients underwent
surgical resection at Beijing Tiantan Hospital. The cohort of 264 Pit-
NETs underwent surgery from 2018 to 2022, whereas the 14 PitNETs
cohort were collected in 2023. Normal pituitary tissues were collected
from healthy donors. Information on the samples is provided in Sup-
plementary Data 1 and Supplementary Data 7.

Cell line and culture of primary PitNET tumor cells
Human PitNET tumor specimens were acquired during surgical
resections and promptly immersed in freshly prepared low-glucose
DMEM containing 10% fetal bovine serum (FBS). The collected tumor
tissues were meticulously dissected into finer fragments using a pip-
ette tip, followed by a filtration step to remove larger tissue fragments
and debris. The resulting cell suspension was then subjected to red
blood cell (RBC) lysis buffer treatment to eradicate erythrocytes. After
centrifugation, the cell pellet was extensivelywashed and resuspended
in a fresh culture medium and subsequently cultured for further
experimental analysis. Hormone release from isolated growth
hormone-secreting tumor cells was assessed 48h post-transfection
using theAuthentiKine™HumanGrowthHormoneELISAKit (KE00221,
Proteintech), following the manufacturer’s protocol. The GH3 (CCL-
82.1) rat pituitary cell line was acquired from the American Type Cul-
ture Collection (ATCC). The cells were cultured in Ham’s F12Kmedium
supplementedwith 2.5% fetal bovine serum (FBS) and 15%horsebovine
serum (Gibco).

Protein extraction and Western blotting
Proteins were extracted using NCM Biotech’s RIPA buffer, separated
on 8–10% Bis-Tris SDS-PAGE gels, and transferred to polyvinylidene
fluoride (PVDF) membranes. Primary antibodies against E-cadherin
(1:20,000, Proteintech), Vimentin (1:1000, Abcam), and GAPDH
(1:6000, Abcam) were used for target protein detection. Immunor-
eactive bands were visualized by chemiluminescence.

RT-PCR and quantitative RT-PCR
The experimental procedures used for RT-PCR and quantitative RT-
PCR were described in our previous publication33. RT-PCR was con-
ducted utilizing the I-5 High-Fidelity Master Mix (MCLAB, San Fran-
cisco, USA), and the PCR products were electrophoresed on 1–3%
agarose gels. Quantitative RT-PCR was processed on QuantStudio 3
and 5 platforms (Applied Biosystems, Waltham, MA, USA). Details of
the primers used are provided in Supplementary Data 14.

Transfection and RNA interference
Beijing Syngentech Co., Ltd. (Beijing, China) synthesized the small
interfering (si) RNA duplexes; siRNA sequences of human ESRP1 are
listed in Supplementary Data 14. The ESRP1 overexpression plasmid
was constructed by GeneChem (Shanghai, China). Transfections were
executed with Lipo 3000 (Invitrogen, USA) according to the manu-
facturer’s protocols. Cells were transfectedwith siRNA for 48–72 h and
were harvested to perform subsequent experiments. siRNA and over-
expression plasmids for gene isoform-specific knockdown and over-
expression were synthesized by Umine Biotechnology Co., LTD
(Guangzhou, China) (Supplementary Data 14).

Bulk RNA-seq
For RNA sequencing library preparation, 1–3 µg of total RNA per
sample was processed using the VAHTSUniversal V6 RNA-seq Library
Prep Kit for Illumina, involving mRNA enrichment, fragmentation,
cDNA synthesis, and purification. The library was then prepared
through end repair, A-tailing, adapter ligation, size selection, and
PCR amplification. Library quality was evaluated by measuring RNA
concentration with a Qubit® RNA Assay Kit, assessing insert size via
an Agilent Bioanalyzer 2100 system, and quantifying the effective
library concentration using a Bio-RAD CFX 96 fluorescence quanti-
tative PCR instrument. Qualified libraries were pooled and
sequenced on an Illumina platform using a PE150 strategy to obtain
150-bp paired-end reads, ensuring a comprehensive transcriptome
analysis.

Preprocessing of bulk RNA-seq data
FastQC (v0.11.8) with default parameters was applied to calculate the
read quality for all samples. All samples have passed quality control.
FASTQ sequences were aligned to the human hg38 reference genome
(GENCODE, GRCh38.99) using STAR (v2.7.7a) software38 with default
parameters.

Gene expression analysis of bulk RNA-seq data
To generate the mRNA expression matrix for transcriptome analysis,
FeatureCounts (v2.0.1)39 from the Subread package was used to
assign reads to genes and genic regions. Read counts were then
transformed to RPKM values, followed by log2 transformation and
quantile normalization at the sample level. Student’s t-test was used
to test for differential gene expression between sample groups.
Dysregulated RBPs were considered to be significant if they passed
the P-value threshold of 0.001. Genes expressed in at least 70% of
patients (read count >30) were selected for subtype-specific
expression analysis. Genes with zero expression in more than 10%
of patients were excluded. Wilcoxon rank-sum tests were performed
to compare the expression of each subtype against all other sub-
types. Significant genes were defined by a fold change greater than
two (|log2FC| > 1) and a P-value < 0.001. Genes showing significant
differences in multiple subtypes were excluded. The same strategy
was applied to an independent PitNETs cohort for the same analysis,
and differentially expressed genes had to be validated in both
cohorts (Except for the PG subtype with no samples and the TSH
subtype with only 2 samples).

Alternative splicing analysis of bulk RNA-seq data
rMATS (v4.0.2)40 was used to perform differential alternative splicing
(AS) analysis for four major types (SE, A5SS, A3SS, IR). Splicing events
that were detected in at least 70% of the patients (max read >30) were
retained to calculate the number of events in PitNETs. For subtype-
specific splicing analysis,we further excluded eventswith a PSI valueof
0 inmore than 10%ofpatients.We conductedWilcoxon rank-sum tests
comparing the PSI values of each subtype against all other subtypes.
Significant events were defined as thosewith a splicing ratio difference
of more than twice (|log2FC| > 1) between subtypes, and the P-value
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less than 0.001. Splicing events showing significant differences in
multiple subtypes were excluded. Transcriptome-wide splicing analy-
sis was performed using the same strategy in the independent PitNETs
cohort. Differentially spliced events had been validated in both
cohorts (Except for the PG subtype with no samples and the TSH
subtypewith only 2 samples). The splicing analysis of RNA-seqdatasets
from the ESRP1 knockdown and overexpression PitNET cell lines was
performed by the same strategy.

Principal component analysis
PCAwas applied to the bulk RNA-seq data of 264 PitNET samples and 4
normal pituitary samples to inspect the gene expression difference
between each lineage or subtype samples by using the prcomp func-
tion in R (v4.2.3).

Pan-cancer analysis
We download the raw gene count data of Pan-cancer from The Cancer
Genome Atlas (TCGA) database by R package TCGAbiolinks (v2.27.2)41.
For each cancer type, we calculated the number of expressed genes
per patient.

Regulatory network construction
Regulatory networks were constructed for RBPs and splicing events in
each of the three lineages. Differentially expressed RBPs were con-
sidered as potential regulatory factors in the network, and differential
splicing events were considered as potential regulated targets. We
established the relationship between RBPs and splicing events using
Spearman’s correlation test, considering |Cor| > 0.35 and P-value < 1e-
10 as significant. The regulatory network was visualized using Cytos-
cape software (v3.9.0)42.

Full-length single‑cell preparations and RNA-seq
After harvested, tissues were washed in ice-cold RPMI1640 and dis-
sociatedusing theBrain TumorDissociationKit (Miltenyi 130-095-942)
as instructed. DNase I (Sigma 9003-98-9) treatment was optional
according to the viscosity of the homogenate. Cell count and viability
were estimated using a fluorescence Cell Analyzer (Countstar® Rigel
S2) with AO/PI reagent after the removal of erythrocytes (Solarbio
R1010) and then debris and dead cells removal was decided to be
performed or not (Miltenyi 130-109-398/130-090-101). Finally, fresh
cells were washed twice in the RPMI1640 and then resuspended at
1 × 106 cells per ml in 1× PBS and 0.04% bovine serum albumin. Single-
cell RNA-seq librarieswereprepared using SeekOne® Single CellWhole
Transcriptome Kit according to the manufacturer’s instructions
(SeekGene Catalog No.K00801). Briefly, an appropriate number of
cells were mixed with reverse transcription reagents and added to the
sample wells of the SeekOne® DD Chip S3. Then, Barcoded Hydrogel
Beads (BHBs) and partitioning oil were dispensed into corresponding
wells separately in Chip S3. Subsequently, Cell-containing reverse
transcription reagents and BHBs were encapsulated into emulsion
droplets using the SeekOne® Digital Droplet System. Immediately
following transferring emulsion droplets into PCR tubes, fifteen cycles
of annealing (ramping from 8 °C to 42 °C) followed by a 5-min heat
inactivation at 85 °C were performed to obtain barcoded cDNA. Next,
the barcoded cDNAwas purified from broken droplets, and then twice
PCR reactions were performed to remove the majority of ribosomal
and mitochondrial cDNA. AMPure beads were used to purify cDNA
from the post-PCR reaction mixture. Finally, one-fourth volume of
cDNA was fragmented, end-repaired, A-tailed, and ligated into the
sequencing adapter. DNA amplified by index PCR contains any part of
polyA or non-PolyA RNA as well as Cell Barcode and UniqueMolecular
Index. The indexed sequencing libraries were purified using AMPure
beads and quantified by quantitative PCR (KAPA Biosystems KK4824).
The libraries were then sequenced on Illumina NovaSeq 6000 with
PE150 read length.

Preprocessing of single‑cell RNA-seq data
The raw sequencing data were processed using the SeekOne tools with
default parameters (https://www.seekgene.com/fxrj). Paired-end reads
were aligned to the human hg38 genome (GENCODE, GRCh38.99)
using STAR software (v2.7.7a). Annotation of the aligned reads to genes
was performed using FeatureCounts (v2.0.1). The UMIs count for each
gene within individual cells was extracted from BAM files based on
barcodes. Only uniquelymapped readswere used for UMI counting. If a
genewithin the same barcode had twomismatchedUMIs, the UMI with
lower read support was corrected to match the one with higher read
support. Barcodes were sorted by UMI counts, with the 99th percentile
UMI count divided by 10 as the threshold for cell estimation. Barcodes
exceeding this threshold were classified as cells, while those below the
threshold require further determination using DropletUtils analysis.
Next, downstream analysis of the raw count matrix was carried out
using Scanpy (v1.9.3)43 with Python (v3.7.10). To filter out the low-
quality cells, we selected only cells with a number of expressed genes
more than 200, a number of detected UMIs less than 6000, a fraction
of mitochondrial UMIs counts less than 20%, and genes with at least
one count in at least three cells for subsequent analysis. Doublets were
identified by Scrublet (v0.2.3)44 with a parameter threshold of 0.25.
Highly variable features were identified using the scanpy.p-
p.highly_variable_genes function with default parameters. To address
potential batch effects within our dataset, a graph-based method
named batch-balanced KNN (BBKNN)45 was used to integrate datasets
while preserving the inherent biological structure. Then the corrected
KNN network was used for dimensionality reduction and clustering.

Identifying differentially expressed genes (DEGs) and cell
classification
Differentially expressed genes were identified with the sc.tl.rank_gen-
es_groups function in Scanpy (Wilcoxon rank-sum test). These DEGs
with adjusted P-values less than 0.05 were considered as differentially
expressed. Only protein-coding genes were selected for functional
enrichment analysis in each subtype. We annotated each cluster based
on differential and classical marker genes collected from the
literature14,17–19. The differentially expressed genes and biomarkers of
each cluster were selected for visualization in a volcano plot.

Inferring CNVs from single-cell RNA-seq data
We identified malignant cells by analyzing the changes in large-scale
chromosomal copy number variants (CNVs) in each individual cell
using InferCNV (https://github.com/broadinstitute/inferCNV). The
h5ad file was converted into a Seurat object by using Seurat (v4.3.0)46.
Following the software recommendation, we extracted raw gene
expression data at the single-cell level from the Seurat object. The cells
derived fromnormal pituitary samples (P13 andP17)were included as a
control reference.We analyzed inferCNVusing the default parameters.

Alternative splicing analysis of single‑cell RNA-seq data
For the splicing analysis of single-cell populations in PitNETs, (1) we
first integrated cells within each identified PitNET cell population
(Fig. 3a) to construct a pseudo-bulk sample for each cell cluster, where
the sequencing reads were integrated. (2) Next, the rMATS tool was
used on these pseudo-bulk samples to identify alternative splicing
events in different cell populations. (3) Subtype-specific splicing
events were previously identified in the bulk RNA-seq analysis. Next,
we extracted the coordinates of these events (from the bulk level) and
mapped them to the splicing events detected in the pseudo-bulk
samples. (4)Weonly kept the overlapped splicing eventswithmatched
event coordinates for further analysis. Finally, we performed this set of
events (n = 117) to generate Fig. 4a. To calculate the level of splicing
changes in individual cells, we first extracted each cell into a small BAM
file. Then, we quantified the subtype-specific splicing events, which
were validated by the pseudo-bulk analysis, for each cell. For each
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splicing event, cellswith an average coverage sum for eachexonwithin
the splicing region greater than 5 were retained. For each subtype-
specific splicing event, we used the Wilcoxon rank-sum test to assess
the differential usage between cells of the corresponding subtype and
cells of other subtypes, considering P < 0.05 as significant.

Functional enrichment analysis of target genes
Functional enrichment analyses including Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG), Reactome, and Wiki-
Pathways were performed by the g:Profiler47. Terms with FDR and
P <0.001 were considered as significantly enriched.

GSEA analysis
Pathway enrichment analyses were performed by the GSEA (v4.2.2)
software48 to investigate molecular profiles. Gene sets were obtained
from the Molecular Signatures Database (MSigDB), including HALL-
MARK, GO, and KEGG. Parameters used were as follows: collapse data:
No collapse; permutation type: gene set; chip platform: gene symbol.
FDR and P <0.001 were considered significantly enriched.

Motif enrichment analysis
The MEME (v5.0.5)49 plugin FIMO was used to scan motifs in the
sequences with significant splicing changes. ESRP1 motif (GGGTGG)
collected from RBPmap50 was manually added to the motif collection
of RNA-binding proteins in the MEME database
(Ray2013_rbp_Homo_sapiens)49. Motifs found by FIMO were visualized
by sequence logos using the R package ggseqlogo51.

Progression‑free survival analysis
Kaplan–Meier survival curves were created and compared among
subgroups for progression-free survival (PFS) of the patientswith theR
package Survival52. We set the cutoff levels at the median value of the
ESRP1 expression and then used it to generate Kaplan–Meier graphs
and log-rank tests. For each splicing event, we stratify patients into two
groups ‘High PSI’ and ‘Low PSI’ based on the median value of PSI in
patients of TPIT lineage. The comparisonof the PFS between these two
groups was performed using Cox regression.

Immune subtype identification
ESTIMATE score, immune cell score, and stroma score were inferred
for each sample using the R package ESTIMATE53 (Supplementary
Data 13). The CIBERSORTx web tool (https://cibersortx.stanford.edu/
upload.php) was used to explore the proportions of different immune
cell types.

Statistical analysis
All calculations of clinical data were performed in R statistical software
(version 4.2.3). For statistical comparison, we performed an unpaired
Student’s t-test. Kaplan–Meier survival curve P-values were performed
using the Log-rank Mantel–COX test. The Fisher’s exact test was used
to evaluate the relationship between two categorical variables. Cor-
relations were assessed using Spearman’s correlation test. Use the
Wilcoxon rank-sum test to identify significant differences between two
independent sample groups. The FDR was calculated using the default
parameters based on the Benjamin–Hochberg approach. Detailed
descriptions of experiments and statistical tests were specified in the
figure legends.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw RNA sequence data of PitNETs generated in this study have
been deposited in the Genome Sequence Archive in the National

Genomics Data Center, China National Center for Bioinformation/
Beijing Institute of Genomics, Chinese Academy of Sciences under the
accession number HRA006929 [https://ngdc.cncb.ac.cn/gsa-human/
browse/HRA006929]. The data is available for academic use under
controlled access in compliance with the regulation of the Ministry of
Science and Technology (MOST) of China for the deposit and use of
human genomic data. Access can be obtained by contacting members
of the Data Access Committee (DAC) and following the application
procedure in GSA. Data will be available immediately once the appli-
cation is approved. The access to the controlled data will be valid for
one year from the date approved. The previously published RNA-seq
data of PitNETs for validation in this study are available as part ofNODE
under accession number OEP00001353 [https://www.biosino.org/
node/project/detail/OEP00001353]. The publicly available gene
count matrix of Pan-cancer from The Cancer Genome Atlas (TCGA)
database is downloaded from the R package TCGAbiolinks (v2.27.2)41.
All data supporting the current study are provided in the article,
Supplementary Information, and Source data. Source data are pro-
vided with this paper.
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