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Epistasis - the interaction between alleles at different genetic loci - plays a
fundamental role in biology. However, several recent approaches quantify
epistasis using a chimeric formula that measures deviations from a multi-

plicative fitness model on an additive scale, thus mixing two scales. Here, we
show that for pairwise interactions, the chimeric formula yields a different
magnitude but the same sign of epistasis compared to the multiplicative for-
mula that measures both fitness and deviations on a multiplicative scale.
However, for higher-order interactions, we show that the chimeric formula can
have both different magnitude and sign compared to the multiplicative for-
mula. We resolve these inconsistencies by deriving mathematical relationships
between the different epistasis formulae and different parametrizations of the
multivariate Bernoulli distribution. We argue that the chimeric formula does
not appropriately model interactions between the Bernoulli random variables.

In simulations, we show that the chimeric formula is less accurate than the
classical multiplicative/additive epistasis formulae and may falsely detect
higher-order epistasis. Analyzing multi-gene knockouts in yeast, multi-way
drug interactions in E. coli, and deep mutational scanning of several proteins,
we find that approximately 10% to 60% of inferred higher-order interactions
change sign using the multiplicative/additive formula compared to the chi-

meric formula.

A key problem in biology is deriving the map from genotype to fitness,
or the average reproductive success of a genotype. This map is often
referred to as the fitness landscape (first conceptualized in ref. 1). In its
simplest form, the fitness effects of alleles at one locus are indepen-
dent of those at other loci, such that multilocus fitness is either an
additive or multiplicative function of the alleles across loci. However,
the fitness landscape is complicated by the presence of epistasis, or
genetic interactions where alleles at one locus modify the effects of
alleles at other loci. Epistatic interactions reveal functional relation-
ships between genes, with the sign of an epistatic interaction (positive
or negative) often used to understand how genes are organized into
genetic pathways’, model protein function, and evolution®,

understand mechanisms of antibiotic resistance®, and interpret
genome-wide association studies (GWAS)®.

While epistasis is a property of any quantitative trait, many studies
have measured epistatic interactions using experimental fitness data
from haploid genomes (reviewed in refs. 6-8). Most of these studies
measure pairwise epistasis, or an interaction between a pair of genetic
loci that is computed by comparing the observed fitness of the double-
mutant to the expected fitness under a null model with no epistasis.
The sign of the epistatic interaction is determined by whether the
observed fitness is greater than or less than the expected fitness,
resulting in a positive or negative interaction, respectively. The choice
of the null model for the expected fitness depends on the quantitative
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trait used as a proxy for fitness. Nearly all formulae for pairwise epis-
tasis assume either an additive null model, where the expected fitness
is the sum fo; + fio of the fitness values of the single-mutants, or a
multiplicative null model, where the expected fitness is the product
foifio of the fitness values of the single-mutants. For example, an
additive null model is often used when fitness is measured using cel-
lular growth rate (e.g., in fitness assays of microbes’) or fluorescence
(e.g., in proteins'®), while a multiplicative null model is typically used
when fitness is measured by the total size of a clonal population®.
Under an additive null model, epistasis € is computed as the difference
e€=fu — (fio+fo1) between observed and expected double-mutant
fitness.

For the multiplicative null model, there is no agreement in the
literature about how to quantify deviation from the null model. In the
statistics literature, it is standard to compute multiplicative interaction
effects using a ratio €= { o between the observed and expected
values (e.g., refs. 12,13). On the other hand, many studies in the
genetics literature compute epistasis as the differencee = fi1 — foifio
between observed and expected fitness values of a double-mutant
(e.g., refs. 14-23). We call the first formula the multiplicative formula, as
it preserves the multiplicative measurement scale, while we call the
second formula the chimeric formula, as it measures deviations from a
multiplicative model on an additive scale and thus is a “chimera” of
additive and multiplicative scales.

Here, we show that the chimeric and multiplicative formula result
in different quantitative measures of pairwise epistasis, which may
affect findings on the strength of an epistatic interaction. Nevertheless,
we also show that the two formulae always yield the same sign (or
direction) of a pairwise interaction. The sign is often the quantity of
interest in genetics studies, e.g., negative epistatic interactions are
used to quantify functional redundancy***. Thus, the focus of existing
literature on the sign of interactions, as well as the focus on pairwise
epistasis, may explain why the differences between the multiplicative
and chimeric formula are not broadly recognized.

The discrepancies between the multiplicative and chimeric for-
mula are more consequential for higher-order interactions between
three or more loci, which are becoming more widely studied with
larger genetic datasets and high-throughput measurements of
fitness®**2%, Recent studies in yeast genetics’**® and antibiotic
resistance” independently derived analogous chimeric formula to
quantify epistasis between three or more loci and higher-order inter-
actions between components, respectively, under a multiplicative fit-
ness model. These chimeric formulae were derived de novo and
without consideration of the two distinct formula — chimeric and
multiplicative — for pairwise epistasis, nor the consequences of con-
flating multiplicative and additive scales. However, unlike in the pair-
wise setting, we show that for three or more loci, the chimeric formula
is not guaranteed to produce the same sign of an interaction as the
multiplicative formula. Thus, the chimeric formula may indicate a
positive epistatic interaction while the multiplicative formula shows a
negative epistatic interaction, and vice-versa. Such inconsistencies
raise questions about the validity of reported higher-order epistasis in
biological applications.

We resolve the mathematical and biological inconsistencies
between the different epistasis formulae by deriving connections
between epistasis and the parameters of the multivariate Bernoulli
distribution (MVB), a probability distribution on binary random
variables®. In particular, we show that a wide array of approaches for
quantifying epistasis - including the additive, multiplicative, and chi-
meric formulae, as well as the regression models commonly used in
GWAS and QTL analyses™ and the Walsh coefficients for measuring
background-averaged epistasis®* > - are equivalent to computing
different parameterizations of the MVB, showing that the MVB pro-
vides a unifying statistical framework for the different epistasis
measures.

We use the connections to the multivariate Bernoulli distribution
to analyze the higher-order (i.e., > 3-way interactions) chimeric epis-
tasis formulae derived by Kuzmin et al.***® and Tekin et al.”’. We show
that the chimeric formulae for pairwise epistasis and the chimeric
formulae for higher-order epistasis correspond to the joint cumulants
of the MVB, a concept from probability theory for measuring interac-
tions between continuous variables®. However, the joint cumulant is
known to not be an appropriate measure of higher-order interactions
for binary random variables®***. Accordingly, we argue that the chi-
meric epistasis formula are not appropriate for measuring higher-
order epistasis between biallelic mutations. In this way, just like how
the hero Bellerophon in the /liad slayed the monstrous chimera, the
multivariate Bernoulli distribution allows us to “slay” the chimeric
epistasis formula.

We demonstrate that the mathematical issues with the chimeric
epistasis formula lead to markedly different biological interpretations
of perturbation experiments using haploid genomes. Analyzing multi-
gene knockout data in yeast using the more appropriate multiplicative
formula changes the sign of 12% of the 7957 trigenic interactions that
Kuzmin et al.***® reported using the chimeric formula. Many of these
sign changes are concentrated on negative interactions, which are
more functionally informative than positive interactions and are
commonly used to measure functional redundancy between genes®.
In particular, the multiplicative epistasis formula identifies nearly 500
negative interactions not reported by Kuzmin et al.*** that are sig-
nificantly enriched for several measures of functional redundancy,
thus extending the trigenic interaction network by 25%.

We further demonstrate that the multiplicative and additive
formulae yield markedly different interactions compared to the
chimeric formula in two other applications: the identification of
higher-order synergistic and antagonistic drug interactions in
Escherichia coli and the identification of epistatic interactions
between protein mutations in deep mutational scanning (DMS)
experiments which is important for 3-D protein structure
prediction®*”,  protein  engineering’, genome  editing
optimization®®, variant effect prediction®’, and other applications.
Notably, we show that the discordance between the different for-
mulae increases with interaction order: the additive formula shows
significantly less antagonism between five-way interactions com-
pared to the chimeric formula used in ref. 40, while for some pro-
teins there is substantial (up to 60%) disagreement in the sign of
interaction between the multiplicative and chimeric formulae.

Results

Pairwise epistasis: additive, multiplicative, and chimeric
Pairwise epistasis describes interactions between two genetic loci. We
consider haploid genomes and assume that each locus is biallelic, i.e.,
each locus has two alleles labeled O and 1. Thus for a pair of loci there
are four possible genotypes: the wild-type 00, the single mutants 01
and 10, and the double mutant 11. Accordingly, for a pair (i, j) of loci
there are four corresponding fitness values: the wild-type fitness f ,
corresponding to the wild-type genotype 00 with no mutations; the
single-mutant fitnesses f;, f;, corresponding to the genotypes 01 and 10
with either locus i or locus j mutated, respectively; and the double-
mutant fitness fj, corresponding to the genotype 11 with both loci
mutated. Pairwise epistasis is measured by comparing the observed
double-mutant fitness f; to the expected fitness under a null model
with no epistasis.

In practice, the fitness f of a genotype cannot be directly mea-
sured. Instead, experiments typically measure traits that are expected
to be highly correlated with fitness. For example, in populations of
microbes or proteins, it is standard to estimate the fitness of a geno-
type with either its population growth rate or relative frequency, which
are typically assumed to follow an additive or multiplicative scale,
respectively (“Methods”). Accordingly, the two standard null models of

Nature Communications | (2025)16:1711


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-56986-5

(A) B ey, (©
Multiplicative epistasis Chimeric epistasis ij 0.5
m_ Ji €=t~ Il o 0.4
ij qu © 0.
: fifi =
Y 03
C
©
2
S 02
2
o
0.1
1 %
&
0,

Fig. 1| Comparison of multiplicative and chimeric epistasis measures. A For a
pair (i, j) of loci, the multiplicative epistasis measure e’” = ff J‘é is the ratio between
the observed fitness f;; of the double mutant and the expected fitness f; f; under a
multiplicative null model. Equivalently, the logarithm logeg” of the epistasis mea-
sure is given by Ioge{;’ = logf;; — logff;, or the difference between the observed
and expected values in log-fitness space. B The chimeric epistasis measure eg =fy—
fif; is the difference between the observed and expected fitness values of the
double-mutant under a multiplicative fitness model. The chimeric measure eg thus

2 3 4 5
Interaction order

mixes scales by measuring deviations from multiplicativity on an additive scale.
C The fraction of instances where the signs sgn(log e”) and sgn(e€) of the multi-
plicative and chimeric fitness formula, respectively, disagree ("sign discordance
fraction") for interaction orders L =2, ..., 5, where fitness values f;, f;;, ... are sampled
uniformly at random from the interval [0, 1]. For two loci, the sign of the two
measures always agree (see Proposition 1), but for more than two loci, there is
substantial disagreement.

fitness for measuring epistasis are the additive model and the
multiplicative model.

In the additive model, mutations are assumed to have an additive
effect on fitness, and the pairwise epistasis measure ejj' is equal to the
difference between the observed and expected double-mutant fitness
values:

& =fy— (Fi+f)), @
under the assumption that fitness values are normalized such that the
wild-type fitness f ; = 0. The sign of the interaction (i.e., positive vs.
negative) is given by the sign sgn (¢ ) of the epistasis measure e" The
additive model was first posed by Fisher”, who used the term

“epistacy” to refer to any statistical deviation from additivity®.

In the multiplicative fitness model, mutations have a multiplicative
effect on fitness, and the multiplicative pairwise epistasis measure 624 is
given by the ratio between the observed and expected double-mutant
fitness values:

_ S
fify’

under the typical assumption that the wild-type fitness f ; is equal to 1.
The sign of the interaction is determined by whether the multiplicative
measure ef.y is greater than or less than 1. Moreover, if fitness values f
are multiplicative, then the log-fitness values logf are additive; thus,
the sign of interaction under the multiplicative model is also given by
the sign sgn (log egf’ ) of the log-epistasis measure log eg.” . The additive
and multiplicative epistasis measures are closely related to the linear/
log-linear regression frameworks®'? and the Walsh coefficients®0-324>43
used in the genetics literature; see Methods for details.

Curiously, there is a third epistasis formula that is widely used for
the multiplicative fitness model. Here, deviations from the multi-
plicative model are measured on an additive scale, resulting in the
following chimeric formula for pairwise epistasis:

2

eq=fy —fifj. 3

We refer to €5 as the chimeric epistasis measure because it mea-
sures deviations from a multiplicative null model on an additive scale
and is thus a chimera of both the multiplicative and additive mea-
surement scales. As in the additive model, the sign of the interaction is
given by the sign sgn (e ) of the chimeric measure eC

The chimeric epistasis measure eijc. appears in the genetics litera-
ture (e.g., refs. 14-23) and in the drug interaction literature (e.g.,
refs. 27,40,44,45) because of its interpretation as a residual, i.e., the
difference between the observed and expected values of a measure-
ment. However, despite the simplicity of this explanation, residuals are
typically only appropriate for additive models. For multiplicative
models, it is standard to compute statistical interactions using the ratio
between observed and expected measurements (as in equation (2),
rather than the difference’”. Moreover, Wagner™*° notes that preser-
ving the multiplicative measurement scale (by using the ratio) is
required in order to guarantee meaningful notions of statistical and
functional interactions.

While both the chimeric measure ec and the multiplicative
measure e’y are described as measuring devnatlons from a multi-
plicative fitness model, the two measures are not equal. In parti-
cular, the (log-) multiplicative epistasis measure
logegf =logf; —logf;f; computes the difference between the
observed and expected double-mutant fitness values on a loga-
rithmic scale (Fig. 1A) while the chimeric epistasis measure e,.JC. =fi—
fif; computes the difference directly (Fig. 1B). When the double-
mutant fitness f;; and single-mutant fitness values f;, f; are close to 1,
we show that the chimeric measure eC is approximately equal to the
log-multiplicative measure log (Supplementary Note 1). How-
ever, if the fitness values are substantlally different from 1, then the
chimeric epistasis measure e,.JC. may over- or under-state the strength
of a pairwise interaction in a multiplicative fitness model as we
demonstrate numerically (Supplementary Note 2).

Nevertheless, we prove (“Methods”) that the chimeric measure €
has the same sign of an interaction as the multiplicative measure eg’
but not the same magnitude. Thus, using either the chimeric or mul-
tiplicative measures will not affect findings that depend on the sign of
an epistatic interaction, and the sign is often the quantity of interest
(e.g., negative epistasis is used to quantify functional redundancy”).
However, the agreement between the multiplicative and chimeric
measures on the sign of interaction is true only for pairwise epistasis
and not higher-order epistasis, as we will show below.

Higher-order epistasis

For higher-order epistasis, or interactions between three or more
genetic loci, we find that the difference between the multiplicative and
chimeric epistasis measures are more consequential. Under the mul-
tiplicative fitness model, the three-way epistasis measure efyk between
loci i, j, k is given by the ratio between observed and expected triple-
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Table 1| Correspondence between epistasis measures and the parametrizations of the multivariate Bernoulli distribution when
the fitness values are proportional to the indicated quantities of the distribution

Parameters of multivariate Bernoulli distribution

Fitness values f proportional to

Additive epistasis measure €* Natural parameters 8

Log-probabilities log p

Multiplicative epistasis measure " Natural parameters 8

Probabilities p

Chimeric epistasis measure e© Joint cumulants k

Moments y

Walsh coefficients

Moments of (1-2X;, ..., 1-2X,)

Probabilities p

mutant fitness:

o fu _fafffe
W fififelfelel  Fufufi

“)

Recent work in the yeast genetics*?® and antibiotic resistance?”

literature claim to use a multiplicative fitness model, but derive a dif-
ferent epistasis formula:

eyc'k=fyk—(fifjfk+€gc' k+€ickfj+€ﬁ¢fi)r )

where eijc.,eﬁ(,eﬁ( are the pairwise chimeric epistasis measures in (3).
Note that as in the pairwise case, formula (5) mixes the additive and
multiplicative scales in a complex manner. Thus, we refer to eijc.k as the
chimeric three-way epistasis measure.

As in the pairwise setting, the three-way chimeric measure € in
(5) is clearly different from the three-way multiplicative measure e{ﬂ in
(4). However, we show that these formula often differ in both the
magnitude of epistasis (as in the pairwise setting) and in the sign of
epistasis. Thus, one formula may indicative positive epistasis between
three loci while another formula may indicate negative epistasis, and
vice-versa. In simulations, we find that approximately 28% of triples
have different signs between the two formulae (Fig. 1C).

Tekin et al”” extended the three-way chimeric epistasis formula
(5) to compute a 4-way chimeric epistasis measure el.c.kl and a 5-way
chimeric epistasis measure €f;;,.. We find even more substantial dif-
ferences in the sign of epistasis between these 4-way and 5-way chi-
meric epistasis measures and the 4-way and 5-way multiplicative
epistasis measures (Equation (18) in “Methods”). In simulations, only
approximately 57% and 52% of 4-way and 5-way interactions, respec-
tively, have the same sign using the chimeric and multiplicative epis-
tasis formulae (Fig. 1C).

This substantial disagreement between the chimeric and multi-
plicative epistasis measure motivates a deeper mathematical under-
standing of the various epistasis formulae, which we undertake in the
next section.

Unifying epistasis measurements with the multivariate Bernoulli
distribution

A genotype of biallelic mutations on L loci can be represented as a
binary string of length L, where O corresponds to the wild-type allele,
and 1 corresponds to the mutant, or derived, allele. For example, the
string 01100 represents the genotype of L =5 loci with mutations in the
second and third loci. The fitness values of all genotypes, often refer-
red to as the fitness landscape, correspond to a function fthat maps a
binary string x € {0, 1}* to its fitness f;.

A natural approach for studying a fitness landscape function fis to
view it as a distribution on the set {0, 1}* of binary strings, where the
probability px of a binary string x is derived from its fitness f,. Such
distributions are often used by protein structure models®’. Moreover,
many real-world fitness datasets - including the yeast fitness data and
many of the protein datasets analyzed in this manuscript - measure

the fitness of a genotype x in terms of its relative frequency in a large
population of genotypes, i.e., its probability px.

Here, we model the fitness landscape using the multivariate Ber-
noulli (MVB) distribution”*” which describes any distribution on the
set {0, 1}* of binary strings. Formally, a multivariate random variable
Xy, ..., Xp) distributed according to a MVB is parametrized by the
probabilities p,=P((X;, ..., Xp)=x) for each binary string
X=(0, ..., x1) € {0, 1}*. We model the genotype (X, ..., X;) of an
organism as a random variable distributed according to a MVB para-
metrized by the probabilities p=(py)y (0, 1y:-

We prove that the additive, multiplicative, and chimeric measures
of epistasis - as well as the Walsh coefficients described in
refs. 30-32,42,43 - correspond to different parametrizations of the
MVB distribution (Table 1, “Methods”). We briefly describe these
results below.

Multiplicative and additive epistasis. Suppose the fitness values f,
R of each genotype x=(x,, ..., x;) € {0, 1} are proportional to the
corresponding probability py of a multivariate Bernoulli random vari-
able (Xy, ..., X;), i.e., fx=c - px for some ¢ > 0. We prove that the (log-)
multiplicative epistasis measures are equal to the natural parameters
of the MVB. The natural parameters 8= {B¢}s.,, _,, are another para-
meterization of the MVB that encodes conditional independence
relations between the random variables Xj, ..., X;; see refs. 29,48. We
prove a similar result for the additive epistasis measure under the
assumption that the fitness f is proportional to the log probability
log p,. See Methods and Supplementary Note 3 for theorem state-
ments and proofs.

Our theoretical results provide a connection between the multi-
plicative epistasis measure and interaction coefficients in a log-linear
regression model. This is because for each subset S of loci, the natural
parameter s corresponds to the interaction term for the subset S in a
log-linear regression model***”*%, Such interaction terms are a stan-
dard approach for measuring epistasis in genetics, e.g., GWAS or QTL
analyses for quantitative traits®’.

We also prove that the natural parameters g of the MVB are closely
related to the two standard approaches for measuring pairwise SNP-
SNP interactions in a case-control GWAS: logistic regression and con-
ditional independence testing*’. Specifically, we prove that the inter-
action term in a logistic regression is equal to a 3-way interaction term
Biixin an MVB, while the conditional independence test is equivalent to
testing whether a 2-way interaction term f; and a 3-way interaction
term By are both equal to zero. These interaction terms are equal to
the corresponding log-multiplicative epistasis measures log eV,

Thus, our results show that the additive and multiplicative epis-
tasis measures are equivalent to computing interaction terms in
regression models commonly used in genetics.

Chimeric epistasis. The connection between the epistasis formulae
and the MVB distribution allows us to derive a mathematically rigorous
definition of the chimeric epistasis formula. Specifically, suppose the
fitness value f, of each genotype x=(xy, ..., X;) is equal to a corre-
sponding moment E[X}* ---X}'] of the random variable (X, ..., X).

Then, we define the chimeric epistatic measure egmik as the K-th order
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Fig. 2 | Comparison of epistasis measures using simulated data from a multi-
plicative fitness model. Fitness values f are simulated following a multiplicative
fitness model with interaction parameters S, for different choices of the maximum
interaction order K, and multiplicative Gaussian noise with standard deviation o.
A The fraction of K-way interactions where the sign of the log-multiplicative epis-
tasis measure log e (orange) and the chimeric epistasis measure € (blue) do not
match the sign of the true interaction parameter . B The average absolute

difference ("error") |8 — log €| and |B - €“| between the true interaction parameter
B and (orange) the log-multiplicative measure log eV and (blue) the chimeric
measure €5, respectively. These quantities are computed for different values of the
maximum interaction order K and noise parameter o and are averaged across
200 simulated fitness values. Error bars indicate standard deviation across simu-
lated instances.

Joint cumulant k(X;, ...,X; ) of the random variables X;, ..., X;
(Table 1). Joint cumulants are a concept from probability theory that
are used to quantify higher-order interactions between random
variables®. See Methods for a formal definition.

We emphasize that prior literature on higher-order interactions
do not provide a rigorous statistical interpretation of the chimeric
epistasis measure. For example, Kuzmin et al.**** does not explicitly
state the connection between the joint cumulant and their three-way
chimeric formula, while Tekin et al”’ heuristically uses the joint
cumulant formulae without specifying random variables or a prob-
ability distribution — thus obscuring any assumptions made by using
joint cumulants to measure higher-order interactions.

Our explicit definition of the K-th order chimeric epistasis mea-
sure eg,__ik as the K-th order joint cumulant reveals two critical issues
with the chimeric formula. First, the assumption that the fitness values
f are equivalent to the moments of an MVB random variable is not
biologically reasonable for higher-order interactions between three or
more loci. This is because the moments assumption implies that the
fitness of a particular genotype depends on the probability of many
other genotypes. For example, if we assume that the fitness values for
L =4 loci are moments of the MVB, then the fitness fi;00 of a double
mutant is equal to the moment E[XiX;], which is equal to

EIX1X51=P(X1=1,X,=1)=Ppoo * Puo1 + Puo * P (6)
However, it is not clear why the fitness fi;00 of a single genotype, 1100,
should equal the sum of the probabilities of four different genotypes,
1100, 1101, 1110, and 1111.

The second issue is that joint cumulants are not an appropriate
measure of higher-order interactions between binary random vari-
ables. The differences between the joint cumulants k and natural
parameters B have been previously investigated in the neuroscience
literature, as both quantities have been used to quantify higher-order
interactions in neuronal data. For example, Staude et al.>* write that the

joint cumulants x and natural parameters B “do not measure the same
kind of dependence. While higher-order cumulant correlations [k] indi-
cate additive common components ... the [natural parameters [ directly
change the probabilities of certain patterns multiplicatively”. In parti-
cular, the natural parameters  measure “to what extent the probability
of certain binary patterns can be explained by the probabilities of its sub-
patterns™*. Thus, for biallelic genotype data, the natural parameters 8
correspond exactly with the epistasis we aim to measure, i.e., how the
fitness of a binary pattern can be explained by the fitness of its “sub-
patterns”, while the joint cumulants k do not.

Simulations using a multiplicative fitness model

We performed simulations to demonstrate the discrepancy between
the multiplicative epistasis measure and the chimeric epistasis mea-
sure. Since both the multiplicative and chimeric measures use a mul-
tiplicative fitness model, we simulated fitness values f for L =10 loci
following a multiplicative fitness model with K-way interactions S for
different choices of interaction order K, and with multiplicative
Gaussian noise with standard deviation o (Methods). We computed the
K-way multiplicative measure €¥ and chimeric measure €§ for each set
Scl, ..., L} of loci of size |S| = K, and we compared these two measures
to the true interaction measure Ss.

We first assessed whether the sign of the epistasis measures, i.e.,
sgn(loge¥) and sgn(e$), match the sign sgn(p) of the corresponding
interaction term fs, since the sign of a measure indicates whether there
is a positive or negative interaction between mutations in the loci S. We
observed (Fig. 2A) that for pairwise interactions (K=2), both the
multiplicative measure € and chimeric measure € have the same sign
as the true interaction measure S for the same fraction of instances,
which matches our theoretical result (Proposition 1, Methods). How-
ever, for higher-order interactions (K > 2), the chimeric measure € has
an incorrect sign more often than the multiplicative measure €
(Fig. 2A). In particular, for K=5-way interactions, even with no noise
(i.e., 0=0), the chimeric measure has a different sign than the true
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interaction parameter o for more than 30% of simulated instances. We
also highlight that when there is no noise, i.e., o= 0, the multiplicative
measure always has the same sign as the true interaction parameter S,
i.e., sgn(logeM)=sgn (B), which agrees with Theorem 1.

We next compared how well the magnitudes of the multiplicative
and chimeric epistasis measures agree with the magnitude of the true
interaction parameters. We computed the average absolute difference
(“error”) |loge¥ — B| and |€S — B| between the true interaction mea-
sure B and the estimated multiplicative and chimeric epistasis mea-
sures, respectively, for all subsets S of loci of size |S|=K. We found
(Fig. 2B) that the multiplicative measure has a smaller error for all
interaction orders K and noise parameters o. In particular, we observe
that the multiplicative measure has a smaller error than the chimeric
measure even for pairwise interactions (K=2) - i.e., when both the
multiplicative and chimeric measures have the same sign - and that the
error of the chimeric measure €€ increases with the interaction order K.
The reason that the chimeric measure has much larger error than the
multiplicative measure for pairwise interactions is that the chimeric
measure e,.jc. is approximately equal to the (log-)multiplicative measure
only when f; =1 and f; f; =1, with the two measures being noticeably
different otherwise (Supplementary Figs. 1 and 2 and Supplementary
Note 1). We also emphasize that when there is no noise, i.e., 0 = O, the
multiplicative measure has zero error, i.e., logeM =B, matching our
theoretical results (Theorem 1, Methods). (Note that Theorem 1 does
not apply when there is multiplicative Gaussian noise, i.e., 0 >0, as this
noise will cause the fitness values to not follow a log-linear model.)

Thus, our results demonstrate that the multiplicative measure €
yields a more accurate measurement of pairwise and higher-order
epistasis in a multiplicative fitness model compared to the chimeric
measure € which conflates additive and multiplicative factors.

Simulations using the NK fitness model

We next compared the multiplicative and chimeric epistasis measures
using the NK model, a classical model for simulating random fitness
landscapes fwith varying degrees of “ruggedness”°. The NK model has
two parameters: the number N of loci, which we call L below; and K, a
measure of the ruggedness of the fitness landscape f, where the fitness
landscape is smoothest at K=0 and most rugged for K=L - 1. Each
locus =1, ..., L interacts with K random other loci, meaning that the
fitness landscape contains at most (K +1)-way interactions. Since the
NK model simulates fitness values under an additive model, we expo-
nentiated the NK fitness values.

Each simulated fitness landscape f has an associated graph
G=(V, E) which describes a (simulated) genetic interaction network,
where the vertices V={], ..., L} are the L loci and the edges F connect
pairs of interacting loci*". For example, for K=0, the graph G has no

A

NK model graph
(K=1, pairwise interactions)

I Locus j

Locus k

Fig. 3 | Comparison of epistasis measures using simulated data from the NK
fitness model. A A fitness landscape f simulated following the NK fitness model
with “ruggedness” parameter K =1 contains only pairwise interactions. These
interactions are represented with an interaction graph G. The 3-way multiplicative
measure efyk =0 equals zero for all loci triples (i, j, k). However, if the triple (i, j, k)
forms a triangle in the graph G (shown as a dashed red line), then the 3-way chimeric

epistasis measure eka is non-zero and incorrectly indicates the presence of a higher-

Zero 3-way multiplicative
] epistasis: efﬁ =0

Non-zero 3-\(//:/ay chimeric
9, epistasis: €, #0

edges, indicating that there are no interactions between loci, while for
K=1the graph G has edges connecting loci with pairwise interactions.
(For K=2, one may also describe the interaction relationships with a
hypergraph where hyperedges connect sets of interacting loci, e.g.,
ref. 51.)

We find that the chimeric measure falsely indicates the presence
of higher-order interactions that are not present in the simulated fit-
ness landscape f while the multiplicative measure does not. For
example, when the fitness landscape f contains only pairwise interac-
tions (i.e., K=1), then the 3-way multiplicative epistasis measure e{ﬂ =
is equal to zero for all triples (i, j, k) of loci. However, if the NK model
graph G contains a triangle (i, j, k), then the 3-way chimeric measure
egk;:o will be nonzero with high probability (Fig. 3A). Thus, the chi-
meric measure € falsely indicates the presence of three-way interac-
tions that do not exist in the simulated fitness landscape. (As this is
sometimes a point of confusion: we note that triangles in a graph are
sometimes referred to as higher-order structures®>. However, as our
simulation demonstrates, it is quite possible to have a triangle in a
graph, i.e., three pairwise interactions, without having a genuine
higher-order (3-way) interaction.) More generally, for any value K>0
of the ruggedness parameter, the fitness landscape f only contains at
most (K +1)-way interactions. The (K+2)-way multiplicative measure
e” is always equal to zero, reflecting that there are no (K+2)-way
interactions. However, we empirically observe that the (K+2)-way
chimeric measure €€ is often non-zero (Fig. 3B).

Thus, our analyses demonstrate how the chimeric measure € will
often erroneously identify higher-order interactions that are not pre-
sent in the underlying fitness landscape.

Three-way epistasis in budding yeast
We investigate the biological implications of using the chimeric epis-
tasis measure instead of the multiplicative epistasis measure by rea-
nalyzing two triple-gene-deletion studies in budding yeast by Kuzmin
et al.***, These studies used triple-mutant synthetic genetic arrays
(SGA)**** to measure the fitness of single-, double-, and triple-mutant
strains. The authors use a multiplicative fitness model since the SGA
protocol models yeast colony sizes as a product of fitness, time, and
experimental factors®®. The Kuzmin et al. studies, refs. 24 and 26,
measure fitness values for 195,666 and 256,861 gene triplets, respec-
tively. They calculate the three-way chimeric epistasis measure e[.jc.k and
report 3196* and 2466 negative three-way epistatic interactions,
respectively.

We calculated the multiplicative epistasis measure e{.ﬁ (formula
(4)) and the chimeric epistasis measure €, (formula (5)) used by
Kuzmin et al.>** for the 189,340 gene triplets (i, j, k) whose single-,
double- and triple-mutant fitness values were available in the publicly
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Simulated interaction order

order interaction. B The fraction of non-zero (K +2)-way interactions ("fraction of
non-zero higher-order interactions") identified by the multiplicative measure "
(orange) and the chimeric measure € (blue) across 100 fitness landscapes

f simulated according to the NK fitness model with ruggedness parameter K, with
error bars indicating standard deviation across simulated instances. The fitness
landscape f contains at most (K +1)-way interactions, but the chimeric measure €
spuriously detects many non-zero (K + 2)-way interactions.
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Table 2 | Comparison of signs of trigenic interactions in bud-
ding yeast calculated using the multiplicative epistasis mea-
sure and the chimeric epistasis measure on fithess data
from Kuzmin et al.?

Chimeric measure €5

Positive Ambiguous Negative
Multiplicative Positive 197 259 0
measure €j Ambiguous 116 4291 91
Negative 10 466 1527

Values not on the diagonal correspond to gene triplets having a different sign of epistasis using
the multiplicative measure versus the chimeric measure (approximately 12% of triplets).

available data from refs. 24,26 and with a reported p-value of
Piix < 0.05. Following Kuzmin et al.***® we say a gene triplet (i, , k) has a
positive chimeric interaction if egk>0.08; a negative chimeric interac-
tion if e[.jC.k< —0.08; and an ambiguous chimeric interaction if
—0.08<€§k<0.08. Accordingly, using the same quantile as the chimeric
threshold of 0.08, we say that a gene triplet (i, j, k) has a positive (resp.
ambiguous, negative) multiplicative interaction if e%(>1.105 (resp.
0.905<e}; <1.105, €}/, <0.905). See Supplementary Note 4 and Supple-
mentary Figs. 3 and 4 for specific details on data processing and
reproducing the Kuzmin et al. results.

We observed considerable differences between the signs of the
multiplicative epistatic measure versus the chimeric epistatic measure
(Table 2). In particular, approximately 12% of gene triplets have a dif-
ferent interaction sign with the multiplicative measure compared to
the chimeric measure. The difference between the two measures is
especially pronounced for negative interactions, which are typically
more functionally informative than positive interactions”**?. In par-
ticular, there were 476 gene triplets (i, j, k) with a negative
multiplicative-only interaction, or triplets with a negative multiplicative
interaction but not a negative chimeric interaction (Fig. 4A). On the
other hand, there were only 91 gene triplets with a negative chimeric-
only interaction, or triplets with a negative chimeric interaction but not
a negative multiplicative interaction (Fig. 4A); in fact, some of these 91
triplets even had positive multiplicative interaction (Fig. 4A). We also
observe a qualitatively similar discrepancy between the two formula
using the earlier fitness data from Kuzmin et al. (2018)*; on this data,
we find that there were 746 gene triplets with a negative multiplicative-
only interaction versus 177 triplets with a negative chimeric-only
interaction (Supplementary Fig. 5). Our results were also qualitatively
similar when we did not restrict to triplets with reported p-value
Piik < 0.05 (Supplementary Fig. 6).

Negative trigenic interactions often contain genes whose proteins
are partially redundant in their functions® and are enriched for other
features that arise from biological models of functional redundancy,
including shared expression patterns®*®, shared protein-protein
interactions®, GO annotation, and amino acid divergence’®”. We
observed (Fig. 4B) that gene triplets with negative multiplicative-only
interactions — that is, gene triplets not identified by the chimeric for-
mula used in Kuzmin et al. (2020)*® — are significantly enriched for co-
expression (P=0.017, hypergeometric test), shared protein-protein
interactions (P<15x10™, hypergeometric test), and similar GO
annotations (P< 2.1x107, hypergeometric test). In contrast, gene tri-
plets with a negative chimeric-only interaction are not significantly
enriched for any of these features (Fig. 4B). In this way using the
multiplicative measure extends the network of functionally redundant
genes by almost 25% compared to the chimeric measure. We obtain a
similar result when analyzing the fitness data from the earlier Kuzmin
et al. (2018) study** (Supplementary Fig. 5) and also when we do not
remove gene triplets with large reported p-values p; as computed by
Kuzmin et al.**** (Supplementary Fig. 6). These results demonstrate
that using the appropriate three-way multiplicative formula for a

multiplicative fitness model leads to more biologically meaningful
higher-order genetic interactions compared to using the chimeric
epistasis formula that mixes additive and multiplicative scales in an
statistically unsound manner.

In particular, trigenic interactions also reveal the functional
redundancy of paralogs, or pairs of duplicated genes with over-
lapping functions, since two functionally similar genes tend to have
a negative trigenic interaction with a third gene more often com-
pared to gene pairs with non-overlapping functions®. Thus, we
evaluated whether the gene triplets with negative multiplicative-
only interactions involve functionally redundant gene pairs. We
quantified the functional redundancy between two genes by cal-
culating the number of negative trigenic interactions to which both
genes belong, where we restricted our calculation to gene pairs
involved in at least two negative multiplicative interactions. We
found that many pairs of genes had additional multiplicative-only
interactions (Fig. 4C). Thus the multiplicative measure identified
additional functional redundancies not found using the chimeric
measure. As additional validation, we note that Kuzmin et al.”
quantify functional redundancy between two genes using a related
quantity that they call the trigenic interaction fraction (see Supple-
mentary Note 4 for more details). We observed that for most gene
pairs, the trigenic interaction fraction is larger when computed
using the multiplicative formula versus using the chimeric formula
(Supplementary Fig. 7). This observation further supports the con-
clusion that the multiplicative formula uncovers additional func-
tional redundancies between these paralogs that was not detected
by the chimeric measure.

We expect paralogs with large increases in the number of
multiplicative-only interactions to be functionally redundant. Of the
130 paralogs we analyzed, there are fifteen paralogs with at least 10
negative multiplicative-only interactions (highlighted in Fig. 4C). The
three paralogs with the largest number of negative multiplicative-only
interactions were RPS24A-RPS25B, MSN2-MSN4, and AREI-ARE2. For
these three paralogs, the multiplicative formula quadrupled the
number of total trigenic interactions compared to the number of such
interactions reported by Kuzmin et al.?® using the chimeric formula.
These three paralogs also appear to have redundant functions
according to other patterns of sequence evolution: all three have
highly correlated position-specific evolutionary rates (Table S12 in
ref. 26) and two of them (RPS24A-RPS25B and AREI-ARE2) have low
sequence divergence rates (Supplementary Fig. 8). Moreover, negative
genetic interactions have been previously documented for MSN2-
MSN4>%, AREI-ARE2”, and RPS25A-RPS25B>"°°.

The paralogs with many multiplicative-only interactions are also
enriched for shared PPIs or GO annotations with the genes they
interact with (Fig. 4D). In particular, the paralogs NUP53-ASM4, which
are components of the large nuclear pore complex®, had 36 additional
negative multiplicative-only interactions. These epistatic interactions
are highly enriched for shared PPIs and GO annotations (Fig. 4D) and
also involve members of the same protein complexes (Fig. 4E). One of
the 36 additional genes that interact with NUP53-ASM4 is NUP145,
which also forms part of the nuclear pore®. Interestingly, while the
gene triplet NUP53-ASM4-NUPI45 has a negative multiplicative inter-
action (¢"=0.684 <1), the same gene triplet was reported to have a
positive chimeric interaction (¢“=0.25>0; Kuzmin et al.*®). Another
example of one of the 36 additional interactions is SAC3, which
encodes a nuclear pore-associated protein that functions in mRNA
transport®. The gene triplet NUP53-ASM4-SAC3 has a very negative
multiplicative interaction (¢¥=0.046 < <1), but in the original study*
was reported to have a slightly positive chimeric interaction
(€°=0.014>0). Moreover, both NUP145 and SAC3 share at least
one protein-protein interaction and GO category with NUP53 and
ASM4. These findings provide additional support to the hypothesis by
Kuzmin et al.* that NUP53 and ASM4 have overlapping functions.
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Fig. 4 | Negative trigenic interactions in budding yeast calculated using the
multiplicative and chimeric epistasis measures. A Chimeric epistasis measure
€&, versus the multiplicative epistasis measure efﬁ for gene triplets (i,j, k) in Kuzmin
et al.”. We highlight trigenic interactions that are negative only by the multi-
plicative measure ("M only"), only by the chimeric measure ("C only"), or by both
measures ("M and C"). B Fold enrichment for co-expression patterns, shared
protein-protein interactions (PPI), and shared GO annotations for negative trigenic
interactions. Asterisk (*) denotes statistical significance (P < 0.018, hypergeometric

test, one-sided), while “ns' indicates not significant (P> 0.05). C Number of negative
trigenic interactions (i, j, k) for every pair (i, ) of genes with at least five negative
trigenic interactions. D Fold enrichment for GO annotations and protein-protein
interactions (PPI) for negative “M only” trigenic interactions that involve the gene
pairs highlighted in (C). The numbers in parentheses are the number of “M only”
interactions. E/F Genes that have a negative trigenic interaction with either NUP53-
ASM4 (E) or with SKI7-HBSI (F), organized into protein complexes and colored by
whether the trigenic interaction is “M only” (gold) or “M and C” (blue).

Two other noteworthy paralogs are SKI7 and HBSI; both genes
recognize ribosomes stalled during translation and also initiate mRNA
degradation. While some studies report that these paralogs have
evolved distinct functions®*®, other studies show that they retain
some overlapping functions®**® and may bind to similar sites on the
ribosome®®. Kuzmin et al.?® previously reported relatively few (13) tri-
genic interactions involving both SKI7 and HBSI as corroboratory
evidence for the functional divergence of these paralogs. However, by
using the multiplicative epistasis formula, we find 15 additional trigenic
interactions involving SKI7 and HBSI. These 15 multiplicative-only
interactions are highly enriched for shared GO terms (Fig. 4D). More-
over, 12 of the 15 multiplicative-only interactions involve functionally

similar genes that are all members of the ribonucleoprotein complex
(Fig. 4F). Thus, the multiplicative epistasis measure finds evidence for
additional functional redundancy between SK/7 and HBSI that went
undetected by the chimeric epistasis measure used in Kuzmin et al.?.

In addition to the negative interactions just described, we also
highlight an example of a biologically relevant positive trigenic inter-
action that is missed by the chimeric epistasis measure but detected by
the multiplicative measure. The gene triplet CIKI-VIK1-SUP35-td, which
consists of two paralogs, CIK1 and VIKI, involved in mitosis®’, and the
essential gene SUP35-td’®, has an ambiguous, negative chimeric inter-
action (e5, = — 0.03) but has a very large, positive multiplicative
interaction (e%( =75.337). Examining the fitness values (Supplementary
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Fig. 5 | Higher-order interactions between antibiotics in E. coli using drug
response data from Tekin et al.*’. A Proportion of E. coli cultures where the sign
(positive vs. negative) of the chimeric and additive measures disagree. The sign
discordance fraction, or proportion of interactions where the sign of the two
measures disagree, increases with the interaction order, consistent with the

5th order interaction measure

5th order €€

simulations shown in Fig. 1. B Distributions and Q-Q plots (insets) for the additive
(orange) and chimeric (blue) measures for Sth-order interactions. C Scatter plot of
median relative growth rates for each 5-way combination of antibiotics across
concentration levels and replicates. Dashed horizontal and vertical lines indicate
zero additive and chimeric epistasis measures, respectively.

Fig. 9) shows that the fitness of the CIKI-VIKI-SUP35-td triple mutant is
more than 100 times larger than the fitness of the CIKI-SUP35-td double
mutant. Moreover, positive interactions have been previously docu-
mented between pairs of these genes: VIKI deletion mutants suppress
several phenotypes of CIKI deletion mutants, including a mitotic delay
phenotype and a temperature-dependent fitness defect®”; and a phe-
notypic suppression interaction exists between CIKI and SUP35, where
deletion of CIK1 reduces the ability of SUP35-td to form prions®’. These
previously identified positive pairwise interactions, together with the
large triple-mutant fitness value, demonstrate that the gene triplet
CIKI-VIKI-SUP35-td is more likely to have a positive interaction as
indicated by the multiplicative measure, rather than a neutral inter-
action as indicated by the chimeric measure.

Overall, our results demonstrate not only the degree to which the
multiplicative and chimeric formula may lead to distinct interpreta-
tions of fitness data, but also that genetic interactions measured using
the multiplicative formula appear to be more consistent with other
biological features compared to interactions measured using the chi-
meric formula.

Higher-order interactions in drug responses

We next reanalyzed a drug response dataset*® in which three-way, four-
way, and five-way interactions between drug combinations were
quantified using the chimeric formula. For these data, the authors
exposed Escherichia coli cultures to between one and five antibiotics
(out of eight total) at one of three different concentrations. They
measured fitness as the difference in exponential growth rates
between the culture exposed to antibiotics and a negative control with
no antibiotics. The authors then used the chimeric epistasis measure €°
to identify third-, fourth-, and fifth-order interactions between differ-
ent combinations of antibiotics. We compared their results with the
additive epistasis measure €'. We used the additive measure ¢
because, under the standard assumption that antibiotic exposure
multiplicatively affects the survival probability of individual cells*,
then antibiotic exposure will have an additive effect on the exponential
growth rates of the population of cells™”.

The signs of the chimeric interaction measure €° and the additive
interaction measure ¢* disagree for three-way, four-way, and five-way
interactions, with the discrepancy between the two measures
increasing with the interaction order (Fig. 5A), which is consistent with
our earlier simulations (Fig. 1C). The discrepancy is largest for fifth-
order interactions, with approximately 14% of fifth-order interactions
having a different sign using the additive measure versus the chimeric
measure (Fig. 5A).

The discrepancy between the additive and chimeric measures
may lead to different conclusions on the type of interactions between
antibiotics, i.e., whether a given combination of antibiotics is syner-
gistic (more effective at killing bacteria when taken together versus
taken individually, i.e., a negative interaction) or antagonistic (less
effective together versus individually, i.e., a positive interaction). For
fifth-order interactions, the chimeric measure € was more positively
skewed than the additive measure ¢* (Fig. 5B), with a Pearson skewness
coefficient of 0.87 for the chimeric measure versus 0.17 for the additive
measure. Thus, the chimeric measure is significantly more likely to
identify antagonistic interactions than the additive measure
(P<7x10™, paired t-test).

We then examined specific five-way combinations of antibiotics
with different interaction signs following the procedure of ref. 27 and
ref. 45. For each five-way combination of antibiotics we first calculated
the median relative growth rate of E. coli across replicates and con-
centrations, and then used these median relative growth values to
compute both the additive and chimeric measures (Fig. 5C). The
interaction between the antibiotic combination Ampicillin (AMP),
Doxycycline hyclate (DOX), Erythromycin (ERY), Streptomycin (STR),
Trimethoprim (TMP) is highly antagonistic using the chimeric measure
(i.e., €=0.56>0) but synergistic using the additive measure (i.e.,
€'=-0.04<0). A similar pattern also holds for the antibiotic combi-
nation consisting of AMP, DOX, ERY, STR, and Cefoxitin sodium salt
(FOX). We emphasize that because we use the same fitness values as
reported in ref. 40, the differences between the additive and chimeric
measures arise solely from the use of the additive versus chimeric
measures as opposed to variability arising from biological or technical
replicates.

Epistasis between protein mutations
We further demonstrate the difference between the multiplicative and
chimeric epistasis measures using experimental fitness data of eleven
different proteins'®**’>7°, These fitness values were measured using
deep mutational scanning (DMS), a recent class of technologies which
use high-throughput sequencing to measure the fitness of many var-
iants of a protein. The published analyses of each of these datasets
quantified epistasis using either an additive or multiplicative epistasis
measure, depending on the fitness measurement being made. We
reanalyzed each dataset using the chimeric measure to demonstrate
the differences between the chimeric measure and the additive/mul-
tiplicative measures.

We found that the multiplicative and chimeric measures have
substantial disagreement in quantifying higher-order epistasis within
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Fig. 6 | Epistasis between protein mutations in eleven different proteins.

A, B Standard deviation of fitness values across all (left) three-, (middle) four-, and
(right) five-way tuples of mutations versus the average (A) correlation and (B) sign
disagreement fraction of the log-multiplicative measure log €¥ versus the chimeric

3-way log-multiplicative measure

4-way log-multiplicative measure

0
5-way log-multiplicative measure

measure €“. Line of best fit is shown as a dashed red line. C, D Log-multiplicative
measure log €V versus chimeric measure € for the (C) FolA’”? and (D) Streptococcus
pyogenes Cas9 (SpCas9) nuclease®® proteins. Dashed vertical and horizontal lines
indicate zero log-multiplicative and chimeric epistasis measures, respectively.
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several of the proteins. Furthermore, we observe that both the corre-
lation between the measures and the sign disagreement fraction vary
as a function of the standard deviation s of the 2* fitness values
{fo...0, -+, f1..1} across all K-tuples of mutation. Specifically, the corre-
lation between the chimeric measure and the multiplicative measure
decreases as a function of the fitness standard deviation s (Fig. 6A),
while the sign disagreement function increases as a function of the
fitness standard deviation s. These results show the large difference
between the multiplicative and chimeric measures for proteins with a
large standard deviation in fitness values.

The FolA metabolic protein from E. coli has the second largest
standard deviation s in fitness of the eleven proteins that we analyzed.
This data from ref. 72 includes the fitness of approximately 260, 000
mutations at nine single-nucleotide loci. The three-way multiplicative
and chimeric measures for the FolA protein have correlation 0.6086,
while the four- and five-way measures have correlation < 0.05 —i.e., the
two measures are almost uncorrelated for four- and five-way interac-
tions (Fig. 6C). There is also substantial sign disagreement between the
multiplicative and chimeric measures, with over 60% sign disagree-
ment for five-way interactions.

Another protein with large fitness standard deviation s is the
Streptococcus pyogenes Cas9 (SpCas9) nuclease, a widely used
protein for genome editing across biology. The fitness landscape of
SpCas9 was profiled in ref. 38, where fitness was measured by the
editing efficiency of the SpCas9 protein. For the SpCas9 protein, the
sign disagreement between the two epistasis measures is over 20%
for three-, four-, and five-way interactions (Fig. 6D). The large sign
disagreement between the two epistasis measures is likely because
for many protein variants, the log-multiplicative measure logeV is
close to O while the chimeric measure €¢ varies substantially
between -4 and 2.

Overall, our results demonstrate the extent to which one may
infer substantially different higher-order epistasis between protein
mutations - including different signs of epistasis - if the chimeric
measure is used in place of the additive/multiplicative measures.

Discussion

Higher-order interactions between genetic variants, drugs, and other
perturbations play a large role in shaping the fitness landscape of an
organism"*°, Yet despite the importance of these interactions, there
are multiple different — and sometimes inconsistent — formulae used
in the literature for measuring higher-order interactions, most notably
for measuring higher-order epistasis between mutations. In particular,
many researchers use a chimeric formula that quantifies epistasis as an
additive deviation from a multiplicative null model and is thus a “chi-
mera” of additive and multiplicative measurement scales.

In this work, we show that there is considerable disagreement
between the chimeric epistasis measure and the additive and multi-
plicative measures. For higher-order interactions, the chimeric mea-
sure often has a different sign compared to the multiplicative measure
(Fig. 1C). We demonstrate that this inconsistency is not purely a
mathematical curiosity but also leads to markedly different biological
conclusions in yeast genetics®** (Fig. 4), antibiotic resistance***
(Fig. 5), and protein epistasis (Fig. 6), raising potential questions about
some reported higher-order epistatic interactions in the literature.
Furthermore, we show that the different epistasis measures are equal
to different parametrizations of the multivariate Bernoulli distribution
(MVB)* (Table 1) and demonstrate that the chimeric epistasis measure
is less statistically sound than the additive and multiplicative measures.
Our connection between epistasis measures and parameters of the
multivariate Bernoulli measure is general and unifies many different
epistasis measures: the additive, multiplicative, and chimeric mea-
sures; and the Walsh coefficients®*>>*>*>, Overall, our results demon-
strate that the more appropriate multiplicative and additive formulae
for higher-order epistasis yield more mathematically sound and

biologically meaningful results compared to the chimeric formula
which improperly conflates measurement scales.

Historically, most work in epistasis has focused on pairwise
interactions, where the chimeric and multiplicative measures agree on
the interaction sign, and thus the differences between these two
measures are not widely reported. However, even in the pairwise set-
ting, the two measures have different magnitudes, which may still
affect biological findings. For example, Costanzo et al.” recently built a
large-scale pairwise interaction network for yeast using the chimeric
epistasis measure, where they included an edge between two genes if
the absolute value of the chimeric measure was greater than a certain
threshold. From our results with the trigenic yeast network (Section
2.6), it is possible that the edges in the network would change if one
used the more appropriate multiplicative measure instead, which may
lead to the inference of different genetic interactions and thus the
functional relationships and regulatory mechanisms identified by
Costanzo et al.”.

There are several future directions for our work. First, it would be
useful to further investigate the relationship between the MVB and
regression-based approaches for quantifying epistasis in GWAS®*, For
example, regression-based approaches often do not require that one
has measured the fitness of all 2* genotypes, which may make the
estimation of the interaction parameters of the MVB more challenging.
Moreover, these regression approaches may sometimes produce
biased estimates of epistasis®, and we imagine that the MVB would
provide a useful statistical framework for characterizing such statis-
tical biases. A second direction is to incorporate uncertainty of fitness
measurements in the MVB, e.g., by using a Bayesian framework.
Thirdly, one could generalize our theoretical results by relaxing the
assumption that fitness is proportional to genotype probability, e.g.,
by incorporating genetic drift or other more evolutionarily realistic
factors. Fourth, our statistical framework could be extended to model
how higher-order interactions contribute to evolutionary trajectories
in a fitness landscape®. Fifth, it would be quite interesting to investi-
gate the connections between the MVB and the circuit formulae used
to quantify the shape of a fitness landscape'*>**%, Finally, we note that
our MVB framework provides an approach for doing formal model
comparisons. Thus, an interesting and important future direction
would be to derive a statistical test using the MVB to test whether an
additive or multiplicative fitness model better fits data from different
experimental technologies.

Ultimately, future studies on interactions in genetics, drug
response, protein fitness landscapes, and other domains should take
care to use the mathematically appropriate additive or multiplicative
formula for measuring higher-order interactions, and not fall victim to
the chimera.

Methods

Pairwise epistasis

We start with the simplest setting where the genotype consists of two
loci, each with two alleles labeled 0 and 1, i.e., a haploid genome with a
single biallelic mutation. Thus, there are four possible genotypes — the
wild-type 00, the single mutants 01 and 10, and the double mutant 11 —
with corresponding fitness values foo, fo1, fio, and fi; (Fig. 1). There are
two standard null models that relate genotype to fitness: the additive
model and the multiplicative model.

Additive fitness model. In the first model, mutations are assumed to
have an additive effect on fitness*”, e.g., in drug resistance*>** and
protein binding®**%. The effect of a mutation is quantified by the dif-
ference in fitness when one locus is mutated; for example, fi; — fio
measures the effect of a mutation in the second locus, where the
genetic background is a mutation in the first locus. Interaction
between mutations in the two loci, i.e., pairwise epistasis, is measured
by the difference in the effect of a mutation in one locus across the two
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possible genetic backgrounds (Supplementary Fig. 10A). The pairwise
interaction measure €' is given by

e'=(fu—rf10)— For —foo)- (7)

Note that the definition (7) of the pairwise epistasis measure is
invariant to the choice of which locus is mutated, i.e.,
= (fu __fIO) - (fOl _foo) = (fu _f01) - (flO _foo). In practice, the fitness
values are often normalized so that fo0 =0, i.e., the fitness fyo of the
wild-type is zero, resulting in the following commonly-used equation
for pairwise epistasis under an additive fitness model:

e =fu— Foa+fo)- 8

Equivalently, the pairwise epistasis measure €' is the difference
between the observed double-mutant fitness fj; and the expected
double-mutant fitness fo; +fio under a null model with no epistasis.
As ref. 2 notes, this definition of pairwise epistasis is similar to Fisher’s
original definition of epistasis*.

The sign sgn(e) of the pairwise epistasis measure ¢! determines
the type of epistatic interaction. If ' =0, then there is no interaction
between the two loci and so the fitness fi; of a double mutant is
completely determined by the sum fi; =fo; + fio of the single mutant
fitnesses foy, fio. If €*> O then there is a positive interaction between the
two loci, in the sense that the fitness f;; of the double mutant is larger
than the fitness if there was no pairwise interaction. Similarly, if ' <0
then there is a negative interaction between the two loci, in the sense
that the fitness f;; of the double mutant is smaller than the fitness if
there was no pairwise interaction.

The pairwise epistasis measure €' is equivalent to two other
notions of epistasis used in the genetics literature. First, the pairwise
epistasis measure €' is equal to the pairwise interaction term in the
standard linear regression framework for quantifying epistasis'>. Spe-
cifically, if the fitness values foo, fo1, fi0, fi1 follow a linear model of the
form

Srxx, =Bo By + Brxs + BrpXiXy, 9

then the coefficient By, of the interaction term xyx, is equal to the
pairwise epistasis measure € in (7). Second, the epistasis measure € is
equal (up to a constant factor) to the 2nd-order Walsh coefficient that
is often used to measure “background-averaged” epistasis® >3,

Multiplicative fitness model. In this model, mutations are assumed to
have a multiplicative effect on fitness, e.g., modeling cellular growth
rates>'*?**?*_ The multiplicative pairwise epistasis measure (Supple-
mentary Fig. 10B) is given by

eM:& &:fufoo. (10)
Fio'Foo Fofor

As in the additive model, in practice the fitness values are typically

normalized such that foo =1, resulting in the following equation for

pairwise epistasis:

_ Jfu
" Sfoufio

an

That is, the pairwise epistasis measure €” is the ratio between the
double-mutant fitness fi; and the product fo,fi0 of the single-mutant
fitness values.

The multiplicative fitness model is closely related to the additive
fitness model: if fitnesses f are multiplicative, then the log-fitnesses
logf are additive. Thus, the sign of the interaction is determined by the
difference between the epistasis measure €” and 1, or equivalently the
sign sgn(logeM) of the logeM of the epistasis measure €¥ (Fig. 1A). If

€”>1,i.e., logeM>0, there is a positive interaction between the two loci;
if €=1, i.e., logeM =0, then there is no interaction between the two
loci; and if €”<1, i.e., logeM<0, then there is a negative interaction
between the two loci.

The multiplicative pairwise epistasis measure is closely related to
the pairwise interaction term in the standard log-linear regression
framework for epistasis'. Specifically, if the fitness values foo, for, fio, fi1
follow a log-linear regression model of the form

108 x, =Bo + Bixy + BaX; + BpX1 X3, 12)

then ﬁ]z =M,

Chimeric formula. Many studies in genetics use a multiplicative fitness
model but do not measure pairwise epistasis with the multiplicative
epistasis measure €Y. Instead, these papers use a multiplicative null
model but measure deviations with an additive scale, yielding the fol-
lowing epistasis measurement:

€ =fu—fofo- 13)
We call eyc. a ‘chimeric” measure as it measures deviations from a
multiplicative null model on an additive scale, and is thus a chimera
of both the multiplicative and additive measurement scales. The
chimeric measure has been widely used in the genetics literature
(e.g., refs. 2,14,23,86) and in the drug interaction literature (e.g.,
refs. 27,40,44-48). In these applications, similar to the additive mea-
sure, the sign of an interaction between two loci is determined by the
sgn(e) of the chimeric measure € €“ >0 corresponds to a positive
interaction while €“ < 0 corresponds to a negative interaction.
Although it is often described in terms of a multiplicative fitness
model, the chimeric epistasis measure €¢ is not equal to the multi-
plicative measure €”. The chimeric epistasis measure €€ in Equation (13)
is similar to equation (11), but the deviation between the observed
double-mutant fitness f;; and the expected fitness fo,fio under a mul-
tiplicative null model is computed using subtraction instead of divi-
sion. Equivalently, the (log-)multiplicative epistasis measure
logeM = logf; — logfofio computes the difference between the
observed and expected logarithm of the fitness of the double mutant,
while the chimeric epistasis measure €= fi; — foifio computes the dif-
ference directly (Fig. 1A). In this way, the chimeric epistasis measure
may overstate or understate the strength of a pairwise interaction in a
multiplicative fitness model (Fig. 1A); see Supplementary Note 2 for a
numerical example highlighting this issue with the chimeric measure.
We note that the differences between the multiplicative epistasis
measure 624 and chimeric epistasis measure eijc. do not appear to be
widely appreciated in either the applied or theoretical literature.
Almost every study that uses the chimeric epistasis measure e,-jc does
not consider the multiplicative measure eg.” . On the other hand, while
many in the statistics literature draw a distinction between additive
and multiplicative interaction effects (e.g., refs. 12,13), none of these
papers discuss the chimeric interaction measure e,.jC. that is frequently
used in the genetics and drug interaction literature. An exception is
Gao, Granka, and Feldman®” who refer to the multiplicative formula (2)
as a ‘rescaling of [the chimeric] formula”, but we take the stronger view
that “rescaling” obscures consequential implications of the two
formula.
Nevertheless, we show that the chimeric measure € measures the
same sign of interaction as the multiplicative measure €".

Proposition 1. Let f;, f10./11 € R be real numbers. Let eV =f0fl}w and
€° = fi1 = forfio- Then sgn(e®) = sgn(log e).

PrOOf.fu _f01f10>0 — f(;[:}lo >1.
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Choosing an appropriate null model. The appropriate choice of null
fitness model depends on the quantitative trait being used to
approximate fitness. Cellular growth rate (i.e.,, the Malthusian
parameter®, which is often used as a measure of the fitness of
microbial populations) is typically described with an additive fitness
model; this is because in the population genetics literature, it is often
assumed that mutations that independently effect survival and
reproduction probabilities combine multiplicatively within individual
cells®?°, and so these mutations will combine additively in their effect
on the growth rate of a continuously-growing clonal population”.,
However, multiplicative models are sometimes still used inappropri-
ately in this setting’. On the other hand, the relative frequency of a
microbial (or protein) population is typically modeled multiplicatively,
as the growth rate of a population is proportional to the logarithm of
its relative frequency. In general, Wagner*¢ suggests that one should
use the model that preserves the scale on which single-mutant fitness
effects were measured (i.e.,, additive or fold differences from
wild type).

Higher-order epistasis

We next generalize our discussion to genotypes with L >2 loci, where
we demonstrate that the differences between the multiplicative mea-
sure and the chimeric measure become even more pronounced when
analyzing higher-order epistasis, or interactions between three or
more loci.

There are 2' genotypes x; - x;, where x, € {0, 1} indicates a
mutation in locus ¢, with each genotype x; --- x; having a corresponding
fitness value f, . , g, foio is the fitness of genotype 010 with a
mutation in the second locus and no mutations in the first and third
loci. However, because writing out the 2" genotypes is infeasible for
large L, we use the following notational shorthand. We use f; to refer to
the fitness of the genotype with a single mutation in locus i, f;; to refer
to the fitness of the genotype with mutations in loci i, j, and so on. For
example, for L =3 loci, f, corresponds to fo10 While fi, corresponds to
Juo- Without loss of generality, we assume the wild-type fitness f  is
equal to O for the additive fitness model and equal to 1 for the multi-
plicative and chimeric fitness models. We also define €, €}/, €5 as the
additive, multiplicative, and chimeric pairwise epistasis measure,
respectively, between the i-th locus and the j-th locus, i.e.,

ej=fi—fi—f € f" -and e =f; — f f;. For example, for L =3 loci,
€Y corresponds to fwf;}?m.

Additive fitness model. We start by quantifying three-way epistasis in
the additive fitness model. When there is no pairwise epistasis, the
fitness fy of a triple mutant is equal to f; + f;+ fi, i.e., the fitness from of
each of the single mutants. When there is pairwise epistasis, then the
triple mutant fitness fj; also includes pairwise interaction measures,
i.e.,
fitfi+ferej e +ey (14)
Three-way epistasis is computed by measuring the difference
between the observed triple-mutant fitness f;% and the expected fitness
in (14) when only pairwise interactions are included. Thus, the three-
way additive epistasis measure €, is given by

ij
eék =fik — [fi+fj+fk+€f}+€fk+€fk]

=fix —Fi—Fuc —Furfitfi+fi

As in the pairwise case, the sign of the three-way epistatic measure

€j; determines the sign of the interaction: if €j, >0, then there is a

positive three-way interaction between loci i, j, k — in the sense that the
fitness fj of the triple mutant is larger than the expected fitness in (14)

as)

when only pairwise interactions are present — while if €, <0, then there
is a negative three-way interaction between loci i, j, k.

Our derivation of the three-way epistasis measure e;j*.k is easily
extended to higher-order interactions. The additive K-way epistasis

measure € , is defined recursively as

K
A =f. . _ ]+ Z Mo+ 4 Z A .
Jj=1 1<), <K 1<jy<<g1 <K

(16)

The K-way epistasis measures €/ ; are proportional to two other
measures of epistasis: (1) the K-th order Walsh coefficient used to
quantify background-averaged epistasis among K genetic loci**** and
(2) the K-th order interaction coefficients of a linear regression model,
which we discuss in more detail in the following section.

Multiplicative fitness model. We derive formulae for epistasis in a
multiplicative fitness model by using the equivalence between multi-
plicative fitness and additive log fitness. For example, the 3-way epis-
tasis measure e%( in the multiplicative model is given by

fijx _Sufifif«
jk fifif keljwff‘%ejk fifuFix

As in the pairwise setting, the sign of interaction is determined by
the difference between the multiplicative measure e and 1, or
equivalently by the sgn(log ¢/, k) of the logarithm of the epIStaSlS mea-
sure €j;.

Usmg (16), then the K-way epistasis measure e
plicative model is defined recursively by

17)

in the multi-

Mo fi i,
heis T Tx " "
(Hj=1fij) (Hlsjl<stK€ijlijz) an <H1sjl<v--<j,(,lskei- i

k-1

) - (18)

Recent work in the genetics**?*® and drug interaction” claim to

measure three-way epistasis using a multiplicative fitness model.
However, they do not measure three-way epistasis the multiplicative
epistasis formula (17) but instead derive a chimeric formula using both
additive and multiplicative measurement scales:

e,.jc.k=f,-jk —fif}-fk—egfk—efkfj—eﬁcf,-‘ 19)

We call eCk the chimeric three-way epistasis measure. In these
applications, the sign of the interaction is determined by the sgn(e »)
of the chimeric measure €, .

Despite the claim that the chimeric measure €, is derived from a
multiplicative fitness model, it is clear by inspection that the three-way
chimeric measure egk is not equal to the multiplicative three-way
epistasis measure e . However, unlike in the pairwise setting, even the
signs of these two measures disagree (Fig. 1B). We demonstrate in
Supplementary Note 2 that even when e%( =1 — that is, there is no
three-way epistasis — the chimeric three-way epistasis measure egk may
still indicate either positive or negative three-way epistasis.

Tekin et al.” extended the three-way chimeric epistasis formula
(19) by heuristically deriving chimeric formulae for 4-way and 5-way
epistasis. For example, their chimeric formula for 4-way epistasis is
given by

€ =Fiwe =S e —Fif e =Fiufiju =F i = Fif e = Fufjo = Finf i
2 fif ket 2 1Fu+ 2 f Fu A Ui 1f i+ 2 f fu+ 2L f y — F fif o o

As in three-way epistasis, the sign of the 4-way and 5-way chimeric
epistasis measures derived by Tekin et al.” do not match the signs of
the corresponding multiplicative epistasis measures (Fig. 1C). This
fundamental disagreement motivates a deeper mathematical
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understanding of these epistasis measures, which we explore in the
following section.

Multivariate Bernoulli distribution

In the previous section, we defined quantitative measures of epistasis
for two standard null models for fitness: the additive model and the
multiplicative model. Nevertheless, some recent papers use a multi-
plicative fitness model but instead use an epistasis measure which is a
chimera of both multiplicative and additive measurement scales. Here,
we unify these different epistasis measures using the multivariate
Bernoulli distribution from probability theory®.

The multivariate Bernoulli distribution describes any distribution
on {0, 1}, i.e., binary strings of length L, for L >2. The multivariate
Bernoulli distribution has three different parameterizations which are
used throughout the literature”*’. We start by describing these para-
metrizations for the simplest such distribution: a bivariate Bernoulli
distribution over binary strings of length L =2.

Bivariate Bernoulli distribution. Suppose that X=(X;, X;) € {0, 1}* is
distributed according to a bivariate Bernoulli distribution. A distribu-
tion on X is specified by the parameters poo, pPo1, Pio, Pu, Where
Px.x, =P(X1=x1, X, =X;) is the probability of (x;, x,). The parameters
P =(Poo, Po1, P1o, p11) are sometimes called the general parameters®.
Note that since poo + po1 + P10 + P11 =1, only three such parameters are
needed to define the distribution.

The probability density function (PDF) P(X;, X5) of X=(Xy, X3) has
the form

1X)A-Xy) (1-XDXs Xy (1=Xg) XiX
PX1,X)=Poo™ oy P TP

(20)

In other words, the PDF P(Xy, X5) follows a log-linear model of the form

log P(X1, X2) = Bo + BiX1 + B X2 + BaX1X2 (21)
for constants By, B, B>, B1» € R. There is a one-to-one correspondence
between the general parameters p=(Poo, Po1, P, Pu) and the
constants f=(Bo, B B2 Pr2). Thus, a bivariate Bernoulli distribution
is also parametrized by the parameters B, also known as the natural
parameters of the distribution”. As with the general parameters p, we
note that only three out of the four parameters So, S, B, P are
needed to fully specify a distribution. We also note that independence
between the random variables X; and X; is described by the parameter
P12, where X; and X, are independent if and only if §;, =0.

Equation (21) demonstrates that X = (X;, X5) follows an exponential
family distribution, a wide class of distributions that includes many
common distributions including normal distributions or Poisson dis-
tributions. In particular, using the terminology of exponential families,
equation (21) shows that the sufficient statistics of X are X3, X5, and XiX5,
with corresponding canonical parameters B, B, and B,**"". As aresult,
the distribution P(X) is uniquely defined by the expected values
E[X1, EIX>], ELXiX>] of the sufficient statistics, sometimes called the
moments or the mean parameters of the distribution**. Thus, we obtain
a third parametrization of the distribution P(X) using the
moments o =1, gy = E[X{], tp = E1X3], 1z = EIXX5]. The elements of the
vector p=(1, py, o, H12) of moments are sometimes called the mean
parameters of the distribution.

Multivariate Bernoulli distribution. The three parametrizations we
derived for the bivariate Bernoulli distribution extend to the multi-
variate Bernoulli distribution. Suppose that (X;, ..., X;) € {0, 1}* is dis-
tributed according to a multivariate Bernoulli distribution. Then the

distribution P(X) of the random variables X is uniquely specified by one
of the three following parametrizations.
1. General parameters. These are 2*

P=Px.x),  x)ci0y SALSTYING

non-negative values

Py,.x, =PX,=x,fort=1,...,L). (22)
For example if L=3, then pg0o=PX;=0, X,=1, X3=0) and
Puo=PX =1, X=1, X3=0). Note that since
Sy xe(0,1Pxy.x, =1 only 2t =1 values p,, , are necessary to
define the distribution.

2. Natural/canonical parameters: These are 2' real numbers

B=(Bs)scy € R satisfying

logP(Xy, ..., X)= > Bs- [[ X 23)
=] ieS

Similar to the general parameters p;, only 2¢ — 1 values Ss are
necessary to uniquely define the distribution. Typically, the
parameter 8, often called a normalizing constant or a partition
function of the distribution, is left unspecified. As noted in the
bivariate setting, equation (23) shows that the multivariate
Bernoulli is an exponential family distribution with 2" - 1 suffi-
cient statistics of the form [,esX; for subsets S with |S] > O.
Moreover, by rewriting (23) as

L
logpy.x, =By + (Zﬁ,'x,) + ( Z By, 'Xilxiz) ot (B Xy Xy),
i=1

1<i<i <L

(24)

we observe that the natural parameters B correspond to inter-
action coefficients in a log-linear regression model with
response variables p. For example, the natural parameter B, is
the coefficient of the interaction term xx,.
3. Moments/mean parameters: These are 2‘ real numbers
H= () satisfying

‘ (25)

ﬂs:E{Hxs

se§

For example if L =3, then p3=E[X1X5] while py, = ETX1X5]. The
mean parameters {ig} g , o are sufficient statistics for the mul-
tivariate Bernoulli distribution, as seen in the exponential family
form (23) of the multivariate Bernoulli distribution.

We note that all three parametrizations, as well as the fitness
values f and epistasis measures ¢, can be defined either in terms of
subsets S < [L] as with the natural parameters # and moments g, or in
terms of binary strings x; --- x; as with the general parameters p. We use
both definitions interchangeably, with the convention that a subset
S < [L] corresponds to the binary string x; --- x; with x; = 1jcg;.

Moreover, when written as vectors indexed by binary strings, the
three parametrizations B, u, p of the multivariate Bernoulli are related
to each through different linear transformations involving a matrix
operation known as the Kronecker product (see Supplementary Note 3
for specific formulae). Interestingly, several papers quantify epistasis
using the Walsh-Hadamard transform which is also defined in terms of
Kronecker products®®. This connection is not a coincidence; in the
next section we show that the Walsh-Hadamard transform is closely
related to the parametrizations of the multivariate Bernoulli.

Unifying epistasis measures with the multivariate Bernoulli

The multivariate Bernoulli distribution provides an elegant means by
which to describe the different epistasis formulae in the literature. We
model the genotype (Xi, ..., X;) € {0, 1}' as a random variable
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distributed according to a multivariate Bernoulli distribution. The
parametrizations of the multivariate Bernoulli correspond to different
features of the genotype, as we demonstrate next.

Multiplicative and additive epistasis measures. We start by relating
the multiplicative epistasis formula (18) to the multivariate Bernoulli
distribution. A careful reader may observe that the natural parameter
Bi= Iog”“‘:;’o in the bivariate Bernoulli distribution (21) bears close
resemblance to the multiplicative epistasis measure in equation (10).
Specifically, if the fitness f, ,, of each genotype (x;, xp) € {0, 17 is
proportional to the probability p, ., of that genotype in the multi-
variate Bernoulli, then the natural parameter fy, is equal to the loga-
rithm log e}4 of the multiplicative epistasis measure €¥. Thus, for L =2
loci, epistasis is measured by the natural parameters B of a bivariate
Bernoulli distribution.

We prove that this observation is not specific to the bivariate
Bernoulli distribution with L=2 loci, and in fact generalizes to any
number L of loci. Specifically, we prove that if the fitness f, ., of
genotype (x, ..., X;) is proportional to the probability p, .. of
observing the genotype, then for each subset S < [L] of loci, the natural
parameter Ss equals the logarithm loge¥ of the corresponding mul-
tiplicative epistasis measure as defined in Equation (18).

Theorem 1. Let f, <R be fitness values for genotypes
X =(xy, ..., x;) € {0, 3" such that f = ¢ - p for some constant ¢ > 0 and for
some multivariate Bernoulli random variable (X;, ..., X;) with general
parameters P = (Py)y (o, 1, Then for all subsets S < {1, ..., L} of loci, the
log-multiplicative epistasis measure loge¥ is equal to the interaction
parameter fSs of the random variable (Xj, ..., X).

By using the equivalence between multiplicative fitness values and
additive log-fitness values, we also derive a similar probabilistic inter-
pretation of the additive epistasis formula. Specifically, if fitness f,
is proportional to the log-probability log p,. ..., of observing the gen-
otype (x, ..., X;), then for each subset S={i,, ..., ix} < [L] of loci, the
natural parameter fs equals the logarithm loge/‘1 i of the corre-
sponding additive epistasis measure as defined in Equation (16). We
formalize this observation as the following Corollary of Theorem 1.

Corollary 1. Let f, e R be fitness values for genotypes
X=(xy, ..., X) € {0, 1}* such that f,, =c - log p, for some constant c>0
and for some multivariate Bernoulli random variable (X, ..., X;) with
general parameters p = (py) xe(0, 1) Then for all subsets S < {1, ..., L} of
loci, the log-additive epistasis measure log e is equal to the i mteractlon
parameter fSs of the random variable (Xj, ..., X).

We note that Theorem 1 follows from Lemma 3.1 in ref. 29 which
states a formula relating the general parameters p and the natural
parameters f of a multivariate Bernoulli distribution. Theorem 1 fol-
lows by showing that the right-hand side of the formula in Lemma 3.1is
equal to the multiplicative epistasis measure.

The assumption that the probability p,,_,, of observing a geno-
type (xy, ..., X;) is derived from its fitness f, ., is often used in gen-
erative models for estimating the fitness of protein structures from
sequence data®. Moreover, many real-world fitness datasets -
including the yeast fitness data and many of the protein datasets
analyzed in the Results - measure the fitness of a genotype x in terms
of its relative frequency in a large population of genotypes, i.e., its
probability py.

We also note that the statistical problem of estimating the natural
parameters 8 or mean parameters g of a multivariate Bernoulli dis-
tribution from samples (X, ..., X;) of the distribution is computation-
ally hard*®. The reason why we are able to use relatively simple

Relationship with (log-)linear regression. Under the assumption that
the fitness values f ., are proportional to the genotype probabilities
Px,..x,» then (24) is a log-linear regression model of the form

L
lngxl---xL =ﬁg + (Zﬁixi> + ( Z ﬁlllz A lz> + (ABI...L Xy "xL)'
i=1

1<i<iy<L

(26)

Thus, Theorem 1 shows that computing the multiplicative epistasis
measure €" is equivalent to computing the interaction parameters of
the log-linear regression in (26). The interaction parameters of
regression are a standard approach for quantifying epistasis in GWAS
and QTL analyses’. Equation (26) is sometimes also called the “Taylor
series expansion” of a fitness landscape®.

Similarly, Corollary 1 demonstrates the equivalence between the
additive epistatis measure €' and the coefficients of a linear regression
model with response variables equal to the fitness values. Specifically,
under the assumption that the fitness values f ..., are proportional to
the logarithm log p,. ., of the genotype probabilities, then computing
the additive epistasis measures ¢! is equivalent to computing the
interaction parameters B of the following linear regression model

L
S, =B t (Zﬁm) + ( > By, ,1> +(Bry Xy Xp).
i=1 1<i<iy<L

@7)

In this way, Theorem 1 and Corollary 1 provide a connection
between the multiplicative and additive epistasis measures and the
interaction coefficients of log-linear and linear regression models,
respectively.

Relationship with case-control GWAS. We also prove that the natural
parameters S of an MVB with three variables are closely related to the
two standard approaches for measuring pairwise SNP-SNP interactions
in a case-control GWAS: logistic regression and conditional indepen-
dence testing®. Specifically, suppose we are given genotype
(X1, X2) € {0, 1}* and (binary) disease status D € {0, 1}. Then the joint
random variable (X3, X5, D) follows an MVB distribution, where the log-
probability logP(X;,X,,D) is given by the following expression in
terms of the natural parameters f:

log P(X1, X5, D)= Bo + B X1+ BoX5 + ByD + BoX1 X, + BigX1D + BagX oD + BrogXi X, D.

(28)

We note that there is a natural approach for representing GWAS data
from diploid genomes (with {0, 1, 2}-valued allelic states) using binary
random variables Xj, X5, as described in ref. 93.

We show that the logistic regression approach for measuring
pairwise interactions is equivalent to computing S,4, While the con-
ditional independence test is equivalent to testing the null hypothesis
Ho: B2 = Biaa = 0. See Supplementary Note 5 for details.

Chimeric epistasis measure. The multivariate Bernoulli also provides
a way of rigorously defining the pairwise and higher-order chimeric
epistasis measures using joint cumulants. Joint cumulants are a con-
cept from probability theory used to quantify higher-order interac-
tions between random variables. For example, the 2nd order joint
cumulant k(X ¥) of two random variables X, Y is given by

formulae (16), (18) to compute the natural parameters g is because in K(X,Y)=E[XY] — E[X]E[Y], (29)
this setting, we have both samples (X, ..., X;) and their corresponding

probabilities P(Xj, ..., X;), i.e., the fitness values f.
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and is equal to the covariance Cov(X, Y). The 3rd order joint cumulant
k(X, Y, Z) of three random variables is given by

K(X,Y,Z)=E[XYZ] — k(X, V)E[Z] — k(X, 2)E[Y] — k(Y, Z2)E[X]. (30)

Under the assumption that the fitness f, ., of a genotype

Xy, ..., Xp) is equal to the corresponding moment 1, _ . , we define the

K-way chimeric epistatic measure €{ , as the K- th order Jjoint cumu-

lant (X, ..., X;, ) of the random varlables Xipr oo on Xip-
Definition 1. Let f, € R be fitness values for genotypes
x=(xy, ..., ;) € {0, " such that f, ., =c-pu, for some constant

c¢>0 and for some multivariate Bernoulli random variable (X;, ..., X;)

with moments p, . =E[X]'---X]']. The chimeric epistasis mea-
sure eC iy is the joint cumulant k(X;, ..., X; ) of the random vari-
ables X, e X

Our deﬁnmkon of the K-th order chimeric epistasis measure € ;.
as the K-th order joint cumulant formalizes the heuristic derivation of
the chimeric measure in previous literature. Almost every paper that
uses the chimeric epistasis measures € does not even mention the
joint cumulant. Two notable exceptions are refs. 40,45, which use the
joint cumulants to derive formulae for 3-way, 4-way, and 5-way inter-
actions between drugs. However, refs. 40,45 do not rigorously define a
probability distribution nor the random variables whose joint cumu-
lant they compute.

At the same time, our formal definition of the chimeric epistasis
measure €° reveals two critical issues with the chimeric formula. First,
the assumption that the fitness values f are equivalent to the moments
of an MVB random variable is not biologically reasonable for higher-
order interactions between three or more loci. This assumption
implies that the fitness of a particular genotype depends on the
probability of many other genotypes. For example, making this
assumption for L = 4 loci, the fitness f1;00 of a double mutant is equal to
the moment E[X1X>], which is equal to

EX1X,]=P (X, =

=1,X,=1)=Puoo * Puo1 + Pruio + Pun- (3D

However, it is not clear why the fitness f;;00 Of a single genotype, 1100,
should equal depend on the probabilities of four different genotypes,
1100, 1101, 1110, and 1111.

The second issue is that joint cumulants are not necessarily an
appropriate measure of higher-order interactions between binary
random variables. The differences between the joint cumulants
and natural parameters 8 have been previously investigated in the
neuroscience literature, as both quantities have been used to
quantify higher-order interactions in neuronal data. For example,
Staude et al.>** write that the joint cumulants x and natural para-
meters f# measure mathematically distinct types of higher-order
interactions, and that each quantity may be appropriate for dif-
ferent applications. In particular, Staude et al.*** note that the
joint cumulants measure higher-order interactions between ran-
dom variables in terms of “additive common components”, while
the natural parameters 8 measure “to what extent the probability of
certain binary patterns can be explained by the probabilities of its
sub-patterns”. It follows that for binary mutation data, the natural
parameters B correspond exactly with the epistasis we aim to
measure, i.e., how the fitness of a binary pattern can be explained
by the fitness of its “sub-patterns”, while the joint cumu-
lants do not.

Walsh coefficients and background-averaged epistasis. The multi-
variate Bernoulli distribution also provides a probabilistic interpreta-
tion of the Walsh coefficients that are used to measure background-
averaged” epistasis™*****’. The Walsh coefficients u=[u, . ]e RZ,

i.e., a vector indexed by binary strings, are defined by

u=wf (32)
1 1
1 -1
f=[fy.x]€ R? is the vector of fitness values indexed by binary
strings. Equation (32) is known as the Walsh-Hadamard transforma-
tion, sometimes also called the Walsh or Fourier-Walsh transform; see
refs. 30,32 for more details.

We prove that if the fitness values fare equal to probabilities p of a
multivariate Bernoulli random variable (X, ..., X;), then the Walsh
coefficients u are equal to the moments of (1 - 2X, ...,1-2X;) € {~ 1,1},
i.e., alinear transformation of the random variable (X, --- , X;) such that
it takes values in {~1, 1}* instead of {0, 1}*.

®L
L L
where llJ:< > e R?*? is a Hadamard matrix> and

Theorem 2. Let (X, ..., X;) € {0, 1}* be distributed according to a
multivariate Bernoulli dlstrlbutlon with general parameters f and
define Y,=1-2X,€{-1,1}for =1, ..., L. Defineu=[u o, ] € R? asin
(32). Then u,, _, =E[Yy'---Y}!].

Theorem 2 gives a probabilistic interpretation of the Walsh
coefficients u. Interestingly, the Walsh coefficients u assume an addi-
tive fitness model**** while Theorem 2 requires that the fitness values f
are equal to the probabilities p, an assumption corresponding to the
multiplicative fitness model (Table 1).

Relationship to theoretical genetics models. We note that some
previous works in theoretical genetics by Barton and Turelli (e.g.,
ref. 94) also model the genotype with an MVB. However, their
approach is substantially different from ours. Barton and Turelli model
linkage disequilibrium between k loci X;, ...,X; using the k-way
central moment y(X,l, o Xy)=E [H _1(X EX; ])] of the genotype
distribution P(X;, ..., n) Barton and Turelli model epistasis using
coefficients that are not related to the genotype distribution
P(Xy, ..., X;). In contrast, we model epistasis with the natural para-
meters B of the genotype distribution P(Xj, ..., X,), as described in
Multiplicative and additive epistasis measures.
Interestingly, Barton and Turelli’s
equilibrium term, i.e., ﬁ(X,-l,Xiz,X,-a), is equal to the 3-way joint
cumulant x(X;,X;,X;) implicitly used by Kuzmin et al.*** to
measure 3-way epistasis. This equivalence is because the k-way
central moment ﬁ(Xil, ..., X;) is equal to the k-way joint cumulant
KXy, ..., X;) for k=1, 2, 3. However, for k>4, the k-way linkage
disequilibrium term used by Barton and Turelli is not equal to the
k-way joint cumulant.

3-way linkage dis-

Simulating fitness values

We simulate fitness values f, for genotypes x = (x, ..., X;) with L=10
loci and K-way interactions using the following two different approa-
ches. For both models, we divide all of the fitness values f by f ; so
that f  =1.

Multiplicative fitness model. We draw interaction parameters
Bs~Uni(- 0.5, 0.5) for each subset S C {1, ..., L} of loci with size |S| < K.
We set the fitness fy of genotype x = (xy, ..., X;) as

>

sci, ... L
IS|<K

logfy= (33)

Bs <H xi> tex
} ieS

where €, ~ N(0, @) are independent and identically distributed Gaus-
sian random variables with mean zero and variance ¢°. We note that
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our noise model € differs from the widely-used Rough Mount Fuji
fitness model®®, where the noise terms are the source of epistasis’® %,

NK model. We simulate fitness values faccording to the NK model with
the code used by ref. 31. Because ref. 31 uses an additive fitness model,
we exponentiate the fitness values from the NK model.

Epistasis between protein mutations

The analysis in Epistasis between protein mutations was performed

using publicly available DMS data for the following proteins/RNA

molecules:

* the E.coli metabolic protein FOIA”, where the fitness of a genotype
is measured by the logarithm of its relative frequency in a large
population;
the Streptococcus pyogenes Cas9 (SpCas9) nuclease®®, where the
fitness of a genotype is measured by the logarithm of its relative
frequency in a large population;

* the immunoglobulin-binding protein G domain Bl (GBI)
expressed in Streptococcal bacteria™’*, where the fitness of a
genotype is measured by its relative frequency in a large
population;

* the Omicron BA.l variant of the SARS-CoV-2 virus”, where the
fitness of a genotype is measured by the logarithm of its binding
affinity relative to the Wuhan Hu-1 strain;

* the Entacmaea quadricolor fluorescent protein (eqFP611)’°, where
the fitness of a genotype is measured by (a normalized version of)
its relative frequency in a large population;

* the Aequorea victoria green fluorescent protein (avGFP)”’, where

the fitness of a genotype is measured by the logarithm of its

fluorescence;

the green fluorescent proteins (GFPs) from ref. 10, where the fit-

ness of a genotype is measured by its fluorescence;

* yeast tRNA’®, where the fitness of a genotype is measured by the

logarithm of its relative frequency in a large population; and

the Chlamydomonas reinhardtii flavin mononucleotide (FMN)-

based fluorescent protein (CreiLOV)”, where the fitness of a

genotype is measured by the logarithm of its fluorescence.

We aim to use these protein fitness landscapes to directly com-
pare the multiplicative and chimeric epistasis measures. However, the
quantitative trait used to measure fitness — and thus the appropriate
scale for measuring epistasis (additive or multiplicative) - varies across
the different proteins. In particular, the original publications for the
FolA protein, SpCas9 protein, eqFP611 protein, COVID spike protein,
avGFP protein, yeast tRNA, and CreiLOV protein assume that fitness is
measured using an additive scale (e.g., by measuring fitness as the
logarithm of the relative frequency of a genotype). Since our aim is to
demonstrate the disagreement between the multiplicative and chi-
meric measures, we first transform the fitness measurements to a
multiplicative scale by exponentiating the fitness values f, i.e., f > €,
before computing the multiplicative measure. This allows us to
directly compare the multiplicative epistasis measure " with the chi-
meric epistasis measure €, which implicitly assumes fitness values are
measured using a multiplicative scale.

For each protein and each interaction order K, we compute the
multiplicative (resp. chimeric) measure €” (resp. €°) across all K-tuples
of mutational events. We note that for some proteins, the fitness of
multiple mutations at a given locus is measured (e.g., all 3 possible
base-pair substitutions at a locus, or all 19 possible amino acid sub-
stitutions); for these proteins, we consider each possible mutation at a
given genetic locus as a separate mutational event. Furthermore, we
only compute the epistasis measure for a given K tuple of mutational
events if all fitness values f for the 2¥ genotypes are greater than a
threshold ¢, which we set to €=0.01 following the convention
from ref. 73.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The datasets used in this study were obtained through publicly avail-
able repositories. The synthetic genetic array (SGA) data used to ana-
lyze three-way epistasis in yeast was obtained from https://doi.org/10.
5061/dryad.g79cnp5m9 and https://boonelab.ccbr.utoronto.ca/suppl
ement/kuzmin2018/supplement.html. The drug response data used to
analyze higher-order interactions between drug combinations was
obtained from the supplementary information of ref. 40. The deep
mutational scanning (DMS) data used to analyze higher-order inter-
actions between protein mutations was obtained from: https://doi.org/
10.5281/zen0do.8228919(FolA);  https://github.com/AWHKU/RunML
DE_SpCas9/tree/main(SpCas9); https://github.com/J-SNACKKB/FLIP/
tree/main/splits/gb1(GB1); https://github.com/desai-lab/compensa
tory_epistasis_omicron/tree/main/Titeseq/results/Kds(Omicron BA.1
variant of SARS-CoV-2); the supplementary information of ref. 76
(eqFPé611); https://doi.org/10.6084/m9.figshare.3102154(avGFP);
https://github.com/aequorea238/Orthologous_GFP_Fitness_
Peaks(GFPs); the supplementary information of ref. 78 (tRNA); and the
supporting information of ref. 79 (CreiLOV). Source data are provided
in this paper.

Code availability

The code for our analyses is located in our public GitHub repository
and is available here: 10.5281/zenodo0.14426370. Our code requires the
following Python packages: Numpy (=1.23.4), Matplotlib (=3.8.0),
Pandas (=2.1.1), Scipy (21.11.2), Seaborn (= 0.12.2).
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