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Resolving discrepancies between chimeric
and multiplicative measures of higher-order
epistasis

Uthsav Chitra1,3, Brian Arnold1,2,3 & Benjamin J. Raphael 1

Epistasis - the interaction between alleles at different genetic loci - plays a
fundamental role in biology. However, several recent approaches quantify
epistasis using a chimeric formula that measures deviations from a multi-
plicative fitness model on an additive scale, thus mixing two scales. Here, we
show that for pairwise interactions, the chimeric formula yields a different
magnitude but the same sign of epistasis compared to the multiplicative for-
mula that measures both fitness and deviations on a multiplicative scale.
However, for higher-order interactions, we show that the chimeric formula can
have both different magnitude and sign compared to the multiplicative for-
mula.We resolve these inconsistencies by derivingmathematical relationships
between the different epistasis formulae and different parametrizations of the
multivariate Bernoulli distribution. We argue that the chimeric formula does
not appropriatelymodel interactions between the Bernoulli random variables.
In simulations, we show that the chimeric formula is less accurate than the
classical multiplicative/additive epistasis formulae and may falsely detect
higher-order epistasis. Analyzing multi-gene knockouts in yeast, multi-way
drug interactions in E. coli, and deep mutational scanning of several proteins,
we find that approximately 10% to 60% of inferred higher-order interactions
change sign using the multiplicative/additive formula compared to the chi-
meric formula.

A key problem in biology is deriving themap from genotype to fitness,
or the average reproductive success of a genotype. This map is often
referred to as the fitness landscape (first conceptualized in ref. 1). In its
simplest form, the fitness effects of alleles at one locus are indepen-
dent of those at other loci, such that multilocus fitness is either an
additive or multiplicative function of the alleles across loci. However,
the fitness landscape is complicated by the presence of epistasis, or
genetic interactions where alleles at one locus modify the effects of
alleles at other loci. Epistatic interactions reveal functional relation-
ships between genes, with the sign of an epistatic interaction (positive
or negative) often used to understand how genes are organized into
genetic pathways2, model protein function, and evolution3,

understand mechanisms of antibiotic resistance4, and interpret
genome-wide association studies (GWAS)5.

While epistasis is a property of any quantitative trait,many studies
have measured epistatic interactions using experimental fitness data
from haploid genomes (reviewed in refs. 6–8). Most of these studies
measure pairwise epistasis, or an interaction between a pair of genetic
loci that is computed by comparing the observed fitness of the double-
mutant to the expected fitness under a null model with no epistasis.
The sign of the epistatic interaction is determined by whether the
observed fitness is greater than or less than the expected fitness,
resulting in a positive or negative interaction, respectively. The choice
of the null model for the expected fitness depends on the quantitative
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trait used as a proxy for fitness. Nearly all formulae for pairwise epis-
tasis assume either an additive null model, where the expected fitness
is the sum f01 + f10 of the fitness values of the single-mutants, or a
multiplicative null model, where the expected fitness is the product
f01f10 of the fitness values of the single-mutants. For example, an
additive null model is often used when fitness is measured using cel-
lular growth rate (e.g., in fitness assays of microbes9) or fluorescence
(e.g., in proteins10), while a multiplicative null model is typically used
when fitness is measured by the total size of a clonal population11.
Under an additive nullmodel, epistasis ϵ is computed as the difference
ϵ = f11 − (f10 + f01) between observed and expected double-mutant
fitness.

For the multiplicative null model, there is no agreement in the
literature about how to quantify deviation from the null model. In the
statistics literature, it is standard to computemultiplicative interaction
effects using a ratio ϵ = f 11

f 01f 10
between the observed and expected

values (e.g., refs. 12,13). On the other hand, many studies in the
genetics literature compute epistasis as the differenceϵ = f11 − f01f10
between observed and expected fitness values of a double-mutant
(e.g., refs. 14–23).We call thefirst formula themultiplicative formula, as
it preserves the multiplicative measurement scale, while we call the
second formula the chimeric formula, as it measures deviations from a
multiplicative model on an additive scale and thus is a “chimera” of
additive and multiplicative scales.

Here, we show that the chimeric andmultiplicative formula result
in different quantitative measures of pairwise epistasis, which may
affectfindings on the strength of an epistatic interaction. Nevertheless,
we also show that the two formulae always yield the same sign (or
direction) of a pairwise interaction. The sign is often the quantity of
interest in genetics studies, e.g., negative epistatic interactions are
used to quantify functional redundancy24,25. Thus, the focus of existing
literature on the sign of interactions, as well as the focus on pairwise
epistasis, may explain why the differences between the multiplicative
and chimeric formula are not broadly recognized.

The discrepancies between the multiplicative and chimeric for-
mula are more consequential for higher-order interactions between
three or more loci, which are becoming more widely studied with
larger genetic datasets and high-throughput measurements of
fitness24,26–28. Recent studies in yeast genetics24,26 and antibiotic
resistance27 independently derived analogous chimeric formula to
quantify epistasis between three or more loci and higher-order inter-
actions between components, respectively, under a multiplicative fit-
ness model. These chimeric formulae were derived de novo and
without consideration of the two distinct formula — chimeric and
multiplicative — for pairwise epistasis, nor the consequences of con-
flating multiplicative and additive scales. However, unlike in the pair-
wise setting, we show that for three or more loci, the chimeric formula
is not guaranteed to produce the same sign of an interaction as the
multiplicative formula. Thus, the chimeric formula may indicate a
positive epistatic interaction while the multiplicative formula shows a
negative epistatic interaction, and vice-versa. Such inconsistencies
raise questions about the validity of reported higher-order epistasis in
biological applications.

We resolve the mathematical and biological inconsistencies
between the different epistasis formulae by deriving connections
between epistasis and the parameters of the multivariate Bernoulli
distribution (MVB), a probability distribution on binary random
variables29. In particular, we show that a wide array of approaches for
quantifying epistasis – including the additive, multiplicative, and chi-
meric formulae, as well as the regression models commonly used in
GWAS and QTL analyses2,5 and the Walsh coefficients for measuring
background-averaged epistasis30–32 – are equivalent to computing
different parameterizations of the MVB, showing that the MVB pro-
vides a unifying statistical framework for the different epistasis
measures.

We use the connections to the multivariate Bernoulli distribution
to analyze the higher-order (i.e., ≥ 3-way interactions) chimeric epis-
tasis formulae derived by Kuzmin et al.24,26 and Tekin et al.27. We show
that the chimeric formulae for pairwise epistasis and the chimeric
formulae for higher-order epistasis correspond to the joint cumulants
of the MVB, a concept from probability theory for measuring interac-
tions between continuous variables33. However, the joint cumulant is
known to not be an appropriate measure of higher-order interactions
for binary random variables34,35. Accordingly, we argue that the chi-
meric epistasis formula are not appropriate for measuring higher-
order epistasis between biallelic mutations. In this way, just like how
the hero Bellerophon in the Iliad slayed the monstrous chimera, the
multivariate Bernoulli distribution allows us to “slay” the chimeric
epistasis formula.

We demonstrate that the mathematical issues with the chimeric
epistasis formula lead to markedly different biological interpretations
of perturbation experiments using haploid genomes. Analyzing multi-
gene knockout data in yeast using themore appropriatemultiplicative
formula changes the sign of 12% of the 7957 trigenic interactions that
Kuzmin et al.24,26 reported using the chimeric formula. Many of these
sign changes are concentrated on negative interactions, which are
more functionally informative than positive interactions and are
commonly used to measure functional redundancy between genes25.
In particular, the multiplicative epistasis formula identifies nearly 500
negative interactions not reported by Kuzmin et al.24,26 that are sig-
nificantly enriched for several measures of functional redundancy,
thus extending the trigenic interaction network by 25%.

We further demonstrate that the multiplicative and additive
formulae yield markedly different interactions compared to the
chimeric formula in two other applications: the identification of
higher-order synergistic and antagonistic drug interactions in
Escherichia coli and the identification of epistatic interactions
between protein mutations in deep mutational scanning (DMS)
experiments which is important for 3-D protein structure
prediction36,37, protein engineering7, genome editing
optimization38, variant effect prediction39, and other applications.
Notably, we show that the discordance between the different for-
mulae increases with interaction order: the additive formula shows
significantly less antagonism between five-way interactions com-
pared to the chimeric formula used in ref. 40, while for some pro-
teins there is substantial (up to 60%) disagreement in the sign of
interaction between the multiplicative and chimeric formulae.

Results
Pairwise epistasis: additive, multiplicative, and chimeric
Pairwise epistasis describes interactions between two genetic loci. We
consider haploid genomes and assume that each locus is biallelic, i.e.,
each locus has two alleles labeled 0 and 1. Thus for a pair of loci there
are four possible genotypes: the wild-type 00, the single mutants 01
and 10, and the double mutant 11. Accordingly, for a pair (i, j) of loci
there are four corresponding fitness values: the wild-type fitness f+,
corresponding to the wild-type genotype 00 with no mutations; the
single-mutant fitnesses fi, fj, corresponding to the genotypes 01 and 10
with either locus i or locus j mutated, respectively; and the double-
mutant fitness fij, corresponding to the genotype 11 with both loci
mutated. Pairwise epistasis is measured by comparing the observed
double-mutant fitness fij to the expected fitness under a null model
with no epistasis.

In practice, the fitness f of a genotype cannot be directly mea-
sured. Instead, experiments typically measure traits that are expected
to be highly correlated with fitness. For example, in populations of
microbes or proteins, it is standard to estimate the fitness of a geno-
typewith either its population growth rate or relative frequency,which
are typically assumed to follow an additive or multiplicative scale,
respectively (“Methods”). Accordingly, the twostandardnullmodelsof
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fitness for measuring epistasis are the additive model and the
multiplicativemodel.

In the additivemodel, mutations are assumed to have an additive
effect on fitness, and the pairwise epistasis measure ϵAij is equal to the
difference between the observed and expected double-mutant fitness
values:

ϵAij = f ij � ðf i + f jÞ, ð1Þ

under the assumption that fitness values are normalized such that the
wild-type fitness f+ =0. The sign of the interaction (i.e., positive vs.
negative) is given by the sign sgn ðϵAij Þ of the epistasis measure ϵAij . The
additive model was first posed by Fisher41, who used the term
“epistacy” to refer to any statistical deviation from additivity6.

In themultiplicativefitnessmodel,mutations have amultiplicative
effect onfitness, and themultiplicative pairwise epistasismeasure ϵMij is
given by the ratio between the observed and expected double-mutant
fitness values:

ϵMij =
f ij
f i f j

, ð2Þ

under the typical assumption that thewild-type fitness f+ is equal to 1.
The sign of the interaction is determined bywhether themultiplicative
measure ϵMij is greater than or less than 1. Moreover, if fitness values f
are multiplicative, then the log-fitness values log f are additive; thus,
the sign of interaction under the multiplicative model is also given by
the sign sgn ðlog ϵMij Þ of the log-epistasis measure log ϵMij . The additive
and multiplicative epistasis measures are closely related to the linear/
log-linear regression frameworks5,12 and the Walsh coefficients30–32,42,43

used in the genetics literature; see Methods for details.
Curiously, there is a third epistasis formula that is widely used for

the multiplicative fitness model. Here, deviations from the multi-
plicative model are measured on an additive scale, resulting in the
following chimeric formula for pairwise epistasis:

ϵCij = f ij � f i f j : ð3Þ

We refer to ϵCij as the chimeric epistasis measure because it mea-
sures deviations from a multiplicative null model on an additive scale
and is thus a chimera of both the multiplicative and additive mea-
surement scales. As in the additivemodel, the sign of the interaction is
given by the sign sgn ðϵCij Þ of the chimeric measure ϵCij .

The chimeric epistasis measure ϵCij appears in the genetics litera-
ture (e.g., refs. 14–23) and in the drug interaction literature (e.g.,
refs. 27,40,44,45) because of its interpretation as a residual, i.e., the
difference between the observed and expected values of a measure-
ment. However, despite the simplicity of this explanation, residuals are
typically only appropriate for additive models. For multiplicative
models, it is standard to compute statistical interactionsusing the ratio
between observed and expected measurements (as in equation (2),
rather than the difference12. Moreover, Wagner13,46 notes that preser-
ving the multiplicative measurement scale (by using the ratio) is
required in order to guarantee meaningful notions of statistical and
functional interactions.

While both the chimeric measure ϵCij and the multiplicative
measure ϵMij are described as measuring deviations from a multi-
plicative fitness model, the two measures are not equal. In parti-
cular, the (log-) multiplicative epistasis measure
log ϵMij = log f ij � log f i f j computes the difference between the
observed and expected double-mutant fitness values on a loga-
rithmic scale (Fig. 1A) while the chimeric epistasis measure ϵCij = f ij �
f i f j computes the difference directly (Fig. 1B). When the double-
mutant fitness fij and single-mutant fitness values fi, fj are close to 1,
we show that the chimeric measure ϵCij is approximately equal to the
log-multiplicative measure log ϵMij (Supplementary Note 1). How-
ever, if the fitness values are substantially different from 1, then the
chimeric epistasis measure ϵCij may over- or under-state the strength
of a pairwise interaction in a multiplicative fitness model as we
demonstrate numerically (Supplementary Note 2).

Nevertheless, we prove (“Methods”) that the chimericmeasure ϵCij
has the same sign of an interaction as the multiplicative measure ϵMij
but not the same magnitude. Thus, using either the chimeric or mul-
tiplicative measures will not affect findings that depend on the sign of
an epistatic interaction, and the sign is often the quantity of interest
(e.g., negative epistasis is used to quantify functional redundancy21).
However, the agreement between the multiplicative and chimeric
measures on the sign of interaction is true only for pairwise epistasis
and not higher-order epistasis, as we will show below.

Higher-order epistasis
For higher-order epistasis, or interactions between three or more
genetic loci, we find that the difference between themultiplicative and
chimeric epistasis measures are more consequential. Under the mul-
tiplicative fitness model, the three-way epistasis measure ϵMijk between
loci i, j, k is given by the ratio between observed and expected triple-

Fig. 1 | Comparison of multiplicative and chimeric epistasis measures. A For a
pair (i, j) of loci, the multiplicative epistasis measure ϵMij =

f ij
f i f j

is the ratio between
the observed fitness fij of the double mutant and the expected fitness fi fj under a
multiplicative null model. Equivalently, the logarithm log ϵMij of the epistasis mea-
sure is given by log ϵMij = log f ij � log f if j , or the difference between the observed
andexpectedvalues in log-fitness space.BThe chimeric epistasismeasure ϵCij = f ij �
f if j is the difference between the observed and expected fitness values of the
double-mutant under a multiplicative fitness model. The chimeric measure ϵCij thus

mixes scales by measuring deviations from multiplicativity on an additive scale.
C The fraction of instances where the signs sgnðlog ϵM Þ and sgnðϵC Þ of the multi-
plicative and chimeric fitness formula, respectively, disagree ("sign discordance
fraction'') for interaction ordersL = 2,…, 5, wherefitness values fi, fij,… are sampled
uniformly at random from the interval [0, 1]. For two loci, the sign of the two
measures always agree (see Proposition 1), but for more than two loci, there is
substantial disagreement.
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mutant fitness:

ϵMijk =
f ijk

f i f j f kϵ
M
ij ϵ

M
ikϵ

M
jk

=
f ijk f if jf k
f ijf ik f jk

: ð4Þ

Recent work in the yeast genetics24,26 and antibiotic resistance27

literature claim to use a multiplicative fitness model, but derive a dif-
ferent epistasis formula:

ϵCijk = f ijk � ðf if j f k + ϵCij f k + ϵCik f j + ϵCjkf iÞ, ð5Þ

where ϵCij , ϵ
C
ik , ϵ

C
jk are the pairwise chimeric epistasis measures in (3).

Note that as in the pairwise case, formula (5) mixes the additive and
multiplicative scales in a complex manner. Thus, we refer to ϵCijk as the
chimeric three-way epistasis measure.

As in the pairwise setting, the three-way chimeric measure ϵCijk in
(5) is clearly different from the three-waymultiplicative measure ϵMijk in

(4). However, we show that these formula often differ in both the
magnitude of epistasis (as in the pairwise setting) and in the sign of
epistasis. Thus, one formula may indicative positive epistasis between
three loci while another formula may indicate negative epistasis, and
vice-versa. In simulations, we find that approximately 28% of triples
have different signs between the two formulae (Fig. 1C).

Tekin et al.27 extended the three-way chimeric epistasis formula
(5) to compute a 4-way chimeric epistasis measure ϵCijkl and a 5-way
chimeric epistasis measure ϵCijklm. We find even more substantial dif-
ferences in the sign of epistasis between these 4-way and 5-way chi-
meric epistasis measures and the 4-way and 5-way multiplicative
epistasis measures (Equation (18) in “Methods”). In simulations, only
approximately 57% and 52% of 4-way and 5-way interactions, respec-
tively, have the same sign using the chimeric and multiplicative epis-
tasis formulae (Fig. 1C).

This substantial disagreement between the chimeric and multi-
plicative epistasis measure motivates a deeper mathematical under-
standing of the various epistasis formulae, which we undertake in the
next section.

Unifying epistasismeasurementswith themultivariate Bernoulli
distribution
A genotype of biallelic mutations on L loci can be represented as a
binary string of length L, where 0 corresponds to the wild-type allele,
and 1 corresponds to the mutant, or derived, allele. For example, the
string01100 represents the genotype of L = 5 lociwithmutations in the
second and third loci. The fitness values of all genotypes, often refer-
red to as the fitness landscape, correspond to a function f that maps a
binary string x ∈ {0, 1}L to its fitness fx.

A natural approach for studying a fitness landscape function f is to
view it as a distribution on the set {0, 1}L of binary strings, where the
probability px of a binary string x is derived from its fitness fx. Such
distributions are often used by protein structure models39. Moreover,
many real-world fitness datasets – including the yeast fitness data and
many of the protein datasets analyzed in this manuscript – measure

the fitness of a genotype x in terms of its relative frequency in a large
population of genotypes, i.e., its probability px.

Here, we model the fitness landscape using the multivariate Ber-
noulli (MVB) distribution29,47 which describes any distribution on the
set {0, 1}L of binary strings. Formally, a multivariate random variable
(X1, …, XL) distributed according to a MVB is parametrized by the
probabilities px = P((X1, …, XL) = x) for each binary string
x = (x1, …, xL) ∈ {0, 1}L. We model the genotype (X1, …, XL) of an
organism as a random variable distributed according to a MVB para-
metrized by the probabilities p= ðpxÞx2f0, 1gL .

We prove that the additive, multiplicative, and chimericmeasures
of epistasis – as well as the Walsh coefficients described in
refs. 30–32,42,43 – correspond to different parametrizations of the
MVB distribution (Table 1, “Methods”). We briefly describe these
results below.

Multiplicative and additive epistasis. Suppose the fitness values f x 2
R of each genotype x = (x1, …, xL) ∈ {0, 1}L are proportional to the
corresponding probability px of a multivariate Bernoulli random vari-
able (X1, …, XL), i.e., fx = c ⋅ px for some c >0. We prove that the (log-)
multiplicative epistasis measures are equal to the natural parameters
of the MVB. The natural parameters β= fβSgS�f1, ..., Lg are another para-
meterization of the MVB that encodes conditional independence
relations between the random variables X1, …, XL; see refs. 29,48. We
prove a similar result for the additive epistasis measure under the
assumption that the fitness fx is proportional to the log probability
logpx. See Methods and Supplementary Note 3 for theorem state-
ments and proofs.

Our theoretical results provide a connection between the multi-
plicative epistasis measure and interaction coefficients in a log-linear
regression model. This is because for each subset S of loci, the natural
parameter βS corresponds to the interaction term for the subset S in a
log-linear regression model29,47,48. Such interaction terms are a stan-
dard approach for measuring epistasis in genetics, e.g., GWAS or QTL
analyses for quantitative traits2,5.

We alsoprove that thenatural parametersβof theMVBare closely
related to the two standard approaches for measuring pairwise SNP-
SNP interactions in a case-control GWAS: logistic regression and con-
ditional independence testing49. Specifically, we prove that the inter-
action term in a logistic regression is equal to a 3-way interaction term
βijk in anMVB, while the conditional independence test is equivalent to
testing whether a 2-way interaction term βij and a 3-way interaction
term βijk are both equal to zero. These interaction terms are equal to
the corresponding log-multiplicative epistasis measures log ϵM .

Thus, our results show that the additive and multiplicative epis-
tasis measures are equivalent to computing interaction terms in
regression models commonly used in genetics.

Chimeric epistasis. The connection between the epistasis formulae
and theMVBdistribution allows us to derive amathematically rigorous
definition of the chimeric epistasis formula. Specifically, suppose the
fitness value fx of each genotype x = (x1, …, xL) is equal to a corre-
sponding moment E½Xx1

1 � � �XxL
L � of the random variable (X1, …, XL).

Then, we define the chimeric epistatic measure ϵCi1 ���iK as the K-th order

Table 1 | Correspondencebetween epistasismeasures and the parametrizations of themultivariate Bernoulli distributionwhen
the fitness values are proportional to the indicated quantities of the distribution

Parameters of multivariate Bernoulli distribution Fitness values f proportional to

Additive epistasis measure ϵA Natural parameters β Log-probabilities logp

Multiplicative epistasis measure ϵM Natural parameters β Probabilities p

Chimeric epistasis measure ϵC Joint cumulants κ Moments μ

Walsh coefficients Moments of (1 − 2X1, …, 1 − 2XL) Probabilities p
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joint cumulant κðXi1
, . . . ,XiK

Þ of the random variables Xi1
, . . . ,XiK

(Table 1). Joint cumulants are a concept from probability theory that
are used to quantify higher-order interactions between random
variables33. See Methods for a formal definition.

We emphasize that prior literature on higher-order interactions
do not provide a rigorous statistical interpretation of the chimeric
epistasis measure. For example, Kuzmin et al.24,26 does not explicitly
state the connection between the joint cumulant and their three-way
chimeric formula, while Tekin et al.27 heuristically uses the joint
cumulant formulae without specifying random variables or a prob-
ability distribution — thus obscuring any assumptions made by using
joint cumulants to measure higher-order interactions.

Our explicit definition of the K-th order chimeric epistasis mea-
sure ϵCi1 ���iK as the K-th order joint cumulant reveals two critical issues
with the chimeric formula. First, the assumption that the fitness values
f are equivalent to the moments of an MVB random variable is not
biologically reasonable for higher-order interactions between three or
more loci. This is because the moments assumption implies that the
fitness of a particular genotype depends on the probability of many
other genotypes. For example, if we assume that the fitness values for
L = 4 loci are moments of the MVB, then the fitness f1100 of a double
mutant is equal to the moment E[X1X2], which is equal to

E½X 1X2�=PðX 1 = 1,X2 = 1Þ=p1100 +p1101 +p1110 +p1111: ð6Þ

However, it is not clear why the fitness f1100 of a single genotype, 1100,
should equal the sum of the probabilities of four different genotypes,
1100, 1101, 1110, and 1111.

The second issue is that joint cumulants are not an appropriate
measure of higher-order interactions between binary random vari-
ables. The differences between the joint cumulants κ and natural
parameters β have been previously investigated in the neuroscience
literature, as both quantities have been used to quantify higher-order
interactions in neuronal data. For example, Staude et al.34 write that the

joint cumulants κ and natural parameters β "do not measure the same
kind of dependence. While higher-order cumulant correlations [κ] indi-
cate additive common components ... the [natural parameters β] directly
change the probabilities of certain patterns multiplicatively”. In parti-
cular, the natural parameters βmeasure "to what extent the probability
of certain binary patterns canbe explained by the probabilities of its sub-
patterns”34. Thus, for biallelic genotype data, the natural parameters β
correspond exactly with the epistasis we aim to measure, i.e., how the
fitness of a binary pattern can be explained by the fitness of its “sub-
patterns”, while the joint cumulants κ do not.

Simulations using a multiplicative fitness model
We performed simulations to demonstrate the discrepancy between
the multiplicative epistasis measure and the chimeric epistasis mea-
sure. Since both the multiplicative and chimeric measures use a mul-
tiplicative fitness model, we simulated fitness values f for L = 10 loci
following a multiplicative fitness model with K-way interactions β for
different choices of interaction order K, and with multiplicative
Gaussian noisewith standarddeviation σ (Methods).We computed the
K-way multiplicative measure ϵMS and chimericmeasure ϵCS for each set
S⊆ {1,…, L} of loci of size ∣S∣ =K, andwe compared these twomeasures
to the true interaction measure βS.

We first assessed whether the sign of the epistasis measures, i.e.,
sgn log ϵMS

� �
and sgn ϵCS

� �
, match the sign sgn(β) of the corresponding

interaction termβS, since the sign of ameasure indicateswhether there
is a positive or negative interaction betweenmutations in the loci S.We
observed (Fig. 2A) that for pairwise interactions (K = 2), both the
multiplicative measure ϵM and chimeric measure ϵC have the same sign
as the true interaction measure β for the same fraction of instances,
which matches our theoretical result (Proposition 1, Methods). How-
ever, for higher-order interactions (K > 2), the chimeric measure ϵC has
an incorrect sign more often than the multiplicative measure ϵM

(Fig. 2A). In particular, for K = 5-way interactions, even with no noise
(i.e., σ =0), the chimeric measure has a different sign than the true

Fig. 2 | Comparison of epistasis measures using simulated data from a multi-
plicative fitness model. Fitness values f are simulated following a multiplicative
fitness model with interaction parameters β, for different choices of the maximum
interaction order K, and multiplicative Gaussian noise with standard deviation σ.
A The fraction of K-way interactions where the sign of the log-multiplicative epis-
tasis measure log ϵM (orange) and the chimeric epistasis measure ϵC (blue) do not
match the sign of the true interaction parameter β. B The average absolute

difference ("error'') jβ� log ϵM j and ∣β − ϵC∣ between the true interaction parameter
β and (orange) the log-multiplicative measure log ϵM and (blue) the chimeric
measure ϵC, respectively. These quantities are computed for different values of the
maximum interaction order K and noise parameter σ and are averaged across
200 simulated fitness values. Error bars indicate standard deviation across simu-
lated instances.
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interaction parameter σ for more than 30% of simulated instances. We
also highlight that when there is no noise, i.e., σ = 0, the multiplicative
measure always has the same sign as the true interaction parameter β,
i.e., sgnðlog ϵMÞ= sgn ðβÞ, which agrees with Theorem 1.

We next compared how well themagnitudes of the multiplicative
and chimeric epistasis measures agree with the magnitude of the true
interaction parameters.We computed the average absolute difference
(“error”) j log ϵMS � βj and jϵCS � βj between the true interaction mea-
sure β and the estimated multiplicative and chimeric epistasis mea-
sures, respectively, for all subsets S of loci of size ∣S∣ =K. We found
(Fig. 2B) that the multiplicative measure has a smaller error for all
interaction orders K and noise parameters σ. In particular, we observe
that the multiplicative measure has a smaller error than the chimeric
measure even for pairwise interactions (K = 2) – i.e., when both the
multiplicative and chimericmeasures have the same sign– and that the
error of the chimericmeasure ϵC increaseswith the interaction orderK.
The reason that the chimeric measure has much larger error than the
multiplicative measure for pairwise interactions is that the chimeric
measure ϵCij is approximately equal to the (log-)multiplicative measure
only when fij ≈ 1 and fi fj ≈ 1, with the two measures being noticeably
different otherwise (Supplementary Figs. 1 and 2 and Supplementary
Note 1). We also emphasize that when there is no noise, i.e., σ = 0, the
multiplicative measure has zero error, i.e., log ϵM = β, matching our
theoretical results (Theorem 1, Methods). (Note that Theorem 1 does
not applywhen there ismultiplicative Gaussian noise, i.e., σ >0, as this
noise will cause the fitness values to not follow a log-linear model.)

Thus, our results demonstrate that the multiplicative measure ϵM

yields a more accurate measurement of pairwise and higher-order
epistasis in a multiplicative fitness model compared to the chimeric
measure ϵC which conflates additive and multiplicative factors.

Simulations using the NK fitness model
We next compared the multiplicative and chimeric epistasis measures
using the NK model, a classical model for simulating random fitness
landscapes fwith varying degrees of “ruggedness”50. TheNKmodel has
two parameters: the number N of loci, which we call L below; and K, a
measure of the ruggedness of the fitness landscape f, where the fitness
landscape is smoothest at K =0 and most rugged for K = L − 1. Each
locus ℓ = 1, …, L interacts with K random other loci, meaning that the
fitness landscape contains at most (K + 1)-way interactions. Since the
NK model simulates fitness values under an additive model, we expo-
nentiated the NK fitness values.

Each simulated fitness landscape f has an associated graph
G = (V, E) which describes a (simulated) genetic interaction network,
where the vertices V = {1, …, L} are the L loci and the edges E connect
pairs of interacting loci51. For example, for K =0, the graph G has no

edges, indicating that there are no interactions between loci, while for
K = 1 the graph G has edges connecting loci with pairwise interactions.
(For K ≥ 2, one may also describe the interaction relationships with a
hypergraph where hyperedges connect sets of interacting loci, e.g.,
ref. 51.)

We find that the chimeric measure falsely indicates the presence
of higher-order interactions that are not present in the simulated fit-
ness landscape f while the multiplicative measure does not. For
example, when the fitness landscape f contains only pairwise interac-
tions (i.e.,K = 1), then the 3-waymultiplicative epistasismeasure ϵMijk =0
is equal to zero for all triples (i, j, k) of loci. However, if the NK model
graph G contains a triangle (i, j, k), then the 3-way chimeric measure
ϵCijk≠0 will be nonzero with high probability (Fig. 3A). Thus, the chi-
meric measure ϵC falsely indicates the presence of three-way interac-
tions that do not exist in the simulated fitness landscape. (As this is
sometimes a point of confusion: we note that triangles in a graph are
sometimes referred to as higher-order structures52. However, as our
simulation demonstrates, it is quite possible to have a triangle in a
graph, i.e., three pairwise interactions, without having a genuine
higher-order (3-way) interaction.) More generally, for any value K > 0
of the ruggedness parameter, the fitness landscape f only contains at
most (K + 1)-way interactions. The (K + 2)-way multiplicative measure
ϵM is always equal to zero, reflecting that there are no (K + 2)-way
interactions. However, we empirically observe that the (K + 2)-way
chimeric measure ϵC is often non-zero (Fig. 3B).

Thus, our analyses demonstrate how the chimeric measure ϵC will
often erroneously identify higher-order interactions that are not pre-
sent in the underlying fitness landscape.

Three-way epistasis in budding yeast
We investigate the biological implications of using the chimeric epis-
tasis measure instead of the multiplicative epistasis measure by rea-
nalyzing two triple-gene-deletion studies in budding yeast by Kuzmin
et al.24,26. These studies used triple-mutant synthetic genetic arrays
(SGA)53,54 to measure the fitness of single-, double-, and triple-mutant
strains. The authors use a multiplicative fitness model since the SGA
protocol models yeast colony sizes as a product of fitness, time, and
experimental factors23. The Kuzmin et al. studies, refs. 24 and 26,
measure fitness values for 195,666 and 256,861 gene triplets, respec-
tively. They calculate the three-way chimeric epistasis measure ϵCijk and
report 319624 and 246626 negative three-way epistatic interactions,
respectively.

We calculated the multiplicative epistasis measure ϵMijk (formula
(4)) and the chimeric epistasis measure ϵCijk (formula (5)) used by
Kuzmin et al.24,26 for the 189,340 gene triplets (i, j, k) whose single-,
double- and triple-mutant fitness values were available in the publicly

Fig. 3 | Comparison of epistasis measures using simulated data from the NK
fitness model. A A fitness landscape f simulated following the NK fitness model
with “ruggedness” parameter K = 1 contains only pairwise interactions. These
interactions are represented with an interaction graph G. The 3-way multiplicative
measure ϵMijk =0 equals zero for all loci triples (i, j, k). However, if the triple (i, j, k)
forms a triangle in the graphG (shownas adashed red line), then the 3-way chimeric
epistasismeasure ϵCijk is non-zero and incorrectly indicates the presenceof a higher-

order interaction. B The fraction of non-zero (K + 2)-way interactions ("fraction of
non-zero higher-order interactions'') identified by the multiplicative measure ϵM

(orange) and the chimeric measure ϵC (blue) across 100 fitness landscapes
f simulated according to the NK fitness model with ruggedness parameter K, with
error bars indicating standard deviation across simulated instances. The fitness
landscape f contains at most (K + 1)-way interactions, but the chimeric measure ϵC

spuriously detects many non-zero (K + 2)-way interactions.
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available data from refs. 24,26 and with a reported p-value of
pijk < 0.05. Following Kuzmin et al.24,26 we say a gene triplet (i, j, k) has a
positive chimeric interaction if ϵCijk>0:08; a negative chimeric interac-
tion if ϵCijk<� 0:08; and an ambiguous chimeric interaction if
�0:08<ϵCijk<0:08. Accordingly, using the samequantile as the chimeric
threshold of 0.08, we say that a gene triplet (i, j, k) has a positive (resp.
ambiguous, negative) multiplicative interaction if ϵMijk>1:105 (resp.
0:905<ϵMijk<1:105, ϵ

M
ijk<0:905). See Supplementary Note 4 and Supple-

mentary Figs. 3 and 4 for specific details on data processing and
reproducing the Kuzmin et al. results.

We observed considerable differences between the signs of the
multiplicative epistatic measure versus the chimeric epistatic measure
(Table 2). In particular, approximately 12% of gene triplets have a dif-
ferent interaction sign with the multiplicative measure compared to
the chimeric measure. The difference between the two measures is
especially pronounced for negative interactions, which are typically
more functionally informative than positive interactions23,24,26. In par-
ticular, there were 476 gene triplets (i, j, k) with a negative
multiplicative-only interaction, or tripletswith a negativemultiplicative
interaction but not a negative chimeric interaction (Fig. 4A). On the
other hand, there were only 91 gene triplets with a negative chimeric-
only interaction, or tripletswith a negative chimeric interaction but not
a negative multiplicative interaction (Fig. 4A); in fact, some of these 91
triplets even had positive multiplicative interaction (Fig. 4A). We also
observe a qualitatively similar discrepancy between the two formula
using the earlier fitness data from Kuzmin et al. (2018)24; on this data,
we find that therewere 746 gene triplets with a negativemultiplicative-
only interaction versus 177 triplets with a negative chimeric-only
interaction (Supplementary Fig. 5). Our results were also qualitatively
similar when we did not restrict to triplets with reported p-value
pijk <0.05 (Supplementary Fig. 6).

Negative trigenic interactions often contain genes whose proteins
are partially redundant in their functions25 and are enriched for other
features that arise from biological models of functional redundancy,
including shared expression patterns55,56, shared protein-protein
interactions57, GO annotation, and amino acid divergence56,57. We
observed (Fig. 4B) that gene triplets with negative multiplicative-only
interactions — that is, gene triplets not identified by the chimeric for-
mula used in Kuzmin et al. (2020)26 — are significantly enriched for co-
expression (P =0.017, hypergeometric test), shared protein-protein
interactions (P < 1.5 × 10−4, hypergeometric test), and similar GO
annotations (P < 2.1 × 10−5, hypergeometric test). In contrast, gene tri-
plets with a negative chimeric-only interaction are not significantly
enriched for any of these features (Fig. 4B). In this way using the
multiplicative measure extends the network of functionally redundant
genes by almost 25% compared to the chimeric measure. We obtain a
similar result when analyzing the fitness data from the earlier Kuzmin
et al. (2018) study24 (Supplementary Fig. 5) and also when we do not
remove gene triplets with large reported p-values pijk as computed by
Kuzmin et al.24,26 (Supplementary Fig. 6). These results demonstrate
that using the appropriate three-way multiplicative formula for a

multiplicative fitness model leads to more biologically meaningful
higher-order genetic interactions compared to using the chimeric
epistasis formula that mixes additive and multiplicative scales in an
statistically unsound manner.

In particular, trigenic interactions also reveal the functional
redundancy of paralogs, or pairs of duplicated genes with over-
lapping functions, since two functionally similar genes tend to have
a negative trigenic interaction with a third gene more often com-
pared to gene pairs with non-overlapping functions26. Thus, we
evaluated whether the gene triplets with negative multiplicative-
only interactions involve functionally redundant gene pairs. We
quantified the functional redundancy between two genes by cal-
culating the number of negative trigenic interactions to which both
genes belong, where we restricted our calculation to gene pairs
involved in at least two negative multiplicative interactions. We
found that many pairs of genes had additional multiplicative-only
interactions (Fig. 4C). Thus the multiplicative measure identified
additional functional redundancies not found using the chimeric
measure. As additional validation, we note that Kuzmin et al.26

quantify functional redundancy between two genes using a related
quantity that they call the trigenic interaction fraction (see Supple-
mentary Note 4 for more details). We observed that for most gene
pairs, the trigenic interaction fraction is larger when computed
using the multiplicative formula versus using the chimeric formula
(Supplementary Fig. 7). This observation further supports the con-
clusion that the multiplicative formula uncovers additional func-
tional redundancies between these paralogs that was not detected
by the chimeric measure.

We expect paralogs with large increases in the number of
multiplicative-only interactions to be functionally redundant. Of the
130 paralogs we analyzed, there are fifteen paralogs with at least 10
negative multiplicative-only interactions (highlighted in Fig. 4C). The
three paralogs with the largest number of negative multiplicative-only
interactions were RPS24A-RPS25B, MSN2-MSN4, and ARE1-ARE2. For
these three paralogs, the multiplicative formula quadrupled the
number of total trigenic interactions compared to the number of such
interactions reported by Kuzmin et al.26 using the chimeric formula.
These three paralogs also appear to have redundant functions
according to other patterns of sequence evolution: all three have
highly correlated position-specific evolutionary rates (Table S12 in
ref. 26) and two of them (RPS24A-RPS25B and ARE1-ARE2) have low
sequencedivergence rates (Supplementary Fig. 8).Moreover, negative
genetic interactions have been previously documented for MSN2-
MSN458, ARE1-ARE259, and RPS25A-RPS25B21,60.

The paralogs with many multiplicative-only interactions are also
enriched for shared PPIs or GO annotations with the genes they
interact with (Fig. 4D). In particular, the paralogs NUP53-ASM4, which
are components of the large nuclear pore complex61, had 36 additional
negative multiplicative-only interactions. These epistatic interactions
are highly enriched for shared PPIs and GO annotations (Fig. 4D) and
also involve members of the same protein complexes (Fig. 4E). One of
the 36 additional genes that interact with NUP53-ASM4 is NUP145,
which also forms part of the nuclear pore62. Interestingly, while the
gene triplet NUP53-ASM4-NUP145 has a negative multiplicative inter-
action (ϵM =0.684 < 1), the same gene triplet was reported to have a
positive chimeric interaction (ϵC =0.25 > 0; Kuzmin et al.26). Another
example of one of the 36 additional interactions is SAC3, which
encodes a nuclear pore-associated protein that functions in mRNA
transport63. The gene triplet NUP53-ASM4-SAC3 has a very negative
multiplicative interaction (ϵM =0.046 < < 1), but in the original study26

was reported to have a slightly positive chimeric interaction
(ϵC =0.014 >0). Moreover, both NUP145 and SAC3 share at least
one protein-protein interaction and GO category with NUP53 and
ASM4. These findings provide additional support to the hypothesis by
Kuzmin et al.26 that NUP53 and ASM4 have overlapping functions.

Table 2 | Comparison of signs of trigenic interactions in bud-
ding yeast calculated using the multiplicative epistasis mea-
sure and the chimeric epistasis measure on fitness data
from Kuzmin et al.26

Chimeric measure ϵCijk

Positive Ambiguous Negative

Multiplicative
measure ϵMijk

Positive 1197 259 0

Ambiguous 116 4291 91

Negative 10 466 1527

Values not on the diagonal correspond to gene triplets having a different sign of epistasis using
the multiplicative measure versus the chimeric measure (approximately 12% of triplets).
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Two other noteworthy paralogs are SKI7 and HBS1; both genes
recognize ribosomes stalled during translation and also initiate mRNA
degradation. While some studies report that these paralogs have
evolved distinct functions64,65, other studies show that they retain
some overlapping functions66–68 and may bind to similar sites on the
ribosome68. Kuzmin et al.26 previously reported relatively few (13) tri-
genic interactions involving both SKI7 and HBS1 as corroboratory
evidence for the functional divergence of these paralogs. However, by
using themultiplicative epistasis formula,wefind 15 additional trigenic
interactions involving SKI7 and HBS1. These 15 multiplicative-only
interactions are highly enriched for shared GO terms (Fig. 4D). More-
over, 12 of the 15 multiplicative-only interactions involve functionally

similar genes that are all members of the ribonucleoprotein complex
(Fig. 4F). Thus, the multiplicative epistasis measure finds evidence for
additional functional redundancy between SKI7 and HBS1 that went
undetected by the chimeric epistasis measure used in Kuzmin et al.26.

In addition to the negative interactions just described, we also
highlight an example of a biologically relevant positive trigenic inter-
action that ismissedby the chimeric epistasismeasure but detectedby
the multiplicative measure. The gene triplet CIK1-VIK1-SUP35-td, which
consists of two paralogs, CIK1 and VIK1, involved in mitosis69, and the
essential gene SUP35-td70, has an ambiguous, negative chimeric inter-
action (ϵCijk = � 0:03) but has a very large, positive multiplicative
interaction (ϵMijk = 75:337). Examining thefitness values (Supplementary
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Fig. 4 | Negative trigenic interactions in budding yeast calculated using the
multiplicative and chimeric epistasis measures. A Chimeric epistasis measure
ϵCijk versus themultiplicative epistasismeasure ϵMijk for gene triplets (i, j, k) inKuzmin
et al.26. We highlight trigenic interactions that are negative only by the multi-
plicative measure ("M only''), only by the chimeric measure ("C only''), or by both
measures ("M and C''). B Fold enrichment for co-expression patterns, shared
protein-protein interactions (PPI), and shared GO annotations for negative trigenic
interactions. Asterisk (*) denotes statistical significance (P <0.018, hypergeometric

test, one-sided), while `ns' indicates not significant (P >0.05).CNumber ofnegative
trigenic interactions (i, j, k) for every pair (i, j) of genes with at least five negative
trigenic interactions. D Fold enrichment for GO annotations and protein-protein
interactions (PPI) for negative “M only” trigenic interactions that involve the gene
pairs highlighted in (C). The numbers in parentheses are the number of “M only”
interactions. E/F Genes that have a negative trigenic interaction with either NUP53-
ASM4 (E) or with SKI7-HBS1 (F), organized into protein complexes and colored by
whether the trigenic interaction is “M only” (gold) or “M and C” (blue).
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Fig. 9) shows that the fitness of the CIK1-VIK1-SUP35-td triple mutant is
more than 100 times larger than thefitness of theCIK1-SUP35-tddouble
mutant. Moreover, positive interactions have been previously docu-
mented between pairs of these genes: VIK1 deletion mutants suppress
several phenotypes of CIK1 deletionmutants, including amitotic delay
phenotype and a temperature-dependent fitness defect69; and a phe-
notypic suppression interaction exists between CIK1 and SUP35, where
deletion of CIK1 reduces the ability of SUP35-td to formprions69. These
previously identified positive pairwise interactions, together with the
large triple-mutant fitness value, demonstrate that the gene triplet
CIK1-VIK1-SUP35-td is more likely to have a positive interaction as
indicated by the multiplicative measure, rather than a neutral inter-
action as indicated by the chimeric measure.

Overall, our results demonstrate not only the degree to which the
multiplicative and chimeric formula may lead to distinct interpreta-
tions of fitness data, but also that genetic interactions measured using
the multiplicative formula appear to be more consistent with other
biological features compared to interactions measured using the chi-
meric formula.

Higher-order interactions in drug responses
Wenext reanalyzed a drug responsedataset40 inwhich three-way, four-
way, and five-way interactions between drug combinations were
quantified using the chimeric formula. For these data, the authors
exposed Escherichia coli cultures to between one and five antibiotics
(out of eight total) at one of three different concentrations. They
measured fitness as the difference in exponential growth rates
between the culture exposed to antibiotics and a negative control with
no antibiotics. The authors then used the chimeric epistasismeasure ϵC

to identify third-, fourth-, and fifth-order interactions between differ-
ent combinations of antibiotics. We compared their results with the
additive epistasis measure ϵA. We used the additive measure ϵA

because, under the standard assumption that antibiotic exposure
multiplicatively affects the survival probability of individual cells46,
then antibiotic exposurewill have anadditive effect on the exponential
growth rates of the population of cells11,71.

The signs of the chimeric interaction measure ϵC and the additive
interaction measure ϵA disagree for three-way, four-way, and five-way
interactions, with the discrepancy between the two measures
increasing with the interaction order (Fig. 5A), which is consistent with
our earlier simulations (Fig. 1C). The discrepancy is largest for fifth-
order interactions, with approximately 14% of fifth-order interactions
having a different sign using the additive measure versus the chimeric
measure (Fig. 5A).

The discrepancy between the additive and chimeric measures
may lead to different conclusions on the type of interactions between
antibiotics, i.e., whether a given combination of antibiotics is syner-
gistic (more effective at killing bacteria when taken together versus
taken individually, i.e., a negative interaction) or antagonistic (less
effective together versus individually, i.e., a positive interaction). For
fifth-order interactions, the chimeric measure ϵC was more positively
skewed than the additivemeasure ϵA (Fig. 5B), with a Pearson skewness
coefficient of0.87 for the chimericmeasureversus0.17 for the additive
measure. Thus, the chimeric measure is significantly more likely to
identify antagonistic interactions than the additive measure
(P < 7 × 10−43, paired t-test).

We then examined specific five-way combinations of antibiotics
with different interaction signs following the procedure of ref. 27 and
ref. 45. For each five-way combination of antibiotics we first calculated
the median relative growth rate of E. coli across replicates and con-
centrations, and then used these median relative growth values to
compute both the additive and chimeric measures (Fig. 5C). The
interaction between the antibiotic combination Ampicillin (AMP),
Doxycycline hyclate (DOX), Erythromycin (ERY), Streptomycin (STR),
Trimethoprim (TMP) is highly antagonistic using the chimericmeasure
(i.e., ϵC =0.56 >0) but synergistic using the additive measure (i.e.,
ϵA = −0.04 <0). A similar pattern also holds for the antibiotic combi-
nation consisting of AMP, DOX, ERY, STR, and Cefoxitin sodium salt
(FOX). We emphasize that because we use the same fitness values as
reported in ref. 40, the differences between the additive and chimeric
measures arise solely from the use of the additive versus chimeric
measures as opposed to variability arising from biological or technical
replicates.

Epistasis between protein mutations
We further demonstrate the difference between themultiplicative and
chimeric epistasis measures using experimental fitness data of eleven
different proteins10,38,72–79. These fitness values were measured using
deepmutational scanning (DMS), a recent class of technologies which
use high-throughput sequencing to measure the fitness of many var-
iants of a protein. The published analyses of each of these datasets
quantified epistasis using either an additive or multiplicative epistasis
measure, depending on the fitness measurement being made. We
reanalyzed each dataset using the chimeric measure to demonstrate
the differences between the chimeric measure and the additive/mul-
tiplicative measures.

We found that the multiplicative and chimeric measures have
substantial disagreement in quantifying higher-order epistasis within

Fig. 5 | Higher-order interactions between antibiotics in E. coli using drug
response data from Tekin et al.40. A Proportion of E. coli cultures where the sign
(positive vs. negative) of the chimeric and additive measures disagree. The sign
discordance fraction, or proportion of interactions where the sign of the two
measures disagree, increases with the interaction order, consistent with the

simulations shown in Fig. 1. B Distributions and Q-Q plots (insets) for the additive
(orange) and chimeric (blue) measures for 5th-order interactions. C Scatter plot of
median relative growth rates for each 5-way combination of antibiotics across
concentration levels and replicates. Dashed horizontal and vertical lines indicate
zero additive and chimeric epistasis measures, respectively.
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Fig. 6 | Epistasis between protein mutations in eleven different proteins.
A, B Standard deviation of fitness values across all (left) three-, (middle) four-, and
(right) five-way tuples of mutations versus the average (A) correlation and (B) sign
disagreement fraction of the log-multiplicative measure log ϵM versus the chimeric

measure ϵC. Line of best fit is shown as a dashed red line. C, D Log-multiplicative
measure log ϵM versus chimeric measure ϵC for the (C) FolA72 and (D) Streptococcus
pyogenes Cas9 (SpCas9) nuclease38 proteins. Dashed vertical and horizontal lines
indicate zero log-multiplicative and chimeric epistasis measures, respectively.
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several of the proteins. Furthermore, we observe that both the corre-
lation between the measures and the sign disagreement fraction vary
as a function of the standard deviation s of the 2K

fitness values
{f0⋯0, …, f1⋯1} across all K-tuples of mutation. Specifically, the corre-
lation between the chimeric measure and the multiplicative measure
decreases as a function of the fitness standard deviation s (Fig. 6A),
while the sign disagreement function increases as a function of the
fitness standard deviation s. These results show the large difference
between the multiplicative and chimeric measures for proteins with a
large standard deviation in fitness values.

The FolA metabolic protein from E. coli has the second largest
standard deviation s in fitness of the eleven proteins that we analyzed.
This data from ref. 72 includes the fitness of approximately 260, 000
mutations at nine single-nucleotide loci. The three-way multiplicative
and chimeric measures for the FolA protein have correlation 0.6086,
while the four- andfive-waymeasures have correlation<0.05— i.e., the
two measures are almost uncorrelated for four- and five-way interac-
tions (Fig. 6C). There is also substantial sign disagreement between the
multiplicative and chimeric measures, with over 60% sign disagree-
ment for five-way interactions.

Another protein with large fitness standard deviation s is the
Streptococcus pyogenes Cas9 (SpCas9) nuclease, a widely used
protein for genome editing across biology. The fitness landscape of
SpCas9 was profiled in ref. 38, where fitness was measured by the
editing efficiency of the SpCas9 protein. For the SpCas9 protein, the
sign disagreement between the two epistasis measures is over 20%
for three-, four-, and five-way interactions (Fig. 6D). The large sign
disagreement between the two epistasis measures is likely because
for many protein variants, the log-multiplicative measure log ϵM is
close to 0 while the chimeric measure ϵC varies substantially
between − 4 and 2.

Overall, our results demonstrate the extent to which one may
infer substantially different higher-order epistasis between protein
mutations – including different signs of epistasis – if the chimeric
measure is used in place of the additive/multiplicative measures.

Discussion
Higher-order interactions between genetic variants, drugs, and other
perturbations play a large role in shaping the fitness landscape of an
organism1,80. Yet despite the importance of these interactions, there
are multiple different — and sometimes inconsistent — formulae used
in the literature formeasuring higher-order interactions, most notably
for measuring higher-order epistasis betweenmutations. In particular,
many researchers use a chimeric formula that quantifies epistasis as an
additive deviation from a multiplicative null model and is thus a “chi-
mera” of additive and multiplicative measurement scales.

In this work, we show that there is considerable disagreement
between the chimeric epistasis measure and the additive and multi-
plicative measures. For higher-order interactions, the chimeric mea-
sure often has a different sign compared to themultiplicative measure
(Fig. 1C). We demonstrate that this inconsistency is not purely a
mathematical curiosity but also leads to markedly different biological
conclusions in yeast genetics24,26 (Fig. 4), antibiotic resistance40,45

(Fig. 5), and protein epistasis (Fig. 6), raising potential questions about
some reported higher-order epistatic interactions in the literature.
Furthermore, we show that the different epistasis measures are equal
to different parametrizations of themultivariate Bernoulli distribution
(MVB)29 (Table 1) and demonstrate that the chimeric epistasis measure
is less statistically sound than the additive andmultiplicativemeasures.
Our connection between epistasis measures and parameters of the
multivariate Bernoulli measure is general and unifies many different
epistasis measures: the additive, multiplicative, and chimeric mea-
sures; and the Walsh coefficients30–32,42,43. Overall, our results demon-
strate that the more appropriate multiplicative and additive formulae
for higher-order epistasis yield more mathematically sound and

biologically meaningful results compared to the chimeric formula
which improperly conflates measurement scales.

Historically, most work in epistasis has focused on pairwise
interactions, where the chimeric andmultiplicative measures agree on
the interaction sign, and thus the differences between these two
measures are not widely reported. However, even in the pairwise set-
ting, the two measures have different magnitudes, which may still
affect biological findings. For example, Costanzo et al.21 recently built a
large-scale pairwise interaction network for yeast using the chimeric
epistasis measure, where they included an edge between two genes if
the absolute value of the chimeric measure was greater than a certain
threshold. From our results with the trigenic yeast network (Section
2.6), it is possible that the edges in the network would change if one
used the more appropriate multiplicative measure instead, whichmay
lead to the inference of different genetic interactions and thus the
functional relationships and regulatory mechanisms identified by
Costanzo et al.21.

There are several future directions for our work. First, it would be
useful to further investigate the relationship between the MVB and
regression-based approaches for quantifying epistasis in GWAS81,82. For
example, regression-based approaches often do not require that one
has measured the fitness of all 2L genotypes, which may make the
estimation of the interaction parameters of theMVBmore challenging.
Moreover, these regression approaches may sometimes produce
biased estimates of epistasis83, and we imagine that the MVB would
provide a useful statistical framework for characterizing such statis-
tical biases. A second direction is to incorporate uncertainty of fitness
measurements in the MVB, e.g., by using a Bayesian framework.
Thirdly, one could generalize our theoretical results by relaxing the
assumption that fitness is proportional to genotype probability, e.g.,
by incorporating genetic drift or other more evolutionarily realistic
factors. Fourth, our statistical framework could be extended to model
how higher-order interactions contribute to evolutionary trajectories
in a fitness landscape84. Fifth, it would be quite interesting to investi-
gate the connections between the MVB and the circuit formulae used
to quantify the shapeof a fitness landscape19,42,43,85. Finally, we note that
our MVB framework provides an approach for doing formal model
comparisons. Thus, an interesting and important future direction
would be to derive a statistical test using the MVB to test whether an
additive or multiplicative fitness model better fits data from different
experimental technologies.

Ultimately, future studies on interactions in genetics, drug
response, protein fitness landscapes, and other domains should take
care to use the mathematically appropriate additive or multiplicative
formula for measuring higher-order interactions, and not fall victim to
the chimera.

Methods
Pairwise epistasis
We start with the simplest setting where the genotype consists of two
loci, eachwith two alleles labeled 0 and 1, i.e., a haploid genomewith a
single biallelicmutation. Thus, there are four possible genotypes— the
wild-type 00, the singlemutants 01 and 10, and the doublemutant 11—
with corresponding fitness values f00, f01, f10, and f11 (Fig. 1). There are
two standard null models that relate genotype to fitness: the additive
model and the multiplicative model.

Additive fitness model. In the first model, mutations are assumed to
have an additive effect on fitness2,19, e.g., in drug resistance42,85 and
protein binding30,32. The effect of a mutation is quantified by the dif-
ference in fitness when one locus is mutated; for example, f11 − f10
measures the effect of a mutation in the second locus, where the
genetic background is a mutation in the first locus. Interaction
between mutations in the two loci, i.e., pairwise epistasis, is measured
by the difference in the effect of amutation in one locus across the two
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possible genetic backgrounds (Supplementary Fig. 10A). The pairwise
interaction measure ϵA is given by

ϵA = ðf 11 � f 10Þ � ðf 01 � f 00Þ: ð7Þ
Note that the definition (7) of the pairwise epistasis measure is

invariant to the choice of which locus is mutated, i.e.,
ϵA = (f11 − f10) − (f01 − f00) = (f11 − f01) − (f10 − f00). In practice, the fitness
values are often normalized so that f00 = 0, i.e., the fitness f00 of the
wild-type is zero, resulting in the following commonly-used equation
for pairwise epistasis under an additive fitness model:

ϵA = f 11 � ðf 01 + f 10Þ: ð8Þ
Equivalently, the pairwise epistasis measure ϵA is the difference

between the observed double-mutant fitness f11 and the expected
double-mutant fitness f01 + f10 under a null model with no epistasis.
As ref. 2 notes, this definition of pairwise epistasis is similar to Fisher’s
original definition of epistasis41.

The sign sgnðϵAÞ of the pairwise epistasis measure ϵA determines
the type of epistatic interaction. If ϵA =0, then there is no interaction
between the two loci and so the fitness f11 of a double mutant is
completely determined by the sum f11 = f01 + f10 of the single mutant
fitnesses f01, f10. If ϵ

A> 0 then there is a positive interaction between the
two loci, in the sense that the fitness f11 of the double mutant is larger
than the fitness if there was no pairwise interaction. Similarly, if ϵA < 0
then there is a negative interaction between the two loci, in the sense
that the fitness f11 of the double mutant is smaller than the fitness if
there was no pairwise interaction.

The pairwise epistasis measure ϵA is equivalent to two other
notions of epistasis used in the genetics literature. First, the pairwise
epistasis measure ϵA is equal to the pairwise interaction term in the
standard linear regression framework for quantifying epistasis12. Spe-
cifically, if the fitness values f00, f01, f10, f11 follow a linear model of the
form

f x1x2 =β0 +β1x1 +β2x2 + β12x1x2, ð9Þ

then the coefficient β12 of the interaction term x1x2 is equal to the
pairwise epistasis measure ϵA in (7). Second, the epistasis measure ϵA is
equal (up to a constant factor) to the 2nd-order Walsh coefficient that
is often used to measure “background-averaged” epistasis30–32,42,43.

Multiplicativefitnessmodel. In thismodel, mutations are assumed to
have a multiplicative effect on fitness, e.g., modeling cellular growth
rates2,14,21,23,24. The multiplicative pairwise epistasis measure (Supple-
mentary Fig. 10B) is given by

ϵM =
f 11
f 10

=
f 01
f 00

=
f 11 f 00
f 10 f 01

: ð10Þ

As in the additive model, in practice the fitness values are typically
normalized such that f00 = 1, resulting in the following equation for
pairwise epistasis:

ϵM =
f 11

f 01 f 10
: ð11Þ

That is, the pairwise epistasis measure ϵM is the ratio between the
double-mutant fitness f11 and the product f01f10 of the single-mutant
fitness values.

The multiplicative fitness model is closely related to the additive
fitness model: if fitnesses f are multiplicative, then the log-fitnesses
log f are additive. Thus, the sign of the interaction is determined by the
difference between the epistasis measure ϵM and 1, or equivalently the
sign sgnðlog ϵM Þ of the log ϵM of the epistasis measure ϵM (Fig. 1A). If

ϵM > 1, i.e., log ϵM>0, there is a positive interaction between the two loci;
if ϵM = 1, i.e., log ϵM =0, then there is no interaction between the two
loci; and if ϵM < 1, i.e., log ϵM<0, then there is a negative interaction
between the two loci.

The multiplicative pairwise epistasis measure is closely related to
the pairwise interaction term in the standard log-linear regression
framework for epistasis12. Specifically, if the fitness values f00, f01, f10, f11
follow a log-linear regression model of the form

log f x1x2 =β0 +β1x1 +β2x2 +β12x1x2, ð12Þ

then β12 = ϵM.

Chimeric formula.Many studies in genetics use amultiplicativefitness
model but do not measure pairwise epistasis with the multiplicative
epistasis measure ϵM. Instead, these papers use a multiplicative null
model but measure deviations with an additive scale, yielding the fol-
lowing epistasis measurement:

ϵC = f 11 � f 01 f 10: ð13Þ

We call ϵCij a "chimeric” measure as it measures deviations from a
multiplicative null model on an additive scale, and is thus a chimera
of both the multiplicative and additive measurement scales. The
chimeric measure has been widely used in the genetics literature
(e.g., refs. 2,14,23,86) and in the drug interaction literature (e.g.,
refs. 27,40,44–48). In these applications, similar to the additive mea-
sure, the sign of an interaction between two loci is determined by the
sgn(ϵC) of the chimeric measure ϵC: ϵC >0 corresponds to a positive
interaction while ϵC <0 corresponds to a negative interaction.

Although it is often described in terms of a multiplicative fitness
model, the chimeric epistasis measure ϵC is not equal to the multi-
plicativemeasure ϵM. The chimeric epistasismeasure ϵC in Equation (13)
is similar to equation (11), but the deviation between the observed
double-mutant fitness f11 and the expected fitness f01f10 under a mul-
tiplicative null model is computed using subtraction instead of divi-
sion. Equivalently, the (log-)multiplicative epistasis measure
log ϵM = log f 11 � log f 01 f 10 computes the difference between the
observed and expected logarithm of the fitness of the double mutant,
while the chimeric epistasis measure ϵC= f11 − f01f10 computes the dif-
ference directly (Fig. 1A). In this way, the chimeric epistasis measure
may overstate or understate the strength of a pairwise interaction in a
multiplicative fitness model (Fig. 1A); see Supplementary Note 2 for a
numerical example highlighting this issue with the chimeric measure.

We note that the differences between the multiplicative epistasis
measure ϵMij and chimeric epistasis measure ϵCij do not appear to be
widely appreciated in either the applied or theoretical literature.
Almost every study that uses the chimeric epistasis measure ϵCij does
not consider the multiplicative measure ϵMij . On the other hand, while
many in the statistics literature draw a distinction between additive
and multiplicative interaction effects (e.g., refs. 12,13), none of these
papers discuss the chimeric interaction measure ϵCij that is frequently
used in the genetics and drug interaction literature. An exception is
Gao, Granka, and Feldman87 who refer to themultiplicative formula (2)
as a "rescaling of [the chimeric] formula”, but we take the stronger view
that “rescaling” obscures consequential implications of the two
formula.

Nevertheless, we show that the chimeric measure ϵC measures the
same sign of interaction as the multiplicative measure ϵM.

Proposition 1. Let f 01, f 10, f 11 2 R be real numbers. Let ϵM = f 11
f 01 f 10

and
ϵC = f11 − f01 f10. Then sgnðϵC Þ= sgnðlog ϵM Þ.

Proof. f 11 � f 01 f 10>0 () f 11
f 01 f 10

>1.

Article https://doi.org/10.1038/s41467-025-56986-5

Nature Communications |         (2025) 16:1711 12

www.nature.com/naturecommunications


Choosing an appropriate null model. The appropriate choice of null
fitness model depends on the quantitative trait being used to
approximate fitness. Cellular growth rate (i.e., the Malthusian
parameter88, which is often used as a measure of the fitness of
microbial populations) is typically described with an additive fitness
model; this is because in the population genetics literature, it is often
assumed that mutations that independently effect survival and
reproduction probabilities combine multiplicatively within individual
cells89,90, and so thesemutations will combine additively in their effect
on the growth rate of a continuously-growing clonal population11,71.
However, multiplicative models are sometimes still used inappropri-
ately in this setting9. On the other hand, the relative frequency of a
microbial (or protein) population is typicallymodeledmultiplicatively,
as the growth rate of a population is proportional to the logarithm of
its relative frequency. In general, Wagner13,46 suggests that one should
use the model that preserves the scale on which single-mutant fitness
effects were measured (i.e., additive or fold differences from
wild type).

Higher-order epistasis
We next generalize our discussion to genotypes with L ≥ 2 loci, where
we demonstrate that the differences between the multiplicative mea-
sure and the chimeric measure become even more pronounced when
analyzing higher-order epistasis, or interactions between three or
more loci.

There are 2L genotypes x1 ⋯ xL, where xℓ ∈ {0, 1} indicates a
mutation in locus ℓ, with eachgenotype x1⋯ xLhaving a corresponding
fitness value f x1 ���xL , e.g., f010 is the fitness of genotype 010 with a

mutation in the second locus and no mutations in the first and third
loci. However, because writing out the 2L genotypes is infeasible for
large L, we use the following notational shorthand.We use fi to refer to
the fitness of the genotype with a single mutation in locus i, fij to refer
to the fitness of the genotype with mutations in loci i, j, and so on. For
example, for L = 3 loci, f2 corresponds to f010 while f12 corresponds to
f110. Without loss of generality, we assume the wild-type fitness f+ is
equal to 0 for the additive fitness model and equal to 1 for the multi-
plicative and chimeric fitness models. We also define ϵAij , ϵ

M
ij , ϵ

C
ij as the

additive, multiplicative, and chimeric pairwise epistasis measure,
respectively, between the i-th locus and the j-th locus, i.e.,

ϵAij = f ij � f i � f j, ϵ
M
ij =

f ij
f i f j

and ϵCij = f ij � f if j . For example, for L = 3 loci,

ϵM12 corresponds to f 110
f 100f 010

.

Additive fitness model. We start by quantifying three-way epistasis in
the additive fitness model. When there is no pairwise epistasis, the
fitness fijk of a triple mutant is equal to fi+ fj+ fk, i.e., the fitness from of
each of the single mutants. When there is pairwise epistasis, then the
triple mutant fitness fijk also includes pairwise interaction measures,
i.e.,

f i + f j + f k + ϵ
A
ij + ϵ

A
ik + ϵ

A
jk ð14Þ

Three-way epistasis is computed by measuring the difference
between theobserved triple-mutantfitness fijk and the expectedfitness
in (14) when only pairwise interactions are included. Thus, the three-
way additive epistasis measure ϵAijk is given by

ϵAijk = f ijk � f i + f j + f k + ϵ
A
ij + ϵ

A
ik + ϵ

A
jk

h i
= f ijk � f ij � f ik � f jk + f i + f j + f k :

ð15Þ

As in the pairwise case, the sign of the three-way epistaticmeasure
ϵAijk determines the sign of the interaction: if ϵAijk>0, then there is a
positive three-way interaction between loci i, j, k— in the sense that the
fitness fijk of the triplemutant is larger than the expected fitness in (14)

whenonly pairwise interactions arepresent—while if ϵAijk<0, then there
is a negative three-way interaction between loci i, j, k.

Our derivation of the three-way epistasis measure ϵAijk is easily
extended to higher-order interactions. The additive K-way epistasis
measure ϵAi1 ...iK is defined recursively as

ϵAi1 ...iK = f i1 ...iK �
XK
j = 1

f ij

 !
+

X
1≤ j1<j2 ≤K

ϵMij1 ij2

0@ 1A+ � � � +
X

1 ≤ j1<���<jK�1 ≤K

ϵAij1 ���ijK�1

0@ 1A24 35:
ð16Þ

The K-way epistasis measures ϵAi1 ...iK are proportional to two other
measures of epistasis: (1) the K-th order Walsh coefficient used to
quantify background-averaged epistasis among K genetic loci30–32 and
(2) the K-th order interaction coefficients of a linear regressionmodel,
which we discuss in more detail in the following section.

Multiplicative fitness model. We derive formulae for epistasis in a
multiplicative fitness model by using the equivalence between multi-
plicative fitness and additive log fitness. For example, the 3-way epis-
tasis measure ϵMijk in the multiplicative model is given by

ϵMijk =
f ijk

f i f j f kϵ
M
ij ϵ

M
ikϵ

M
jk

=
f ijk f i f j f k
f ij f ik f jk

: ð17Þ

As in the pairwise setting, the sign of interaction is determined by
the difference between the multiplicative measure ϵMijk and 1, or
equivalently by the sgnðlog ϵMijkÞ of the logarithm of the epistasis mea-
sure ϵMijk .

Using (16), then the K-way epistasis measure ϵMi1 ...iK in the multi-
plicative model is defined recursively by

ϵMi1 ...iK =
f i1 ...iKQK

j = 1 f ij

� � Q
1≤ j1<j2 ≤K

ϵMij1 ij2

� �
� � � Q1≤ j1<���<jK�1 ≤K

ϵMij1 ���ijK�1

� � : ð18Þ

Recent work in the genetics24,26 and drug interaction27 claim to
measure three-way epistasis using a multiplicative fitness model.
However, they do not measure three-way epistasis the multiplicative
epistasis formula (17) but instead derive a chimeric formula using both
additive and multiplicative measurement scales:

ϵCijk = f ijk � f if j f k � ϵCij f k � ϵCik f j � ϵCjkf i: ð19Þ

We call ϵCijk the chimeric three-way epistasis measure. In these
applications, the sign of the interaction is determined by the sgnðϵCijkÞ
of the chimeric measure ϵCijk .

Despite the claim that the chimeric measure ϵCijk is derived from a
multiplicative fitnessmodel, it is clear by inspection that the three-way
chimeric measure ϵCijk is not equal to the multiplicative three-way
epistasismeasure ϵMijk . However, unlike in the pairwise setting, even the
signs of these two measures disagree (Fig. 1B). We demonstrate in
Supplementary Note 2 that even when ϵMijk = 1 — that is, there is no
three-way epistasis— the chimeric three-way epistasismeasure ϵCijk may
still indicate either positive or negative three-way epistasis.

Tekin et al.27 extended the three-way chimeric epistasis formula
(19) by heuristically deriving chimeric formulae for 4-way and 5-way
epistasis. For example, their chimeric formula for 4-way epistasis is
given by

ϵCijk‘ = f ijk‘ � f if jk‘ � f jf ik‘ � f kf ij‘ � f ‘f ijk � f ijf k‘ � f ikf j‘ � f jkf i‘
+2f if j f k‘ +2f if kf jl + 2f if ‘f jk + 2f jf kf i‘ + 2f jf ‘f ik + 2f kf ‘f ij � 6f if j f kf ‘:

As in three-way epistasis, the sign of the 4-way and 5-way chimeric
epistasis measures derived by Tekin et al.27 do not match the signs of
the corresponding multiplicative epistasis measures (Fig. 1C). This
fundamental disagreement motivates a deeper mathematical
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understanding of these epistasis measures, which we explore in the
following section.

Multivariate Bernoulli distribution
In the previous section, we defined quantitative measures of epistasis
for two standard null models for fitness: the additive model and the
multiplicative model. Nevertheless, some recent papers use a multi-
plicative fitness model but instead use an epistasis measure which is a
chimera of bothmultiplicative and additivemeasurement scales. Here,
we unify these different epistasis measures using the multivariate
Bernoulli distribution from probability theory29.

The multivariate Bernoulli distribution describes any distribution
on {0, 1}L, i.e., binary strings of length L, for L ≥ 2. The multivariate
Bernoulli distribution has three different parameterizations which are
used throughout the literature29,47. We start by describing these para-
metrizations for the simplest such distribution: a bivariate Bernoulli
distribution over binary strings of length L = 2.

Bivariate Bernoulli distribution. Suppose that X = (X1, X2) ∈ {0, 1}2 is
distributed according to a bivariate Bernoulli distribution. A distribu-
tion on X is specified by the parameters p00, p01, p10, p11, where
px1x2

=PðX 1 = x1,X2 = x2Þ is the probability of (x1, x2). The parameters
p = (p00, p01, p10, p11) are sometimes called the general parameters29.
Note that since p00 + p01 + p10 + p11 = 1, only three such parameters are
needed to define the distribution.

The probability density function (PDF) P(X1, X2) of X = (X1, X2) has
the form

PðX 1,X2Þ=pð1�X 1Þð1�X2Þ
00 pð1�X 1ÞX2

01 pX 1ð1�X2Þ
10 pX 1X2

11

= exp logp00 + log
p10

p00

� �
X 1 + log

p01

p00

� �
X2 + log

p11p00

p10p01

� �
X 1X2

� 	
:

ð20Þ

In other words, the PDF P(X1, X2) follows a log-linearmodel of the form

logPðX 1,X2Þ=β0 + β1X 1 + β2X2 + β12X 1X2 ð21Þ

for constants β0,β1,β2,β12 2 R. There is a one-to-one correspondence
between the general parameters p = (p00, p01, p10, p11) and the
constants β = (β0, β1, β2, β12). Thus, a bivariate Bernoulli distribution
is also parametrized by the parameters β, also known as the natural
parameters of the distribution29. As with the general parameters p, we
note that only three out of the four parameters β0, β1, β2, β12 are
needed to fully specify a distribution. We also note that independence
between the random variables X1 and X2 is described by the parameter
β12, where X1 and X2 are independent if and only if β12 = 0.

Equation (21) demonstrates that X = (X1, X2) follows an exponential
family distribution, a wide class of distributions that includes many
common distributions including normal distributions or Poisson dis-
tributions. In particular, using the terminology of exponential families,
equation (21) shows that the sufficient statistics of X are X1, X2, and X1X2,
with corresponding canonical parametersβ1, β2, and β12

48,91. As a result,
the distribution P(X) is uniquely defined by the expected values
E[X1], E[X2], E[X1X2] of the sufficient statistics, sometimes called the
moments or themean parameters of the distribution48. Thus, we obtain
a third parametrization of the distribution P(X) using the
moments μ0 = 1, μ1 = E[X1], μ2 = E[X2], μ12 = E[X1X2]. The elements of the
vector μ = (1, μ1, μ2, μ12) of moments are sometimes called the mean
parameters of the distribution.

Multivariate Bernoulli distribution. The three parametrizations we
derived for the bivariate Bernoulli distribution extend to the multi-
variate Bernoulli distribution. Suppose that (X1, …, XL) ∈ {0, 1}L is dis-
tributed according to a multivariate Bernoulli distribution. Then the

distribution P(X) of the randomvariables X is uniquely specified by one
of the three following parametrizations.
1. General parameters: These are 2L non-negative values

p= ðpx1 ...xL
Þðx1 , ..., xLÞ2f0, 1gL

satisfying

px1 ...xL
=PðX ‘ = x‘ for ‘= 1, . . . , LÞ: ð22Þ

For example if L=3, then p010=P(X1 = 0, X2 = 1, X3 =0) and
p110 =P(X1 = 1, X2 = 1, X3=0). Note that sinceP

ðx1 , ..., xLÞ2f0, 1gLpx1 ...xL
= 1, only 2L − 1 values px1 ...xL

are necessary to

define the distribution.
2. Natural/canonical parameters: These are 2L real numbers

β= ðβSÞS�½L� 2 R satisfying

logPðX 1, . . . ,XLÞ=
X
S�½L�

βS �
Y
i2S

X i: ð23Þ

Similar to the general parameters pi, only 2L − 1 values βS are
necessary to uniquely define the distribution. Typically, the
parameterβ+, often called a normalizing constant or apartition
function of the distribution, is left unspecified. As noted in the
bivariate setting, equation (23) shows that the multivariate
Bernoulli is an exponential family distribution with 2L − 1 suffi-
cient statistics of the form ∏i∈SXi for subsets S with ∣S∣ > 0.
Moreover, by rewriting (23) as

logpx1 ���xL =β+ +
XL
i = 1

βixi

 !
+

X
1≤ i1<i2 ≤ L

βi1 i2
� xi1xi2

0@ 1A+ � � � + β1���L � x1 � � � xL
� �

,

ð24Þ
we observe that the natural parameters β correspond to inter-
action coefficients in a log-linear regression model with
response variables p. For example, the natural parameter β12 is
the coefficient of the interaction term x1x2.

3. Moments/mean parameters: These are 2L real numbers
μ= ðμSÞS�½L� satisfying

μS = E
Y
s2S

Xs

" #
: ð25Þ

For example if L = 3, then μ13 = E[X1X3] while μ12 = E[X1X2]. The
mean parameters fμSgjSj > 0 are sufficient statistics for the mul-
tivariate Bernoulli distribution, as seen in the exponential family
form (23) of the multivariate Bernoulli distribution.

We note that all three parametrizations, as well as the fitness
values f and epistasis measures ϵ, can be defined either in terms of
subsets S ⊆ [L] as with the natural parameters β and moments μ, or in
termsof binary strings x1⋯ xL aswith the general parametersp.We use
both definitions interchangeably, with the convention that a subset
S ⊆ [L] corresponds to the binary string x1 ⋯ xL with xi = 1{i∈S}.

Moreover, when written as vectors indexed by binary strings, the
three parametrizations β, μ, p of the multivariate Bernoulli are related
to each through different linear transformations involving a matrix
operation known as the Kronecker product (see Supplementary Note 3
for specific formulae). Interestingly, several papers quantify epistasis
using theWalsh-Hadamard transformwhich is also defined in terms of
Kronecker products30–32. This connection is not a coincidence; in the
next section we show that the Walsh-Hadamard transform is closely
related to the parametrizations of the multivariate Bernoulli.

Unifying epistasis measures with the multivariate Bernoulli
The multivariate Bernoulli distribution provides an elegant means by
which to describe the different epistasis formulae in the literature. We
model the genotype (X1, …, XL) ∈ {0, 1}L as a random variable
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distributed according to a multivariate Bernoulli distribution. The
parametrizations of the multivariate Bernoulli correspond to different
features of the genotype, as we demonstrate next.

Multiplicative and additive epistasis measures. We start by relating
the multiplicative epistasis formula (18) to the multivariate Bernoulli
distribution. A careful reader may observe that the natural parameter
β12 = log p11p00

p10p01
in the bivariate Bernoulli distribution (21) bears close

resemblance to the multiplicative epistasis measure in equation (10).
Specifically, if the fitness f x1x2

of each genotype (x1, x2) ∈ {0, 1}2 is
proportional to the probability px1x2

of that genotype in the multi-
variate Bernoulli, then the natural parameter β12 is equal to the loga-
rithm log ϵM12 of the multiplicative epistasis measure ϵM12. Thus, for L = 2
loci, epistasis is measured by the natural parameters β of a bivariate
Bernoulli distribution.

We prove that this observation is not specific to the bivariate
Bernoulli distribution with L = 2 loci, and in fact generalizes to any
number L of loci. Specifically, we prove that if the fitness f x1 ���xL of
genotype (x1, …, xL) is proportional to the probability px1 ���xL of
observing the genotype, then for each subset S⊆ [L] of loci, the natural
parameter βS equals the logarithm log ϵMS of the corresponding mul-
tiplicative epistasis measure as defined in Equation (18).

Theorem 1. Let f x 2 R be fitness values for genotypes
x= (x1,…, xL)∈ {0, 1}L such that fx= c ⋅px for someconstant c>0and for
some multivariate Bernoulli random variable (X1, …, XL) with general
parameters p= ðpxÞx2f0, 1gL . Then for all subsets S ⊆ {1,…, L} of loci, the
log-multiplicative epistasis measure log ϵMS is equal to the interaction
parameter βS of the random variable (X1, …, XL).

By using the equivalencebetweenmultiplicativefitness values and
additive log-fitness values, we also derive a similar probabilistic inter-
pretation of the additive epistasis formula. Specifically, if fitness f x1 ���xL
is proportional to the log-probability logpx1 ���xL of observing the gen-
otype (x1, …, xL), then for each subset S = {i1, …, iK} ⊆ [L] of loci, the
natural parameter βS equals the logarithm log ϵAi1 , ��� , iK of the corre-
sponding additive epistasis measure as defined in Equation (16). We
formalize this observation as the following Corollary of Theorem 1.

Corollary 1. Let f x 2 R be fitness values for genotypes
x = (x1, …, xL) ∈ {0, 1}L such that f x = c � logpx for some constant c > 0
and for some multivariate Bernoulli random variable (X1, …, XL) with
general parameters p= ðpxÞx2f0, 1gL . Then for all subsets S ⊆ {1, …, L} of
loci, the log-additive epistasismeasure log ϵAS is equal to the interaction
parameter βS of the random variable (X1, …, XL).

We note that Theorem 1 follows from Lemma 3.1 in ref. 29 which
states a formula relating the general parameters p and the natural
parameters β of a multivariate Bernoulli distribution. Theorem 1 fol-
lowsby showing that the right-hand side of the formula in Lemma 3.1 is
equal to the multiplicative epistasis measure.

The assumption that the probability px1 ...xL
of observing a geno-

type (x1, …, xL) is derived from its fitness f x1 ���xL is often used in gen-
erative models for estimating the fitness of protein structures from
sequence data39. Moreover, many real-world fitness datasets –

including the yeast fitness data and many of the protein datasets
analyzed in the Results –measure the fitness of a genotype x in terms
of its relative frequency in a large population of genotypes, i.e., its
probability px.

We also note that the statistical problem of estimating the natural
parameters β or mean parameters μ of a multivariate Bernoulli dis-
tribution from samples (X1, …, XL) of the distribution is computation-
ally hard48. The reason why we are able to use relatively simple
formulae (16), (18) to compute the natural parameters β is because in
this setting, we have both samples (X1,…, XL) and their corresponding
probabilities P(X1, …, XL), i.e., the fitness values f.

Relationship with (log-)linear regression. Under the assumption that
the fitness values f x1 ���xL are proportional to the genotype probabilities
px1 ���xL , then (24) is a log-linear regression model of the form

log f x1 ���xL =β+ +
XL
i= 1

βixi

 !
+

X
1 ≤ i1<i2 ≤ L

βi1i2
� xi1

xi2

0@ 1A+ � � � + β1...L � x1 � � � xL

� �
:

ð26Þ

Thus, Theorem 1 shows that computing the multiplicative epistasis
measure ϵM is equivalent to computing the interaction parameters of
the log-linear regression in (26). The interaction parameters of
regression are a standard approach for quantifying epistasis in GWAS
and QTL analyses5. Equation (26) is sometimes also called the “Taylor
series expansion” of a fitness landscape92.

Similarly, Corollary 1 demonstrates the equivalence between the
additive epistatis measure ϵA and the coefficients of a linear regression
model with response variables equal to the fitness values. Specifically,
under the assumption that the fitness values f x1 ���xL are proportional to
the logarithm logpx1 ���xL of the genotype probabilities, then computing
the additive epistasis measures ϵA is equivalent to computing the
interaction parameters β of the following linear regression model

f x1 ���xL =β+ +
XL
i= 1

βixi

 !
+

X
1≤ i1<i2 ≤ L

βi1 i2
� xi1xi2

0@ 1A+ � � � + β1���L � x1 � � � xL
� �

:

ð27Þ

In this way, Theorem 1 and Corollary 1 provide a connection
between the multiplicative and additive epistasis measures and the
interaction coefficients of log-linear and linear regression models,
respectively.

Relationshipwith case-control GWAS. We also prove that the natural
parameters β of an MVB with three variables are closely related to the
two standard approaches formeasuring pairwise SNP-SNP interactions
in a case-control GWAS: logistic regression and conditional indepen-
dence testing49. Specifically, suppose we are given genotype
(X1, X2) ∈ {0, 1}2 and (binary) disease status D ∈ {0, 1}. Then the joint
random variable (X1, X2, D) follows anMVB distribution, where the log-
probability logPðX 1,X2,DÞ is given by the following expression in
terms of the natural parameters β:

logPðX 1,X2,DÞ=β0 +β1X 1 +β2X2 +βdD+β12X 1X2 +β1dX 1D+β2dX2D+ β12dX 1X2D:

ð28Þ

We note that there is a natural approach for representing GWAS data
from diploid genomes (with {0, 1, 2}-valued allelic states) using binary
random variables X1, X2, as described in ref. 93.

We show that the logistic regression approach for measuring
pairwise interactions is equivalent to computing β12d, while the con-
ditional independence test is equivalent to testing the null hypothesis
H0: β12 = β12d =0. See Supplementary Note 5 for details.

Chimeric epistasis measure. The multivariate Bernoulli also provides
a way of rigorously defining the pairwise and higher-order chimeric
epistasis measures using joint cumulants. Joint cumulants are a con-
cept from probability theory used to quantify higher-order interac-
tions between random variables. For example, the 2nd order joint
cumulant κ(X, Y) of two random variables X, Y is given by

κðX ,Y Þ= E½XY � � E½X �E½Y �, ð29Þ
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and is equal to the covariance Cov(X, Y). The 3rd order joint cumulant
κ(X, Y, Z) of three random variables is given by

κðX , Y ,Z Þ= E½XYZ � � κðX , Y ÞE½Z � � κðX ,Z ÞE½Y � � κðY ,Z ÞE½X �: ð30Þ

Under the assumption that the fitness f x1 ���xL of a genotype
(X1,…, XL) is equal to the correspondingmoment μx1 , ..., xL

, we define the
K-way chimeric epistatic measure ϵCi1 ���iK as the K-th order joint cumu-
lant κðXi1

, . . . ,XiK
Þ of the random variables Xi1

, . . . ,XiK
.

Definition 1. Let f x 2 R be fitness values for genotypes
x = (x1, …, xL) ∈ {0, 1}L such that f x1 ���xL = c � μx1 , ..., xL

for some constant
c >0 and for some multivariate Bernoulli random variable (X1, …, XL)
with moments μx1 , ..., xL

= E½Xx1
1 � � �XxL

L �. The chimeric epistasis mea-
sure ϵCi1 ���iK is the joint cumulant κðXi1

, . . . ,XiK
Þ of the random vari-

ables Xi1
, . . . ,XiK

.
Our definition of the K-th order chimeric epistasis measure ϵCi1 ���iK

as the K-th order joint cumulant formalizes the heuristic derivation of
the chimeric measure in previous literature. Almost every paper that
uses the chimeric epistasis measures ϵC does not even mention the
joint cumulant. Two notable exceptions are refs. 40,45, which use the
joint cumulants to derive formulae for 3-way, 4-way, and 5-way inter-
actions between drugs. However, refs. 40,45 do not rigorously define a
probability distribution nor the random variables whose joint cumu-
lant they compute.

At the same time, our formal definition of the chimeric epistasis
measure ϵC reveals two critical issues with the chimeric formula. First,
the assumption that the fitness values f are equivalent to the moments
of an MVB random variable is not biologically reasonable for higher-
order interactions between three or more loci. This assumption
implies that the fitness of a particular genotype depends on the
probability of many other genotypes. For example, making this
assumption for L = 4 loci, the fitness f1100 of a doublemutant is equal to
the moment E[X1X2], which is equal to

E½X 1X2�=PðX 1 = 1,X2 = 1Þ=p1100 +p1101 +p1110 +p1111: ð31Þ

However, it is not clear why the fitness f1100 of a single genotype, 1100,
should equal depend on the probabilities of four different genotypes,
1100, 1101, 1110, and 1111.

The second issue is that joint cumulants are not necessarily an
appropriate measure of higher-order interactions between binary
random variables. The differences between the joint cumulants
and natural parameters β have been previously investigated in the
neuroscience literature, as both quantities have been used to
quantify higher-order interactions in neuronal data. For example,
Staude et al.34,35 write that the joint cumulants κ and natural para-
meters β measure mathematically distinct types of higher-order
interactions, and that each quantity may be appropriate for dif-
ferent applications. In particular, Staude et al.34,35 note that the
joint cumulants measure higher-order interactions between ran-
dom variables in terms of “additive common components”, while
the natural parameters βmeasure "to what extent the probability of
certain binary patterns can be explained by the probabilities of its
sub-patterns”. It follows that for binary mutation data, the natural
parameters β correspond exactly with the epistasis we aim to
measure, i.e., how the fitness of a binary pattern can be explained
by the fitness of its “sub-patterns”, while the joint cumu-
lants do not.

Walsh coefficients and background-averaged epistasis. The multi-
variate Bernoulli distribution also provides a probabilistic interpreta-
tion of the Walsh coefficients that are used to measure “background-
averaged” epistasis30–32,42,43. The Walsh coefficients u = ½ux1 ���xL � 2 R2L ,

i.e., a vector indexed by binary strings, are defined by

u =Ψf ð32Þ

where Ψ=
1 1
1 �1

� ��L

2 R2L × 2L is a Hadamard matrix32 and

f = ½f x1 ���xL � 2 R2L is the vector of fitness values indexed by binary

strings. Equation (32) is known as the Walsh-Hadamard transforma-
tion, sometimes also called theWalsh or Fourier-Walsh transform; see
refs. 30,32 for more details.

Weprove that if thefitness values f are equal to probabilitiespof a
multivariate Bernoulli random variable (X1, …, XL), then the Walsh
coefficientsu are equal to themoments of (1 − 2X1,…, 1 − 2XL)∈ {− 1, 1}L,
i.e., a linear transformationof the randomvariable (X1,⋯ ,XL) such that
it takes values in {− 1, 1}L instead of {0, 1}L.

Theorem 2. Let (X1, …, XL) ∈ {0, 1}L be distributed according to a
multivariate Bernoulli distribution with general parameters f, and
define Yℓ = 1 − 2Xℓ∈ { − 1, 1} for ℓ = 1,…, L. Define u = ½ux1 ���xL � 2 R2L as in
(32). Then ux1 ���xL = E½Y

x1
1 � � � YxL

L �.
Theorem 2 gives a probabilistic interpretation of the Walsh

coefficients u. Interestingly, the Walsh coefficients u assume an addi-
tive fitnessmodel30,32 while Theorem 2 requires that the fitness values f
are equal to the probabilities p, an assumption corresponding to the
multiplicative fitness model (Table 1).

Relationship to theoretical genetics models. We note that some
previous works in theoretical genetics by Barton and Turelli (e.g.,
ref. 94) also model the genotype with an MVB. However, their
approach is substantially different fromours. Barton andTurelli model
linkage disequilibrium between k loci Xi1

, . . . ,Xik
using the k-way

central moment eμðXi1
, . . . ,Xik

Þ= E Qk
j = 1ðXij

� E½Xij
�Þ

h i
of the genotype

distribution P(X1, …, Xn). Barton and Turelli model epistasis using
coefficients that are not related to the genotype distribution
P(X1, …, Xn). In contrast, we model epistasis with the natural para-
meters β of the genotype distribution P(X1, …, Xn), as described in
Multiplicative and additive epistasis measures.

Interestingly, Barton and Turelli’s 3-way linkage dis-
equilibrium term, i.e., eμðXi1

,Xi2
,Xi3

Þ, is equal to the 3-way joint
cumulant κðXi1

,Xi2
,Xi3

Þ implicitly used by Kuzmin et al.24,26 to
measure 3-way epistasis. This equivalence is because the k-way
central moment eμðXi1

, . . . ,Xik
Þ is equal to the k-way joint cumulant

κðXi1
, . . . ,Xik

Þ for k = 1, 2, 3. However, for k ≥ 4, the k-way linkage
disequilibrium term used by Barton and Turelli is not equal to the
k-way joint cumulant.

Simulating fitness values
We simulate fitness values fx for genotypes x = (x1, …, xL) with L = 10
loci and K-way interactions using the following two different approa-
ches. For both models, we divide all of the fitness values f by f+ so
that f+ = 1.

Multiplicative fitness model. We draw interaction parameters
βS ~ Uni(−0.5, 0.5) for each subset S ⊆ {1,…, L} of loci with size ∣S∣ ≤K.
We set the fitness fx of genotype x = (x1, …, xL) as

log f x =
X

S � f1, . . . , Lg
jSj≤K

βS

Y
i2S

xi

 !0BBBBB@

1CCCCCA+ ϵx ð33Þ

where ϵx ~ N(0, σ2) are independent and identically distributed Gaus-
sian random variables with mean zero and variance σ2. We note that
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our noise model ϵ differs from the widely-used Rough Mount Fuji
fitness model95, where the noise terms are the source of epistasis96–98.

NKmodel.We simulatefitness values f according to theNKmodelwith
the code used by ref. 31. Because ref. 31 uses an additive fitnessmodel,
we exponentiate the fitness values from the NK model.

Epistasis between protein mutations
The analysis in Epistasis between protein mutations was performed
using publicly available DMS data for the following proteins/RNA
molecules:

• the E.colimetabolic protein FolA72, where thefitness of a genotype
is measured by the logarithm of its relative frequency in a large
population;

• the Streptococcus pyogenes Cas9 (SpCas9) nuclease38, where the
fitness of a genotype is measured by the logarithm of its relative
frequency in a large population;

• the immunoglobulin-binding protein G domain B1 (GB1)
expressed in Streptococcal bacteria73,74, where the fitness of a
genotype is measured by its relative frequency in a large
population;

• the Omicron BA.1 variant of the SARS-CoV-2 virus75, where the
fitness of a genotype is measured by the logarithm of its binding
affinity relative to the Wuhan Hu-1 strain;

• the Entacmaea quadricolor fluorescent protein (eqFP611)76, where
the fitness of a genotype is measured by (a normalized version of)
its relative frequency in a large population;

• the Aequorea victoria green fluorescent protein (avGFP)77, where
the fitness of a genotype is measured by the logarithm of its
fluorescence;

• the green fluorescent proteins (GFPs) from ref. 10, where the fit-
ness of a genotype is measured by its fluorescence;

• yeast tRNA78, where the fitness of a genotype is measured by the
logarithm of its relative frequency in a large population; and

• the Chlamydomonas reinhardtii flavin mononucleotide (FMN)-
based fluorescent protein (CreiLOV)79, where the fitness of a
genotype is measured by the logarithm of its fluorescence.

We aim to use these protein fitness landscapes to directly com-
pare the multiplicative and chimeric epistasis measures. However, the
quantitative trait used to measure fitness – and thus the appropriate
scale formeasuring epistasis (additive ormultiplicative) – varies across
the different proteins. In particular, the original publications for the
FolA protein, SpCas9 protein, eqFP611 protein, COVID spike protein,
avGFP protein, yeast tRNA, and CreiLOV protein assume that fitness is
measured using an additive scale (e.g., by measuring fitness as the
logarithm of the relative frequency of a genotype). Since our aim is to
demonstrate the disagreement between the multiplicative and chi-
meric measures, we first transform the fitness measurements to a
multiplicative scale by exponentiating the fitness values f, i.e., f → ef,
before computing the multiplicative measure. This allows us to
directly compare the multiplicative epistasis measure ϵM with the chi-
meric epistasis measure ϵC, which implicitly assumes fitness values are
measured using a multiplicative scale.

For each protein and each interaction order K, we compute the
multiplicative (resp. chimeric) measure ϵM (resp. ϵC) across all K-tuples
of mutational events. We note that for some proteins, the fitness of
multiple mutations at a given locus is measured (e.g., all 3 possible
base-pair substitutions at a locus, or all 19 possible amino acid sub-
stitutions); for these proteins, we consider each possiblemutation at a
given genetic locus as a separate mutational event. Furthermore, we
only compute the epistasis measure for a given K tuple of mutational
events if all fitness values f for the 2K genotypes are greater than a
threshold ϵ, which we set to ϵ =0.01 following the convention
from ref. 73.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets used in this study were obtained through publicly avail-
able repositories. The synthetic genetic array (SGA) data used to ana-
lyze three-way epistasis in yeast was obtained from https://doi.org/10.
5061/dryad.g79cnp5m9 and https://boonelab.ccbr.utoronto.ca/suppl
ement/kuzmin2018/supplement.html. The drug response data used to
analyze higher-order interactions between drug combinations was
obtained from the supplementary information of ref. 40. The deep
mutational scanning (DMS) data used to analyze higher-order inter-
actions betweenproteinmutationswas obtained from: https://doi.org/
10.5281/zenodo.8228919(FolA); https://github.com/AWHKU/RunML
DE_SpCas9/tree/main(SpCas9); https://github.com/J-SNACKKB/FLIP/
tree/main/splits/gb1(GB1); https://github.com/desai-lab/compensa
tory_epistasis_omicron/tree/main/Titeseq/results/Kds(Omicron BA.1
variant of SARS-CoV-2); the supplementary information of ref. 76
(eqFP611); https://doi.org/10.6084/m9.figshare.3102154(avGFP);
https://github.com/aequorea238/Orthologous_GFP_Fitness_
Peaks(GFPs); the supplementary information of ref. 78 (tRNA); and the
supporting information of ref. 79 (CreiLOV). Source data are provided
in this paper.

Code availability
The code for our analyses is located in our public GitHub repository
and is available here: 10.5281/zenodo.14426370. Our code requires the
following Python packages: Numpy (≥ 1.23.4), Matplotlib (≥ 3.8.0),
Pandas (≥ 2.1.1), Scipy (≥ 1.11.2), Seaborn (≥0.12.2).
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