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Native Fold Delay and its implications for
co-translational chaperone binding and
protein aggregation

Ramon Duran-Romaña 1,2,4, Bert Houben 1,2,4, Paula Fernández Migens 1,2,
Ying Zhang 3, Frederic Rousseau 1,2 & Joost Schymkowitz 1,2

Because of vectorial protein translation, residues that interact in the native
protein structure but are distantly separated in the primary sequence are
unavailable simultaneously. Instead, there is a temporal delay duringwhich the
N-terminal interaction partner is unsatisfied and potentially vulnerable to non-
native interactions. We introduce “Native Fold Delay” (NFD), a metric that
integrates protein topology with translation kinetics to quantify such delays.
We found thatmany proteins exhibit residueswithNFDs in the range of tens of
seconds. These residues, predominantly in well-structured, buried regions,
often coincide with aggregation-prone regions. NFD correlates with co-
translational engagement by the yeast Hsp70 chaperone Ssb, suggesting that
native fold-delayed regions have a propensity to misfold. Supporting this, we
show that proteins with long NFDs are more frequently co-translationally
ubiquitinated and prone to aggregate upon Ssb deletion.

Globular protein function is determined by its native structure.
Achieving this structure involves folding an elongated polypeptide
chain into a specific conformation while avoiding off-pathway
conformations that can lead to misfolding and aggregation. Most
of our mechanistic understanding of protein folding derives from
classic in vitro experiments in which the (re)folding of purified,
full-length protein is monitored. These experiments yielded
invaluable insights, including, first and foremost, the notion that
the primary amino acid sequence of a protein encodes the con-
formational information specifying its native fold1. However, a
large fraction of the proteome cannot refold from a denatured
state in vitro and instead tends to misfold and aggregate2. This is
particularly true for proteins that are large, multimeric, and
topologically complex (i.e., high contact order3), often requiring
the assistance of molecular chaperones in the cellular environ-
ment. Yet, surprisingly, even when supplemented with chaper-
ones, a significant fraction of proteins still remains unable to
refold in vitro4.

An aspect that is overlooked in such refolding experiments is
protein translation. Protein translation progresses at an average rate of
about 20 aas/s in prokaryotes and around five aas/s in eukaryotes5–7,
meaning that the complete synthesis of proteins can take seconds and
even up tominutes as opposed to the folding of secondary and tertiary
structures, which is much faster, generally in the range of micro-
seconds to seconds8. Hence, in vivo, local folding events often take
place while a polypeptide chain emerges from the ribosome, i.e., co-
translationally. Indeed, it is estimated that one-third of the E. coli
cytosolic proteome folds at least one entire domain co-translationally9,
and this fraction is likely higher in eukaryotes given their slower
translation rates. In fact, several studies have shown that native con-
tacts between amino acids can already start to form in the narrow
ribosomal exit tunnel, enabling compacted structural elements such as
alpha helices10. The gradual addition of residues allows the growing
polypeptide chain to sample stabilizing native interactions in a
reduced conformational space, forming co-translational folding
intermediates that can effectively avoid kinetic traps that are
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associated with interactions with not yet formed residues towards the
C-terminus in the sequence11. Moreover, several studies have shown
that codon usage (often used as a proxy of translation rates) is opti-
mized to regulate co-translational folding pathways12,13. Slowing down
translation rates can allow an already synthesized N-terminal portion
more time to fold independently from a C-terminal portion. On the
other hand, speeding up translation can prevent specific folding
intermediates from being populated. Therefore, the vectorial nature
and the rates of translation are exploited in vivo to increase folding
efficiency. This has been put forth as one of the explanations for why
many proteins fold more efficiently co- than post-translationally14–18.

However, co-translational folding is a double-edged sword. While
vectorial protein production provides a timeframe in which local
folding events canoccur in a reduced conformational space, bypassing
folding trajectories that are prone to misfolding and aggregation, it
also imposes a temporal delay on folding events that require long-
range native interactions, such as the formation of parallel β-sheet
topologies19. We reason that non-native intra- or intermolecular
interactions might form co-translationally during the time it takes to
produce the C-terminal segments involved in such long-range native
contacts, potentially leading to off-pathway conformations. In support
of this, several sources report that newly synthesized proteins are
more vulnerable tomisfolding andaggregation compared toonce they
matured20–22, with topologically complex proteins, i.e., those with
more long-range interactions, being more at risk21. In addition, artifi-
cially inducing ribosome pausing during translation, which would
increase the temporal delay between long-range contacts, triggers
widespread protein misfolding and aggregation23.

To avoid premature co-translational misfolding events, an entire
branch of the proteostasis network (PN) exists that acts specifically at
the translation stage24. Firstly, ribosomes themselves have a holdase
function as their negatively charged surface interacts with nascent
chains, preferentially with basic and aromatic residues. Therefore, the
ribosome prevents premature co-translational misfolding by the unfol-
ded nascent chain while lowering the entropic penalty of protein
folding24–27. Secondly, a host of dedicated chaperones engage nascent
chains at the ribosome28. The typical example of this is Trigger Factor
(TF) in E. coli, which directly interacts with both the nascent chain and
the ribosome, thereby preventing off-pathway interactions29. In eukar-
yotes, co-translational chaperones aremost well-studied in S. cerevisiae,
inwhichNascentpolypeptideAssociatedComplex (NAC) andRibosome

Associated Complex (RAC) directly engage the ribosome and interact
with the nascent chain near the ribosome exit tunnel28. RAC recruits an
Hsp70-type ribosome-associated chaperone called Ssb, which prevents
premature folding through binding-release cycles30–32. Still, these
mechanisms are not foolproof as an estimated one-third of newly syn-
thesized polypeptides are targeted for proteasomal degradation, either
through mistakes in translation or inability to attain the native fold33.

In this work, we describe a method to identify regions that are
unsatisfied during translation and potentially vulnerable to premature
co-translational misfolding. To do this, we quantify the time delay
incurred by a residue between its addition to the nascent chain and the
addition of all the rest of its native interaction partners, a metric for
which we coined the term “Native Fold Delay” (NFD). Using the NFD
algorithm, we show that many proteins contain residues with NFDs in
the range of minutes, especially at eukaryotic translation rates. Fur-
thermore, we establish that residues with the longest NFDs tend to be
in well-structured, buried parts of globular proteins and are often part
of predicted aggregation-prone regions (APRs). In addition, we show
that in vivo, the yeast co-translational Hsp70 chaperone Ssb pre-
ferentially engages native fold-delayed regions. Aggregation pro-
pensity in these Ssb binding sites correlates with co-translational
aggregation upon Ssb knockout. Both these findings suggest that
regions of long NFD are indeed at risk of co-translational misfolding
and aggregation. In support of this, we further show that proteins that
are more frequently co-translationally ubiquitinated have long NFDs.

Results
Protein translation is orders of magnitude slower than protein
folding
To visualize the differences in timescales of protein folding and
translation rates, we directly compare folding rates and estimated
translation times for 133 single-domain globular proteins that have
experimentally recorded in vitro refolding rates from denaturing
conditions reported in the Protein Folding DataBase (PFDB)34 (Fig. 1).
The proteins in this database cover all structural topological classes (α,
β, α/β, and α + β) and have an average length of 108 residues (Sup-
plementary Fig. 1). The PFDB contains information on proteins from a
wide arrayof species, and for a lot of these, an accurate translation rate
has never been established. Therefore, translation times were esti-
mated by multiplying protein lengths with an average translation rate.
We assumed a relatively fast translation rate of 20 aas/s for all pro-
karyotic proteins and five aas/s for all eukaryotic proteins5–7.

Despite this, the distributions of translation times and folding
times are clearly separated (Fig. 1). Translation times are typically on
the order of seconds, whereas folding times range frommicroseconds
to seconds, and in 126 of 133 cases (95%), the in vitro refolding time of
the full-length protein is shorter than the time estimated to complete
its translation (Fig. 1). Moreover, we here consider the time it takes for
an entire polypeptide chain to cooperatively fold to its native con-
formation. Local protein conformational dynamics are generally even
faster, ranging from nanoseconds to microseconds35. As a result, for
most proteins, folding is a co-translational process that starts as soon
as the N-terminal part of the protein emerges from the ribosome
tunnel and long before the full-length protein chain has been synthe-
sized and released from the ribosome.

Vectorial protein translation imposes spatial and temporal
constraints on folding
Protein folding studies, both in vitro and in the cell, have demon-
strated that protein topology (i.e. the sequence order in which the
structural elements of the tertiary fold occur in the primary sequence)
is a key determinant of folding rates and efficiencies3,36. Protein topo-
logical complexity is often described by Contact Order (CO), a metric
which calculates the average sequence distance separation of native
interactions3. As shown in Fig. 1, translation is relatively slowcompared
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Fig. 1 | Protein translation is orders of magnitude slower than protein folding.
Distribution of average folding times versus estimated average translation times of
133 proteins in the Protein Folding Database (PFDB34). Arrows show differences in
folding and translation times for individual proteins. Yellow arrows indicate pro-
teins forwhich the average translation time is slower than the average folding time,
blue arrows indicate proteins for which the average translation time is faster than
the average folding time.
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to folding. This means that during protein translation topology
restricts folding not only spatially but also temporally: residues that
are separated spatially in the primary sequence are also separated
temporally as interaction partners towards the C-terminal end of the
protein will simply not exist until they have been translated. Inspired
by and building on CO and a previous study37, we here propose a
metric that accounts for these temporal and topological constraints,
for whichwe have coined the term “Native Fold Delay” (NFD). For each
residue (i) in a protein sequence, NFDmeasures the sequence distance
(ΔSi,j), in residues, from its furthest away C-terminal interactor (j):

NFDi =ΔSi, j ð1Þ

Therefore, NFDmeasures the number of residues that need to be
synthesized before residue i can engage with all its native interaction
partners. NFD can also be expressed in time units by factoring the
elongation rate (τk) for each codon k in the interval between residues i
and j:

NFDi =
Xj

k = i + 1

τk ð2Þ

In otherwords,NFDmeasures theminimumamountof time it takes
for all the native interaction partners of a residue to be available. The
NFD calculation is schematically represented in Fig. 2a–d. Figure 2a
shows thenative fold for a hypothetical small globular protein. From this
native structure, all interactions aremapped, resulting in a contactmap.
While during post-translational folding all contacts are available simul-
taneously (Fig. 2a), in the co-translational paradigm, the contact map
changes over time as the polypeptide emerges from the ribosome

(Fig. 2b–d). For example, residue 5 interacts with residue 24 in the native
structure (residues outlined in red in panels Fig. 2a–d). As residue 5
emerges fromthe ribosome, this interaction isnot available as residue24
has not yet been added to the polypeptide chain (Fig. 2b, c). Therefore,
residue 5 cannot complete all its native interactions until residue 24 has
been synthesized and exits the ribosome, becoming physically acces-
sible (Fig. 2d). As a result, residue 5 incurs a NFD of 19 aas. Importantly,
residue 24 has practically no NFD as all its long-range interaction part-
ners (residues 5 and6)havealreadybeenadded to thepolypeptidewhen
it emerges from the ribosome exit tunnel. The latter highlights the key
difference between NFD and CO. CO is a spatial metric, measuring the
sequence separation between interacting residues. Because of this, a
high CO value is assigned to both residues 5 and 24 since theymake the
same long-range interaction with each other. In contrast, NFD incorpo-
rates the vectorial nature of protein translation, converting the spatial
information captured by CO into a temporal metric.

As an example, Fig. 3a–c show the NFD calculation for the E. coli
peptidyl-prolyl isomerase B (PPIase B, UniProt code P23869) protein.
PPIase B is an abundant cytoplasmic enzyme with a length of 164
residues. Its functional form is a globular shape comprised of beta
sheets and alpha helices separated by several random coils (Fig. 3a).
While PPIase B has an average folding time of about 600 μs, its esti-
mated translation time is eight seconds (assuming an average trans-
lation rate of 20 aas/s). Clearly, the timescales of folding and
translation here are vastly different, and PPIase B is likely to start
folding co-translationally. Figure 3b and c show the contact map cal-
culated from the PPIase B native structure and the per-residue NFD
profile, respectively. PPIase B contains a beta-sheet consisting of a
strand close to the N-terminus (E1) and a strand close to the C-terminal
end in theprimary sequence (E8). StrandE1 cannot be fully stabilized in

CN CN

A B C D

CN CN CN

Native Fold Delay = 19 residues

mRNA

5' 3'

Fig. 2 | Vectorial protein translation imposes spatial and temporal constraints
on folding. AAbove, schematic representation of the globular native structure of a
hypothetical protein. Amino acids are colored in a gradient from N-term (blue) to
C-term (red). Residue 5 interacts with residue 24 in the native structure, both
outlined in red. Below, the contact map of the native structure shows that all
interactions are simultaneously available during post-translational folding. B–D In
the co-translational folding paradigm, the contact map evolves over time as the
nascent chain exits the ribosome tunnel. Solid lines indicate available interactions,
while dotted lines indicate interactions that are not yet accessible, as their

interaction partners have not yet emerged from the ribosome. B Contact map as
residue 5 emerges from the ribosome. Residue 24, its interaction partner, is not yet
synthesized, leaving the interaction unavailable. C As the polypeptide elongates,
long-range interactions begin to form. D Contact map as residue 24 emerges from
the ribosome. At this point, all native interactions for residue 5 are available. The
NFD for residue 5 is 19 amino acids, representing the time between its emergence
from the ribosome and the availability of its most C-terminal interaction partner,
residue 24. Note that schematic is not to scale and is meant for illustrative
purposes only.
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Fig. 3 | Exploring NFD at the structural level. A Cartoon representation of the
native structure of the E. coli peptidyl-prolyl isomerase B (PPIase B, UniProt code
P23869) enzyme as predicted by AlphaFold. Residues are colored on a gradient
from N-term (blue) to C-term (red). B Contact map of PPIase B showing for each
residue its furthest away interactor basedon the structure in (A).C Per-residueNFD
calculation (rainbow) and per-residue CO (gray) for PPIase B. D Mean NFD of
domains in the SCOPe40 dataset versus the relative residue position in the domain
(scaled from 1 to 100). Error bars indicate standard deviation. E Domain length
versus mean NFD of the SCOPe40 dataset. Red points indicate domains of exactly
101 amino acids, the domain length with the most datapoints in the SCOPe40
database. For visualization purposes, domains longer than 1000 residues are not
displayed. Pearson correlation analysis shows a strong positive relationship
(R =0.89, p < 2.2e-16), indicating that longer domains generally have higher mean

NFD values. F Violin plots showing the distribution ofmeanNFD for the domains of
exactly 101 amino acids per SCOP class. Green points indicate a representative
example in each group (domains with mean NFD closest to the median of their
respective SCOP class). The significance of the differences in distributions was
assessed through a two-sidedWilcoxon Rank Sum test with Bonferroni adjustment
for multiple comparisons. P-values of multiple comparisons are indicated for sig-
nificant differences (p-value < 0.05). G NFD profiles of the representative examples
for each SCOP class indicated in (K). H Cartoon representation of the native
structure of a peptidyl-prolyl cis-trans isomerase from S. cerevisiae (UniProt code
P14832) as predicted byAlphaFold. Residues are colored on a gradient fromN-term
(blue) to C-term (red). I Contact map of the structure in (M) showing for each
residue its furthest away. J Per-residue NFD (rainbow) and per-residue CO (gray)
calculation for the structure in (H).
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its native conformation until strand E8 has been synthesized, requiring
160 residues to be produced. This means that the full set of native
interactions of strand E1 are not satisfied for about eight full seconds.
On the other hand, strand E8 has a negligible NFD, as its interaction
partners have all been produced when it emerges from the ribosome.
Notably, whereas NFD trends downwards from N- to C-term, CO fol-
lows a more symmetrical pattern as it does not capture the direc-
tionality of protein translation (Fig. 3c).

To explore general NFD patterns across different protein topolo-
gies, we ran NFD analyses on the protein domains of the SCOPe40
dataset. This dataset contains single-domain structures that have been
manually classified based on their architectures and filtered so that no
two domains in the set have more than 40% identical sequences38,39.
Reflecting the vectorial nature of protein translation, NFD has both
spatial and temporal implications. First, the NFD profiles of proteins
display anN- toC-terminal gradient: N-terminal elements generally incur
largerNFDs thanmoreC-terminal elements (Fig. 3d). In addition,domain
size is a big determinant of NFD, as the longer a polypeptide chain, the
more potential there is for long-range interactions, leading to larger
NFDs (Fig. 3e). On top of length, NFD also reflects the topology of the
translated protein. Indeed, even when considering proteins of identical
length (101 aas), proteins from different SCOPe classifications have dif-
ferent NFD patterns (Fig. 3e, f). More complex protein topologies have
larger NFDs and present more pronounced N- to C-terminal NFD gra-
dients, resulting in different profiles for alpha-helical or beta-sheet
structured domains (Fig. 3f, g). Interestingly, NFD profiles of largemulti-
domain proteins often display a sawtooth profile reflecting the domain
dependence of N- to C-terminal NFD gradients (Supplementary Fig. 2).

On top of topology, NFD is also dependent on translation rates,
which can vary strongly between species. Figure 3h shows the
AlphaFold predicted structure of a peptidyl-prolyl cis-trans isomerase
(PPIase, UniProt code P14832) from S. cerevisiae, which is homologous
and structurally very similar to PPIase B from E. coli (RMSD between
104 pruned atom pairs is 0.714Å). As is the case for PPIase B, the
N-terminal domain has a strand near its N-terminus (E1) that forms
contacts with a strand at the C-terminus of the domain (E8), resulting
in long NFD values for E1 (Fig. 3i, j). Although the NFDs for the
N-terminal strands in both proteins are very similar when expressed in
a number of residues, the relatively slower translation rates of S. cer-
evisiae (estimated to be around five aas/s on average) means that
strand E1 has to wait for about 32 seconds to make all its native con-
tacts, as opposed to just 8 seconds for its E. coli counterpart. There-
fore, differences in translation rates of different organisms can cause
domains with very similar folds to incur vastly different NFDs.

Sequence segments with long NFD often consist of aggregation-
prone tertiary structural elements that stabilize the native
structure
Having established the NFD algorithm, we next used it to explore NFD
patterns on a proteome-wide scale. The near-exhaustive availability of
AlphaFold-predicted structures combined with the computationally
inexpensive nature of our algorithm allows us to calculate NFD for all
residues across entire proteomes40,41. In addition, AlphaFold models
provide a confidence measurement to assess the relative position of
two residues within the predicted structure, called the Predicted
Aligned Error (PAE). We used this metric to filter out interactions
between residues whose relative positions with respect to each other
are predicted with low confidence since these interactions most
probably do not occur in the actual structure, as is the case for con-
tacts with disordered regions or some contacts between distinct
domains. (Supplementary Fig. 3).

We calculated the NFD incurred by all residues in the E. coli and S.
cerevisiaeproteomes, assuming flat average translation rates of 20aa/s
and five aas/s, respectively5–7. Interestingly, most proteins have at least
one residue that has towait for tens of seconds for the translation of all

its native interacting residues (Fig. 4a). Binning proteome-wide NFDs
however, reveals that most residues have short NFDs as they interact
only with their neighbors ( ± 5 aa). While intermediate NFDs are rela-
tively rare, about 23% of residues in S. cerevisiae proteome incur NFDs
ofmore than 10 seconds (Fig. 4b), while the same is true for 7%of E. coli
residues (Supplementary Fig. 4a). Specific secondary structures are
more likely to incurNFD (Fig. 4c and Supplementary Fig. 4b). Logically,
residues in random coils (C) are depleted in residues with longNFDs as
they make few and mostly local contacts. On the other hand, helical
structures (G,H, and I) are dominatedby short-range contacts, yielding
average NFDs. Pi-helices (I) have longer NFDs than alpha-helices (H),
which is consistent with the fact that backbone interactions in pi-
helices occur at an interval of five residues, where this is four residues
for alpha-helices and three for 3-turn helices (G). Finally, beta-
structured elements (B, E) are enriched in residues with the longest
NFDs since contacts between beta strands are generally more long-
range than those between residues in alpha helices3.

Looking at the sequence composition of segments with long
NFDs, we find them to be enriched in aromatic and aliphatic residues
(Fig. 4d and Supplementary Fig. 4c). This makes sense as these resi-
dues are often buried in the hydrophobic cores of globular proteins,
where theymakemany tertiary contacts. Exploring this further, wefind
that regions of long NFDs are often structurally ordered – as indicated
by the AlphaFold pLDDT score, which inversely correlates with dis-
order – (Fig. 4e and Supplementary Fig. 4d) and indeed constituted of
buried residues – as shown by their relatively low solvent accessibility
(Fig. 4f and Supplementary Fig. 4e). Furthermore, regions of longNFDs
are usually important for the thermodynamic stability of the native
structure, as shown by their low predicted free energies (Fig. 4g and
Supplementary Fig. 4f). Given their propensity for beta-sheet forma-
tion and hydrophobic nature, we asked whether regions of long NFDs
tend to be aggregation-prone. Indeed, we find that the proportion of
residues in aggregation-prone regions (APRs) substantially increases
with NFD (Fig. 4h and Supplementary Fig. 4g), although the distribu-
tion of their aggregation propensities remains relatively similar
between intermediate and long NFDs (Fig. 4i and Supplemen-
tary Fig. 4h).

Binding sites of the co-translational chaperone Ssb are char-
acterized by long NFD
Aggregation-prone exposed regions of high hydrophobicity are the
preferred binding sites of many molecular chaperones, including
Hsp70s31,42,43. It has been proposed that Hsp70s bind to these regions
to delay the folding of newly forming polypeptides until the residues
required for folding emerge from the ribosome, thus preventing the
formation of non-native interactions43,44. Given that NFDmay correlate
to co-translational exposure and that regions of long NFD tend to be
hydrophobic, we hypothesized that NFD could help explain the
engagement of specific segments of the nascent chain by chaperones.
To address this question, we used a dataset containing the binding
footprints for the co-translational chaperone Ssb from S. cerevisiae,
obtained by Döring et al.31 using selective ribosome profiling (SeRP).
These Ssb binding footprints indicate the specific codons that are
being translated by ribosomes at the time Ssb binds to the emerging
polypeptide chain (Fig. 5a).

We carried out a metagene analysis by aligning the starting site of
Ssb binding ribosome footprints across the S. cerevisiae proteome and
calculated themedian NFD value at each position. A distinct NFD peak
was revealed at around 50 aa towards theN-terminal side (Fig. 5b). This
is the exact distance that has been reported to exist between the Ssb
footprint, i.e., the sequence segment protected by the ribosome at the
moment of Ssb engagement with the nascent chain, and the actual Ssb
binding site31,45. Indeed, at these positions, we observed some of the
characteristic sequence and structural properties of Ssb binding
motifs31,32, including enrichment in positively charged residues and β-
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sheet propensity (Supplementary Fig. 5a, b), and a depletion of
intrinsically disordered regions (Supplementary Fig. 5c). This suggests
that the observed NFD peak is directly associated with the regions
engaged by Ssb. A similar NFD pattern was observed using a different
published dataset of Ssbbinding regions32 (Supplementary Fig. 5d). On
the other hand, a dataset of Ssb binding regions generated in the
absence of RAC (RACΔ31), a cochaperone that is required for high-
affinity binding of Ssb to its substrates, did not show any peak around
these positions (Supplementary Fig. 5e). Interestingly, an additional
smaller NFD peak can be observed between -16 and -6 aa from the start
of Ssb binding footprints, which is approximately 36 residues down-
stream of the main Ssb binding region (Fig. 5b). This peak might cor-
respond to other Ssb binding regions, as these have been previously
described to occur in proteins every 36 amino acids, on average46.
Together, these results indicate that regions bound by Ssb have, on
average, long NFDs. We next asked whether the same conclusions

could be drawn solely from CO, i.e. whether Ssb simply has a pre-
ference for regions that make long-range contacts, regardless of the
directionality of these contacts.However, doing the same analysis with
CO yielded no discernable signatures, suggesting that Ssb binds pre-
ferentially to regions that make long-range contacts that are still not
available (Fig. 5c).

Intriguingly, despite Ssb recognition motifs being very common
within protein sequences46, SeRP data showed that many putative
binding sites in vitro are actually ignored in vivo31,32. Thus, we investi-
gated whether putative chaperone binding motifs with short NFDs are
skipped co-transitionally by Ssb. To investigate this, we used the
computational tool Limbo to predict chaperone binding sites in yeast
proteins47. Although Limbo was trained to predict E. coliDnaK binding
sites, these motifs have been shown to be very similar to Ssb binding
regions31. In fact, Limbo regions are enriched around 50 residues
upstream of Döring et al.31. Ssb footprints (Supplementary Fig. 5f) and
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match with half of the identified Ssb binding regions (Fig. 5d). On the
other hand, only 22% of all Limbo predicted regions matched with an
Ssb binding region (P-value < 0.001 by Fisher exact test), suggesting
that additional factors beyond the amino acid sequence determine Ssb
binding. To further corroborate this, we produced peptide arrays on
cellulose membranes containing polypeptide segments of the S. cere-
visiae proteome with high LIMBO scores. These sequences were divi-
ded into two groups for analysis: those identified as engaged by Ssb

in vivo, based on the data produced by Döring et al.31, and those that
are not engaged by Ssb in vivo, despite their high LIMBO scores. As
controls, we took random sequences from the same set of proteins
that were negative for LIMBO. We then tested Ssb binding to these
sequences in vitro (Supplementary Fig. 5g–i). Firstly, we found that Ssb
binds more strongly and frequently to high Limbo-scoring peptides
than to random control peptides, confirming that Limbo captures part
of the Ssb-binding determinants. Secondly, we find that there is no
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significant difference in binding in vitro between the set of peptides
engaged by Ssb in vivo versus sites that are non-engaged in vivo.
Hence, our data suggests that Ssb binding in vivo is not solely deter-
mined by the presence of a compatible sequencemotif, but additional
factors, such as RAC45, need to be considered. Comparing all Limbo-
predicted regions that matched and did not match with Ssb binding
regions, we observed that those that are not engaged by Ssb in vivo
have shorter NFDs (Fig. 5e). Notably, Ssb binding and non-Ssb binding
LIMBO regions have similar hydrophobicities, showing that the dif-
ference in NFD does not arise from a difference in amino acid com-
position (Supplementary Fig. 5j). As an example, the protein S-methyl-
5’-thioadenosine phosphorylase (MTAP) has six predicted chaperone
binding sites based on Limbo (Fig. 5f). Out of these, only two were
experimentally identified in vivo and reside in regions with long NFDs.
Conversely, the other four predicted binding sites are in regions with
shorter or even negligible NFDs. Thus, it seems then that Ssb not only
engages their targets based on amino acid composition alone but also
on the availability of unsatisfied native interactions, which is captured
by the NFDmetric. This does of course notmean that long NFDs imply
Ssb binding. As illustrated in Fig. 5f, many regions with long NFDs are
not engaged by Ssb since they lack the right amino acid makeup31.

As discussed by Döring et al. in the original Ssb SeRP publication,
the maximal lifetime of the Ssb-Nascent chain complex can be extra-
polated from the width of Ssb-binding peaks31. The average width of
the Ssb peaks considered in our analysis is 6.9 aas, which corresponds
to an average translation time, and hence Ssb engagement time, of
1.38 seconds. Intriguingly, we found that NFDs of experimentally
confirmed Ssb binding regions are, on average, 1.44 seconds longer
than NFDs from regions of the same proteins that were sampled at
random (Fig. 5g). This suggests that regions that have a NFD that is
equal to or longer than the Ssb binding time can actually be engaged
by the chaperone. To corroborate this, we asked whether Ssb binding
sites with longer engagement times, i.e., wider footprints, have longer
NFDs. For Ssb footprints ranging in size from 5 to 11 aas, we indeed
observed a strong positive correlation between the NFD values at
positions -53 to -35 (Ssb binding region) and the footprint size
(Fig. 5h, i).Moreover, the slope of this correlation roughly corresponds
to the addition of one amino acid (Fig. 5i). The same analysis outside
the Ssb binding region showedweaker and not significant correlations
(Supplementary Fig. 5k, l).

Collectively, our findings suggests that both amino acid composi-
tion and the availability of unsatisfiednative interactions, as capturedby
NFD, determine co-translational Ssb engagement. This highlights the
importance of considering not just sequence motifs but also structural
and kinetic contexts in understanding chaperone interactions.

Proteins with long NFDs are associated with co-translational
misfolding and aggregation
We have shown that Ssb preferentially engages specific amino acid
motifs with long NFDs. To corroborate this, we used a dataset pro-
duced by Willmund et al., who mapped Ssb clients across the S. cere-
visiae proteome and showed that the deletion of Ssb leads to
widespread aggregation of newly synthesized polypeptides30. We used
this dataset to assesswhether Ssb clients indeed have longer NFDs and
whether proteins with long NFDs are disproportionately affected by
Ssb deletion. To this end, we assigned a single value to each protein by
simply summing the NFDs of individual residues. As expected, Ssb
clients generally have larger total NFDs than proteins that are not
engaged by the co-translational chaperone (Fig. 6a). Furthermore, Ssb
clients that aggregate upon deletion of Ssb (SSBΔ30) have, on average,
slightly larger total NFDs than Ssb substrates that remain soluble
(Fig. 6a). To further corroborate the link between NFD and aggrega-
tion, we also investigated whether, inversely, proteins with a larger
total NFD are also more likely to aggregate. In order to do so we
performed a logistic regression using NFD as the input variable and

aggregation status as the response and found that proteins with larger
total NFDs are slightly more likely to aggregate upon Ssb deletion
(balanced accuracy of 0.53, with a significance level of p =0.014 and a
coefficient value of 0.16; Supplementary Fig. 6a, b). In other words,
from the proteins that are bound by Ssb, those with long NFDs have a
marginally increased tendency to aggregate upon Ssb deletion.

To examine this association in more detail, we looked at the
metagene NFD profile of specific Ssb binding sites of aggregated and
soluble Ssb substrates basedonDöring et al.31 ribosome footprints. Ssb
binding regions in proteins that aggregate in SSBΔ cells have, on
average, a one-second longer NFD compared to binding regions in
proteins that do not aggregate (Fig. 6b and Supplementary Fig. 6c, d).
Wenext investigatedwhether proteins in the aggregated fractionupon
Ssb deletion have higher intrinsic aggregation propensities. Although
these proteins have a similar number of APRs per length unit (Fig. 6c),
we found that proteins that aggregate upon Ssb deletion have a sig-
nificantly higher proportion of APRs in their Ssb binding regions
(positions -53 to -35) compared toother regions in the sameproteinsof
the same size (Fig. 6d). In contrast, proteins that remain soluble have a
significantly lower proportion of APRs in their Ssb binding regions
(P-value < 0.0001 by Fisher exact test), similarly to other regions from
the same proteins (Fig. 6e). This suggests that aggregation-prone Ssb
binding regions favor protein aggregation in SSBΔ cells.

To further corroborate these findings, we analyzed a dataset
produced by Jacobson et al. who identified proteins that aggregate
upon treatment of yeast cells with trivalent arsenite [As(III)]48, a
metalloid known to cause misfolding and aggregation by interfering
with the folding of nascent proteins49. Again, we found that proteins
that aggregate under arsenite stress have significantly larger total
NFDs (Fig. 6f). In eukaryotic cells, misfolded proteins are tagged
through ubiquitination for degradation50. Duttler et al.51 showed that a
subset of cytoplasmic nascent polypeptides is often co-translationally
ubiquitinated. Re-analysis of this dataset revealed that proteins that
are co-translationally ubiquitinated have significantly larger total NFDs
compared to other, non-ubiquitinated but abundantly translated yeast
proteins (Fig. 6g). To further test this association, we also investigated
whether, inversely, proteins with a larger total NFD are alsomore likely
to be ubiquitinated. In order to do so we performed a logistic regres-
sion with NFD as the input variable, and co-translational ubiquitination
as the response and found that proteins with larger total NFD aremore
frequently co-translationally ubiquitinated (balanced accuracyof 0.66,
with a significance level of p <0.001 and a coefficient value of 0.48;
Supplementary Fig. 6e, f). Therefore, proteins with long NFDs are also
more often co-translationally ubiquitinated.

Together, our findings suggest that proteins with longNFDs are at
a higher riskof premature co-translationalmisfolding and aggregation,
particularly under proteotoxic stress conditions.

Discussion
In recent years, it has become clear that co-translational protein
folding and complex formation is probably the most common
folding mechanism across proteomes. Given that protein con-
formational fluctuations are orders of magnitude faster than
translation, both processes have co-evolved, which explains why
in vivo co-translational folding is more efficient than in vitro pro-
tein refolding13,24. Mechanistically, however, co-translational pro-
tein folding faces the challenge of balancing the highly
cooperative nature of protein stability, driven by long-range ter-
tiary interactions, with the temporal delay in the apparition of
native interaction partners as the protein is synthesized sequen-
tially. To model this, we introduce NFD, a metric designed to
quantify the combined impact of translation dynamics and protein
topology on co-translational folding. Conceptually, NFD resem-
bles the simple yet widely used and validated CO metric, as it
captures topological complexity by the separation between
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interacting residues in the native structure3. However, in contrast
to CO, NFD only considers interactions directed toward the C-
terminus, reflecting the inherent directionality of protein transla-
tion. Moreover, NFD also integrates the temporal separation
between such native interactions by factoring translation elonga-
tion rates. For simplicity, throughout the analyses in this study, we
assumed a uniform elongation rate across all codons in a

transcript. However, our method can incorporate individual
elongation rates obtained through techniques such as ribosome
profiling52, which would enhance the accuracy of the NFD metric.

Our data shows that regions with long NFDs are relatively com-
mon in proteins and can last for tens of seconds and even up to min-
utes (Fig. 4a, b), a vast period on amolecular timescale53. Nevertheless,
in spite of long NFD values, it is clear that co-translational folding is a
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and aggregation. A Total NFD of actively translated proteins in S. cerevisiae
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bound: n = 910)30. Ssb-bound proteins are further stratified as soluble (n = 1495) or
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median NFD value at each position, while shaded regions indicate the 95% boot-
strapped confidence intervals. C Number of APRs per 100aa in soluble (n = 1495)
and aggregated (n = 418) Ssb-bound proteins in SSBΔ cells. D, E Proportion of APR
starting sites across codon bins relative to the start of Ssb binding footprints with
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regions. Asterisks indicate statistical significance (defined below). F Total NFD of
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Statistical significance was determined using a two-sided unpaired Wilcoxon test
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*p <0.05, **p <0.01, ***p <0.001, ****p <0.0001, ns = not significant.
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very efficient process. One reason is that most residues have short
NFDs (e.g., about two-thirds of the residues in the yeast proteomehave
NFD of less than 2 seconds, Fig. 4b), allowing local structural propen-
sities to shape co-translational folding. This is in agreement with the
early successes of protein structure prediction using protein
fragments54 but also mechanistically fits with the recent finding that
co-translational folding lowers the entropic penalty of folding by
destabilizing the unfolded state, thereby facilitating the formation of
folding intermediates27. However, due to themore complex topologies
of some protein folds, such as those composed of parallel ß-sheets for
example, about one-third of residues in the yeast proteome (and this is
valid across pro- and eukaryotic proteomes) possess long NFD values,
implying that they have to wait significant amounts of times ( >10 s)
before their native interaction partners emerge from the ribosome.
The question then is whether these unsatisfied residues represent a
risk for protein misfolding and, if so, how this is mechanistically han-
dled within the framework of co-translational folding.

As native interactions cannot be satisfied by local interactions in
regions with long NFD, they cannot be easily stabilized by the forma-
tion of native-like folding intermediates. An energetically expensive
solution would be the formation of transient non-native intermediate
structures that are unraveled once other parts of the polypeptide have
been synthesized. This would require the breaking of bonds, repre-
senting an energy barrier in the co-translational folding funnel19. For
example, the formation of non-native alpha helices has been observed
in the vestibule of the ribosome tunnel for several beta-sheet
proteins55,56. It has been proposed that the temporal formation of
alpha helices can protect the emerging polypeptide from misfolding
while entropically facilitating the search for native interactions asmore
residues are added to the nascent chain56.

Apart from intrachain interactions, fold-delayed regions might be
temporarily stabilized through interactions with PQC elements such as
the ribosome and molecular chaperones. Indeed, the ribosome can
destabilize non-native folding intermediates by interactions with the
nascent chain, thereby preventing premature folding until a critical
chain length is reached11. Interestingly, the ribosomal surface interacts
predominantly with segments that contain positively charged and aro-
matic amino acids25. These specific residues are enriched in regionswith
long NFDs (Fig. 4d) and are also preferentially found in chaperone-
binding regions31,46. Thus, the ribosome could function as a holdase,
sequestering hydrophobic native fold-delayed segments until their
interaction partners have been synthesized. Our results show an asso-
ciation between NFD and co-translational chaperone engagement and
dependence. In particular, we show that Ssb, a co-translational cha-
perone in S. cerevisiae, preferentially targets regions of long NFDs
(Fig. 5). The authors who produced the Ssb data analyzed here found
that in an in vitro peptide array - where there is no potential of folding -
Ssb recognizes more binding sites than it does in vivo, suggesting that
some interaction sites are skipped in vivo31. The authors attributed this
discrepancy to additional regulation by cochaperones in vivo. However,
NFD offers a different explanation: the skipped sites are simply not
available for Ssb binding. In support of this, we show that the lifetime of
the Ssb-Nascent chain complex correlates directly to the NFD of the
bound segment (Fig. 5h, i) and that predicted chaperone binding sites
that do not engage Ssb in vivo have shorter NFDs (Fig. 5e). Therefore,
NFD could provide an additional triaging parameter for Ssb to recog-
nize vulnerable regions: hydrophobic regions where native interactions
remain unsatisfied for longer periods of time and hencemore at risk for
misfolding are more readily engaged by Ssb than hydrophobic regions
that can be satisfied by local native interactions.

Despite theseprotectivemechanisms, a small subset of proteins is
susceptible to co-translational ubiquitination under physiological
conditions, suggesting premature misfolding51. We showed that these
proteins have significantly longer NFDs than the background transla-
tome (Fig. 6g). However, the potential risk of native fold-delayed

regions becomes clearly apparent when the tightly regulated co-
translational folding process is perturbed. For example, deletion of the
Ssb chaperone or chemically inhibiting in vivo protein folding with
trivalent arsenite [As(III)] disproportionately causes the aggregation of
proteins with long NFDs (Fig. 6a, f). Slower decoding would increase
NFDs,whichcan trigger co-translationalmisfolding if a nascent chain is
trapped in an off-pathway conformation. Interestingly, it was found
that 70%of the proteins that aggregate in the absenceof Ssb, whichwe
show are characterized by long NFDs, also aggregate after inducing
ribosome pausing through loss of U34 modification23.

Our analysis revealed that regions with long NFDs often occur in
structured, hydrophobic regions that aremeant to be buried within the
hydrophobic core of the structure of globular proteins (Fig. 4). These
regions are likely to engage in homotypic off-pathway interactions,
leading to aggregation. Moreover, we showed that Ssb binding sites in
proteins that aggregate upon Ssb deletion align more often with APRs
than those in Ssb clients that do not aggregate (Fig. 6d, e). Together,
these observations suggest that APRs with long NFDs can lead to pro-
tein aggregation, requiring PQC elements to suppress it. This begs the
question whether native fold-delayed APRs could aggregate co-trans-
lationally, especially in the context of polysomeswhere there is a higher
local concentration of nascent polypeptides exposing identical APRs.

NFDmerges two important concepts: topological complexity and
translation rate. The latter varies vastly between organisms and even
between different cell types and conditions57. One could argue that a
slower translation rate allows for the successful co-translational fold-
ing of more complex structures. In support of this, it was shown dec-
ades ago that eukaryotic translation systems more efficiently produce
modular proteins than their prokaryotic counterparts58. Interestingly,
slowing down translation speed in bacteria is often enough to enhance
the folding efficiency of recombinant eukaryotic proteins59. However,
our analyses show that this comes at a cost since slower translation
rates mean longer NFDs, which can pose a risk to folding. Hence, while
slowing down translation rates opened the door to more complex
folds, it may have also necessitated the co-evolution of a more elabo-
rate network of co-translational chaperones tomitigate the associated
increase in NFD. This may be one of the reasons for the existence of a
much more extensive co-translational chaperoning system in eukar-
yotes than in prokaryotes60.

In summary, our study describes a method to quantify the tem-
poral separation between native interacting residues that arises from
protein translation. Thismethod canbeused to identify regions that are
potentially susceptible to premature co-translational misfolding, espe-
cially upon proteotoxic challenges. A limitation of our method is that it
only calculates the temporal separation between each residue and its
most distant interactor. Since not all interactions are energetically
equal, this could overstress the potential risk for some residues with
long NFDs where the furthest interactor has a minimal impact on the
native stability.

Methods
Protein folding vs protein translation rates
Protein folding rates were retrieved fromPFDB, a standardized protein
folding kinetics database (https://balalab-skku.org/PFDB/)34). This
curateddataset contains folding rates derived fromexperimental data.
To obtain data on the organism from which each structure was
derived, PDB IDs as listed by the PFDB were queried in the RCSB
database61. We thereby retrieved 133 structures with source organism
annotations. From the reported folding rates at 25 degrees C (kf,), we
calculated average folding times (calculated as 1/kf). For an estimation
of the translation times, proteins from prokaryotic organisms were
assigned translation rates of 20 aas/s, whereas proteins from eukar-
yotes were assigned translation rates of 5 aas/s5–7. For an estimation of
the total translation time of a protein, we simply multiplied these
translation rates by the number of residues in each protein studied.
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SCOPe40 analysis
We analyzed NFD profiles of protein domains in the SCOPe40 dataset.
This dataset contains single-domain structures that have been manu-
ally classified based on their architectures and filtered so that no two
domains in the set have more than 40% identical sequences38,39. To
establish a general pattern of NFD from N- to C-term within domains
(Fig. 3d), residues were assigned relative positions by dividing their
position in the domain by the domain length, multiplying by 100 and
rounding off to the nearest integer. For each relative position, average
NFDs and standard deviations were calculated. The average (or mean)
NFD for a domain was calculated as the sum of the NFD of all residues
in a domain divided by the domain length.

Proteome-wide analyses
AlphaFold structures (version 4) and their corresponding predicted
aligned error (PAE) matrices for the full proteomes of Escherichia coli
and Saccharomyces cerevisiae (yeast) were retrieved from the Alpha-
Fold Protein Structure Database40,41. Genomic sequences for both
species were retrieved from NCBI Genomes FTP server. AlphaFold
structures were mapped to genomic sequences using the UniProt ID
mapping tool. 3929 and 4363 proteins were successfullymatchedwith
their corresponding codon sequences for E. coli and yeast, respec-
tively. The energies of the structures were minimized using the FoldX
“RepairPDB” command, and stability calculations for each amino acid
were performed using the “SequenceDetail” command62. Protein sec-
ondary structures and absolute solvent accessibility values were
obtained with DSSP based on the AlphaFold structures63,64. Then, the
relative solvent accessibility (RSA) values were calculated by dividing
the absolute solvent accessibility values by residue-specific maximal
accessibility values, as extracted from Tien et al.65. Disordered regions
were defined using the pLDDT score provided in the AlphaFold mod-
els, as regions with low confidence scores (pLDDT <50) have been
shown to overlap largely with intrinsically disorder regions66. To
exclude biases arising from intrinsically disordered proteins, proteins
with more than 90% disordered residues were filtered out of the data.
Aggregation prone regions were defined with the TANGO algorithm
(score > 5)67 at physiological conditions (pH at 7.5, temperature at
298K, protein concentration at 1mM, and ionic strength at 0.15M).

Native Fold Delay
Native Fold Delay (NFD) profiles were determined from protein struc-
tures for all SCOPe40 domains and the E. coli and yeast proteomes
based on AlphaFoldmodels using the formulas described in the Results
section. Residues were considered to interact if they contained non-
hydrogen atoms within 6Å. This threshold was chosen since it is com-
monly used to calculate other topological parameters, such as contact
order3. For SCOPe40 domains, all residue interactions were considered
as the structures were solved with experimental methods. Instead, for
AlphaFold predicted models, interactions between two residues whose
relative position to each other is low based on the Predicted Aligned
Error (PAE) metric were filtered out. Specifically, we excluded interac-
tions with an expected position error >6Å.

We assigned a single NFD value to each protein to facilitate the
proteome-wide NFD correlations in Figs. 3 and 6. The “mean NFD”
values correspond to the mean of the NFD of individual residues in a
structure. The “total NFD” values reported are simply the sum of the
NFD of individual residues in a structure. These metrics provide a
global viewof the delay incurredby a polypeptide chain throughout its
ribosomal production.

Contact order
Per-residue contact order (CO) profiles were determined from protein
structures for the E. coli and yeast proteomes based on AlphaFold
models using the formula described in the original CO paper3. How-
ever, the formula was adapted to have a per-residue value instead of

one for the full-length protein. In other words, for every residue, the
average sequence distance of all the contacts that it makes was cal-
culated. Contacts were defined as interactions between non-hydrogen
atoms of different residues within 6 Å. Contacts between two residues
whose relative position to each other is low based on the Predicted
Aligned Error (PAE) metric were filtered out. Specifically, we excluded
contacts with an expected position error >6Å.

Ssb binding footprints metagene analyses
Ssb binding footprints were obtained from Döring et al.31 and Stein
et al.32. Nucleotide positions were transformed to amino acid positions
by dividing them by three and rounding down. The lifetime of the Ssb-
Nascent chain complex (engagement times)was extrapolated fromthe
width of Ssb binding peaks. Specifically, only Ssb binding peaks with
widths falling between 5 and 11 aas were selected for analysis. This
range was chosen because higher widths might suggest additional
binding and release cycles. A metagene analysis of the Ssb binding
footprints was done by aligning the starting site of Ssb binding foot-
prints. The NFD profile and the relative enrichment of different
properties were calculated, across a range of -120 and 120 aas from the
starting site of the Ssb footprints, per position using a rolling average
of 3 and after removing empty positions.

As a control measure, random positions were sampled from the
same proteins containing the Ssb footprints and the metagene ana-
lyses were repeated but aligning on these random positions.

Comparison between Ssb sites and Limbo regions
Predicted Hsp70 binding regions, here referred to as Limbo regions,
were identifiedwith the computational tool Limbo (score> 5)47. Döring
et al.31. Ssb binding footprints with a width ranging from 5 to 11 aas
were then compared to the Limbo regions. A Limbo region was con-
sidered to overlapwith an Ssb site if it fell within a range of -55 aas from
the starting residue to -35 aas from the ending residue of the Ssb
footprints. Based on this criterion, Limbo regions were classified as
either “Limbo Ssb binding” if there was an overlap or “Limbo no Ssb
binding” if there was no overlap with any Ssb binding footprint.
Average hydrophobicity (Kyte-Doolittle scale) was calculated for each
Limbo region with R package “Peptides”.

Ssb1 purification
N-terminally His6-tagged yeast Ssb1 was purified by Ni2+-NTA affi-
nity chromatography (ÄKTA start, GE Healthcare) with a Ni2+-NTA
column (PureCube Ni-NTA Cartridge 5 ml, Cube Biotech) in HEPES
buffer (20mM HEPES, pH 7.8, 100mM KCl, 2.5 mM MgAc2, 1 mM
PMSF, protease inhibitor mix: 1.25 μg/ml leupeptin, 0.75 μg/ml
antipain, 0.25 μg/ml chymostatin, 0.25 μg/ml elastinal, and 5 μg/ml
pepstatin A). His6-tagged Ssb1 was eluted using a 30ml linear
imidazole gradient from 50mM to 500mM. Imidazole was subse-
quently removed using a PD10 column (GE Healthcare) equili-
brated with HEPES buffer (20mM HEPES, pH 7.4, 100mM KCl,
2.5 mM MgAc2, protease inhibitor mix).

Ssb peptide membrane analysis
Peptide sequences were randomly selected from Limbo-predicted
sites across the S. cerevisiaeproteome, keeping thebinding site lengths
constant at 8 amino acids to ensure accurate production on the
membrane. 120 Limbo sequences that correspond with in vivo Ssb
binding sites as determined by Döring et al.31 were randomly selected,
as well as 120 Limbo sequences that do not correspond with Ssb
binding sites. As a negative control, 60 sequences of 8 amino acids in
length that did not correspond to Limbo binding sites were also added
to the set. To avoid bias towards protein types, these 60 sequences
were taken from the same set of proteins that contain the Limbo
binding sites represented on the membrane. Peptide arrays were
produced through SPOT synthesis on acid-stable cellulosemembranes
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using the Intavis Multipep RSi synthesis robot. Peptides were synthe-
sized from C- to N terminus, starting with a GGS linker preceded by a
PEG spacer (Aims-Scientific). Membranes were activated in 50%
methanol for 10minutes, followed by blocking in 4% BSA in TBS-T for
2 h. Membranes were then incubated with 100nM Ssb in 25mM Tris
buffer supplemented with 10mMKCl, 5mMMgCl2 and 300mMNaCl,
and 0.1% Tween (Buffer A) for 1 h at room temperature. Membranes
were thenwashed three times for 5minutes in Buffer A, followed by an
incubation with HRP anti-His tag antibody (BioLegend #652504) dilu-
ted 1/10000 for 45minutes at room temperature. Membranes were
then washed 5 times for 5minutes in Buffer A and developed through
chemiluminescence using a BioRad Chemidoc MP system (repre-
sentative blot shown in Supplementary Fig. 5g). Three repeats’ mem-
branes were analyzed in this manner. Spot intensities were quantified
using the BioRad Image Lab software. Spot intensitieswerenormalized
to the median spot intensity in each membrane. The average of each
spot across three repeats was then calculated. These averages were
log-transformed, resulting in the data presented in Supplementary
Fig. 5g). Statistical analyses were performed using GraphPad Prism as
indicated in the figure caption.

NFD of proteins aggregating in Ssb knockout strain
We reanalyzed a dataset produced by Willmund et al.30. Through
pulldowns of RibosomeNascent Chain complexes followed byMS, the
authors established the S. cerevisiae “translatome”. Through Ssb pull-
downs, the translatome was then stratified into a group that interacts
with Ssb co-translationally (“Ssb not bound” in Fig. 6a), and a group
that does not. The authors further determined which proteins aggre-
gate upon deletion of the Ssb chaperone, indicating they are depen-
dent on Ssb for their solubility. Using this information, we divided the
group of Ssb binders into a “soluble” and an “aggregated” fraction as
shown in Fig. 6a.

NFD of proteins sensitive to Arsenite stress
Ibstedt et al. report the identification of aggregated proteins in S.
cerevisiae both in physiological conditions (“Physiological” in
Fig. 6f), as well as upon exposure to Arsenite stress (“Arsenic” in
Fig. 6f)49. Aggregated fractions were separated through cen-
trifugation and proteins in the aggregated fraction were identified
through LC-MS. As a background, the authors used a previously
established S. cerevisiae proteome, which we copied (“MS pro-
teome” in Fig. 6f).

NFD of proteins that are co-translationally ubiquitinated
Duttler et al. produced a dataset of proteins that are co-translationally
ubiquitinated under physiological conditions in S. cerevisiae51. They do
not report a background proteome, so we compared the total NFD of
the co-translationally ubiquitinated proteins with the translatome
reported by Willmund et al.30

Logistic regression
A logistic regression using NFD values as an input variable and as the
response variable either whether proteins are co-translationally ubi-
quitinated or not or whether they aggregate upon Ssb deletion or not
was made. This was done in R using package called “stats”. Since the
number of observations in each class is substantially different, random
undersampling was used to avoid biases. In random undersampling,
observations from the majority class are randomly removed until a
balanced class distribution is achieved.

Statistics
GraphPad Prism or R software were used to perform the different
statistical tests. The tests used in each analysis are specified in the
corresponding figure. P-values are represented as: * P-value ≤0.05, ** P-
value ≤0.01, *** P-value ≤0.001 and **** P-value ≤0.0001.

Visualizations
Visualizations were performed with GraphPad prism or custom R
scripts using the packages ggplot268. Contact maps were visualized
using the circlize R package69. ChimeraX was used to visualize protein
structures70.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Native Fold Delay datasets for the yeast and E. coli proteomes
generated for this study have been deposited at https://doi.org/10.
5281/zenodo.14712087. The raw and processed in vitro Ssb binding
analysis data generated in this study are provided in the Source Data
file. Additional datasets used in this study are also publicly available:
ref. 34 (protein folding rates), ref. 39 (protein domains), refs. 31,32 (Ssb
binding footprints), ref. 30 (protein aggregation in Ssb knockout
strain), ref. 49 (protein aggregation during arsenite stress) and ref. 51
(protein co-translational ubiquitination during physiological condi-
tions). Source data are provided with this paper.

Code availability
Code for calculating theNative FoldDelayprofileof individualproteins
can be publicly found at https://github.com/ramondur/Native-Fold-
Delay or on Zendo https://doi.org/10.5281/zenodo.14712087. All cus-
tomized R scripts used for data processing and analysis are available
from the corresponding author on request.
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