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Moiré quasicrystals, formed by stacking periodic structures with a relative
twist between them, exhibit many exotic phenomena. Their quasiperiodicity
leads to effects such as light localization-delocalization transitions, super-
conductivity, topological states, and quasiband dispersion. However, weak
interlayer interactions, the scalar nature of acoustic fields, and longer wave-
lengths severely limit the demonstration of these phenomena in acoustics.
Here, we report an acoustic moiré quasicrystal that not only achieves a
localization-delocalization transition, but also enables wave propagation
shifting from diffusion to canalization or localization as a function of the
quasicrystal geometry. Unlike conventional two-dimensional materials, the
designed sublattice provides tailorable anisotropy and spatial broken sym-
metry, allowing quasicrystal structures to exhibit reconfigurable nontrivial
dispersion. Furthermore, by introducing a uniform tilt angle in the unit cells
breaks the spatial symmetry of the moiré quasicrystal, resulting in partial
attenuation and disappearance of the wave within the localization pattern. Our
findings pave a new avenue for controlling the properties of acoustic wave
patterns, and benefit potential applications in energy transfer, subwavelength
wave propagation, and highly sensitive sensors.

Quasicrystals, characterized by a macrosymmetric structure first
observed in metal alloys'?, feature long-range order in their arrange-
ment of atoms**, but do not obey translational symmetry as regular
crystals®®. They manifest a delicate balance between order and dis-
order, which results in effects such as light localization-delocalization
transitions’ ™, superconductivity””, topological states'®”, and quasi-
band dispersion®®. In contrast to crystals, which typically exhibit two-,
three-, four- or six-fold rotational symmetry, quasicrystals are char-
acterized by a symmetry that is five or even eight times larger'?,
which makes their synthesis and natural discovery difficult. Moiré
quasicrystals, formed by the stacking of two-dimensional materials,

offer an ideal platform to realize quasicrystals with higher
symmetries™’*">, They are characterized by flexible control over
interlayer coupling, offering abundant possibilities for the exploration
of exotic phenomena associated with their quasicrystal nature.
Exploring wave localization and propagation in moiré quasicrys-
tals is not limited to the fields of optics, but it extends across all sci-
entific disciplines that study wave phenomena. Anderson localization
theory predicts that waves in a strongly disordered system may exhibit
localization, which has been demonstrated in strongly disordered and
nonlinear systems®?%, Recently, wavepacket localization of light
waves in linear moiré quasicrystals and their evolution from
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delocalization to localization has also been observed
experimentally”*’. This suggests that, although quasicrystals are not
disordered, their quasiperiodic structure can induce effects similar to
those observed in disordered systems, resulting in localization. Its
quasiperiodic character makes the moiré system as a promising plat-
form for exotic wave properties.

Unlike photonic moiré quasicrystals, most acoustic moiré systems
need to be implemented at the macroscopic scale. At this scale,
interlayer interactions primarily rely on mechanical coupling through
air or structural contact, which are significantly weaker compared to
the electromagnetic interactions in photonic systems. This relatively
weak interlayer interaction diminishes the hybridization of dispersion
curves between layers, thereby restricting the realization of phenom-
ena such as localization-delocalization transitions. As a result, studying
wave evolution behaviors in acoustic moiré systems becomes more
challenging. Moreover, the scalar nature of acoustic fields, their longer
wavelength, and the effects of diffraction and attenuation pose addi-
tional challenges. Recent studies suggest that, with innovative design,
it is possible to achieve tailored coupling and nonlinear responses in
these systems, potentially leading to moiré effects®*%. And utilizing
modular design to tailor the dispersion of acoustic metamaterials to
achieve the desired low-frequency sound attenuation properties™. The
theoretical feasibility of realizing acoustic moiré quasicrystals has
hence become increasingly plausible.

Here we report the demonstration of wave canalization, asym-
metric localization and delocalization in acoustic moiré quasicrystals.
We utilize the concept of nonlocal moiré superlattices, which extends
moiré quasicrystals beyond the fixed control of interlayer coupling
strength and twist angle, enabling multidimensional modulation of
isotropy, anisotropy, and spatial symmetry. As a result, tunable moiré
superlattices with diffusion-canalization-localization transitions can be
achieved, distinct from previous reports of wave packet
localization”*¢, We theoretically and experimentally demonstrate
two kinds of bilayer acoustic systems consisting of two sublattices. In
addition, a square unit cell with a tilt angle is specifically designed to
break the out-of-plane spatial symmetry, further enabling asymmetric
localization. Notably, in acoustics earlier work involved five ultrasonic
beams converging onto a pentagonal array to form a 5-fold quasi-
crystal pressure field distribution in liquids’. This pressure-standing
wave field has applications in liquid crystals, polymers, and liquid
decomposition. Recent reports indicate that fine-tuning the twist angle
to form AB and AA stacking in quasicrystals can generate flat bands in
the energy bands, leading to point-like and ring-like localization
states”, analogous to the flat bands observed in twisted bilayer gra-
phene. Our work presents a fundamentally different system—a bilayer
anisotropic lattice—that enables novel wave-quasicrystal interactions
in air. This system allows for higher-dimensional tuning of dispersion,
extending acoustic quasicrystals to monoclinic quasicrystals, thereby
enabling various wave patterns such as delocalization, localization,
canalization, and asymmetric localization. This control offers a flexible
mechanism to tailor dispersion and spatial nonuniformity in quasi-
periodic structures, enabling the emergence of novel wave propaga-
tion patterns.

Results

Acoustic moiré superlattices

We employ 3D printing to fabricate acoustic moiré superlattices con-
sisting of two stacked sublattices that can be twisted relative to each
other. The unit cells of these sublattices are either hexagonal or square
in structure® and their interaction is regulated by the twist angle,
which determines various periodic or aperiodic structures within the
moiré superlattice. For hexagonal (or square) sublattices, the twist
angles that produce periodic structures are determined by the Dio-
phantine equation (or Pythagorean triples) (see Supplementary S1).
For other twist angles, the resulting structures are aperiodic but

remain regular (i.e., non-disordered)””. Interestingly, the moiré
superlattice can also become a quasicrystal with quasiperiodic yet
long-range order, such as the 12-fold rotationally symmetric quasi-
crystal shown in Fig. 1a.

The dispersion of the acoustic moiré quasicrystals exhibits mul-
tidimensional tunability. By adjusting the acoustic impedance (induc-
tive or capacitive) of the original unit cell, we can easily modify the in-
plane anisotropy of the sublattices while preserving the rotational
symmetry of the quasicrystal. As shown in the upper right corners of
Fig. 1g, h and i, we achieved controllable in-plane isotropy or aniso-
tropy in the sublattices by transforming the coupling structure of the
unit cells. In Supplementary S2, the iso-frequency contours of the three
sublattices display distinct shapes: two of them have hyperbolic con-
tours, indicating extreme anisotropy, whereas the other exhibits a
circular contour, suggesting isotropy or slight anisotropy. We then
introduced an inverse width x (see Supplementary S3) to describe the
spatial distribution of the wave patterns in the two types of moiré
superlattices. As shown in the numerical calculations in Fig. 1b, the
inverse width reaches its maximum value at 8= arctan3™Y2=1/6 or
6=m/2 (quasicrystal), suggesting stronger localization of energy
compared to other twist angles. In contrast, the inverse width reaches
its minimum value at =0 or /3 (where the two layers fully overlap
and the moiré superlattice exhibits C; symmetry), suggesting weaker
localization and a more extended energy distribution relative to other
twist angles. This variation underscores significant discrepancies in
wave phenomena between different superlattices and suggests the
existence of wave localization features in moiré quasicrystals. Addi-
tionally, (see Fig. 1i), the out-of-plane spatial symmetry can be broken
by tilting each square unit cell. Note that the tilt angle in Fig. 1i is
exaggerated for clarity. The specific parameters of each unit cell
structure are provided in Supplementary S4.

To understand wave propagation in moiré superlattices, we
established a theoretical model to determine their hybridized disper-
sion modes. Based on the transfer matrix method*, the dispersion
relation of the monolayer can be obtained as:

ik,d,
Ty — e Tp _
Ty Ty, — ekdn

@

where T};, T1,, T5; and T, are the four elements of the 2 x 2 matrix
T3, not matrices themselves. Note that T,_ ; is a relationship matrix
between the output and input sound waves, constructed through the
transfer matrix. d;, is the height of a monolayer. It should be empha-
sized that the origin of Formula (1) is based on the transfer matrix
method, from which the dispersion relation of a monolayer is derived.
The detailed steps can be found in Supplementary S5.

These results confirm that our moiré superlattices may exhibit
four distinct dispersion modes: delocalization, localization, canaliza-
tion and asymmetric localization. As shown in Fig. 1c, where the iso-
tropic bilayers fully overlap (satisfying C; and translational symmetry)
the distribution mode forms an expanded, irregular pattern. In con-
trast, at 8= arctan3™"/? = r/6 (quasicrystal), as shown in Fig. 1b and d,
the inverse width reaches its maximum value, and the energy dis-
tribution becomes localized at its center. This finding indicates that the
wave energy or vibrational mode is more tightly confined within the
plane. When the sublattice is tuned to support extreme acoustic ani-
sotropy, it forms a quasicrystal structure at = /6, where canalization
occurs, as shown in Fig. 1e and h, with waves propagating in a highly
concentrated manner. Notably, at 8 = /2 (quasicrystal), for geometric
reasons, the hyperbolas of the two layers hybridize to form an ellipse,
transforming the moiré superlattice from anisotropic to isotropic or
weakly anisotropic®. In this regime, the anisotropy vanishes and the
superlattice is influenced primarily by quasi-periodicity, again result-
ing in localization shown in Fig. 1b. Specifically, in bilayer anisotropic
moiré systems, interlayer coupling causes the hyperbolic dispersion
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Fig. 1 | Dispersive acoustic quasicrystal. a Acoustic moiré quasicrystal. Top row,
bilayer anisotropic metasurfaces composed of hexagonal unit cells with a localized
sound pressure field. Bottom row, pattern of a 12-fold rotational symmetric moiré
quasicrystal. b, Inverse width of the dispersion modes versus twist angle. The
purple (green) curve represents the isotropic (anisotropic) hexagonal lattice. The
vertical dashed lines represent the twist angle 8= arctan32=m/6. c—f Energy
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dispersion diagram for four types of w(k), which can interconvert into one another
in our moiré system through twisting, tilting or tuning anisotropy (illustrated in the
upper right corner of each pattern). g-i Theoretical prediction of hybridized dis-
persion curves. The three different dispersions correspond to the three distinct
unit cells in the upper right corner.

curves of the upper and lower layers to gradually hybridize as the twist
angle increases. At the quasicrystal state (6=1/6), this hybridization
leads to the formation of flat bands, enabling the canalization effect of
the quasicrystal. With a further increase in the twist angle, at the
quasicrystal state (6=m/2), the hybridized dispersion curves form
closed loops, and the system exhibits isotropic characteristics. At this
stage, the quasicrystal’s unique long-range order, combined with the
absence of local periodicity, plays a key role, ultimately leading to wave
localization. This principle also applies to isotropic moiré systems.
Additionally, by tilting each unit cell’s z-axis resonators by 5° towards
the transverse plane, the distribution mode becomes half-propagating
and half-attenuated (asymmetric localization, see Fig. 1f and i). This is
because such tilting induces a spatial deflection of the dispersion,
causing part of the wave to remain confined within the plane while
another portion dissipates into space, thereby leading to asymmetric
localization effects. The plane projections of the dispersion at 8=m/6
in Fig. 1g-i also reveal the three types of moiré quasicrystal
phenomena.

Extremely anisotropic moiré quasicrystal
To validate the aforementioned concepts, we conducted numerical
simulations and experiments on the anisotropic moiré superlattice. As

shown in Fig. 2a, the monolayer metasurface is composed of hex-
agonal unit cells, and stacking two layers forms a moiré system. The
green coupling tube structure differs significantly in design from other
coupling tubes, resulting in the acoustic impedance being either
inductive or capacitive in different in-plane directions*’, making the
sublattice extremely anisotropic. The excitation point source is placed
near the center above the bilayer metasurface. The detailed settings
and procedures for the numerical simulations and experiments can be
found in the Methods section.

In Fig. 2b, the green curve represents the energy generated in the
cross-section of the quasicrystal by the sound wave when 6=m/6,
whereas the purple curve represents the energy distribution for
6=m/2. The results indicate that the quasicrystal energy distributions
for two twist angles differ: one is localized, the other is canalized. This
is because when the relative rotation angle between the upper and
lower layers, i.e., the twist angle, reaches /6, the dispersion curves of
the two layers hybridize into flat bands, enabling canalized propaga-
tion of acoustic waves®. Additionally, when the two anisotropic sub-
lattices are rotated relative to each other beyond a certain angle, the
hybridized dispersion curves close, causing the anisotropy to dis-
appear and the effects of quasiperiodicity to emerge, thereby trans-
forming canalization to localization. Importantly, for 6=m/6,
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Hyperbolic dispersion Canalization

Fig. 2 | Wave propagation patterns generated by the anisotropic moiré
superlattice. a Top view of a moiré quasicrystal composed of anisotropic hex-
agonal unit cells. The yellow pentagram represents the location of the point source
excitation (f =1850Hz). b Energy distribution in the cross-section of the quasi-
crystal. When canalization occurs (6= arctan 372 =1/6), the purple curve illus-
trates the energy distribution during propagation. In contrast, when localization

takes place (6= /2), the green curve shows the energy distribution along the x-axis

Quasicrystal

kv o =mm Canalization
| energy distribution

== Localization |

Localization

Elliptic dispersion

at y=0. c-flllustration of the anisotropic moiré superlattice, along with the
simulation and experimental results. The first row shows the patterns of the moiré
superlattice (the green arrows indicate that the lattice satisfies translational or
rotational symmetry), the second and third rows present the simulated sound
pressure fields, and the bottom row displays the experimental sound pressure
fields (S mm below the bilayer).

canalization causes a shift in the direction of propagation, necessitat-
ing an adjustment in the position of the cross-section. Moreover, when
the twist angle 6=0, each layer of the bilayer system exhibits aniso-
tropic hyperbolic dispersion without any hybridization, resulting in
hyperbolic wave propagation (Fig. 2c). As the twist angle increases, at
6=m/3, the dispersion curves of the upper and lower layers hybridize,
causing the overall dispersion of the system to form closed loops,
thereby exhibiting isotropic characteristics. However, at this stage, the
system is not a quasicrystal and thus cannot rely on quasicrystal
properties to achieve wave localization. Consequently, the waves
exhibit omnidirectional diffusion (Fig. 2e). Figure 2c-f illustrate the
changes in moiré superlattice structure with twisting, along with the

corresponding numerical and experimental results. The simulation
and experimental outcomes are consistent, both validating the pre-
vious predictions. The upper row of the moiré superlattice shows the
translational symmetry of the periodic structures and the rotational
symmetry of the quasiperiodic structures at four different twist angles.
While the transition from hyperbolic to elliptical dispersion has been
previously reported®**!, wave propagation from canalization to loca-
lization in quasicrystals has not yet been demonstrated. Our findings
are enabled with the quasiperiodic tunability of our geometry.

It is worth mentioning that the formation of the canalization effect
is based on the hybridization of the dispersion curves of the upper and
lower layers in a bilayer system at a specific twist angle, a principle that
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Fig. 3 | Localization-delocalization transition in the isotropic moiré super-

lattice. a Top view of the moiré quasicrystal composed of isotropic hexagonal unit
cells. The yellow pentagram represents the location of the point source excitation
(f =1850Hz). b Localized energy distribution in the cross-section of the quasicrystal
at different frequencies. The curves show the energy distribution along the x-axis at
y=0. c-flllustration of the isotropic moiré superlattice, along with the simulation
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and experimental results. The first row shows the patterns of the moiré superlattice
(the yellow arrows indicate that the lattice satisfies translational or rotational
symmetry), the second row presents the simulated sound pressure fields, and the
bottom row displays the experimental sound pressure fields (S mm below the
bilayer).

determines its inherent robustness. Additionally, the dispersion curve
of the monolayer system is hyperbolic, which results from the unit cell
being designed with extreme anisotropy, providing the foundation for
achieving canalization. Since the canalization effect originates from
the hybridization of the bilayer dispersion curves, this hybridization
primarily depends on the shape of the monolayer dispersion curve and
their interaction, which are determined by the structural design and
are largely independent of the number of layers. Of course, increasing
the number of layers may enhance wave confinement, but it has lim-
ited influence on the formation mechanism of canalization, thus
demonstrating robustness against variations in the number of layers.
The physical mechanism of the canalization effect is fundamentally
independent of the source intensity. The extreme anisotropy of the
unit cell ensures that the hybridized canalization effect remains stable
even with variations in the source intensity, affecting only the ampli-
tude of the sound pressure field without altering the propagation
pattern. Results from other twist angles have been included in Sup-
plementary S7, along with detailed explanations of the physical
meanings of delocalization, canalization, and diffusion. The 2D

experimental plots, Fourier spectra and actual images can be found in
Supplementary S8.

Isotropic moiré quasicrystals
In the isotropic moiré superlattice, the coupling structures in all
directions of the hexagonal unit cell are uniform. As shown in Fig. 3a,
the unit cells are closely packed together with a small lattice constant,
and the excitation point source is positioned near the center above the
bilayer. We conducted numerical simulations and experiments on
moiré superlattices with four different twist angles. Figure 3c-f show
that even with the same twist angle and the same periodic or quasi-
periodic moiré structure, the wave evolution differs significantly from
the one observed in the anisotropic moiré superlattice. This is because
the set of dispersion curves (Supplementary Fig. S1a) is not influenced
by extreme anisotropy and consistently maintains a closed circular
shape, with sound waves being affected only by the moiré structure of
the superlattice.

Specifically, when 8=0° or 60°, the structure exhibits transla-
tional symmetry and C; symmetry, allowing sound waves to

Nature Communications | (2025)16:1988


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-57067-3

Sece=-
S &

} lz—'f\u
e ‘,'“A §
4

X

-1 I - +1

Fig. 4 | Asymmetric localization of the sound generated by tilting the unit cells.
a, b Square bilayer moiré quasicrystal (8= arctan 3~/ =7/6) in both non-tilted and
tilted configurations. ¢, d, Sound pressure fields before and after a 5° tilt. The unit

E

=

. gl
RO ===

Asymmetric energy distribution

Non-attenuated !

Attenuated
k0.5F

0
WY y
A % -280 280

cell structure is shown in the upper right corner. e Asymmetric energy distribution
in the cross-section of the quasicrystal. The green curve shows the energy dis-
tribution along the x-axis at y=0.

omnidirectionally propagate within the ordered structure, resulting in
a diffuse sound pressure field, as shown in Fig. 3c and e. With trans-
lational symmetry, the physical properties of the structure are periodic
in space, meaning that the medium conditions encountered by the
acoustic waves remain identical at different positions. This symmetry
prevents additional reflections or scattering, enabling the acoustic
waves to propagate omnidirectionally within the structure. Further-
more, translational symmetry ensures momentum conservation for
the wave (The wave will not produce additional reflections or energy
loss due to discontinuities or irregularities in the medium), allowing it
to propagate freely without being scattered by the periodic medium.
At the same time, C3 symmetry minimizes spatial inhomogeneity. Due
to the equivalence of the three angular directions in C3 symmetry,
multiple scattering of acoustic waves in these directions results in
equivalent coherent interference. Such interference does not cause
significant spatial inhomogeneity, leading to a uniformly diffused
pressure field rather than wave localization or energy concentration.
When 6=30° or 90°, the moiré structure forms a quasicrystal with
long-range order but no local periodicity, based on which the sound
waves form a highly concentrated pattern, in contrast to the previous
scenario (see Figs. 3d and f). Unlike periodic crystals, quasicrystals do
not exhibit strict periodic repetition locally. This disrupts the con-
sistency of distances and phase relationships between scattering cen-
ters encountered by the waves during propagation. Such aperiodicity
significantly enhances multiple scattering effects. As acoustic waves
propagate within the structure, the complexity of phase relationships
along different paths can lead to constructive interference in certain
regions, resulting in energy accumulation and highly localized wave
patterns. Their long-range order implies that the global symmetry of
the structure cannot be generated through simple translations. And
the long-range order provides a global structural constraint, leading to
predictable localized wave patterns in specific regions. This unique
combination of aperiodicity and long-range order governs wave pro-
pagation, leading to localized wave patterns. In comparison, periodic
structures with translational symmetry exhibit regular unit cells,
enabling predictable scattering paths and uniform energy diffusion
throughout the structure. In summary, by tuning the twist angle, we
can achieve a transition from delocalized to localized wave behavior in
a single system. This tunability highlights the unique advantages and
potential applications of quasicrystal structures in acoustics.

Additionally, we explored the impact of different frequencies on
localization. The iso-frequency contour within the range of 1550Hz to
1850Hz is a closed circle (as shown in Supplementary Fig. Sla), indi-
cating that localization is not affected by factors such as dispersion
geometry and anisotropy. Therefore, at these frequencies, the waves
should exhibit localization characteristics under the influence of the
quasicrystal structure. As shown in Fig. 3b, the curves represent the
cross-sectional modes of the acoustic energy in the quasicrystal, cor-
responding to different frequencies ranging from 1550Hz to 1850Hz in
150Hz increments. The results of the calculation in Fig. 3b, along with
the experimental data in Supplementary S9, indicate that each fre-
quency has a peak indicative of localization, confirming the previous
numerical simulations of iso-frequency contours. Notably, as the fre-
quency decreases, the peak gradually diminishes, which may be rela-
ted to the reduction in local energy and increase in wavelength.
Specifically, the reduction in energy at lower frequencies can be
attributed to the characteristics of the sound source and the physical
properties of the system. At lower frequencies, acoustic energy is
distributed over longer wavelengths, leading to a decrease in the local
energy density within the localized region. This contrasts with higher
frequencies, where shorter wavelengths can more effectively con-
centrate energy in the localized region. Furthermore, the increase in
wavelength may also lead to changes in the attenuation characteristics
of the wave, further affecting the strength of localization.

Monoclinic moiré quasicrystals

The superlattice composed of square sublattices also forms an aper-
iodic lattice” when 6= arctan3Y2=m/6. This geometry enables
extreme anisotropy while also allowing for the adjustment of spatial
symmetry by tilting each unit cell. As shown in Fig. 4a, the conventional
bilayer system exhibits an orthogonal square lattice (indicated by red
dashed lines), with a right-angle between the lattice axes. When each
unit cell is tilted by angle of 5°, as illustrated in Fig. 4b, the angle
between the axes changes to 85°. This results in out-of-plane spatial
symmetry breaking, transforming the square lattice into a monoclinic
lattice. This can be observed in the theoretical dispersion in Fig. 1i,
where only half of the elliptical dispersion remains in plane; this is
analogous to ‘ghost modes’ observed in bulk crystals*’, where the
introduction of a tilt with respect to the interface changes the dis-
persion and the modes transition to a hybrid between surface and bulk
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modes. A portion of the energy propagates away from the surface,
while the rest continues to propagate along the surface®. As illustrated
in Fig. 4c and d, this pattern leads to partial attenuation of the wave in
localized states, resulting in asymmetric localization at f =2050Hz.

Similarly, we also studied the cross-sectional energy of sound
waves in the monoclinic moiré quasicrystal, as shown in Fig. 4e. The
energy is concentrated on one side, which is significantly different
from previous wave propagation patterns. We separately analyzed the
sound field intensity in the central region of square lattices for both
with and without tilting. Analysis was also performed in hexagonal
lattices for both anisotropic and isotropic cases as a function of the
twist angle. Details are available in Supplementary S10. Moreover,
based on previous study*’*?, when the distance between two hyper-
bolic metasurfaces d (the spacing between the two layers) <a (lattice
constant), the overall dispersion of the system remains unaffected,
acoustic wave propagation is stable, the Fourier spectrum shows no
significant changes, and the interlayer coupling strength is high. The
transmission rate of acoustic waves varies much more smoothly for d <
a compared to d > a. Furthermore, when the interlayer distance is
small, the theoretically calculated dispersion exhibits minimal changes
and aligns well with the experimental Fourier spectrum. In contrast, if
the interlayer distance d > a, the hybridization of the upper- and lower-
layer dispersions disappears, and corresponding wave phenomena are
no longer observed. Therefore, to ensure strong interlayer coupling,
the interlayer spacing in this work is set to 2 mm, which is significantly
smaller than the lattice constant. It is important to note that our
designed structure can only cause the central vertical resonator to tilt
in the x-direction. However, this does not affect the core concept we
aim to convey—asymmetric localization. We can also achieve tilting in
the y-direction by rotating the entire system.

Discussion

In summary, we theoretically and experimentally studied dispersive
acoustic quasicrystals controlled by the twist angle between periodic
surfaces, enabling extreme tunability, e.g., mode localization-deloca-
lization, diffusion-canalization-localization, and asymmetric localiza-
tion. We designed three different moiré systems, which enable high-
dimensional modulation of isotropy, anisotropy and spatial symmetry.
In the isotropic system, we observed the transition from delocalization
to localization. By constructing anisotropic unit cells, we achieved
wave propagation with tunable diffusion, canalization and localization.
Additionally, we further broke the spatial symmetry of the system to
achieve asymmetric localization in monoclinic geometries. These
findings provide a powerful tool to control sound propagation lever-
aging quasicrystal dispersion, offering significant potential for appli-
cations in controlling uniform wave energy distribution, efficient
signal transmission, and energy harvesting as well as noise filtering.
Notably, the similarity between our structure and periodically arran-
ged structures widely used in nanophotonic metamaterials and pho-
tonic crystals*** implies the potential to extend our proposed
concepts to applications in other wave regimes.

Methods

Numerical simulations

For the numerical simulations, the COMSOL Multiphysics pressure
acoustics module was employed. Both frequency domain and the
eigenfrequency modules were utilized. The governing equation is:

1 K;
V. (-——Vp, - --%p,=Q
< p. P qd) Pe Pe=Cp

Where p, =p + p,, represents the total pressure, including the acoustic
pressure p and background pressure p,; p. = p is the medium density;
c.=cis the speed of sound; kﬁq =w?/c? is the equivalent wave number
squared; g, denotes dissipation-related terms; and Q,, represents the

acoustic source term. The boundaries of the cavity are modeled as
rigid walls, with zero normal acoustic velocity. Bloch boundary
conditions were applied to the sides of the unit cell, while the top
and bottom surfaces were designated perfectly matched layers (PMLs).
The crystal cell’s band structure was computed using the eigenfre-
quency module via a frequency sweep, as illustrated in Supplementary
Fig. S1. To mitigate reflections, eight PMLs were positioned around the
bilayer moiré system. We have provided a representative COMSOL
original file of this work on the website (see Supplementary S11).

It is worth noting that under high-frequency conditions, (e.g.,
>10 kHz), the number of PML layers typically needs to be increased to
avoid reflection interference. This is because the shorter wavelength of
high-frequency waves results in a shorter propagation path within the
PML region. If the thickness or number of PML layers is insufficient,
waves passing through the PML may not be fully absorbed, leading to
reflections at the boundaries that could interfere with the results.
Therefore, under high-frequency conditions, increasing the PML
thickness, refining the mesh distribution, or adding more PML layers
can extend the wave propagation path within the PML. This enables
greater absorption of wave energy and effectively minimizes reflec-
tions that could compromise computational accuracy. Moreover, the
refinement of the mesh can also impact the stability and accuracy of
the calculations. For high-frequency conditions, a finer mesh is often
required to capture the intricate details of wave propagation. In this
work, the highest frequency of the acoustic source is 2050Hz, and the
8-layer PML was found to be sufficient to effectively reduce spurious
reflections without significantly affecting the main conclusions. A
monopole point sound source was placed above the center of the

upper layer. Its intensity is defined by the formula §=e/? | /2<5Pm:,

where p, ., is the root mean square power of the source (set to 1W),
and ¥ is the phase of the source (set to O rad). The frequency domain
module recorded the pressure field Smm below the metasurface
bilayer. Based on the theoretical dispersion model, a series of diagrams
were plotted via MATLAB.

Sample preparation and measurements

The moiré quasicrystal system was fabricated via 3D printing (R4600
resin), with each layer comprising a 15 x 15 array of unit cells. A speaker
with a 6.0mm radius (13A05-8Q) was centrally located within the sys-
tem, serving as an omnidirectional point source. Acoustic foam was
applied to surround and lay under the system to minimize reflections.
Above the setup, an acoustic microphone was attached to a thin
mechanical rod operated by a motor to capture the transmitted sound
pressure, allowing for data collection at different densities. The grid
points were sampled at intervals of 8mm. Another reference micro-
phone was positioned approximately 30cm below the point sound
source to record the incident sound pressure. To ensure uniformity in
the sound pressure measurements over time, the reference micro-
phone simultaneously recorded the speaker’s input signal. The
experimental apparatus comprised a computer, a power amplifier
(E2021), two microphones (AWA 14604), a chassis (NI PXle-1082), a
motor (9030), a signal generator (DG1022U), a custom-built three-axis

motion platform, and a microphone support rod (see
Supplementary Sé6).
Data availability

All relevant data are available in the main text and Supporting Infor-
mation, and can be obtained from the authors upon request. Source
data are provided with this paper.
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