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Pan-cancer multi-omic model of LINE-1
activity reveals locus heterogeneity of
retrotransposition efficiency

Alexander Solovyov1,8 , Julie M. Behr 2,8, David Hoyos1, Eric Banks2,3,
AlexanderW. Drong2, Bryan Thornlow2, Jimmy Z. Zhong2, Enrique Garcia-Rivera2,
Wilson McKerrow2, Chong Chu 2, Cedric Arisdakessian 2, Dennis M. Zaller2,
Junne Kamihara 4,5,6, Liyang Diao2,9, Menachem Fromer 2,9 &
Benjamin D. Greenbaum 1,7,9

Somatic mobilization of LINE-1 (L1) has been implicated in cancer etiology. We
analyzed a recent TCGA data release comprised of nearly 5000 pan-cancer
paired tumor-normal whole-genome sequencing (WGS) samples and ~9000
tumor RNA samples. We developed TotalReCall an improved algorithm and
pipeline for detection of L1 retrotransposition (RT), finding high correlation
between L1 expression and “RT burden” per sample. Furthermore, we math-
ematically model the dual regulatory roles of p53, where mutations in TP53
disrupt regulation of both L1 expression and retrotransposition. We found
those with Li-Fraumeni Syndrome (LFS) heritable TP53 pathogenic and likely
pathogenic variants bear similarly high L1 activity compared to matched
cancers from patients without LFS, suggesting this population be considered
in attempts to target L1 therapeutically. Due to improved sensitivity, we detect
over 10 genes beyondTP53whosemutations correlatewith L1, includingATRX,
suggesting other, potentially targetable, mechanisms underlying L1 regulation
in cancer remain to be discovered.

More than half of the human genome is composed of repeat
sequences1–3. Normally, epigenetic repression and other processes
silence many repeats4 but oncogenesis disrupts these pathways5,6. In
cancer, repeats can be re-expressed as RNA, translated in some cases
into protein, and may be actively involved in genome instability and
cancer immunogenicity7–12. The Long INterspersed Element-1 (LINE-1 or
L1) transposable element (TE) is an especially interesting class of
repeats, possessing the ability to reinsert itself via retrotransposition at
new loci in the human genome and parasitizing the genome in the
process13. An intact L1 element is ~6 kb in length, but most of the

>500,000 copies that comprise ~20% of the human reference genome
are truncated upstream of their 3’ ends1. There are just over 100 L1s
capable of coding for the full-length ORF1p and ORF2p proteins, the
latter containing the reverse transcriptase and endonuclease1 needed
for L1 activity. Of note, L1 RNA not only encodes the proteinmachinery
for retrotransposition but also acts as the template for new genomic
copies of L1.

Understanding the functional significance of L1 in cancer requires
quantifying its activity across its life cycle, including
retrotransposition11,14–19 and expression. Further, intact L1 elements
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that reside at different genomic loci can plausibly exhibit hetero-
geneous activity14,20,21, akin to genes that have arisen from duplication
events, whose functions may diverge as a result of mutational pro-
cesses and selection that act mostly independently on the copies22,23.
The literature already contains ample evidence that L1 loci vary in
some ways, including in their levels of retrotransposition (“hot” loci
being those that are more RT-active11,15,17,18,24–27), RNA expression
levels14,21, and even allelic variability at the same genomic locus,
resulting in variable activity20. However, it is generally parsimoniously
assumed that the in vivo retrotransposition rates of intact L1 elements
areproportional to their RNA expression levels (arising, e.g., from local
differences in genomic regulation), rather than variable properties of
the L1 RNAs and/or proteins themselves.

Though clearly active in cancer, quantifying L1 activity from short-
read sequencing data poses technical challenges due to the multitude
of genomic copies of highly similar L1 sequences, making it difficult to
disambiguate the source of L1-containing sequencing reads. In this
work, we develop and benchmark a computational pipeline for
detecting somatic L1 retrotransposition events that includes the
“TotalReCall” algorithm (Fig. 1), which we pair with an additional well-
established caller, xTea19, to call consensus retrotranspositions in
cancer. Employing this dual pipeline, we derive high confidence ret-
rotransposition prevalence (“RT burden”). To quantify L1 RNA
expression alongside RT burden, we used the L1EMmechanisticmodel
of L1-driven transcription (“active expression”) at intact L1 copies in the
genome28.

Leveraging the recent large-scale release of The Cancer Genome
Atlas (TCGA) whole-genome sequencing and RNA-sequencing data
from tumor and normal samples, we quantify somatic L1 RT burden in
a pan-cancer cohort of 4669 paired tumor-normal samples across 31
tumor types. We find a high correlation between L1 RNA expression in
tumor samples and the burden of L1 retrotranspositions that have
accumulated during the historical evolution of that tumor. Addition-
ally, we provide evidence, across a large set of loci, that the sequence
products of individual loci behave heterogeneously, which both sup-
ports and adds to previous in vitro experimental reports24.

Given their potentially pathogenic nature, it is unsurprising that
there aremultiple levels of regulation of L1 activity, only someofwhich
are beginning to be understood. In our integrated omics analysis, we
elucidate the intricacies of these regulatorymechanisms. For example,
while mutations in TP53 are generally associated with L1 retro-
transposition activity11,18,29–32, recent work has also shown that p53may
directly regulate L1 at the RNA level via control of its transcription33.
Using a statistical model relying on their joint measurements, we find
that even with potential regulation of L1 RNA transcription by p53,
there remains a large effect of p53on L1 RTburden that is independent
of the level of L1 RNA expression. Of clinical interest, we use this
dataset to assess L1 activity in tumors from individuals with Li-
Fraumeni Syndrome (LFS, bearing germline TP53 pathogenic/likely
pathogenic variants), and we find L1 activity in LFS cancer patients to
be comparable to that in non-LFS tumors. Finally, expanding beyond
TP53, we identify additional genes whose mutations are associated
with L1 activity, thereby assigning these genes to biological pathways
that regulate L1 in cancers.

Results
Many cancers are significantly enriched for L1
retrotransposition
Running TotalReCall (Fig. 1) paired with xTea (see Supplementary
Methods for details on algorithms and benchmarking), we identified
64,292 somatic L1 retrotranspositions in the dataset of 4669 tumor
and matched normal whole genome sequencing (WGS) paired sam-
ples. Approximately 40% of these retrotranspositions (N = 28,210)
contain inversions of the inserted L1 sequence (Fig. 2a), consistentwith
the twin-priming mechanism of reintegration34 (Fig. 1d, f). This

inversion rate was supported by both TotalReCall and xTea, and the
ability of both algorithms to capture true inversions was validated
using long reads from theGenome in a Bottle dataset35 (see “Validating
retrotransposition detection by TotalReCall, xTea, and TraFiC-mem
using long reads”, Supplementary Methods). The rate of inversion-
containing insertions across cancer indications is similar, with the
percentage being lowest in prostate cancer and highest in uterine
tumors (Fig. 2b). In all cases, the rate of inversion-containing somatic
LINE-1s is consistently higher than what has been observed in the
germline18. Of the 36,082 canonical insertions (non-inversion con-
taining, consistent with single-strand priming, Fig. 1c, e), approxi-
mately 6% (N = 2143) contain the full-length L1 sequence, while the rest
are truncated to some degree (Fig. 2c).

The purpose of the work performed here was to detect tumor-
specific somatically acquired, i.e., non-germline, L1 retro-
transpositions; hence we did not attempt to comprehensively identify
germline retrotranspositions present in a sample but not in the refer-
ence genome. Nevertheless, as a byproduct of looking for tumor-
specific calls, we did collate and evaluate a set of “pseudo” germline
calls (see “Non-reference L1 insertions present in both case and control
samples”, Supplementary Methods), which we define as those calls
present in tumor samples but not categorized as somatic due to the
existence of support for the retrotransposition in the corresponding
normal sample. The overall distribution of the number of such
“pseudo” germline retrotranspositions, along with their lengths and
allele frequencies, are similar to what has previously been reported for
L136 (Supplementary Fig. 1a–c).

The breakdown of RT burden per sample across tumor types is
consistent with previous studies, though with increased sensitivity to
individual calls compared to previous efforts11,16 (Supplementary
Fig. 1d–h).We considered comparisons between each cancer typewith
at least 5 samples and a median of at least 1 RT per sample against a
background of all cancer types withmedian 0 RTs per sample. All such
comparisons were significant, confirming the enrichment of L1 RT
burden in esophageal, colon, lung squamous cell, and head and neck
cancers, previously observed in the PCAWG dataset. In addition, we
find significant enrichment of RT burden in in stomach, bladder,
ovarian, prostate, and uterine (both carcinosarcoma and corpus
endometrial carcinoma) cancers (p < 10−10 for two-sided
Mann–Whitney U tests, Fig. 2d).

Approximately 15% (9912) of the insertions include transductions
of sequences beyond the 3’ end of the genomic source L1. We could
confidently attribute 4870 of these to their genomic source coordi-
nates. We refer to these as transduction-bearing RTs (“TRTs”; dis-
tinguished from “TDs” used by PCAWG11 and others, which include
orphan transductions without accompanying L1 sequence). These
TRTs represent 726 unique genomic sources, of which a vast majority
are assumed to be polymorphic non-reference L1s (N = 610, 84.02%),
when no L1 element resides in the genomic vicinity. We annotate each
of these genomic source loci in Supplementary Data 1.

Of the 198 active genomic loci cataloguedby Ebert et al.11,15,24–27, we
found retrotranspositions arising from 102, including 20 that are not
sequence-resolved, 10 that had previously only shown documented
activity in vitro, and 13 that had not previously been documented
in vivo in cancer. One-hundred and thirty-seven loci are sequence-
resolved; and, of those, 68 are present in the hg38 reference genome
(34 believed to be “fixed present” throughout the population). Eighty-
seven loci are included as active elements in L1EM and could therefore
be compared against RNA measurements. This includes 19 loci anno-
tated as L1PA2, and 41 loci seemingly not intact in one or both ORF
domains in the reference genome sequence.

High L1 RNA corresponds to high L1 RT burden
Across TCGA, high-quality tumor RNA-seq data is available from 8998
distinct individuals across 32 tumor types, with tumor-adjacent normal
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data from 719 individuals across 32 tumor types (see “Methods”). We
quantified locus-level L1 RNA “active” expression (transcription driven
by the L1 promoter) from these 9717 samples using L1EM28 and
aggregated expression levels (transcripts per million, TPM) across loci
to calculate the total relative abundance of active L1 RNA present in
each sample (see “Quantification of LINE-1 expression at the locus
level” in Supplementary Methods and Supplementary Fig. 2 for

simulations demonstrating the accuracy of locus-level quantification
by L1EM).

Because we and others have identified retrotranspositions from
source elements annotated as L1PA2 and/or without intact ORF
domains in the reference genome, we chose to aggregate RNA
expression from all 1483 quantified L1HS and L1PA2 elements in L1EM,
intending this as a superset of all potentially functional loci. This
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Fig. 1 | Insertion of the LINE-1 (L1) retrotransposon and its detection by
TotalReCall. a Haploid copy of the genome before retrotransposition.
b Endonuclease break in each strand of DNA. c L1 RNA directly reverse transcribed
into the genome resulting in the synthesis of the single-stranded cDNA starting
from the 3’ end of the L1 transcript and extending a variable length towards its 5’
end. Teal, L1 RNA. Green, reverse transcribed poly(T) cDNA. Blue, reverse tran-
scribed L1 cDNA. d Twin priming results in the simultaneous reverse transcription
of different parts of the L1 transcript into the two strands of the genome. Red,
reverse transcribed L1 cDNA on the opposite gDNA strand. e, f Genome after
synthesis of the second strand of DNA and repair. Components of the L1 sequence
are annotated with respect to the “top” strand of the genome. Purple, target site,
which is duplicated following repair. Red, newly inserted L1 sequence that was
synthesized on the top strand and is therefore reverse complemented with respect
to L1 RNA. Blue, newly inserted L1 sequence that was synthesized on the bottom

strand. Green, newly inserted poly(A). Paired-end reads originating from the
modified genomes are shown. e The process shown in c results in a (possibly 5’
truncated) “canonical” retrotransposition. f The process shown in d results in an
“inversion-containing” retrotransposition. The resulting genomic sequence has two
L1 fragments in opposite orientations. g Mapping of reads A–D to the unmodified
(reference) genome lacking the transposon insertion (left) and the transposon
sequence (right). Left, tails of reads A1, B1, and D1 that come from the novel
transposon are clipped (shown as dashed lines). Right, read C2 and the clipped tails
of reads A1 and D1 align to the transposon sequence. The clipped tail of read B1
contains only poly(T). In the absence of inversion, the alignment between the
clipped sequence and the transposon sequence reflects the length of the newly
inserted transposon.When inversion occurs, such an alignment will only reflect the
position where the second priming occurred.
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aggregated expression is highest in esophageal carcinoma, followed
by lung squamous cell carcinoma and stomach adenocarcinoma
(Fig. 3a). Lung squamous cell carcinoma has the greatest median gain
of L1 expression in tumor samples with respect to adjacent-normal
(p < 1 × 10−10, one-sided Mann–Whitney U test). On the other hand,

prostate tissue has the highest levels of L1 RNA innormal samples, with
at most a marginal gain in the corresponding prostate adenocarci-
noma tumor samples (p =0.05, one-sided Mann–Whitney U test).

Expression analysis of the subset of 121 elements forwhich there is
evidence of retrotransposition from either our analysis (87 elements)
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Fig. 2 | Overview of somatic RT calls in TCGA. a Count of calls in call set across all
tumor types, annotated as either canonical or inversion-containing, as an absolute
count (bottom axis) and percent of all calls (top axis). Gray bars indicate calls for
which both callers share the same annotation. Blue and orange bars are additional
calls annotated in each group by only xTea or only TotalReCall, respectively.
b Percentage of insertion events containing inversions by indication for indications
with ≥500 insertions total. Error bars and the bar height represent the 99% con-
fidence interval and the estimate of the mean using the Clopper–Pearson method.
c Estimated length of the inserted L1 within the canonical somatic RT calls. Length
estimates taken from TotalReCall. Gray, truncated insertions. Blue, full-length
insertions. Left axis, absolute count of calls. Right axis, percent of total canonical
somatic RT calls within each bin. Length does not include transduction region, if

one is present. d Somatic RT count per sample grouped by tumor type. Center line
indicatesmedian. Box indicates interquartile range. Pointsmore than 1.5× IQR away
from the box are shown as individual outliers. Tumor types are sorted in des-
cending order by median somatic RT burden. Mean and median RT count per
sample by tumor type listed in boxes above the tumor typename. Redbars indicate
tumor types that are significantly enriched in RT (see Ns for each significantly
enriched tumor type in figure), compared to a background of all samples from
tumor types indicated by gray bars (N = 2265). All significant tumor types had
p < 10−10 froma two-sidedMann–WhitneyU test (effect sizes > 0.57).Cervical cancer
samples also had a significant p-value (p = 4 × 10−8) from the two-sided
Mann–Whitney U test (effect size = 0.94) but are not considered significant here
due to the small sample size (N = 3 tumor-normal pairs).
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or previously published studies (74 total, including 34 additional26)
yielded similar results (Fig. 3b; see Supplementary Data 2 for a list of
these loci). In fact, the aggregate L1 RNA expression for the superset of
1483 loci and the expression for the subset of 121 elements were nearly
proportional (R = 0.96, p < 10−10, Pearson correlation between all loci
and active loci expression calculated from Supplementary Data 3).
Because L1EM provides separate quantification for “only” (transcripts
that terminate at the polyadenylation site of the L1 element itself) and

“run-on” (transcripts that extend beyond the internal polyadenylation
site and include genomic sequence downstream of the 3’ end of the
element; also referred to as “3’ extended”), we also specifically con-
sidered the expression of run-on transcripts for both sets of loci, again
with similar results (Supplementary Fig. 3).

To relate L1 retrotransposition to L1 expression, we aggregated
signals within tumor types and compared DNA and RNA summary
statistics. The 11 tumor types with a per-sample median RT burden

a.

b.

* *** ****** ********* *** ***** **** **

* p < 0.01 ** p < 0.001 *** p < 0.0001

* p < 0.01 ** p < 0.001 *** p < 0.0001

1,483 L1 loci (L1HS + L1PA2)

121 L1 loci (RT-competent)

* **** ****** ****** ****** ** **

Fig. 3 | L1RNAthroughoutTCGA. a Estimated expressionof L1RNA in each sample
by tumor type, quantified by L1EM. L1 RNA expression per sample is aggregated
across all active L1HS and L1PA2 loci, N = 1483. Asterisks (*) indicate significance
level of Bonferroni adjusted one-sided Mann–Whitney U test comparing tumor to
normal expression (*p <0.01, **p <0.001, ***p <0.0001). Bonferroni-adjusted p-
values and effect sizes for the asterisked indications, from left to right in the figure,
are as follows. Esophageal: 1.31 × 10−3, 0.69; Colon: 2.88 × 10−19, 0.90; LUSC:
1.14 × 10−27, 0.96; Head & Neck: 5.57 × 10−9, 0.6; Stomach: 1.57 × 10−12, 0.79; Bladder:
2.05 × 10−4, 0.58; UCEC: 9.06 × 10−5, 0.56; Cholangiocarcinoma: 1.80× 10−4, 0.94;
LUAD: 2.30× 10−20, 0.76; Breast: 5.57 × 10−9, 0.33; KIRC: 1.8 × 10−7, 0.41; Liver:
9.93 × 10−14, 0.67; Rectum: 4.2 × 10−4, 0.79. b Estimated expression of RNA from 121
L1 loci in each sample grouped by tumor type, quantified by L1EM. L1 RNA
expression per sample is aggregated across 121 loci with evidenceof in vitro activity

or transductions (see Methods section, Identifying subsets of L1 elements).
Bonferroni-adjusted p-values and effect sizes for the asterisked indications, from
left to right in the figure, are as follows. Esophageal: 1.38 × 10−3, 0.69; Colon:
2.47 × 10−18, 0.87; LUSC: 1.26 × 10−26, 0.94; Head & Neck: 5.44 × 10−3, 0.32; Stomach:
7.4 × 10−11, 0.73; Bladder: 9.73 × 10−3, 0.4; Cervical: 3.49 × 10−3, 0.94;UCEC:
2.44 × 10−6, 0.65; Cholangiocarcinoma: 1.42 × 10−3, 0.83; LUAD: 1.12 × 10−20, 0.76;
Breast: 4.7 × 10−7, 0.31; Liver: 4.33 × 10−9, 0.54; Rectum: 1.6 × 10−3, 0.73. a, b Total
N = 9717 samples; 8998 tumor samples and 719 normal samples. Tumor types are
sorted as in Fig. 2, with the addition of Rectal adenocarcinoma and AML. Blue,
tumor samples. Orange. normal samples. Center line indicates median. Box indi-
cates interquartile range. Points more than 1.5× IQR away from the IQR box are
shown as individual outliers.
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above 0 have significantly higher L1 RNA expression than the 19 tumor
types with a median of 0 retrotranspositions (p < 10−10, two-sided
Mann–WhitneyU test, Fig. 4a). In total, 3879 tumor samples have both
WGSandRNA-seqdata, allowingus to compareRT andRNAburdens at
the sample level. The tumors with a non-zero RT burden had sig-
nificantly higher L1 RNA expression as well (p < 10−10, two-sided Mann
WhitneyU test, Fig. 4b). For the 30 tumor types with at least five tumor
samples in both theWGS and RNA-seq datasets, we ranked each tumor
type based on average L1 RNA expression and RT burden; we found
that tumor types that ranked higher based on RT burden tended to
also be ranked highly based on L1 RNA (Fig. 4c). We adjusted our
estimates for L1 RNA and RT burden per sample based on sequencing
quality metrics to minimize technical biases that may make distin-
guishing biological relationships more difficult (see “Methods” for
details). We found a striking correlation between L1 RT burden in a
sample and its L1 RNA expression (R =0.65, p < 10−10, Pearson correla-
tion, Fig. 4d).

Locus-level analysis of L1
Although only a subset of retrotranspositions can be attributed to
specific progenitor elements, the size of our dataset allowed us to
interrogate the relationship between their RT burden and RNA
expression at the locus level. Across tumor types, most L1 elements
haveminimalRNAexpression, and anaverageTRTburdenof 0 (Fig. 5a-
b). Among the elements with non-zero expression, there is diversity

across tumor types. We clustered loci based on similar RNA and TRT
patterns across tumor types (see “Methods” and Supplementary
Data 3). Overall, most elements follow a similar pattern of highest-to-
lowest expression as the total L1 RNA, with the highest expression in
esophageal and lung squamous cell cancers (Fig. 5c), yet there are
tissue-specific differences. The two highest expressed elements over-
all, 22q12.1 and 20p11.21-1, are highly expressed in cervical tumors,
where few other loci are expressed. The 3p22.1-1 locus has a unique
pattern of tumor types in which it is expressed compared to the other
locus clusters, and the 3q22.1-1 cluster of 3 loci is specifically highly
expressed in prostate tumors.

The landscape of locus-TRT burden across tumor types for the
sameclusters of loci is remarkably different (Fig. 5d). Themostly highly
expressed locus, 22q12.1, has comparable expression in esophageal
and cervical cancers but creates far more TRTs in cervical cancers,
despite esophageal cancer having higher RT burdens overall. It also
creates notable TRTs in uterine cancers (both carcinosarcoma and
corpus endometrial carcinoma), despite having relatively lower
expression in those tumors than many others. As another example,
uterine carcinosarcomas have higher TRT burdens from Xp22.2-2 and
12p13.32-1 relative to how highly the corresponding RNAs are
expressed.

Further considering such locus-level relationships between RT
and RNA, we noticed that Xp22.2-2 generally creates more TRTs than
would be expected given its low expression level: 22q12.1 is more
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Fig. 4 | L1 RNA throughout TCGA corresponds with RT burden. a Average
expression of L1 RNA per tumor type grouped by median RT burden per tumor
type. Blue, tumor typeswithmedianRTburden> 0per sample. Purple, tumor types
with median RT burden= 0 per sample. b Expression of L1 RNA grouped by RT
burden per sample. Blue, samples with RT burden> 0. Purple, samples with RT
burden = 0. a, b Center line indicates median. Box indicates interquartile range.
Pointsmore than 1.5× IQRaway from the IQRbox are shown as individualoutliers. P-

value calculated from two-sided Mann–Whitney U test (4a: p = 3.0 × 10−4, effect
size = 0.81, N1 = 11, N2 = 19; 4b: p < 10−10, effect size = 0.71, N1 = 1778, N2 = 2101).
cComparing the relative rankingsof tumor typesbasedonmean L1RNAexpression
(x-axis) and mean somatic L1 RT burden (y-axis). d Correlation between QC-
adjusted L1 RT burden and QC-adjusted L1 RNA per tumor sample. N = 3879 tumor
samples with bothWGS and RNA-seq. R =0.65, p < 10−10, Pearson correlation (using
the exact distribution, as calculated by the scipy.stats.pearsonr function inpython).
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highly expressed by nearly an order of magnitude yet creates only a
few more TRTs. To determine whether this could be due to detect-
ability issues, we compared these two loci among only the subset of
samples with TRTs from at least one of these two loci. Considering
both total locus expression and specifically run-on expression, 22q12.1
generates proportionately much higher RNA (Supplementary Fig. 4a).
Within the samples that only have TRTs from Xp22.2-2, 22q12.1 has
higher expression, both in total and in run-on RNA (Supplementary
Fig. 4b). Some tumors may have alleles of either locus that are not RT-
competent and thereby skew the apparent ratio of RNA converting to
RT. We therefore considered individual tumors with TRTs from both
loci, which must have at least one functional allele of both (Supple-
mentary Fig. 4c). The ratio of TRTs per RNA is still distinctly higher for
Xp22.2-2, leading us to conclude that there are also functional differ-
ences in the activity of different RT-competent elements, referred to as
the RT “efficiency” of a specific L1 element.

With the exception of Xp22.2-2, the greatest disconnect between
RNA and RT competency, based on observed TRTs in this study, is in
the lower few locus clusters, which have a variable pattern of RNA
expression (Fig. 5c) but almost no TRTs in any tumor types (Fig. 5d),
with the exception of the large cluster (N = 1448), which has both low

expression andRTactivity.Manyof these loci, including the latter,may
not be RT-competent population-wide, and therefore could never
retrotranspose regardless of RNA expression level. However, even
among the 121 presumed active loci, the patterns of RNA expression
and TRT burden across locus clusters and tumor types clearly are
different (Supplementary Fig. 5). In theory, these differences can be
reflective of tumors with active RT-disrupting mechanisms, loci that
are polymorphically intact (i.e., functional in only some of the samples
in which they are expressed), and variability in the fraction of run-on
RNA (whichwould impact howmanyRTs resulting fromeach locuswill
be transduction-bearing and thus detectable via short-read WGS); we
address some of these issues in subsequent analyses.

Quantifying the efficiency differences between L1 loci
To determine whether there are quantifiable differences in locus effi-
ciency, we fitted a regression model of locus TRT against locus RNA,
using tumor type and p53 mutation as covariates, for 48 loci for which
TRTs have been detected in at least 2 tumors (see “Methods”). In this
model, the RNA coefficient is the estimated “efficiency” value, with
higher values indicating greater efficiency—i.e., that even with low
levels of RNA expression, a high number of RT events are observed.
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Fig. 5 | Landscape of L1 locus activity across tumor types. Histogram of a per-
samplemean L1 RNA expression andb L1 RT, based on identified transductions, for
all 1483 L1HS and L1PA2 loci. Mean expression and mean RT count per sample are
weighted by the inverse of samples with the same tumor type, so each type con-
tributes equally to the locus mean. c Heatmap of mean L1 RNA expression (log2
TPM) of each locus within a given cluster (rows) across tumor types (columns).
d Heatmap of mean log2 L1 RT count (based on identified transductions) of each
locus within a given cluster (rows) across tumor types (columns). The 22q12.1 locus
in cervical cancer, starred, had exceptionally high RT count. To enable visualization
of the variation across the heatmap, the colors were scaled to a maximum value of
0.4 and this square wasmarked with an asterisk to indicate its outlier value. c, d All
1483 L1HS and L1PA2 loci have been clustered based on similar expression and RT
count profiles across tumor types, resulting in 13 clusters. Clusters are namedbased

on the locus in each clusterwith the highestmeanRNA expression and sorted from
highest (top) to lowest (bottom)meanRT value. To generate each heatmap value, a
mean for each locuswithin each tumor type isfirst calculated, and then themeanof
means for all loci within a cluster is determined. Rows are sorted left to right by
highest to lowest total L1 RNA expression (summed across all 1483 loci) per sample.
To the left of each heatmap, the row colors annotate each cluster categorically
based on RNA and RT. The left column (dark,medium, and light blue) indicates the
distribution of RNA expression of each cluster across tumor types, with mean
expression ≥0.1 TPM in >15 tumor types for “High”, in 5–15 tumor types for “Med-
ium” and in fewer than5 tumor types for “Low”. ThemeanRTcount of all lociwithin
the cluster was categorized into “high” (dark green), “low” (medium green), and
“least” (light green) based on the histogram in b.
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The tumor type is included to account for tissue-specific differences in
locus expression and general RT regulation. p53 is a known regulator
of L1 RT and is included to further de-bias any apparent efficiency
differences attributable to differential regulation.

To start with a concrete example in lung squamous cell tumors,
we clearly see the difference noted above in RT efficiency between
locus 22q12.1 and locus Xp22.2-2 (Fig. 6a). Comparing the pan-cancer
efficiency estimates for every locus against a background distribution
of efficiencies generated by resampling (see “Methods”), we found
significantly higher variance for the actual values compared to the
background for many loci (Supplementary Fig. 6a), demonstrating
true heterogeneity among the RT efficiencies for the L1 loci. Com-
paring the efficiencies for the 121 RT-competent loci in this model to
efficiency estimates to previous in vitromeasurements of activity24, we
found a significant correlation (R = 0.63, p < 10−9, Pearson correlation,
N = 76 loci, Fig. 6b), evenwhen removing themost active loci (R =0.42,
p = 2 × 10−4, Pearson correlation, N = 72 loci, Fig. 6c). As expected,
Xp22.2-2 has a higher estimated efficiency than 22q12.1, with the latter
still moderately high (Supplementary Fig. 6a).

Although TRTs from reference loci allow us to be locus-specific,
they represent only 2.5% of the total RT call set, and the efficiency
estimates above do not account for activity resulting in non-

transduction bearing RTs. We therefore repeated the linear regres-
sion analysis using total RTs per sample as the response variable to
locus-level RNA, thus enabling the association of all loci with RT
activity, not only the ones which result in TRTs. Here we found a
striking 89 and 16 elements, respectively, with significantly high and
moderately high fitted coefficients (Supplementary Fig. 7). We opt to
refer to these estimates as the fitted coefficients rather than effi-
ciencies due to response variable being total RTs as opposed to locus-
specific TRTs. Interestingly, some of the elements with significantly
high locus-specific efficiencies, including 1p31.1-12 and Xp22.2-2, have
moderately and significantly low coefficients here.

To limit a situation whereby variability in baseline expression at
individual loci inflates the significance of fitted coefficients in the
previous models, we next fit a model of total RT burden against the
aggregate expression of each of the 13 previously generated clusters of
elements (Supplementary Fig. 8), reasoning that the expression esti-
mates for groups of similarly expressed lociwould bemore statistically
stable. The fit of this model (R = 0.73, p < 10−10, Pearson correlation) is
in fact better than the correlation between RT and total RNA (Fig. 4d),
providing robust support for differences across elements in the rate of
their converting RNA to RTs, and that a substantial amount of the
variability in RT is explained by locus-specific expression.
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Fig. 6 | Fitting regression models to represent locus efficiency. a A comparison
of two loci within lung squamous cell tumors (N = 126): sum of locus RNA expres-
sion within these samples (blue bar) scaled to the fitted efficiency value (orange
bar), sum of locus TRT counts within these samples (green bar) (see “Methods” for
calculation of efficiency). b Linear regression of coefficients assigned to individual
loci (y-axis) vs. in vitro activity asmeasured by Brouha et al.24 (x-axis), reported as a
relative percentage of measured L1RP activity. N = 76 loci (subset of 156 that were

measured in vitro24), R =0.63, p = 9.3 × 10−10, Pearson correlation (using the exact
distribution, as calculated by the scipy.stats.pearsonr function in python). Error
bars represent 95% confidence intervals around assigned coefficient. Red box
indicates region shown in (c). c Linear regression, removing 4 high-activity loci
(“hot” L1s fromBrouha et al.24).N = 72 loci, R =0.42, p = 2 × 10−4, Pearson correlation
(exact distribution). Similarly, error bars represent 95% confidence intervals around
assigned coefficient.
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Notably, the largest cluster (containing 1448 L1 elements that are
individually expressed at very low levels) is the highest expressed
group in aggregate and is significantly associated with the total RT
burden beyond the contributions of the other clusters. Conversely,
20p11.21-1 is assigned a non-significant coefficient despite evidence in
this and previous studies that it generates TRTs11,15, perhaps because
the correlation is confounded by heterogeneity of functional and
nonfunctional alleles of this locus throughout the population. Two
clusters, 9q21.32-2 and 3p22.1-1, are assigned significantly negative
coefficients, likely indicating that they are typically expressed in non-
RT-permissive contexts.

One limitation of taking total RTs as a response variable is that loci
may contribute to RT activity in two ways: they may produce the RNA
which becomes the RT substrate, or they can create the machinery
which is required for RT activity, without using the substrate origi-
nating from its own locus. While the cis preference for LINE-1 activity
has been demonstrated in the past37, trans activity is possible. Trans
activating LINE-1 locimay in fact beonepossible explanationwhy there
is a discrepancy between the TRT and total RT analyses for some loci
and loci clusters. While RNA expression of the source loci is necessary
for locus-level observances of TRTs, some loci may vary in their cis
activity, resulting in differential significance in the latter analysis.

p53 independently regulates L1 RNA and L1 RT burden
p53, the most frequently mutated gene in cancer38, is a known reg-
ulator of L1 activity11,18,30–32. Through its role in the DNA damage
response pathway, wildtype (WT) p53 can shut down cells with
retrotransposition29.WTp53 canalsobindgenomic L1 promoter loci to
repress transcription33,39,40. We stratified tumors by p53 mutation
status41,42 and, consistently, found significantly higher L1 RNA expres-
sion in the p53mutant tumors (mean difference of 1.00 between log2-,
QC-adjusted TPMs, p < 10−10, 2-sided Mann–Whitney U test). This was
true when stratifying by tumor type as well, particularly for lung
(squamous cell and adenocarcinoma), head and neck, colon, glio-
blastoma, and liver cancers (Supplementary Fig. 9a, b). L1 RT burden
was also higher in p53-mutant tumors (mean difference of 1.57 burden
between log2-, QC-adjusted RT counts, p < 10−10, 2-sided
Mann–Whitney U test), including comparisons within tumor types
for lung squamous cell, head and neck, and colon cancers (Supple-
mentary Fig. 9c, d).

The correlation between L1 RT and L1 RNA was stronger among
p53-mutant compared to p53-WT tumors (R =0.69, p < 10−10 vs.
R = 0.52, p < 10−10, Pearson correlation, Supplementary Fig. 9e–g).
Consistent with p53 RT regulation, this suggests that among p53-WT
tumors, elevated L1 RNA does not necessarily translate to a higher RT
burden, but p53 mutations result in a more direct and proportional
relationship between expression and RT. Among p53-WT tumors the
correlation is nonetheless strong, as p53 regulates both DNA damage
and transcription. On the other hand, the presenceof somep53-WT, L1
RNA-high tumors suggest that the p53 regulatory machinerymay have
been bypassed at both L1 transcription and RT levels.

We sought to test whether associations reported in the past
between p53 and L1 RT may have been driven in part by p53 tran-
scriptional regulation of L1 RNA. If WT p53 somatically represses L1
RNA expression, and lower L1 RNA leads to lower L1 RT burden, the
apparent regulation of retrotransposition may simply be the down-
stream result of transcriptional regulation. We found the correlation
between p53 and L1 RNA remained significant even when conditioned
on L1 RT burden. Further, the correlation between p53 and L1 RT
burden remains significant when conditioning on L1 RNA, indicating
that p53 independently regulates both stages of the L1 life-cycle
(Supplementary Figs. 10 and 11).

To quantitatively evaluate howmuch of the p53/RT relationship is
mediated by p53 impacting L1 RNA upstream of RT, we performed a

statistical causal mediation analysis (see “Methods”). The results
revealed significant contributions of both p53 directly affecting L1 RT
(standardized coefficient τ’ =0.19, p < 10−10, OLS) and p53 affecting L1
RT via regulation of L1 RNA (standardized coefficient αβ’ = 0.18,
p < 10−10, OLS; Fig. 7a, b). To test the likelihood of false positive asso-
ciations in our model, we simulated p53 mutation, L1 RNA expression,
and RT burden under two models. In the first, p53 only regulates L1
expression. In the second, p53 does not regulate expression directly,
but does lead to cell death in cells with high RT burden (see “Simu-
lating p53 regulation of L1”, Supplementary Methods). Neither model
was able to recapitulate the significantly mixed effect we see in the
TCGA data. These results provide additional support for the proposed
dual regulatory role of p53 in restraining L1 retrotransposition27, with
the non-L1 RNA mechanism likely mediated through regulation of
genomic instability-associated processes.

We confirmed that these results are robust to the RT caller used
(Supplementary Fig. 12a). Where we have sufficient data (at least 20
tumors and variability in p53, for tumor types with a median RT
burden above 0), the significance of p53 regulation acting on both L1
RNA and L1 RT is maintained within tumor types (Supplementary
Fig. 12b). For individual reference loci with at least 3 TRTs in our
dataset (N = 39), the extent of p53 regulation of locus-level RNA was
somewhat more variable than p53 regulation of locus RT (RNA var-
iance = 0.25, RT variance= = 0.14, p = 0.064, Levene test), which
potentially suggests that some genomic L1 loci may bind WT p53
more strongly and are therefore more impacted by p53 mutations
than others, while p53 RT regulation is more element-independent
(Supplementary Fig. 13).

We also investigated whether expression of L1 may lead to TP53
mutations, rather than the reverse, leveraging 670 tumor-adjacent
normal samples with RNA-seq and p53 mutation data for the paired
tumors. L1 RNA expression in these normal samples may approximate
the pre-cancerous conditions of the tumor, and if L1 RNA upregulation
can select for, or lead to, p53 mutations, normal tissues with higher L1
RNA expressionmay bemore likely to result in p53mutant tumors.We
first stratified the normal samples by whether the corresponding
tumorshadp53mutations and found no significant difference in the L1
RNA levels (p =0.94, 2-sided Mann–Whitney U test, Supplementary
Fig. 14a). To rule out spurious associations between tissues with both
higher L1 RNA expression and higher frequency of p53 mutations, we
also conditioned on tumor type. Here again we found no significant
association between normal tissue L1 RNA to tumor p53 mutation
status (standardized coefficient = 0.033, p = 0.49, OLS, Supplementary
Fig. 14b). Of note, the focal area in the pre-cancerous tissue con-
tributing to a p53 mutation may not be the same as the adjacent nor-
mal tissue sampled, which would prevent any signal to be detected in
this analysis.

Extension to germline predispositions and other cancer
driver genes
Given the recently expanded TCGA dataset, we were able to identify a
cohort with germline TP53 pathogenic/likely pathogenic (P/LP) var-
iants. Due to this increased sample size, we were able to compare
tumors from patients with rare germline TP53 P/LP variants (Li-Frau-
meni Syndrome, LFS) against non-LFS tumors, stratified by the same
proportion of tumor types. Using permuted resampling of the non-LFS
comparison sample sets, we found no difference in either L1 RNA
expression or L1 RT burden in LFS compared to non-LFS tumors with
TP53 mutations, suggesting comparable L1 activity throughout
tumorigenesis and progression regardless of germline TP53 status
(Fig. 8). The L1 activity in LFS and non-LFS tumors looked the same
whether using bootstrapped resampling for the non-LFS dataset or
regressing the original dataset against tumor type and comparing the
residuals.
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Thus far,we have shown that the variability in L1 RTburden can be
explained to a large extent by locus-specific L1 RNA expression, tumor
type, and TP53 mutation. In particular, TP53 mutation partitions L1-
active tumors from L1-repressed tumors. However, additional reg-
ulatory factors may also exist. To this end, we took cBioPortal anno-
tations for the 82 most frequently mutated genes in the TCGA dataset
and looked for those that partition L1 RNA or L1 RT within the TP53
mutant or WT cohorts (Supplementary Fig. 15).

Followingmultiple hypothesis correction, IDH1 andATRXmutants
were found to associate with significantly different L1 expressionwhen
TP53 is also mutated. In both cases, L1 RNA is comparable within the
TP53 WT cohort, but in the TP53 mutant cohort, L1 RNA was sig-
nificantly repressed in IDH1 mutant and ATRX mutant tumors. These
two genes have the same significant impact on L1 RT in the TP53
mutant tumors. Within TP53 wildtype tumors, mutations in RELN,
PTPRT, and CDKN1A are all associated with higher L1 RT burden. In
TP53mutant tumors, in addition towildtype IDH1 andATRX, mutations
in TTN, LRP1B, CDKN2A, SYNE1, PTPRD, NAV3, RELN, and PKHD1 are all
significantly associated with higher L1 RT burden (two-sided

Mann–Whitney U test Bonferroni-adjusted p-value < 0.01) (Supple-
mentary Fig. 15).

Discussion
To our knowledge, this work includes the first large-scale pan-
cancer analysis of the expression levels of active L1 mRNA, with a
focus on the relationship between expression level and retro-
transposition (RT) activity, making our assessment the most com-
prehensive to date. We present a new RT caller, TotalReCall, which
together with the previously published tool xTea, can improve
specificity while maintaining the sensitivity gains of methods that
prioritize clipped reads over discordant reads. Both callers had
close agreement on which insertions contain inversions, which we
found occur at a higher rate in tumors compared to germline18. As a
byproduct of our search for tumor-specific somatic L1 insertions,
we also characterized the distribution of a conservatively-defined
subset of non-reference germline insertions in this population, but
due to the intentionally non-exhaustive nature of these, our find-
ings should be interpreted with caution (see “Non-reference L1
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insertions present in both case and control samples”, Supplemen-
tary Methods).

The sensitivity of our analyses informs understanding of L1
behavior in different contexts. For instance, while L1 RNA expression
generally correlates with RT activity, as previously observed in a study
of gastric cancers18, we found indication-specific signals: in liver and
kidney cancers, there are fewer RTs than would be expected given the
RNA expression level (Fig. 4c). In prostate cancers, there is significant
L1 RT activity despite L1 RNA expression being comparable between
prostate cancer and normal prostate.

Differences in RNA expression versus RT activity level by indi-
cation and tissue type also have the potential to be clinically mean-
ingful, particularly as our understanding of the various mechanisms
by which the L1 life cycle interfaces with human health deepens. A
previous study quantifying L1 RNA and ORF1p in a limited subset of
cancers32 suggested the oncogenicity of L1 derepression is greater
than what can be attributed to the completed cycles of retro-
transposition (e.g., disruption of non-L1 gene expression32). Beyond
RT activity, an abundance of L1 transcripts can play a role in het-
erochromatin erosion43, and the presence of cytosolic L1 RNA:DNA

hybrids resulting from reverse transcription could lead to an
inflammation response that can alter the tumor microenvironment
by activating the cGAS innate immune response, which in turn acti-
vates the interferon pathway44.

Expanding significantly upon previous in vitrowork24 by assessing
all active L1 loci in the human genome, we find a wide range of effi-
ciencies across L1 loci, including differential behavior across cancer
types. For example, while the expression levels of 22q12.1 are similar
across several indications, including cervical, bladder, and ovarian
cancers, its RT activity appears much higher in cervical cancer. By
necessity, we rely heavily on using TRT events as a proxy for RT events.
Asmost RT events do not result in transductions, wemay not have the
data to accurately quantify efficiencies of many L1 loci. The con-
sistency between transduction-dependent efficiency estimates pre-
sented here and earlier transduction-independent in vitro
measurements24 provide strong support for our results in spite of this
limitation. Still, studies have demonstrated differential RT-
competency across loci for over two decades20,24,25,45, and it is widely
accepted that some loci are “hotter” than others in terms of either
observed RTs or RNA11,24–26. It is often assumed, however, that RT rates
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Fig. 8 | L1 activity in cancer is not affected by germline TP53mutations.
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are proportional to RNA regardless of locus (provided that a locus is
RT-competent)14,21. Here we provide strong evidence across cancers
that this is not the case.

This is of particular interest because the reference alleles of the
RT-competent L1s vary from the consensus sequence by only a few
amino acids. Thus, even small differences may impact RT efficiency.
Such differences could affect, for example, the kinetics of ORF2p
reverse transcriptase enzymatic activity, altered translational effi-
ciency of L1 RNA, binding efficiency of ORF1p to L1 RNA, cellular co-
localization of ORF1p with ORF2p, ability of ORF2p to localize to the
nucleus, and/or the rate of genomic nicking by endonuclease. The
significant heterogeneity across loci revealed in this study speaks to
the value in considering individual L1 elements separately as potential
clinical targets and biomarkers.

We have focused our analyses primarily on L1 loci present in the
reference genome, though we found a significant number of TRTs
originating frompolymorphic loci, consistent with literature reporting
that these latter elements may be among the most active20,25,26. Their
existence is also of broad interest aswe build our understanding of the
role of L1 in human health and disease. A deeper dive into the land-
scape of L1 polymorphism is warranted but is beyond the scope of this
study. Nonetheless, the results presented here are likely to be robust,
given the high predictability of L1 expression on RT burden even
absent any additional covariates suggests significant variables are not
missing (Supplementary Fig. 8).

Finally, we demonstrated how large-scale, multi-modal modeling
candisentangle the interplay between canonical driver events in tumor
evolution and retrotransposon activity. Many studies have noted that
the role of p53 as a general regulator of cell cycle control, apoptosis,
and senescence is insufficient to explain the extent of tumor sup-
pression by p5346–48. Here we provide evidence in primary human
tumors for a dual role of p53: (a) in response to retrotransposition, p53
may activate various cellular stress response pathways that ultimately
prevent the growth of cells harboring L1 RT events42,49–51; (b) p53 may
modulate L1 activity directly, for example, by acting on the L1 pro-
moter to down-regulate L1 RNA expression.

Our model assumes that L1 expression and RT activity, and p53
mutation, can be integrated, although they operate on different time
scales. Thus, any correlations, or lack thereof, should be interpreted
with some care. Nevertheless, our analysis suggests that p53 dere-
pression of L1 through direct binding of the genomic L1 5’ UTR (pre-
viously demonstrated in vitro33,39,40) is likely to be somatically active
across tissues and significantly mutagenically disrupted in vivo in
cancers.

Beyond TP53, we additionally nominated 12 genes whose muta-
tional states are significantly associated with L1 activity; further
experiments are needed to determine which of these associationsmay
reflect direct regulatory mechanisms. From a clinical perspective, we
showedRTactivity in tumors frompatients with LFS, suggesting future
therapeutic trials targeting L1 should include individuals with LFS, who
are at very high risk of developing tumors. While additional data are
needed, as these patients undergo early detection and screening, it is
further compelling to consider the incorporation of early cancer
interception with such a L1-targeting agent.

We also found L1 RT burden to be significantly associated with a
worse clinical prognosis in pooled tumor samples (Supplementary
Fig. 16). Interestingly, when split by tumor type, this association is no
longer significant, suggesting a strong correlation between aggressive
cancers and those with high L1 burden. We speculate that L1 and
transposable elements are likely central to the evolution of the DNA
damage response, in a way that extends far beyond p53.

Methods
The study complies with all relevant ethical regulations. The data used
in the study (TCGA and the GIAB) do not require IRB approval.

Pan-cancer dataset (TCGA)
Whole-genome sequencing data (releases 37.0 and 38.0, 2023) were
accessed from the Genomics Data Commons (GDC) cloud storage,
using the GA4GH standard Data Repository Service (DRS) for URI
resolution. RNA-Seq data were downloaded from the GDC directly
(https://portal.gdc.cancer.gov/repository) as hg38-aligned BAM files
using the GDC Data Transfer Tool (https://docs.gdc.cancer.gov/Data_
Transfer_Tool). All subsequently described processing of these data
was performed within the Terra.bio cloud data platform (https://app.
terra.bio/).

TotalReCall method for detection of L1 retrotranspositions
Retrotransposon insertions can be detected from short-read sequen-
cing from fragments which cross the breakpoint. Depending on the
start and end of the fragment, this may result in a discordant read pair
(when the two paired reads from both ends of the fragment are not
properly mapped as a pair) and/or split (“clipped” in mapping jargon)
reads (when one of the reads spans the breakpoint) (Fig. 1). In earlier
TCGA releases, the length of the reads was 50bp or less, which typi-
cally resulted in the inability to accuratelymap split reads that crossed
RT insertion breakpoints. As a result, methods for retrotransposition
detection (e.g., MELT17 and TraFiC-mem11) used discordant read pairs
as their primary signal. As 150bp paired-end reads have become the de
facto standard for whole-genome sequencing, the importance of
clipped reads has increased. For example, xTea19, a newer method for
retrotransposon detection, uses both discordant read pairs and clip-
ped reads. In this paper, we developed the “TotalReCall” approach,
which explicitly accounts for differentmodes of the retrotransposition
process (Fig. 1a–d). Similarly to xTea, it relies on the two key signals
outlined above. In detail (Fig. 1g), when aligning sequencing reads to
the reference genome, TotalReCall looks for: (i) reads that span the
retrotransposon insertion site breakpoint and result in chimeric reads
that contain portions of both the insertion site sequence from the
human genome as well as the inserted L1 sequence, leading to “soft
clipped” alignments; and (ii) paired-end reads that arise from frag-
ments spanning the inserted L1 sequence, which often have one read
mapping near the insertion site but the other read mapping to one of
the many L1 sequences elsewhere in the genome (even to a different
chromosome or a distant site on the same chromosome), resulting in
“discordant read pairs”.

While xTea uses clipped reads to determine the breakpoints,
TotalReCall additionally uses clipped reads (rather than discordant
read pairs) to infer the transposon length and inversion status (Fig. 1).
Indeed, a split 150bp read can be mapped reliably (there are some
subtleties related to mappability and low complexity regions), such
that the clipped sequence is long enough to be reliably mapped to the
transposon consensus (Supplementary Fig. 17). In addition, TotalRe-
Call utilizes (typically hard-clipped) supplementary alignments that
infer the sequence of the clipped part using the matching primary
alignments (see “L1 retrotransposition detection from short-read
whole genome sequencing data”, Supplementary Methods for more
details).

Validation using Genome in a Bottle (GIAB) dataset
Alignments to hg19 and indices (BAM and BAI files, respectively) for
OxfordNanopore (ONT) long reads and Illumina reads for the Genome
in a Bottle benchmarking project35 were downloaded from the NCBI
archive. A complete list of access links can be found in Supplementary
Data 4. Illumina reads (300x coverage, 150bp paired end reads) were
sorted by name and reverted to FASTQ and then aligned to hg19 (in
order to be able to run TraFiC-mem, which is hardcoded to use hg19)
using bwa. Duplicates weremarked using samtools. Then the resulting
alignmentswere randomlydownsampled to 80× and 35× (tomatch the
TCGAwhole-genome sequencing protocol).We used reads for the trio
of Ashkenazi Jewish ancestry (HG002/HG003/HG004) because all the
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family members were sequenced to the same depth. Also, one sample
(HG005, child) from the trio of Han Chinese ancestry had a very low
quality (high fraction of discordant read pairs); as a result, we skipped
these three samples. We ran TotalReCall, xTea19 and TraFiC-mem11

using different members of the trio as “case” (downsampled to 80x)
and “control” (downsampled to 35×), resulting in 6 pairwise compar-
isons. We checked for supporting insertions in the ONT reads to verify
the correctness of the calls (see “Validating retrotransposition detec-
tion by TotalReCall, xTea, and TraFiC-mem using long reads”, Sup-
plementary Methods for details). All the calls in the intersection set of
the TotalReCall and xTea calls were supported by the long reads, and
the total number of calls made by both callers was highly correlated
across samples (Supplementary Figs. 18 and 19). This motivated us to
use the intersection of TotalReCall and xTea calls for TCGA. A small
fraction of these calls had conflicting inversion status, whichwere then
manually verified using the inserted sequences from the Nanopore
reads and running BLASTn against the L1 consensus sequence. This
confirmed the correctness of the TotalReCall inferences of inversions
for the L1 retrotranspositions (Supplementary Data 5).

Short-read whole-genome sequencing (WGS) data from TCGA
Quality control data filtering. Variability of sequencing library quality
across TCGA WGS data can obscure the differentiable signal of biolo-
gical relationships. With that in mind, we filtered the entire WGS
dataset (15,034 samples from6260 patients, as of release 38.0) to only
those samples with alignment files from GDC Data Release 37.0 or
38.0 stored inNCI GenomicData Commons (10,312 samples from 5148
patients). We removed 14 non-primary tumor samples and divided the
remaining samples into 5161 tumor-normal pairs (which includes some
redundant pairs per patient, removed later). To account for con-
founding differences between the libraries and better capture biolo-
gical relationships, the quality of eachWGS librarywas evaluated using
a modified Picard52 tool to quantify the total number of reads, average
base quality, average read length, and fractions of reads with split or
discordant alignments (the two sources of information on which
TotalReCall relies). All reads that did not have a matched pair, that
were marked as duplicates, that hadmapping quality equal to zero, or
whose base and quality score strings were inconsistent (i.e., of differ-
ing lengths) were removed from the analysis. From the remaining
reads, for each sample, we calculated: (1) the fraction of chimeric
reads, (2) the fraction of overall clipped bases, (3) the average read
length, (4) the average base quality, and (5) the total coverage. Note
that a chimeric read is defined per Picard/GATK v4.1.8.1 as a read pair
aligned in an unexpected orientation or significantly further apart than
expected (with maximum insert size set to 100,000). We removed all
paired samples with a chimeric read fraction in the tumor or normal
sample greater than 2%, tumor samples sequenced below 50x depth,
and normal samples sequenced below 20× depth, resulting in a total of
4688 tumor-normal pairs from 4669 patients. To de-duplicate indivi-
dual patients withmultiple primary tumor or normal samples, only the
samples with the longest read lengths per patient were retained.
TotalReCall depends on signal from split-read alignments (i.e., clipped
reads) to nominate candidate insertion sites, whichwill only be aligned
as expectedby bwamem for read lengths of at least 70 bp. InGDCData
Releases 37.0 and 38.0, all libraries were sequenced with at least
100bp reads; for improved consistency, we selected the QC-passing
primary tumor-normal pair for each patient with the longest read
lengths, which resulted in a dataset of 4669 tumor-normal pairs across
31 tumor types in which all samples had been sequenced with 150 bp
reads. Due to their importance, the five metrics for each tumor and
paired normal sample calculated here were also used to adjust the
retrotransposition count estimates for each tumor sample, as shown in
Supplementary Fig. 20 and described below. The final dataset of 4669
tumor-normal pairs can be found in Supplementary Data 6. Values for
all QC metrics (10 per pair) are included in Supplementary Data 3.

Identification of somatic L1 retrotransposition
TotalReCall. TotalReCall was run on 4669 TCGA tumor-normal pairs
using all default parameters through theTerra.bio clouddata platform.
See “Code availability” section below for information on running the
workflow, which is written in WDL.

xTea. The xTea (v0.1.7) short readmodule was run on the 4669 TCGA
samples for somatic L1 insertion identification. xTea first calculates the
average depth and then automatically adjusts the parameters based on
the calculated depth. In addition, we set the tumor purity to 0.45
(“--purity 0.45”). When parsing transductions from the resulting calls,
we further grouped the identified L1 transductions whose traced
source elements arewithin 1000bp, andwedisregarded transductions
whose source fell within sequence that couldmultimap to L1 sequence
(the RT call was kept, but it was treated as non-transduction-bearing).

Intersecting TotalReCall with xTea. Calls from both call sets were
removed if the insertion did not occur on one of the 24 canonical
reference chromosomes. “Orphan” calls from xTea (designated in the
TD_SRC field) were also removed. All calls identified in the same
sample with coordinates (CHROM and POS) within 50 bp from each
other were considered shared. Nearly 96% of shared calls shared the
exact coordinates identified by both callers, and >99% were <10 bp
apart. All calls from the intersection set can be found in Supplemen-
tary Data 7.

Inversion rate across cancer subtypes. The intersection of xTea and
TotalReCall retrotransposition calls as listed in Supplementary Data 7
was used to calculate the inversion rate across somatic RTs. Only
indications with more than 500 total LINE-1 RT events called in this
intersecting list are shown. The error bars represent the 99%
Clopper–Pearson confidence interval computed using the binom R
package.

RNA sequencing
Reprocessing of alignment files. Public RNA-seq data from TCGA
were reverted to unaligned FASTQ format using GATK v4.1.8.1 tools
RevertSam (with options “--SORT_ORDER “queryname” --VALIDA-
TION_STRINGENCY SILENT”) and SamToFastq (with options “INTER-
LEAVE=false INCLUDE_NON_PF_READS=true”). Any reads that were not
pairedwere dropped. The paired-end FASTQ files were then aligned to
the hg38 human reference genome using STAR v2.7.9a.

Quality control data filtering. Alignment files for a total of 10,904
RNA-seq samples from 10,089 individuals (10,174 tumor samples and
730 normal samples) were downloaded fromGDC as described above.
Twenty-eight of these (all tumor samples) could not be reverted to
FASTQ for realignment due to the presence of unpaired reads or
otherwise corrupted downloaded alignment files. The remaining
10,876 samples were realigned as described above. 634 of these (623
tumor samples and 11 normal samples) were sequenced with single-
end reads, and therefore removed from our dataset. 72 additional
tumor samples were removed from our dataset for containing a
strand-specific sequencing library. Finally, we filtered out any meta-
static, recurrent, or new primary tumor samples and deduplicated the
patient samples in the dataset to include no more than one primary
tumor and one normal sample per patient, resulting in a dataset of
8998 tumor samples and 719 normal samples from 9071 individuals
across 32 tumor types. These samples are listed in Supplemen-
tary Data 8.

L1 RNA quantification. L1 RNA expression was quantified in the 8998
tumor and 719 normal RNA-seq samples using L1EM28, which for-
malizes a framework for quantification of expression that is based on
themechanismsof active transcription of L1 elements. Read counts for
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proper expression at all loci were converted to transcripts per million
(TPM) of active L1 expression based on transcriptome-wide gene
counts assigned by STAR. Read counts for run-on expression (“3pru-
non” in L1EM) were also converted to TPM, using the same “per mil-
lion” denominator per sample as active expression.

Comparing RT calls to PCAWG. RT calls identified in the PCAWG
dataset were obtained from Supplementary Data 2 of Rodriguez-
Martin et al.11. To match samples shared between the PCAWG and
TCGA datasets, a sample spreadsheet was downloaded from the ICGC
Data Portal (https://dcc.icgc.org/api/v1/download?fn=/PCAWG/
donors_and_biospecimens/pcawg_sample_sheet.tsv, accessed 31 July
2023) andmatched to the TCGA dataset using the submitter specimen
id. This ensured that only one sample per patient was included in the
comparison, consistent with our dataset. The calls from PCAWG were
converted from hg19 to hg38 coordinates using the liftover package in
Python. The intersection was then performed in the same manner as
the intersection between xTea and TotalReCall described above. Calls
from the same sample on the same chromosome were considered
“shared” if the leftmost coordinates of the target site as identified in
both call sets were within 50bp of each other.

Categorizing tumors as p53 wild type (WT) or mutant
Categorical designations of p53 alteration were obtained through the
public repository cBioPortal (www.cbioportal.org, accessed 23 Feb-
ruary 2023) by querying “TCGA PanCancer Atlas Studies” (which
includes 10,967 samples from 10,953 patients in 32 studies) for all
alterations in “TP53”. A samplewill bemarked as “altered” inTP53 if any
non-synonymous mutations, amplification, deep deletion, or struc-
tural variants have been identified in that sample. Shallow deletions or
low-level copy number gains of the gene do not contribute to classi-
fication of a sample as altered. The altered annotations were used to
divide tumor samples into p53 mutant and wild type (WT) categories
to test significance with Mann-Whitney U tests as shown in Supple-
mentary Fig. 9, and to demonstrate robustness of themediationmodel
between p53, L1 RNA, and L1 RT burden as shown in Supplemen-
tary Fig. 10.

Categorizing tumors as wild type (WT) or mutant for
additional genes
Categorical designations of alteration status for the 82most frequently
mutated genes in TCGA were obtained through cBioPortal (www.
cbioportal.org, accessed 23 February 2023) using the same query and
categorization as above. The sample-level annotations for the dataset
used in this study canbe found in SupplementaryData 3. The complete
list of genes and results of stratified tests for L1 RNAandRTassociation
can be found in Supplementary Data 9.

Identifying subsets of L1 elements
This and previous studies26 have identified transductions linked to
source elements that do not have intact ORF1 and/or ORF2 domains in
the reference genome. We therefore use all L1HS and L1PA2 loci that
are annotated as “category 1” (meaning the 5’ end of the element is
sufficiently intact to function as a promoter) by L1EM28 throughout our
analyses.We alsomake use of a subset of 121 L1HS and L1PA2 elements
in Fig. 3 and Supplementary Figs. 3 and 5, which is based on the
combination of source elements of transductions identified in this
study and elements with in vitro evidence of retrotransposition as
previously annotated in Supplementary Data 23 of Ebert et al.26 (which
are also present as category 1 in L1EM). Locus Xq21.1-3 is not included
in the set of RT-competent elements due to inconsistent coordinate
annotation in Ebert et al.26. When calculating efficiencies, we addi-
tionally included all loci that had been profiled in vitro24, by first
extracting the sequences of L1 elements within the cytoband

sequences provided by accession numbers in SupplementaryData 6 of
Brouha et al.24 and then realigning those sequences to the hg38
reference genome, resulting in 156 total L1 loci, 76 of which were
shared with Brouha et al.24 and used in Fig. 6b. Locus 22q13.32 is
included in the set of 156 elements but not in the comparison set of 76
due to being included in the Brouha et al. study but unsuccessfully
assayed. The loci included in each subset are reflected here in Sup-
plementary Data 10.

Adjusting RNA and RT estimates based on sequencing metrics
Intronic rate of RNA-seq, which has previously been shown to be a key
confound for L1 expression53, was calculated using RNA-SeQC v254. A
linear regression between the L1 RNA estimates and the intronic rate
was thenperformed in Python v3.7.12 using statsmodels v0.13.0OLS to
perform an ordinary least squares regression. The residuals from this
model were then used as the adjusted L1 RNA estimates (Supplemen-
tary Fig. 20a). Tumor and normal RNA-seq were fitted in the
same model.

Similarly, quality metrics for the WGS samples were calculated as
described above. An ordinary least squares model was fitted to the
tumor-specific retrotransposition counts as a function of the average
read length, depth of coverage, average base quality, chimeric read
fraction, and clipped base fraction in both the tumor sample and the
pairednormal sample. The residuals from thismodelwere thenused as
the adjusted L1 RT estimates (Supplementary Fig. 20b).

Clustering L1 loci based on RNA and TRT across tumor types
To condense the 1483 L1HS and L1PA2 loci into 13 clusters of loci with
similar activity, we first considered the subset of our dataset with both
WGS andRNA-seqdata (N = 3879 tumors across 29 tumor types). Using
the QC-adjusted log2 values for both RNA and TRTmeasurements, we
calculated the mean value per tumor type at every locus. The histo-
grams shown in Fig. 5a, b are based on themean across tumor types of
these mean-per-tumor type values. We then constructed two dendro-
grams, one for the RNA means and one for TRT means, using the
clustermap function of the seaborn library in Python, and defined
clusters within each dendrogram using the fcluster function from the
scipy module cluster.hierarchy.

Finally, we annotated each locus based on whether the mean TRT
value across tumor types fell within the lowest histogram bin (fewer
than 0.0018 log2, QC-adjusted TRTs per sample). Loci that shared all
three annotations (2 cluster assignments from the RNA and TRT den-
drograms, and the TRT histogram-based annotation) were assigned to
the same cluster, resulting in the final set of 13 clusters used in Fig. 5
and Supplementary Fig. 8. Additional details can be found in Locus
clustering by RNA expression and RT events in the Supplementary
Methods. Themean values across all loci within each cluster are shown
in the heatmaps. Clusters are sorted based on high-to-lowmean across
tumor types of TRT values. Tumor types are sorted based on high-to-
low sum of mean locus RNA. For the 121 RT-competent loci (identified
as described above), we repeated the same procedure (Supplemen-
tary Fig. 5).

Modeling locus efficiency
Statistical analysis was performed in Python v3.7.12 using statsmodels
v0.13.0OLS to evaluate all efficiencymodels. A notebook including the
python code to fit all models described below is included in the github
repository associated with this study, described in the “Code avail-
ability” section below.

Efficiencymodel. Efficiencywas calculated for 156 L1 loci, identified as
described above. The subset of our dataset with WGS, RNA-seq, and
p53 mutation annotations was used (N = 3820 tumors). Log2, QC-
adjusted values were used for both locus RNA and TRT. A single
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ordinary least squares regression was fitted for the model

locusiTRT � ef f iciencyi � locusiRNA+ tumor type +p53+ const

treating tumor type as a categorical variable, such that every tumor
type and p53 mutation status were assigned the same coefficients
within every locusmodel. The input data was formatted such that each
observation represents a single tumor and locus, with 3820 × 156 total
observations.

Backgroundmodel of efficiency. In the abovemodel, every locus will
be fitted with a coefficient to quantify the contribution of locus RNA to
locus TRTs above and beyondwhat is expected across any locus based
on the tumor type andmutational status of p53. To test whether these
coefficients differed from each other more than would be expected
due to noise, we generated 1000 resampled variations of the input
data to the OLS model, where the locus associated with each obser-
vation was randomly permuted. For these resampled inputs, we used
only data from48 L1 loci with TRTs in at least 2 different samples in the
dataset of 3820 tumors. Doing so enabled greater variability in the
simulated background efficiencies, and the apparent significance of
true efficiencies would have been even higher compared to a back-
ground of all 156 loci. We thus generated a total of 48,000 resampled
efficiency estimates, used to define empirical significance of each true
efficiency estimate, and the variance of efficiencies within each of the
1000 resamplings was used to define the empirical significance of the
true efficiency variance.

Categorizing loci basedonbackgroundmodel. All 156 lociwithfitted
efficiencies were compared against the background model of 48,000
permutation resampled efficiencies to calculate a one-sided empirical
significance of an efficiency as high or as low as the true fitted value.
These p-values were multiple hypothesis corrected (including all 156
loci as possible hypotheses), and corrected significance was set at a
threshold of 0.05. Coefficients that did not meet the criteria for sig-
nificance but fell outside the interquartile range of the background
model were categorized as “slightly high” (above the 75th percentile of
the background model) or “slightly low” (below the 25th percentile of
the backgroundmodel). All other loci were categorized as “typical”. All
156 loci were assigned efficiencies and reported in Supplementary
Data 10, but only the 48 loci included in the background model are
shown in Supplementary Fig. 6.

Total RT ~ locus RNA model. Individual ordinary least squares
regressions were fitted for 121 L1 loci with evidence of transductions,
identified as described above. For these loci, coefficients were fitted
for the model

Total RT burden � coef � locus RNA+ const

based on input data from 3879 tumors with both WGS and RNA-seq
data. “Total RT burden” is used here to differentiate from the locus-
specific TRT burden used above and is equivalent to “RT burden” used
elsewhere in the manuscript, e.g., as seen in Fig. 2. Log2, QC-adjusted
values were used for both RT and locus RNA. The coefficients for each
of the 121 models are recorded in Supplementary Data 10.

Background model of locus correlation with total RT. To generate
the backgroundmodel, 1000 resampled variations of the model input
data were generated by randomly resampling with replacement
observations across any sample and locus, and then permuting the
locus assignmentof locusRNA. For each input resampling, 121 separate
regression models were fitted, resulting in 121,000 total background
estimates for the coefficients of locus RNA correlation with total RT.
The variance of coefficients within each of the 1000 resamplings was

used to determine the empirical significance of the varianceof the true
coefficients.

Categorizing loci based on backgroundmodel. As above, all 121 loci
with fitted coefficients were compared against the background model
of 121,000 resampling-based coefficients to calculate a multiple-
hypothesis corrected one-sided empirical significance. Categories
were assigned based on a significance threshold of 0.05 and values
within or without of the interquartile range of the background dis-
tribution as described above.

Total RT ~ Σ cluster RNA model. The clusters defined in Fig. 5 and
described above were used as inputs to the model

Total RT burden �
X

clusters

ci � clusteriRNA+ const

where clusteriRNA is the sum of locus RNA from all loci assigned to a
given cluster within a single sample. Log2, QC-adjusted values are used
for RNA and RT. As before, “Total RT burden” is used here to indicate
the dependent variable of this model is not locus-specific and is
equivalent to “RT burden” used elsewhere. All tumors with WGS and
RNA-seq data (N = 3879) were used as inputs to this model.

Identifying the Li-Fraumeni Syndrome cohort
To create a TCGA-LFS cohort, carriers of putative germline TP53 P/LP
variants were identified from the TCGA pan-cancer analysis55. Tumor
and matched normal DNA BAM files were downloaded from the
Genomic Data Commons (GDC) using a National Center for Bio-
technology Information Genotypes and Phenotypes Database (NCBI
dbGaPphs000178) approvedprotocol (#21931) andunderwent quality
control to ensure the TP53 variant was found at the expected hetero-
zygous frequency in the normal BAM file; variant classification was
performed using the American College of Medical Genetics (ACMG)
specific guidelines56. Annotations indicating which samples in this
study belong to the TCGA-LFS cohort are provided in Supplemen-
tary Data 3.

Mediation model
Statistical analysis was performed in Python v3.7.12 using statsmodels
v0.13.0 OLS to evaluate the mediation model. For the 3847 TP53
mutated tumor samples without germline TP53 mutations for which
we had WGS, RNA-seq, and TP53 mutation data available, five linear
regressionswerefitted (see Supplementary Fig. 10), using the log2,QC-
adjusted values for RT and RNA:

RT � τ � p53mutation score+ c1 ð1Þ

RT � β � RNA+ c2 ð2Þ

RNA � α � p53mutation score+ c3 ð3Þ

RT � β0 � RNA+ τ0 � p53mutation score+ c4 ð4Þ

RNA � β* � RT +α* � p53mutation score+ c5 ð5Þ

Note that only Eqs. (3) and (4) are necessary for quantifying the
magnitude and significance of the mediation. Equation (1) is used to
normalize the mediated and unmediated effects to the total effect of
p53 on L1 RT burden. Equation (2) is included here to evaluate the
correlation between L1 RNA andRTburden alone, without considering
p53. Equation (5) (Supplementary Fig. 10b) was evaluated to confirm
that p53 has a significant effect on L1 RNA evenwhen controlling for L1
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RT burden. The significance of this model fit was further explored
using simulations tomodel an empirical distribution for the covariate-
controlled contribution of p53 mutation to both RNA and RT, descri-
bed further in the Supplementary Methods. In each model, ci incor-
porates both the intercept and the error terms. The fitted coefficient
values were then standardized based on the estimated standard
deviations for each variable57. The ratio of τ’ to τ gives the estimate for
the percentage of the total impact of p53 on L1 RT burden that is not
mediated by L1 RNA. The product of coefficients α and β’ (which is
equivalent to τ–τ’) gives a coefficient for the effect of p53 on L1 RT
burden via L1 RNA, and similarly the ratio of αβ’ to τ gives the estimate
for the percentage of the total impact of p53 on L1 RT burden that is
mediated by L1 RNA. Standardized coefficients are calculated by
multiplying the original coefficient by the ratio of the standard
deviation of the dependent variable to the standard deviation of the
fitted variable. 95% confidence intervals for coefficient values are
provided by the OLS outputs. 95% confidence intervals for mediated
fractions are provided by concurrently running statsmodelsMediation
with Eqs. (4) and (3) as inputs.

Comparing L1 RNA and RT in LFS and non-LFS, TP53
mutant tumors
Tumors from individuals with germline TP53 P/LP variants (Li-Frau-
meni Syndrome) were compared against all other tumors, controlling
for tumor type composition in various ways. First, linear regression
models were fitted for log2 RT burden or log2 RNA as a function of
tumor type (treated as a categorical variable). We generated
10,000 samplings (with replacement) of non-LFS, TP53 mutant tumor
samples, matched by indication, to compare RT burden and RNA
expression against the true LFS cohort (N = 13 for the WGS data, and
N = 22 for the RNA-seq tumor data). The distributions of log2 RT and
log2 RNA were compared between the true LFS datasets and the
resampled non-LFS datasets. Significance of the differences between
log2 RT and log2 RNA values between subsamplings and the true LFS
data set was evaluated with a two-sided t-test.

Causal mediation models of L1 RNA influencing TP53 mutation
For 670 non-LFS normal RNA-seq samples for which there is a tumor
TP53mutation annotation (obtained from cBioPortal as above) for the
same patient, log2 QC-adjusted RNA values were compared in the
patients with somaticTP53mutations to patients without somatic TP53
mutations and tested with a two-sided Mann–Whitney U test, as
implemented in the scipy.stats module. For those same samples, an
ordinary least squares regression was fitted for the model

tumor p53mutation status � normal RNA+ tumor type+ const

where tumor type is treated as a categorical variable, such that each
tumor type is assigned its own coefficient reflecting the likelihood of
TP53 mutation in the tumors. Coefficients for each variable are stan-
dardized by multiplying the original coefficient by the ratio of the
standard deviation of the dependent variable (binary value repre-
senting tumor TP53 mutation) to the standard deviation of the corre-
sponding variable57.

Testing significance of gene mutations
For the 82 most commonly mutated genes in TCGA (as recorded by
cBioPortal), a series of Mann-Whitney U tests was performed. First,
within the dataset of 3820 tumors with WGS, RNA-seq, and cBioPortal
mutation annotations, two-sided Mann-Whitney U tests compared the
log2, QC-corrected L1 RNA and RT burden in samples that were wild-
type vs. mutated in each gene, resulting in 164 comparisons. Next,
given the abundance of TP53 mutations and the known regulatory
association between p53 and L1, we stratified the remaining 81 genes
into subsets of p53 WT tumors (N = 2329) and p53 mutant tumors

(N = 1491) and again compared L1 RNA and RT burden for tumors
mutated or wildtype in each gene, resulting in 4 two-sided Mann-
Whitney U tests per gene. We recorded the mean and median values
for RNA and RT within every subset of p53 mutant or wildtype, and
genemutant orwildtype groups of tumors. Any comparisons thatwere
significant below a threshold of 0.01 following multiple hypothesis
correction and also had an effect size (themagnitude of the difference
between the median RNA or RT values in the mutated and wildtype
subsets) at least as large as the overall standard deviation of RNA or RT
values throughout our dataset were included in Supplementary Fig. 15.
The results of all 6 comparison tests for all 82 genes are included in
Supplementary Data 9.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All raw data have been obtained from publicly available datasets, with
references cited herein. Specific Genome in a Bottle sequencing data
download links are provided in Supplementary Data 4. Processed data
generated in this analysis, in addition to TCGA sequencing data access
information, are provided as Supplementary Data. Source data for
figures are provided. Pseudo-germline calls are available as controlled
access data at the database of Genotypes and Phenotypes (dbGAP) as
controlled access data under the project phs003888 (https://www.
ncbi.nlm.nih.gov/gap/). Data access requestswill be handledby dbGAP
directly. For specific concerns, contact: NCIDAC@mail.nih.gov. Source
data are provided with this paper.

Code availability
TotalReCall code for L1 retrotransposition detection from short-read
whole-genome sequencing data is publicly available on GitHub
(https://github.com/Rome-Tx/totalrecall, https://doi.org/10.5281/
zenodo.14553438). The repository includes the source code for the
package, a Dockerfile to build the container image, and aWDL file that
was used to run TotalReCall using Terra/Cromwell. Pre-built Docker
images are published on Dockerhub and publicly available. A reposi-
tory including Python notebooks to generate all analysis figures in this
manuscript will also be made available on GitHub.
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