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% Check for updates Non-adiabatic molecular dynamics (NAMD) simulations have become an

indispensable tool for investigating excited-state dynamics in solids. In this
work, we propose a general framework, N’AMD (Neural-Network Non-
Adiabatic Molecular Dynamics), which employs an E(3)-equivariant deep
neural Hamiltonian to boost the accuracy and efficiency of NAMD simulations.
Distinct from conventional machine learning methods that predict key quan-
tities in NAMD, N?AMD computes these quantities directly with a deep neural
Hamiltonian, ensuring excellent accuracy, efficiency, and consistency. N> AMD
not only achieves impressive efficiency in performing NAMD simulations at the
hybrid functional level within the framework of the classical path approx-
imation (CPA), but also demonstrates great potential in predicting non-
adiabatic coupling vectors and suggests a method to go beyond CPA. Fur-
thermore, N?’AMD demonstrates excellent generalizability and enables seam-
less integration with advanced NAMD techniques and infrastructures. Taking
several extensively investigated semiconductors as the prototypical system,
we successfully simulate carrier recombination in both pristine and defective
systems at large scales where conventional NAMD often significantly under-
estimates or even qualitatively incorrectly predicts lifetimes. This framework
offers a reliable and efficient approach for conducting accurate NAMD simu-
lations across various condensed materials.

In recent years, Non-adiabatic molecular dynamics (NAMD) has photocatalysis, and optoelectronics, where it plays a crucial role in
achieved remarkable success in revealing the ultrafast microscopic elucidating energy conversion processes’ ™. Particularly in energy con-
mechanism of excited state dynamics in complex systems where elec-  version devices such as solar cells and light-emitting diodes, under-
tronic and nuclear dynamics are strongly coupled’™. This methodology  standing and managing nonradiative electron-hole recombination is
proves indispensable across various fields, including photovoltaics, vital for enhancing device efficiency and performance.
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However, the efficiency and accuracy of NAMD simulations are
significantly inferior compared to ground-state calculations. The
computational demands of NAMD are several orders of magnitude
higher than those for static calculations. Furthermore, the reliability of
NAMD simulations is strongly dependent on the choice of exchange-
correlation functional used in electronic structure calculations, owing
to the crucial role of the energy differences between molecular orbitals
and non-adiabatic couplings (NAC)™". Particularly in predicting non-
radiative electron-hole recombination, the commonly used Local
Density Approximation (LDA) or Generalized Gradient Approximation
(GGA) for exchange-correlation often suffers from the notorious self-
interaction error, which severally underestimates band gaps and pro-
duces over-delocalized wavefunctions, leading to less accurate NACs
and even the worst, qualitatively incorrect simulation results.

Efforts to enhance the reliability of NAMD simulations are
ongoing. One notable strategy involves the DFT+U method", which
introduces a Hubbard U parameter to account for the Coulomb
repulsion among multiple electrons occupying the same site, parti-
cularly improving band gap estimations. However, selecting an
optimal U parameter remains challenging'®, and its use is limited to
systems with localized electrons, even though the underestimation
of band gaps is a widespread issue for all systems. Another approach
in NAMD is employing the scissor operation”, which manually
adjusts energy levels to align with experimental values. However, this
method does not alter band dispersion, the time derivative of band
energy, or wavefunctions, thereby leaving the correction of NAC
unresolved.

Thus, NAMD simulations employing hybrid functionals offer a
more robust solution compared to conventional functionals and cor-
rection methods. However, the computational costs associated with
hybrid functional calculations are substantially higher than those for
local and semi-local functionals. NAMD involves the real-time evolu-
tion of the time-dependent Schrédinger equation, primarily requiring
repeated solutions of the electronic structure-often tens of thousands
of times to capture NAC at each time step. Consequently, the appli-
cation of hybrid functionals in NAMD generally becomes infeasible for
solid-state materials due to the high computational demand.

The rise of machine learning (ML) offers a promising avenue for
accelerating NAMD simulations, with significant efforts dedicated to
using ML to accelerate the calculation of excited potential energy
surface (PES) and NAC'®", Maurer and co-workers® utilized a pseudo-
Hamiltonian to predict excited orbital energies through diagonaliza-
tion. Bombarelli and colleagues” studied azobenzene derivatives by
learning a 2-by-2 diabatic Hamiltonian. Tretiak and colleagues devel-
oped a hierarchically interacting particle neural network to predict
non-adiabatic coupling vectors (NACVs), which was subsequently
applied to compute polaron exciton properties in azomethanes? and
plasmon dynamics®. Given the notable challenge of directly predicting
NAC, alternative frameworks have been proposed. One approach
integrates ML with a generalization of the Landau-Zener algorithm®**,
where NAC is not present in real-time propagation. Another method
approximates NAC using the Baeck-An scheme®*”’. Marquetand and
co-workers®* combined SchNet, (and its successor, SPAINN, which
takes advantages of the invariant and equivariant network archi-
tectures) with SHARC to perform NAMD with ML energies, forces, and
coupling properties based on excited PES and its spatial derivatives.
Lopez and co-workers® developed PyRAPMD and used it to investi-
gate the photoisomerization mechanism. More methods try to bypass
the expensive NAC calculation in NAMD with NAC-free surface hop-
ping algorithms. Wang and colleagues® studied the charge transpor-
tation in graphene nanoribbons by combining ML Hamiltonian in max-
localized Wannier basis, global flux surface hopping, and diabatic
propagation. Recently, inspired by successful predictions of molecular
Hamiltonian matrices, evaluating NAC with ML Hamiltonians has
shown great potential in ML-NAMD. Akimov and colleagues®

employed KRR to map between non-self-consistent and self-consistent
Hamiltonians calculated via different functionals, providing deeper
insights into excitation energy relaxation in Ceq fullerene and Si;sHg4 at
reduced computational costs.

Despite all these achievements, the accuracy and transferability
of ML methods in excited state dynamics remain significantly lower
compared to their performance in ground state dynamics, restricting
their widespread application in NAMD simulations. This issue is
particularly pronounced in solid-state systems, where atoms have
complicated neighbor relationships and dazzling interactions com-
pared to isolated molecules or small clusters. In many cases, earlier
work could only predict qualitative results®. To address these lim-
itations, Prezhdo and co-workers proposed using ML to interpolate
the NAC along an MD trajectory for solids*, which can significantly
reduce computational costs. However, this framework lacks the
ability to extrapolate or predict NAC for novel configurations outside
the training set. This highlights the ongoing challenge of developing
ML models that can accurately generalize to diverse excited state
energy landscapes in solids. Recently, E(3) equivariant graph neural
network (GNN) has been proven to be the state-of-the-art archi-
tecture for representing the mapping from structure to interatomic
force field (FF) and DFT Hamiltonian®**°. Utilizing these advanced
GNN models in NAMD could substantially enhance both simulation
accuracy and generalization capabilities while maintaining competi-
tive computational costs.

In this work, we propose a general NAMD workflow augmented by
E(3)-equivariant ML models, N>AMD, which enables efficient NAMD
simulation of large-scale materials at the hybrid-functional level
accuracy with the scope of classical path approximation (CPA)*’. We
demonstrate the effectiveness of N?AMD using several extensively
studied semiconductors: Rutile Titanium Dioxide (TiO,), Gallium
Arsenide (GaAs), Molybdenum Disulfide (MoS;) and Silicon. Our sys-
tematic investigation of nonradiative recombination illustrates the
state-of-the-art performance of N*>AMD in both pristine and defective
systems, where conventional NAMD simulations typically fail. Con-
ventional NAMD simulations using the Perdew-Burke-Ernzerhof (PBE)
functional* severely underestimate the timescale by a factor of 10. This
underestimation persists even when employing the widely used scis-
sors correction. Furthermore, N> AMD shows an extended capability to
predict NAC vectors which are crucial for advancing beyond the cur-
rent implementations of NAMD in solids. The proposed framework can
be broadly integrated with recently developed advanced NAMD
methodologies, contributing to the development of NAMD methods
and supporting material research in nanoscale and condensed matter
systems.

Results

Theoretical framework of N>AMD

In the NAMD approach, the evolution of charge carriers in coupled
electronic and nuclear dynamics is described by the time-dependent
Schrodinger equation (TDSE):

ih % W, R, t)=H(r, Y, R, ) (0))

where r and R are the collective coordinates of the electrons and
nuclei, respectively. And H(r,R)=T(R)+H,(r,R), is the total Hamil-
tonian including the kinetic energy operators T(R), and electronic
Hamiltonian operator Fle,(r, R).

The most computationally efficient method for incorporating
nonadiabatic effects is through mixed quantum-classical approaches,
where nuclei are treated as classical particles and electrons are
described quantum mechanically. Therefore, the TDSE is reduced to
describe the electronic subsystem.
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Fig. 1| Schematic workflow of neural-network non-adiabatic molecular
dynamics (N> AMD). a The E(3) massage passing neural network (MPNN) directly
maps from crystal structures to instantaneous Hamiltonian matrices, bypassing the
self-consistent iterative procedure in density functional theory (DFT). b From the
predicted Hamiltonian £/, N*AMD evaluates critical quantities necessary for
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nonadiabatic molecular dynamics (NAMD), such as Kohn-Sham orbital energies &,
Kohn-Sham orbital wavefunctions ¢ and nonadiabatic couplings (NACs, d;). The
real-time coefficients C(t) are then propagated by solving the time-dependent
Schrodinger equation. ¢ Excited dynamics simulations are performed with these
key quantities.

By representing the electronic wavefunction as a linear combi-
nation of instantaneous adiabatic Kohn-Sham orbitals functions {;}:

W(rR,0)= Z (Ot R() o)

The TDSE, eq. (1) can be reduced to a set of coupled differential
equations for c;(t) coefficients:

inc(0=3" ¢(0)(E8; —
J

ind; - R) 3)

where E; is the energy of the jth adiabatic Kohn-Sham state,

d;; = <y;|Vg|g;> is the NACV between state i and state j, and R is the
velocity of nuclei. Typically, computing NACVs in complex systems
such as solids is not feasible due to the computational cost. However,
by employing Leibniz’'s notation of chain rule, the product of
nonadiabatic coupling and nuclear velocity can be transformed into
a time derivative:

. (WOIVHIge+dD)
d;=d; R= .R=<

0
i=dy- EF, ,—¢j> )

where dj; is the so-called nonadiabatic coupling scalar and it can be
further numerically calculated using the Hammes-Schiffer-Tully
formula**:

1

Following eq. (3), there are two prominent approaches for pro-
pagating coupled nuclear dynamics: Ehrenfest Dynamics and Trajec-
tory Surface Hopping (TSH). In the Ehrenfest approach, nuclei move
classically on an average potential energy surface. Conversely, in the
TSH approach, nuclei move on a single adiabatic potential energy
surface at a time, with stochastic “hops" between surfaces permitted.
Considering our focus on the dynamics of non-equilibrium charge
carriers in solids, especially non-radiative recombination processes
that can last up to nanoseconds, our analysis will primarily focus on the

(el +do)) — (e +dpig o))
2dt

(©)

TSH approach. This method facilitates a more straightforward
accounting of decoherence and detailed balance. It should be noted
that the proposed N?AMD model is not limited to the TSH approach
but can be generally applied to Ehrenfest Dynamics as well.

The Fewest Switches Surface Hopping (FSSH) method*, proposed
by Tully, is the most widespread TSH approach for simulations in both
molecules and solids. To accurately simulate non-radiative recombi-
nation processes, it is essential to incorporate decoherence correc-
tions into surface-hopping algorithms. For this purpose, we have
utilized the Decoherence Induced Surface Hopping (DISH) method
here**.

In the NAMD simulation of periodic solid-state materials, the TSH
method is further simplified by utilizing CPA, where the trajectory R(¢)
is obtained by Born-Oppenheimer MD. CPA is a powerful approxima-
tion that significantly reduces computational complexity. Its effec-
tiveness has been validated for solids under conditions where the
presence of excited carriers does not induce significant lattice per-
mutations or reforming during the dynamics™*.

Neural network architecture of N>AMD

The primary challenge in implementing NAMD with DFT lies in the
computation of several key quantities in eq. (3), which is hindered by
high computational costs and the need for advanced functionals to
ensure accuracy in electronic calculation. Therefore, we propose a
general framework that utilizes the recently developed E(3) equivar-
iant graph neural network to efficiently and accurately compute these
quantities. As depicted in Fig. 1, this framework constructs the
instantaneous Hamiltonian matrix in real space by mapping the on-site
Hamiltonian and the off-site Hamiltonian matrix from the node fea-
tures and edge features in the crystal structure. The detailed descrip-
tion of the neural network architecture is discussed in ref. 37. The
transformation of the Hamiltonian from real space to reciprocal space
is achieved using a Fourier transform,

10 _ N\ SikR, g R,)
Hy' = > e tHj; (6)

n

where R, represents the shift vector corresponding to the n-th
periodic image cell, and Hf.;‘") denotes the Hamiltonian matrix
elements in real space between orbitals i and j. After transforming
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the real-space Hamiltonian to k-space, the instantaneous adiabatic
basis functions in eq. (2) can be obtained by diagonalizing the
Hamiltonian matrix. The corresponding eigenvalues in eq. (3) can also
be determined through diagonalization. Given that N°AMD utilizes a
numerical atomic orbital (NAO) basis where the basis functions are not
orthogonal, the NAC used in eq. (5) should be computed as:

(@Ol +dD) = 3 B0 O e+dogyerdn ()
ab

where @;, is the ath vector component of the ith NAO basis function,
and S% is the overlap matrices, which can be obtained by Fourier
transforming from real-space tight binding overlap matrices:

(k) _ ik-R, ¢(R,)
Sab - ;el ® Sab 8)

The accuracy of these critical quantities in NAMD is guaranteed
through the use of E(3) equivariant mapping. The electronic Hamilto-
nian matrix represented in the atomic orbital basis must satisfy two key
symmetry constraints: rotational equivariance and parity symmetry.
For crystalline solids, the Hamiltonian also exhibits translational
invariance. These fundamental symmetries belong to the E(3) group,
which includes rotations, translations, and inversions in 3D space. An
E(3) equivariant mapping ensures the Hamiltonian matrix transforms
properly under these symmetry operations. These inherent symme-
tries are captured with the proposed E(3) equivariant graph neural
network in predicting the instantaneous Hamiltonian. Unlike previous
models that approximated equivariance through data augmentation,
our model explicitly constructs the Hamiltonian matrix to strictly
satisfy the inherent equivariance constraints of physical systems. The
proposed model represents node and edge features using a direct sum
of irreducible O(3) equivariant representations with different rotation
orders. It updates these features through an equivariant message-
passing function, then transforms them into on-site and off-site
Hamiltonian matrix elements from the node and edge features,
respectively. This equivariant construction of the Hamiltonian matrix
allows N*AMD to demonstrate excellent transferability and general-
ization, accurately predicting the electronic structure of complex
crystals outside its training set.

In the implementation of NAMD with the CPA, the movement of
nuclei can be approximated by employing a precalculated AIMD tra-
jectory. To generate this trajectory, a machine learning-based force field
can be used. For a more precise comparison between N’AMD and
conventional DFT-NAMD, we utilize Allergo™ to produce trajectories for
all NAMD simulations discussed here. It’s noteworthy that Allergo also
leverages an E(3) equivariant graph neural network to train the force
field, which significantly improves accuracy in solid-state systems.

Benchmark of N°AMD

Before demonstrating the capability of N>’AMD, we first benchmark its
performance on predicting both ground state properties and key
quantities in NAMD. Rutile TiO, and GaAs are chosen as the proto-
typical systems, while using MoS, and Silicon to verify the general-
izability of N°AMD. These materials have attracted extensive interest
due to their promising applications in optoelectronics and solar
energy**™8, and their carrier dynamics have been widely studied in
recent years**>, Moreover, conventional DFT methods, using the PBE
functional, notably underestimate the band gap of rutile TiO, and
GaAs. Experimentally, these are observed to be 3.0 eV** and 1.4 eV*
respectively, in contrast to the DFT predictions of 1.88 eV** and 0.62
eV. Such discrepancies suggest that conventional DFT-NAMD may not
align well with experimental results, highlighting the need for more
accurate simulation methods like N> AMD.

We begin with benchmarking the machine learning force field
(MLFF), which is essential for generating precalculated trajectories in
NAMD simulations implemented with CPA. To validate the MLFF, we
utilized 50 randomly perturbed structures. The potential energy pro-
files obtained from both the N°AMD and DFT calculations are shown in
Fig. 2b. Although the fluctuations in potential energy among the per-
turbed structures are relatively small, our ML model excellently
reproduces the variations observed in DFT calculations.

In addition to the MLFF, an accurate description of the Hamilto-
nian and electronic structure for each snapshot along the trajectory is
crucial for reliable NAMD simulations. As depicted in Fig. 2c and Figure
Sla, the Hamiltonian matrix elements predicted by N?’AMD perfectly
match the DFT-HSEO6 results for both TiO, and GaAs. By diagonalizing
the Hamiltonian matrix, we simultaneously obtain the eigenvalues
(Kohn-Sham orbital energies) and eigenvectors (Kohn-Sham wave-
functions). The fitting performance of the former is shown in Fig. 2d
and Figure S1b for TiO, and GaAs respectively, while the latter is pre-
sented in Fig. S3 in the supplementary information.

We further present the band structures of 1 x 1 x1and 3 x 3 x 4
supercells of TiO,, calculated using N°’AMD and DFT-HSEO06, in Fig. 2e
and 2f, respectively. The mean average error (MAE) for the valence
band maximum (VBM) and conduction band minimum (CBM) energy
levels is consistently below 2.5 meV for both the primitive cell and
supercells, even up to 216 atoms. Moreover, N?AMD accurately
reproduces the bandgap, band dispersion, and density of states, which
are crucial for NAMD simulations. The predicted bandgap by N°AMD is
3.219 eV for all simulation cells, remarkably close to the DFT-HSEO6
calculation results of 3.212 eV (1 x1 x 1 cell), 3.212 eV (2 x 2 x 2 cell), and
3.215 eV (3 x 3 x 4 cell). In comparison, the bandgap calculated by DFT-
PBE is significantly underestimated at 1.788 eV.

Upon thoroughly examining the ground state properties predicted
by N’AMD, we shifted our focus to benchmarking the key quantities in
NAMD, including real-time Kohn-Sham eigenvalues, NACs, and recom-
bination lifetimes. Extensive efforts have been dedicated to developing
ML models for NAC prediction because of its high computational costs.
However, as indicated in eq. (4), NAC depends on the derivative of the
Hamiltonian and nuclear velocities, making NAC prediction con-
siderably less accurate compared to FF prediction. Instead of directly
predicting NAC, we opted to numerically compute NAC using the ML
Hamiltonian. This approach ensures that the accuracy of the prediction
of NAC is on par with the prediction of FF, bypassing the inherent
challenges associated with accurately predicting NAC values.

To validate the accuracy of the NACs predicted by N*AMD, we
generated a 200 fs MD trajectory using MLFF and calculated the elec-
tronic structure at each timestep using both N°AMD and DFT. Figure S2a,
b depicts the Kohn-Sham orbital energies of VBM and CBM along the
trajectory. The difference between VBM and CBM band energy, com-
puted by N°AMD and DFT method, is barely noticeable. Furthermore,
the absolute NAC values between VBM and CBM (Fig. 3a, b) for both
systems exhibit negligible differences. For GaAs, due to the three-fold
degeneracy of the VBM, we present the NAC values of CBM & VBM, VBM-
1, and VBM-2. Notably, N> AMD accurately predicts both peak and near-
zero values of NACs, with MAE of only 0.017 meV and 0.035 meV for
TiO, and GaAs, respectively (Table 1). We also calculated the NACs
between three nearly degenerate VBMs of GaAs for comparison
(Fig. S2c). Although NAC calculated by DFT-HSEO6 exhibits a sharp peak
due to the near degeneracy of these three bands, N*AMD still perfectly
reproduces the NAC. After that, we employ the DISH approach to
simulate the non-radiative recombination in both systems. Given the
notorious computational cost of hybrid functional in ab initio calcula-
tion of comparison sets, we replicated this short 200 fs MD trajectory for
the entire NAMD trajectory to evaluate the accuracy of N’AMD. Fig-
ure 3¢, d demonstrates a consistent evolution of carrier population and
recombination rate throughout the dynamics between the ML and DFT
methods. It is worth emphasizing that the obtained recombination rate
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Fig. 2 | Benchmarking neural-network non-adiabatic molecular dynamics
(N*AMD) on ground state properties. a Geometry structure of stoichiometric
rutile TiO,. b Comparison of machine learning force field (MLFF) predicted and
density functional theory (DFT) calculated potential energy on 50 random

perturbed structures at 300K. ¢, d Comparison of N?AMD predicted and DFT cal-
culated Hamiltonian matrix elements and Kohn-Sham (KS) orbital energies on the
test set. e, fBand structures of 1 x 1x 1 and 3 x 3 x 4 supercells calculated by N’AMD
and DFT respectively. Source data are provided as a Source Data file.

presented here is less meaningful, as it serves as abenchmark test for the
predictive capability of N°AMD and lacks sufficient sampling. In reality,
accurate results can only be obtained using the proposed ML model at
the hybrid functional level, which will be investigated later.

The computational cost of N°’AMD is significantly lower than that
of DFT-NAMD. Specifically, the computational expense of processing a
single snapshot for 2 x 2 x 2 or 3 x 3 x 4 systems in N°’AMD is reduced by
four orders of magnitude, as shown in Fig. 3e. It should be noted that
HONPAS, which we used for comparison with our ML frameworks,
employs the NAO2GTO scheme to compute electron repulsion inte-
grals and their derivatives, making it substantially faster than other
widely used DFT codes™. However, even with this optimization, a
NAMD simulation requires at least thousands of such single-point
calculations, rendering the use of hybrid functionals in DFT-NAMD
impractical due to the high computational cost.

We further evaluate the generalization capability of N>AMD by
predicting properties of new structures notably different from those in
the training set, as shown in Fig. 4a, b. Given that employing hybrid
functional in DFT-NAMD is infeasible for those large structures, we
employed the PBE functional in both simulations to ensure consistent
comparison. In the first case, we trained the model on the non-twisted
bilayer MoS; and then used it to predict the band structure and perform
NAMD simulations on a twisted bilayer. In the second case, the model
was trained using silicene and subsequently applied to simulate a curved
nanotube. As shown in Table 1, Fig. 4c—f and Fig. S5, N°AMD successfully
reproduces the band structure, NACs, and real-time dynamics for each
case. The MAE for the NACs in the silicon nanotube is slightly higher
across four benchmarked systems, which we attribute to its considerably
large absolute value due to its narrow band gap. However, the relative
error of the NACs across all four systems remains at a comparable level.
Note that both twisted materials and nanotubes feature significantly
large cells, making DFT calculation costly. In contrast, N°AMD offers
accurate simulations at a significantly reduced computational cost.

Application to hybrid functional NAMD

Following the benchmarks, we investigate the non-radiative electron-hole
recombination dynamics in stoichiometric TiO, and GaAs completely by
N*AMD. In addition to hybrid functional calculations, we conducted
simulations with PBE functional to establish a comparative analysis.

In NAMD simulations, the e-h recombination timescales pre-
dominantly depend on the band gap, pure-dephasing time, and NAC
between donor and acceptor states. Typically, a larger band gap,
shorter pure-dephasing time, and weaker NAC contribute to slower e-h
recombination rates.

Itis well-known that the PBE functional significantly underestimates
the band gap compared to hybrid functionals®. For TiO,, the band gap is
underestimated by 1.43 eV, and for GaAs, by 0.78 eV (Table 2). To rectify
the band gap underestimation in NAMD simulations employing the PBE
functional, a scissor operation is frequently utilized, which manually
adjusts energy levels according to the experimental value. Although the
scissor correction applied in NAMD can adjust the band gap, it does not
alter the wavefunctions, as depicted in Fig. 5a. Consequently, as shown
in Table 2, the canonically averaged root mean square values of NACs,
calculated using PBE and Scissor correction, are significantly over-
estimated for both TiO, and GaAs. Given these substantial deviations in
band gap and NAC values, the electron-hole recombination time cal-
culated using the HSEO6 functional is approximately 10 to 20 times
longer than that computed with the PBE functional (Table 2, Fig. 5b, c).
Moreover, as indicated in Table 2, even after applying a scissor correc-
tion, the calculated lifetimes are still underestimated by approximately a
factor of 3 to 4. This discrepancy can be attributed to the fact that while
the scissor operation corrects the bandgap, it leaves NAC unchanged.
Since NAC is dependent on both the band gap and the wavefunctions,
adjustments solely to the band gap are insufficient for achieving accu-
rate simulation outcomes. Therefore, N°AMD provides a more rigorous
and self-consistent approach for performing NAMD simulations in
nanoscale and condensed matter systems.
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Fig. 3 | Benchmarking neural-network non-adiabatic molecular dynamics
(N’AMD) on nonadiabatic molecular dynamics (NAMD) simulation.

a, b Absolute values of nonadiabatic couplings (NACs) between valence band
maximum (VBM) and conduction band minimum (CBM) along a short trajectory for
(a) TiO; and (b) GaAs, calculated by N?AMD and density functional theory with

hybrid functional (DFT-HSE06) respectively. ¢, d The demonstrative non-radiative
electron-hole recombination for TiO, and GaAs, calculated by N°AMD and DFT-
HSEO6 respectively. (Inset of ¢ and d. Geometry structure of TiO, and GaAs.)

e Comparison of computational resources for one single-step calculation in NAMD
required by two methods. Source data are provided as a Source Data file.

Table 1| Mean absolute error (MAE) of Kohn-Sham orbital energies (valence band maximum (VBM) and conduction band
minimum (CBM)) and absolute values of nonadiabatic couplings (NACs) for four benchmarked systems

TiOy GaAs Twisted bilayer MoS, Silicon nanotube
MAE orbital energy (meV) 2.4 12.0 5.1 0.91
MAE [INAC| (meV) 0.017 0.035 0.027 [ON1]

Application to large-scale NAMD simulation

NAMD simulations are typically conducted using small simulation cells
to manage the high computational costs associated with larger simu-
lation cells. However, the use of small simulation cells often suffers from
the finite size effect and leads to a significantly higher effective carrier
density compared to realistic conditions. Consequently, the calculated
lifetimes of non-equilibrium charge carriers often differ from experi-
mental results by orders of magnitude. Moreover, to capture emergent
properties such as anharmonicity, geometry reconstruction, symmetry
breaking, and disorder, large-scale NAMD simulations are crucial. These
properties are essential for a more accurate depiction of carrier
dynamics. The N>AMD framework addresses this by significantly redu-
cing the computational burden, making it feasible to simulate complex
systems on a scale several orders of magnitude larger than what is
possible with conventional DFT-based methods.

Here, we explored carrier dynamics of TiO, across various simu-
lation cell sizes ranging from 2 x 2 x 2 (48 atoms) to 8 x 8 x 13 (4992
atoms), using the hybrid functional. The pure dephasing time, NACs,
and calculated lifetime for various simulation cell sizes are tabulated in
Table 3. We observed that the predicted band gap at O K for all
simulation sizes is consistent at 3.219 eV. However, at 300 K, the
canonically averaged band gap decreases with increases in the cell size.
This trend was confirmed through DFT calculations using the PBE
functional for cells ranging from 2 x 2 x 2 to 6 x 6 x 8, and a consistent
decrease in the averaged band gap with increasing cell size was noted
(Fig. 6b). Further analysis of the wavefunctions of frontier orbitals

revealed that this reduction in band gap is due to the localization of
CBM, as shown in Figure S6b and Séd. The localization can also be
implied by our observation on NACs between VBM and CBM. As
depicted in Table 3, NACs decrease with increasing supercell size,
which can be explained by the NACs being diluted according to the
N, "% factor, where N, is the number of unit cells in the supercell. Here,
the NAC decreases 2.26 times as the supercell increases from2 x 2 x 2
to 3 x 3 x 4, closely matching the predicted decrease of +v4.5=2.12
proposed by the aforementioned rule. A similar behavior of NACs
alongside the increase of supercell has also been observed in a recent
research”. For even larger supercells, the localization of CBM becomes
dominant so that the NAC decreases faster than the above rule. Such a
peculiar localized state has been overlooked for a long time and merits
further thorough investigation. Regarding the pure dephasing time
between VBM and CBM, which measures the coherence between these
states and is another critical parameter in NAMD simulations, it was
found to be 16.5 fs for PBE and 15.3 fs for HSEO6 with a 2 x 2 x 2
supercell. These results suggest that the coherence between these
states is relatively insensitive to the choice of functional in this system.

Previous research®®*° suggested that effective carrier lifetimes in
pristine semiconductors under realistic conditions scale inversely with
carrier density for band-to-band recombination. In NAMD simulations
where only one electron (or hole) is excited per system, the excited
carrier density is inversely proportional to the supercell size, resulting
in a simulated recombination lifetime linearly correlated with the
supercell size. In our work, as the size of the simulation cell increases,
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we observe a corresponding decrease in NACs, which leads to exten-
ded carrier lifetimes. Figure 6c shows that, for a simulation cell size of
3 x 3 x 4, the lifetime remains proportional to the number of atoms in
the supercell. However, when employing even larger simulation cells,
the lifetime is significantly prolonged. This phenomenon can be
attributed to the formation of the localized state that effectively sup-
presses the NAC and thus extends the carrier lifetime.

Our findings highlight the necessity of using large-scale simula-
tions to accurately capture the properties and behaviors of carriers in

Table 2 | The fundamental band gaps, pure dephasing times,
canonically averaged root mean squared nonadiabatic cou-
plings (NACs), and electron-hole nonradiative lifetimes of
stoichiometric TiO, and GaAs, calculated by different
exchange-correlation functionals, including density func-
tional theory (DFT) PBE functional, DFT-PBE with band gap
corrected by scissor operation, and machine learning hybrid
functional ML-HSEO6

Functional DFT-PBE DFT-Scissor ML-HSEO6
TiO, Bandgap (eV) 1.79 3.22 3.22

Dephasing (fs) 16.5 16.5 15.3

NAC (meV) 0.77 0.77 0.43

Lifetime (ns) 45.6 153.7 465.6
GaAs Bandgap (eV) 0.61 1.39 1.39

NAC dssmfz (mev) 0.86 0.86 0.41

NAC d‘\;gm4 (mev) 081 0.81 0.53

NAC dssm (meV) 0.61 0.61 0.43

Lifetime (ns) 0.84 4.9 19.4

For GaAs, the NACs between conduction band minimum (CBM) and three nearly degenerate
valance band maximums (VBM) are considered.

nanoscale and condensed matter systems. The N’AMD framework
facilitates these simulations by drastically reducing the computational
costs involved, making it feasible to explore emergent properties and
uncover unique phenomena with large-scale simulations. These efforts
are crucial for advancing our understanding of material behaviors that
conventional DFT-based methods have previously missed.

Application to defect-associated carrier dynamics

NAMD simulations play a crucial role in the design of semiconductor
devices such as solar cells, light-emitting diodes, and transistors, where
effectively controlling and understanding recombination processes is
vital. In these materials, defects can either capture or scatter charge
carriers, impacting essential properties such as conductivity and
luminescence. It is particularly important to comprehend how these
defects influence non-radiative decay processes. NAMD offers valuable
insights into the dynamics of carriers associated with defects. How-
ever, when DFT-based NAMD employs conventional exchange-
correlation functionals such as LDA or GGA, it frequently mis-
estimates certain properties of defects. Such inaccuracies can lead to
skewed predictions regarding defect energies, charge transition levels,
and defect formation energies, resulting in discrepancies between
experimental results and theoretical predictions. Recently, hybrid
functionals are increasingly acknowledged for their pivotal role in
more accurately depicting the dynamics of carriers associated with
defects®2,

Taking the example of the positively charged oxygen vacancy
(V) in TiO, (Fig. 7a), this defect has been experimentally confirmed
to act as an electron-hole recombination center®>. However, as shown
in Fig. 7b, the widely used PBE functional typically predicts thatitis a
shallow level near the CBM, suggesting it has minimal impact on
electron-hole recombination. The accurate defect level is only pre-
dictable when employing a hybrid functional, highlighting the critical
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by purple and orange parabolic curves respectively. b, ¢ Different exchange-
correlation functionals predicted electron-hole recombination dynamics in b TiO,
and ¢ GaAs. (Inset of b and ¢. Geometry structures of TiO, and GaAs.) Source data
are provided as a Source Data file.

importance of using these advanced functionals to precisely describe
deep defect levels and their recombination dynamics. The band-
structure calculated with DFT employing PBE and HSEQ6 functional
are shownin Fig. S7. In addition to the need for high-level functionals,
investigating such defects requires the use of spin-polarized calcu-
lations with an additional positive charge, which offers a playground
for N> AMD to demonstrate its capability in more complex systems. By
leveraging the accuracy and transferability of our model, we can
explore defect-assisted recombination processes using hybrid func-
tionals. We also perform DFT calculations for a short trajectory to
validate the effectiveness of N°’AMD for this complex system. Fig-
ure 7c and d demonstrates the excellent fitting performance of
N?AMD on both KS orbital energies and NACs. Employing N°’AMD, the
lifetime of the defect state is calculated to be 18.1 ns, significantly
shorter than that in a stoichiometric system, as depicted in Fig. 7e.
This finding aligns with experimental observations®**, highlighting
the substantial role played by the oxygen vacancy as an electron-hole
recombination center. It should be noted that these insights are only
accessible through our proposed ML model. These findings empha-
size the importance of using high-level functionals and ML models to
bridge the gap between experimental observations and theoretical
predictions in the study of defect-related phenomena in materials.

Extended capabilities to NACV predictions

NAMD simulations, particularly in condensed matter materials, have
seen significant advancements when combined with CPA. CPA
streamlines NAMD simulations by omitting the back-reaction of elec-
tronic transitions on nuclear motions, allowing for the use of pre-
computed MD trajectories. This approach significantly reduces
computational demands, making techniques such as surface hopping

Table 3 | The canonically averaged bandgaps, pure dephasing
times, root mean squared nonadiabatic couplings (NACs)
between valance band maximum (VBM) and conduction band
minimum (CBM), and electron-hole recombination lifetime of
stoichiometric TiO, calculated by different supercell sizes

Supercell Averaged band- Dephasing (fs) NAC Lifetime (ns)
gap (eV) (meV)

2x2x%x2 3.23 15.3 0.43 4.66 x 10?

3x3x4 3.13 18.9 0.19 2.52 x10°

AxA4x6 3.05 17.5 0.099 1.02 x10*

6x6x8 3.00 16.0 0.043 8.17 x 10*

8x8x13 291 18.2 0.022 3.89 x 10°

more practical for various applications in nanoscale and condensed
matter systems. CPA is most effective in systems where atomic
motions are driven by finite temperature rather than by electronic
excitations. However, CPA’s inability to account for real-time excited
state forces limits its utility in simulating light-matter interactions,
chemical reactions, and phase transitions.

One of the major challenges in moving beyond CPA-NAMD
involves the calculation of NACVs. NACVs are essential because they
quantify how much the electronic wavefunctions of the two states
overlap and change as a function of nuclear positions. Accurately
calculating NACVs is a computationally demanding task that requires
the precise determination of electronic wavefunctions and their gra-
dients with respect to every nuclear coordinate.

In nonadiabatic dynamics beyond CPA, NACV is written as:

(|t |w) o)

where E; - E; is the energy difference between two Kohn-Sham states
and {g;} represents the Kohn-Sham orbital functions. The gradient of
Hamiltonian can be expanded on the non-orthogonal NAO basis®:

Hy = 3" Hogltbe) g1 (10a)
ap

Vel = 3 (VaHlaglde) @51 + Flapl Ve @51+ Hpla) (Ve
ap
(10b)

where H, are matrices of H=S"'HS™" in NAO basis. The KS orbitals
can also be represented as a superposition of NAO basis:
|(p,-):zac§,|¢a),|tpj>:zﬁc;;|¢/,) where ¢ and c;; are the expansion
coefficients. Applying these representations, the matrix elements of
the gradient in eq. (9) can be rewritten as:

(v

~ KS
VRH el

9)= > chh(SuaVeHlugSgs
ap.af an

+Aaq Hoy Spp* Sua Hep Ay )

where S, = (@,|9, ) is the overlap matrix, and A,, ={@,|VzIp, ) is
the space gradient term of NAO basis which can be readily obtained by
grid integration. Utilizing the normalization condition of the non-
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Fig. 7 | Non-Adiabatic (NA) molecular dynamics (MD) simulation of positively
charged oxygen vacancy (V) associated recombination dynamics.

a Geometry structure of V, rutile TiO,. b Schematic V, defect energy level
position (green line) and electron-hole recombination path using PBE and
HSEO6 functionals. ¢ Benchmark of Kohn-Sham (KS) orbital energies of
valance band maximum (VBM), defect state, and conduction band minimum

(CBM), d benchmark of absolute values of nonadiabatic couplings (NACs)
between VBM, defect state, and CBM along a 100 fs MD trajectory. Only the
spin-up channel is plotted. e Comparison of the evolution of hole population
on CBM with and without defect assistance, calculated by N> AMD. Source
data are provided as a Source Data file.

orthogonal basis, H,z and VzH,; can be found as:

Hap=(S""Hy' S ™) (12a)

~ _ —1+KS _ ~KS _1/KS _
Vi = (=S (VeSS He S+ ST (VoHe )S ™ = S He S(V4S)S l)aﬂ
(12b)

by applying the relation VizS™ = — S(VgS)S™.. Substitute eqgs. (11) and
(12b) into eq. (9), NACV can finally be expressed as:

d;= E- E Zc (VRHe, +ASTUH + 5‘1A) B)

where A=A — VS. In eq. (13) the VRH , can be obtained g)y the auto
differentiation mechanism of N°AMD. With H¥’ and VRHe, , N’AMD is
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enabled to calculate NACVs and further perform NAMD simulations
beyond CPA.

To verify the prediction capability of N> AMD on NACVs, rutile TiO,
is used as a prototypical system. The NACVs between VBM-1 and VBM
(dyen 1), VBM and CBM (d{en), CBM and CBM+1 (dShnv 1) of 50 ran-
domly selected structures are tested. As depicted in Figure S8, non-
adiabatic coupling vector components well match the DFT results,
with an MAE of only 0.038eV - fs -A™. Additional details about the
efficiency of N°’AMD are presented in Supplementary information.

In NAMD simulations, the need for on-the-fly computation of
NACVs at every timestep, typically using Density Functional Pertur-
bation Theory, poses a formidable challenge, especially in nanoscale
and condensed matter systems. The proposed workflow aims to
accelerate this aspect of NAMD simulations by integrating a GNN to
replace the expensive electronic structure calculations. By doing so, it
makes evaluating NACVs on the fly feasible. This method can advance
NAMD simulations by enabling more accurate and efficient modeling
of non-adiabatic processes in nanoscale and condensed matter sys-
tems, potentially narrowing the gap between NAMD simulations and
strong field experiments.

Discussion

The incorporation of E(3) equivariance as prior knowledge into the
message-passing deep-learning framework for Hamiltonians has sig-
nificantly enhanced both efficiency and accuracy. A key advantage of
N2AMD is its ability to learn from DFT Hamiltonians that employ high-
level exchange-correlation functionals on small structures, and then
accurately predict Hamiltonians for various structures without addi-
tional DFT calculations. Essential quantities for NAMD, such as eigen-
values and NACs, are computed directly from the predicted
Hamiltonian. This approach ensures efficiency and accuracy in evalu-
ating these quantities, particularly for those that depend on Hamilto-
nian derivatives. Furthermore, because N*AMD is designed to predict
Hamiltonians, all other necessary quantities for advanced NAMD
simulations can be readily acquired with N°’AMD.

In the current implementation, N°’AMD operates within the DFT
framework, employing the CPA similar to traditional NAMD simula-
tions in solids. Consequently, excitonic effects arising from significant
electron-hole interactions are not accounted for in this framework.
Incorporating excitonic effects comprehensively through methods
such as GW or multi-reference approaches remains prohibitively costly
in NAMD simulations for solids. However, the integration of excited-
state effects using ML-based Hamiltonians holds promise for future
developments.

The proposed workflow is designed to transform the electronic
structure in NAMD calculations by incorporating GNN. This approach
effectively leverages an ML-based Hamiltonian to compute all essential
quantities in NAMD, while keeping the core NAMD framework intact.
This seamless integration ensures that it can be easily adopted in
conjunction with other state-of-the-art NAMD methodologies that
have been developed recently. For instance, recently, several groups
have independently proposed advanced NAMD algorithms that can
model the relaxation dynamics of electrons within momentum-
space>*%, The implemented algorithm required explicit calculating
electron-phonon couplings (EPC) or NAC on a dense grid. However,
the substantial computational demands of calculating limit this algo-
rithm to small-scale systems. Our proposed workflow can overcome
this challenge by efficiently calculating EPC and other necessary
quantities using the ML-Hamiltonian®. This enhancement could sig-
nificantly broaden the applicability of momentum-space NAMD to
more complex situations, such as twisted materials or systems with
defects.

In addition to momentum-space NAMD, spin dynamics is another
area attracting significant interest®, particularly for examining carrier
dynamics in topological insulators and valley dynamics in novel 2D

materials. Incorporating spin-orbit coupling (SOC) into NAMD simu-
lations is essential for these studies. The proposed framework can
seamlessly integrate both the adiabatic and diabatic representations of
surface hopping with SOC™. In the adiabatic representation, our fra-
mework predicts the Hamiltonian with non-collinear SOC and diag-
onalizes it to obtain the spinor-based wavefunctions. Conversely, in
the diabatic representation, where SOC is treated as a perturbation to
the collinear Hamiltonian, we can predict the collinear Hamiltonian
and directly evaluate the SOC Hamiltonian. This dual capability allows
for comprehensive and versatile modeling and understanding of the
spin dynamics.

To conclude, we present N?’AMD, an innovative NAMD workflow
enhanced by E(3)-equivariant ML models. This approach enables effi-
cient and accurate NAMD simulations of large-scale materials at the
level of hybrid-functional accuracy. We demonstrate several cases
where conventional NAMD approaches fail due to limitations in com-
putational efficiency and accuracy. The framework can be effectively
combined with the latest advancements in NAMD technology, sup-
porting continued developments in NAMD methodology and advan-
cing the field of physical science research. By addressing the
computational constraints of existing methods and expanding their
applicability to complex systems and high-level theory, N*AMD
improves our ability to investigate and understand the dynamic
properties of materials with significantly enhanced scale and accuracy.

Methods

Computational details of DFT calculations

DFT calculations of TiO, and GaAs are performed with the HONPAS
code®, which implements NAO basis and norm-conserving pseudo-
potentials (NCPP). The valence electron configuration is 3s?°3p®3d®4s®
for Ti atoms, 2s22p* for O atoms, 4s*4p* for Ga atoms, and 4s%4p° for As
atoms. Therefore Ti-3s2p2d, O-2s2pld, Ga-2s2pld, and As-2s2pld
NAOs are applied to expand the Hamiltonian matrix and wavefunc-
tions. The Heyd-Scuseria-Ernzerhof (HSEQ6) hybrid functional*®
employing a mixing parameter @ = 0.25 and a range separation para-
meter w = 0.11Bohr™, is used in the above calculations. DFT calcula-
tions of MoS, bilayers, silicenes, and silicon nanotubes are performed
in the PBE functional via the OpenMX software”. The van der Waals
corrections are considered by using the DFT-D3 method. Mo-3s2p2d,
S-2s2pld, and Si-2s2pld NAOs are employed in the OpenMX
simulations.

The experiment result’” for the lattice parameters of TiO, is
adopted and kept fixed in this work. The unit cell lattice constants are
4.59,4.59,2.956 A, all perpendicular to each other. A 6 x 6 x 10 Gamma-
centered k-mesh is used to sample the Brillouin zone. To simulate the
Vv, defect in TiO,. A 2 x 2 x 2 supercell is utilized. One electron is
subtracted and one oxygen atom, indicated by a dashed circle, is
removed as shown in Fig. 7a. Spin polarization is employed for the
calculation of the defective system, and the spin momentum is fixed to
the up channel to maintain continuity over time. For GaAs, a 5.6537 A
cubic lattice, a2 x 2 x 1 supercell, and a4 x 4 x 8 k-grid are utilized in the
calculations. The twisted MoS, bilayer, with 42 atoms in its primitive
cell, is composed of stacked supercells with different spatial orienta-
tions. The twist angle of it is 38. 2". To fold its CBM to the /" point for
recombination calculations, we further expand it to a 3x+/3 ortho-
gonal supercell with 252 atoms. The zigzag (30,0) silicon nanotube is
generated by fully relaxed silicene. The diameter of the nanotube is
36.9 A. The thickness of the vacuum layer is 25 A for 2D materials and 15
A for the nanotube. Only I" point is used in our k-mesh for twist-angle
MoS,; bilayer and silicon nanotube calculations.

Computational details of NAMD calculations

The e-h recombination dynamics is performed via Hefei-NAMD code®,
which implements the ab initio NAMD algorithm under CPA. The DISH
algorithm is adopted to account for the decoherence effect in
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recombination. Phase correction is used to correct the random phase
of the Bloch wavefunctions in the adiabatic representation’. Trivial
crossing correction is applied to tackle the numerical problems of
nonadiabatic coupling near crossing points. More advanced crossing
correction schemes, such as those in”, can be seamlessly integrated
into the N?’AMD framework for further studies on hot carrier cooling in
large systems. For the benchmark of stoichiometric TiO,, a 200 fs
microcanonical MD trajectory at 300 K is generated with a timestep of
1fs using MLFF. The electronic structure of each atomic geometry on
the trajectory is calculated by both N’ AMD and HONPAS to verify the
effectiveness of our method. For the complete NAMD simulation of
both stoichiometric and defective TiO,, a 5000 fs microcanonical MD
trajectory is produced fully by N°’AMD. For GaAs, twist-angle MoS,
bilayer and silicon nanotube, a 1000 fs microcanonical MD trajectory is
utilized. For the silicon nanotube, the MD simulation is performed at
50 K due to its instability under high temperatures. For all materials
studied, we conduct NAMD simulations using 20 different initial con-
figurations. Each configuration is sampled with 200 trajectories. To
simulate the long-time dynamics of e-h recombination, the MD tra-
jectory is concatenated head-to-tail as suggested by previous work*".
The final NAMD results for all systems are obtained by averaging the
results of all initial configurations and trajectories.

Details of neural network training

The datasets utilized to train the ML models consist of 1000 stoichio-
metric TiO,, 500 V, defective TiO,, 300 GaAs, 1000 non-twisted MoS,
bilayers, and 2000 silicenes, respectively. These structures are ran-
domly selected from MD trajectories, with temperatures ranging from
200 K to 500 K, except for silicene, which is heated from 5 K to 300 K.
To improve the models’ transferability, the dataset includes MoS,
bilayers varied by slide vectors and layer intervals, and silicenes sub-
jected to stresses ranging from 0% to 3%. The model for each material
is trained independently.

For the machine learning force field, Allegro® with two layers, a
max angular quantum number /e, = 2, and a radius cutoff of 6 A, is
used. The dataset is randomly divided into two subsets with a 9:1 ratio
for training and validation. The initial learning rate is set to 0.002, and
then reduced according to an on-plateau scheduler with a patience of
10 and a decay factor of 0.5. The model is trained with a joint mean
square error loss function that targets both per-atom energies and
forces, and it is optimized using the Adam optimizer. The training is
finalized when the learning rate is dropped to 107>

For the Hamiltonian model, HamGNN*’ with five interaction layers
is utilized. The dataset is randomly split into training, validation, and
test sets with a ratio of 7:2:1. The cutoff of HAmGNN aligns with DFT
calculations based on the LCAO basis, ensuring all relevant interac-
tions, including long-range effects, are captured. A hyperparameter of
the envelope function is set to 20 Bohr to preserve the physical con-
tinuity for interactions between neighboring atoms near the cutoff
sphere. The other training hyperparameters in HamGNN are similar to
those in Allegro with a few exceptions: the initial learning rate is set at
0.001, the AdamW optimizer is employed, and the final learning rate is
adjusted to 107°. A two-stage training process is utilized in the training
process. In the first stage, the MAE of real-space Hamiltonian matrices
is used as the loss function. In the second stage, an extra regularization
term representing the band energy error is added to the loss function
with a weight of 0.01 to improve the transferability and stability of the
predictions.

Details of NACV predictions

The N*AMD framework employs the same two-step training process as
the Hamiltonian model for NACV predictions. No additional training is
performed for NACV prediction in the current implementation. It is
possible to include the MAE of phase-less NACVs as an additional
regularization term to further fine-tune the model, potentially

improving NACV prediction and corresponding NAMD simulations.
However, including NACVs in the loss function would require evalu-
ating these terms using DFT, which would notably increase the
expense of the training.

The test set for benchmarking N°’AMD on NACVs consists of 50
randomly perturbed rutile TiO, with 6 atoms each. Both N°’AMD and
DFT calculate NACVs using eq. (13). The reference DFT calculates
VxH,, in real space using finite difference method with difference
distance AR = 0.01 A. The consistency of NACV phases between our
model and DFT is achieved by picking the smaller term in |dy2yp —
dperl and [dyzp + dper |-

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The pre-trained models and a test example are available via
Figshare™. Source data are provided with this paper.

Code availability

The N*AMD codes are available at Figshare”. The code is interfaced
with HamGNN (version used in this work is available at Zenodo’®; the
latest version is available at https://github.com/QuantumLab-ZY/
HamGNN) and Hefei-NAMD (available at https://github.com/zhang-
changwei/Hefei-NAMD-DEVand Zenodo”’).
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