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General lightweight framework for vision
foundationmodel supportingmulti-task and
multi-center medical image analysis

Senliang Lu 1,2,3,11, Yehang Chen 1,11, Yuan Chen4,11, Peijun Li5, Junqi Sun6,
Changye Zheng7, Yujian Zou7, Bo Liang8, Mingwei Li9, Qinggeng Jin10,
Enming Cui 2,5, Wansheng Long 2,5 & Bao Feng 1,2

The foundation model, trained on extensive and diverse datasets, has shown
strong performance across numerous downstream tasks. Nevertheless, its
application in the medical domain is significantly hindered by issues such as
data volume, heterogeneity, and privacy concerns. Therefore, we propose the
Vision Foundation Model General Lightweight (VFMGL) framework, which
facilitates the decentralized construction of expert clinical models for various
medical tasks. The VFMGL framework transfers general knowledge from large-
parameter vision foundation models to construct lightweight, robust expert
clinical models tailored to specific medical tasks. Through extensive experi-
ments and analyses across a range of medical tasks and scenarios, we demon-
strate that VFMGL achieves superior performance in both medical image
classification and segmentation tasks, effectively managing the challenges
posed by data heterogeneity. These results underscore the potential of VFMGL
in advancing the efficacy and reliability of AI-driven medical diagnostics.

Identifying and segmenting medical images, such as detecting myo-
metrial invasion in endometrial cancer1,2, identifying breast cancer
metastases in lymph node slides3, and segmenting the prostate4, plays
a crucial role in advancing precision cancer treatment5–7. Artificial
intelligence (AI)-based precision medicine will lead to large-scale data
being used for diagnostic purposes8–10. Meanwhile, the heterogeneity
in imaging equipment, imaging protocols, image quality, and patient
demographics among different medical centers leads to challenges of
data heterogeneity (DH) in medical images from different medical
centers11,12. DH affects the stability of feature extraction, thereby
influencing the generalization ability and robustness of AI models.

In recent years, in the field of natural language processing,
large-scale language models have used self-supervised learning
methods8,13–15 to learn the intrinsic structural of language from large-
scale text corpora, enabling large-scale language models to perform
well in multiple natural language processing tasks16–18. Similarly, in the
field of computer vision, Vision FoundationModels (VFMs) are trained
based on self-supervised methods on large unlabeled datasets with
different qualities and diversities of nature images, producing uni-
versal features applicable to various visual tasks14,15, such as SAM14 and
DINOv215. These universal knowledge is crucial to improve the
robustness of the model.
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In the field of medicine, effective universal knowledge can effec-
tively mitigate the interference of individual patient differences on
model performance8,15. However, due to significant differences
between natural images and medical images, when the aforemen-
tioned VFMs are directly applied to medical image analysis, there may
be interfering features, leading to suboptimal performance of these
VFMs in medical image analysis19–22. Jun Ma et al.19 fine-tunedMedSAM
using more than 20 A100 GPUs with a total capacity of 80GB on an
annotated dataset containing over 1 millionmedical images. As a semi-
automatic segmentation method based on prompt boxes, it demon-
strated excellent performance across various medical image segmen-
tation tasks. Eugene Vorontsov et al.23 pre-trained the Virchow model
on 1.5millionwhole-slide pathology images. They then built a classifier
based on model embeddings and nearly 80,000 annotated medical
data samples, achieving outstanding performance on specific down-
stream tasks. Training, fine-tuning24, and deploying VFMs typically
require extensive data support(including annotated data) and con-
sume substantial hardware resources and time. This severely limits the
cross-center research and popularization of VFMs. Therefore, the
medical field urgently needs a technology to acquire universal
knowledge from VFMs, enabling models to reduce training and
deployment complexity while ensuring accuracy.

Inspired by the challenges and technologiesmentioned above, we
have developed a Vision Foundation Model General Lightweight
(VFMGL) framework to adapt to various specific downstreammedical
tasks. In the case ofmulti-center DH, VFMGL (1) can adaptively acquire
medical task-related general knowledge from VFM, achieving the
lightweighting of VFM; (2) maintains data privacy and facilitates col-
laborative training of models across multiple medical institutions; (3)
is suitable for variousmedical tasks in classification and segmentation;
(4) exhibits robustness and cross-center generalization; and (5) pro-
vides explainability at both the feature and model levels.

Addressing the issue of heterogeneous multi-center medical data
and the utilization of foundation models in the medical field, we pro-
pose the VFMGL framework (Fig. 1a). VFMGL offers a method called
Heterogeneous-model General Knowledge Transfer (HGKT), which
automatically identifies and transfers general knowledge suitable for
tasks at each center from open-source VFM to build lightweight local
models with robust feature extraction capability. To further improve
the cross-center generalization performance of local models, a Data
Deduction in Batch Level (DDBL) approach is applied to select low-
heterogeneity data from each center. Combined with Knowledge
Distillation (KD), it drives the redundant parameters of local models to
learn common knowledge from the shared model.

Given the significant domain differences between natural and
medical images,fixedmatching ofmodel layers for knowledge transfer
may not adapt well to various medical tasks across multicenter het-
erogeneous data, potentially leading to negative transfer25. The HGKT
technique leverages general knowledge from open-source VFM to
perform medical tasks, automatically matching model layers and
identifying relevant knowledge between open-source VFM and local
models. This facilitates knowledge transfer between heterogeneous
models, enabling lightweight local models to extract robust visual
features. HGKT establishes a feature transfer pairs, selecting general
knowledge through computation of transfer weights to construct
robust key layers in local models (Fig. 1b).

Due to the DH across multiple centers, local models often per-
form well on their own center’s data but struggle with data from
other centers. Studies have shown that neural networks are highly
capable of capturing feature patterns specific to a particular dataset
to enhance model performance26,27. VFMGL supports strict pre-
servation of medical data within each center, utilizing federated
learning (FL) technology28,29 to transmit local model parameters and
aggregate shared model across multiple centers, ensuring the priv-
acy and security of local data. Shared model parameters are

distributed to each center through server. Local models can easily fit
private data with distinctive feature expressions; however, similar
samples may be scarce in other centers, leading the shared model to
lack sufficient knowledge for predicting such samples and widening
the predictive distribution discrepancy between shared and local
models. Based on this consideration, we propose the DDBL method,
which selects low-heterogeneity data from each center based on
shared model knowledge. Combined with a KD approach driven by
model logical layer outputs30, DDBL enables local models to learn
common knowledge possessed by multiple centers, suppressing
their tendency to learn specific feature patterns while using redun-
dant parameters to further enhance cross-center generalization
capability (Fig. 1c).

Results
VFMGL to Identify Myometrial Invasion in MRI for
Endometrial Cancer
Endometrial Cancer (EC) is a commonmalignant tumor in the female
reproductive system and the sixth leading cause of cancer related
deaths in women31,32. Myometrial invasion(MI) is one of the most
important prognostic factors in EC33. Diagnosing the presence or
absence of MI aids in pre-treatment stratification, including deter-
mining the treatment approach (whether fertility-sparing is feasible),
defining the surgical scope such as the necessity of lymph node
dissection, and predicting prognosis2. We collected real clinical EC
data from six hospitals as the first use case, comprising a total of 1267
patients who underwent total hysterectomy due to EC. Except for
center E and F, samples from each center were divided into training
and testing sets in a 6:4 ratio using a random seed of 42 (Supple-
mentary Table 6), while center E and F serve as two external testing
sets. Each center could only use open-source VFM, shared model,
and training set data to train local models, and data could not be
transferred between centers to simulate a multi-center clinical
application scenario (unless otherwise specified, we used this default
setting).

We trained local models based on the VFMGL framework for each
center and achieved favorable testing performance. The Area Under
the Curve (AUC) values for the test sets at each center were 0.798,
0.833, 0.857, and 0.848, respectively. To assess the diagnostic per-
formance of VFMGL, we compared it with four FL methods, namely
FedAvg28, FedProx34, HarmoFL12, and MetaFed35, as well as a vision
foundation model called Virchow23. The results indicate that VFMGL
achieved average AUC improvements of 8.9%, 6.6%, 11.4%, and 5.8%
across different centers. Furthermore, VFMGL achieved an overall
prediction accuracy of 0.799 (349/437) in distinguishing MI from non
myometrial invasion (NMI), thus enhancing early diagnosis rates and
offering hope for preserving fertility and improving prognosis for
patients. Fig. 2A, B respectively illustrate the Receiver Operating
Characteristic (ROC) curves and Decision Curve Analysis (DCA) curves
for the five methods across the four centers. As shown in Fig. 2C,
experimental results indicate that VFMGL achieved the highest overall
performance andnet benefit across all four centers.More details of the
results can be found in Supplementary Table 1.

Considering the future scenario where independent centers
lacking independent diagnostic capabilities and not participating in
VFMGL training need to use the VFMGLmodels for disease diagnosis,
we further validated the predictive performance of VFMGL on an
independent external validation center E (Table 1). We estimated the
similarity of data features between two centers based on data
deduction, with the similarity scores between each center and the
external validation center as follows: Center A: 0.15; Center B: −0.05;
Center C: −0.06; Center D: 0.08. Therefore, we selected the local
model from Center A for predictions on this external validation set.
The results showed that the AUC for Model A was 0.742 (Model B:
0.694; Model C: 0.661; Model D: 0.710), and the ROC curves for each
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model are illustrated in Supplementary Fig. 1. Additionally, we col-
lected 117 cases from a new medical center, F, as an external valida-
tion set 2 (see Table 1) to further evaluate the performance of VFMGL.
Based on the aforementioned approach, we calculated the data fea-
tures similarity between centers A–D and center F, with values of
−0.04, 0.12, −0.11, and 0.01, respectively. The results show that
model B achieved an AUC of 0.720 (model A: 0.680, model C: 0.601,
model D: 0.702). The ROC curve is shown in Supplementary Fig. 13.
These findings indicate that VFMGL maintains relatively stable pre-
dictive performance on data from a new center that did not partici-
pate in information exchange.

Identification of breast cancer metastasis in lymph node
sections
Breast cancer is themost common cancer amongwomen in theUnited
States31. Approximately 12% of women are diagnosed with breast can-
cer in their lifetime36. Axillary lymph nodes are typically the first site of
breast cancer metastasis, and identifying metastases in lymph nodes
holds therapeutic significance for breast cancer patients37. Whole-slide
images (WSIs) digitize high-resolution slide pathology, enabling AI to
assist in this time-consuming and tedious pathology examination, thus
improving the efficiency and accuracy of histopathological lymph
node assessments. However, due to differences in slide staining and

(a)

(b)

(c)

Local model B

Logits Prediction

Distribution distance

Shared model

Select
Private data

Local model B

Knowledge

distillation

True

label

Shared model

Local model B

HGKT

General 

knowledge

VFM

Transfer

Center B

Center C

Center D

Center A

HGKT

HGKT

HGKT

Send to centers

Private data

Local model A-D

DDBL

DDBL

DDBL

Shared model

Select Data

DDBL

Local model A-D

KD
A

B

C

D

A

B

C

D

Transformer encoder

VFM featuremap

Local model featuremap

Feature Pairs

Local model B

Model Layer Matching

T
ra

n
sf

o
rm

er

en
co

d
er

......

Vision Foundation Model

T
ra

n
sf

o
rm

er

en
co

d
er

......

T
ra

n
sf

o
rm

er

en
co

d
er

......

T
ra

n
sf

o
rm

er

en
co

d
er

......
T

ra
n
sf

o
rm

er

en
co

d
er

Transfer weights
Private data

Shared model

Fig. 1 | Overview of the VFMGL framework. a Construction of Local and shared
Models. b Construction of robustness critical layers based on HGKT and general
knowledge from VFM. c Continued model construction based on DDBL and

common knowledge. VFMGL Vision FoundationModel General Lightweight, HGKT
Heterogeneous model General Knowledge Transfer, DDBL Data Deduction in
Batch-Level, VFM Vision Foundation Model.

Article https://doi.org/10.1038/s41467-025-57427-z

Nature Communications |         (2025) 16:2097 3

www.nature.com/naturecommunications


pathology scanning equipment, WSIs obtained from different hospi-
tals can vary obviously (Supplementary Fig. 2), posing a challenge of
Data Heterogeneity (DH) for AI-based cross-center diagnosis.

In the second use case, we tested and discussed whether VFMGL
could be used to identify breast cancer metastases in lymph node
slides based on the Camelyon17 dataset3. To facilitate comparisonwith
other state-of-the-art algorithms, we trained and validated VFMGL on
the original distribution of this dataset. VFMGL achieved prediction
accuracies of 0.9889 (11756/11888), 0.9728 (6791/6981), 0.9913
(16863/17011), 0.9708 (25209/25968), and 0.9884 (29004/29345) at
various centers, with corresponding AUC values of 0.9992, 0.9973,
0.9995, 0.9977, and 0.9993, respectively, outperforming the com-
parative algorithms (Fig. 3). Center B had an obviously smaller sample
size compared to the other centers, leading to substantial perfor-
mance degradation of all comparative algorithms. In contrast, VFMGL
exhibited more stable predictive performance across all centers
without considerable performance degradation at any specific center.
VFMGL achieved a high tissue image identification rate of 97.15%
(44298/45596) for breast cancer metastases and 99.4% (45325/45597)
for non-metastatic breast tissue images, facilitating accurate qualita-
tive assessment of whole-slide images to understand the status of
breast cancer cell metastasis in patients. In addition, we also per-
formed a performance comparison between VFMGL and the Logit-
based KD method (Supplementary Fig. 12). More details of the results
can be found in Supplementary Tables 2 and 16.

Segmentation of prostate in MRI
Prostate ailments (e.g., prostate cancer, prostatitis, and benign pro-
static hyperplasia) are prevalent conditions among males4,31,38. Precise
delineation of the prostate gland from magnetic resonance imaging
(MRI) scans is essential for diagnosing and strategizing treatment for
these ailments. However, due to differences in imaging protocols, the
use of endorectal coils, or demographic data, prostate MRI data from
different centers exhibit significant inter-center DH, greatly affecting
the accuracy of AI segmentation.

In the third use case, we tested and discussed the performance of
VFMGL in segmentation tasks in the face of such DH issues using a
prostate dataset4,38. VFMGL achieved Dice accuracies of 0.9340,
0.9328, 0.9620, 0.9191, 0.9383, and 0.9080 at various centers (Fig. 4).
VFMGL had an average Average Symmetric Surface Distance (ASSD) of
5.9683 across centers, with an average sensitivity of 0.9095 and
exceptionally high average specificity of 0.9956, demonstrating
excellent capability in correctly identifying non-prostate regions. Par-
tial segmentation results of VFMGL on test sets from various centers
are shown in Supplementary Fig. 14, illustrating how inter-center het-
erogeneity, such as differences in imaging parameters leading to var-
iations in brightness, may interfere with deep learning networks.
Contrastingmethods based on deep learning networksmight result in
over-segmentation of target areas or mis-segmentation in distant
regions due to such interference. More details of the results can be
found in Supplementary Table 3.
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Table 1 | Patient information

Center Set Type Age (mean ± std) FIGO stage Histopatholo-
gic type

I II III IV I II

Center A Train-set (410) NMI (49) 50.3673 ± 9.4001 46 0 2 1 42 7

MI (361) 55.9335 ± 8.1279 261 31 61 8 336 25

Test-set (275) NMI (34) 47.5588 ± 7.2413 34 0 0 0 34 0

MI (241) 54.8423 ± 7.8782 168 21 50 2 216 25

Center B Train-set (42) NMI (8) 48.3750± 5.8294 8 0 0 0 8 0

MI (34) 52.8824 ± 7.9839 28 2 3 1 32 2

Test-set (29) NMI (6) 45.5000 ± 10.4451 6 0 0 0 6 0

MI (23) 55.5652 ± 10.2772 16 3 4 0 22 1

Center C Train-set (22) NMI (1) – 1 0 0 0 0 1

MI (21) 60.9524 ± 8.1944 15 2 3 1 19 2

Test-set (15) NMI (1) – 1 0 0 0 1 0

MI (14) 60.1429 ± 10.2421 9 3 2 0 14 0

Center D Train-set (176) NMI (11) 51.1818 ± 11.7883 11 0 0 0 10 1

MI (165) 54.6788 ± 8.1195 127 5 31 2 148 17

Test-set (118) NMI (8) 51.0000 ± 3.1168 7 0 1 0 8 0

MI (110) 54.4636 ± 7.8503 91 3 14 2 101 9

External validation center E Test-set (63) NMI (1) – 1 0 0 0 1 0

MI (62) 55.0968 ± 8.9511 42 11 7 2 60 2

External validation center F Test-set (117) NMI (8) 54.6250 ± 13.7730 8 0 0 0 7 1

MI (109) 54.9358± 8.9134 91 2 15 1 99 10

NMI Non myometrial invasion, MI myometrial invasion, std standard deviation

Breast Cancer Metastasis Dataset(use case 2)

Center A Center B Center C

Center D Center E

Fig. 3 | Radar chart comparison offivemodels infive centers. VFMGLVision FoundationModel General Lightweight, AUCArea Under the Curve, PPV Positive Predictive
Value, NPV Negative Predictive Value. Source data are provided as a Source Data file.
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VFMGL segments multiple cell nuclei in slices of various organs
The segmentation of cell nuclei provides fundamental visual infor-
mation andmorphological features such as size, shape, or color. These
pieces of information and features not only aid in further processing of
pathological images (e.g., classification or tissue segmentation) but
also assist pathologists in diagnosing and analyzing the progression of
conditions (e.g., cancer diagnosis, assessment, and prognosis)39–41.
However, the complex background of pathological images and the
scattered distribution of cell nuclei greatly increase the difficulty of
segmenting cell nuclei.

In the fourth use case, we utilized three public datasets to create a
cell nucleus segmentation dataset40–42. Due to the dataset’s composi-
tion of multiple organs and cell types, VFMGL not only faces the DH
problem discussed in case 2 but also must address differences in cell
nucleus morphology across multiple organs and tissue types. VFMGL
achieved Dice accuracies of 0.7509, 0.7658, 0.7735, 0.7410, 0.7568,
and 0.7899 at various centers. Compared to other methods, VFMGL
demonstrated superior overall performance at each center(Fig. 5).
Despite the imbalance in sample numbers across multiple centers,
VFMGL did not experience noteworthy performance degradation at
specific centers (such as centers E and F), unlike the comparative
algorithms. VFMGL achieved an average ASSD of 4.1648, an average
sensitivity of 0.5981, and an average specificity of 0.9469 for this task.
Partial segmentation results of VFMGL on the test sets of various
centers are presented in Supplementary Fig. 15. Staining differences
and variations in nuclear morphology significantly impact the

segmentation performance of deep learning models. For example, in
the case of center C, changes in staining depth interfere with the deep
network’s segmentation of non-nucleus areas, while also affecting the
segmentation of nuclear contours, resulting in the adhesion of two
segmented regions. Compared to other methods, VFMGL more
effectively distinguishes adjacent cell nucleus regions and reduces
instances of mis-segmentation. More details of the results can be
found in Supplementary Table 4.

VFMGL exhibits robustness
The performance of deep learning models is influenced by various
factors. To further evaluate the robustness of the model, we con-
ducted validation on the ECdataset (use case 1) and public dataset (use
case 2–4) from the following two aspects:

Part I: To assess the impact of patient demographic differences on
the performance of VFMGL, we grouped the test set data based on the
average age (Age = 54.7) of the overall patient population and created
two groups (Supplementary Table 5). Group 1 and Group 2 exhibited
significant differences in the distribution of positive and negative
samples, with Group 2’s Centers C and D containing only positive
samples. In Group 1 (Age ≤ 54.7), the AUC values for each center were
0.760, 0.840, 0.750, and 0.777, respectively. In Group 2 (Age > 54.7),
the AUC values for Center A and Center B were 0.829 and 0.923,
respectively. Since NMI samples were not present in Center C and
Center D (Group 2), we used the cutoff from the training set to cal-
culate thepredictionaccuracy for these two centers, whichwere0.900

Prostate Dataset(use case 3)

Center A Center B Center C

Center D Center E Center F

Fig. 4 | Radar charts for the six centers. VFMGL Vision Foundation Model General Lightweight, IOU Intersection Over Union, PPV Positive Predictive Value. Source data
are provided as a Source Data file.
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(cutoff = 0.9333) and 0.836 (cutoff = 0.8767), respectively. The
experimental results indicated that VFMGL maintained robust pre-
dictive performance even after grouping the data, with particularly
high prediction accuracy for Centers C and D in Group 2.

Part II: Considering the impact of data distribution on VFMGL’s
performance,we conducted randompermutation experiments using six
different data split ratios and random seeds for dataset creation (Sup-
plementary Tables 6, 9–11). The experimental results (Supplementary
Figs. 3, 8–10) demonstrated that VFMGL exhibited strong resistance to
variations in data distribution, with only slight fluctuations in predictive
performance. In the EC task (use case 1), across the six data distributions,
the average AUC performance of VFMGL for the four centers was as
follows: 0.778 ±0.042, 0.845 ±0.026, 0.837 ±0.019, and 0.852 ±0.022.
The robustness of VFMGL was further validated on three public
datasets. In the breast cancer pathology image classification task
(use case 2), the AUC performance of VFMGL at each center was as
follows: 0.9990±0.0001 (center A), 0.9978±0.0003 (center B),
0.9988±0.0004 (center C), 0.9966±0.0008 (center D), and
0.9989±0.0002 (center E). In the prostate MRI image segmentation
task (use case 3), the Dice performance of VFMGL at each center was:
0.9134 ±0.0121, 0.9258 ±0.0098, 0.9546 ±0.0060, 0.9297±0.0100,
0.9246 ±0.0106, and 0.9013 ±0.0072. In the pathology image
nucleus segmentation task (use case 4), theDice performance of VFMGL
at each center was: 0.7665±0.0203, 0.7652 ±0.0105, 0.7823 ±0.0187,

0.7710±0.0160, 0.7562 ±0.0095, and0.8233 ±0.0209. These extensive
experiments show that VFMGL maintained excellent robustness across
various scenarios and tasks, evenwhen facingdifferent variations in data
distribution. More detailed results can be found in Supplementary
Tables 12–14.

VFMGL demonstrates cross-center generalization
AI models confront distinct heterogeneity implications across various
tasks and datasets. Within the realm ofmulti-center DH, we conducted
additional assessments to substantiate VFMGL’s cross-center general-
ization in the aforementioned four utilization scenarios. As depicted in
Fig. 6, for the EC-MI task (Fig. 6a), Model A demonstrates cross-center
generalization. The models from centers B and D generalize between
these two centers, while the models from centers C and D exhibit
generalization between these two centers. For breast cancer histo-
pathological image classification (Fig. 6b), there is mutual general-
ization among centers A, B, D, and E, and model C exhibits
generalization across all centers. In the prostate MRI segmentation
task (Fig. 6c), VFMGL demonstrates mutual generalization between
centersD, E, and F.Model A exhibits generalization across centers B, C,
D, and E, andmodels D, E, and F demonstrate generalization on center
B. In the histological cell nucleus segmentation task (Fig. 6d), mutual
generalization is observed among Centers A, B, C, and D, as well as
between centers E and F.

Nuclei Dataset(use case 4)

Center A Center B Center C

Center D Center E Center F

Fig. 5 | Radar charts for the six centers.VFMGLVisionFoundationModelGeneral Lightweight, IOU IntersectionOverUnion, PPVPositive Predictive Value. Sourcedata are
provided as a Source Data file.
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VFMGL-based predictions are explainable
To investigate the interpretability and diagnostic foundation of
VFMGL in diagnosing the presence or absence of MI in EC (use case
1), we conducted Class Activation Mapping visualizations43. In Fig. 7a,
we present eight visualization results from four centers, including
four cases with MI and four cases with Non-MI (NMI). The images
demonstrate that, for MI cases, VFMGL exhibits strong activation
responses in the region of the EC lesion (red region), while for NMI
cases, VFMGL shows low activation responses in the uterine region
(blue region).

To further explore the representational capabilities of VFMGL on
multi-center data, we conducted Principal Component Analysis
(PCA)44 visualization of features from each center. Figure 7b displays
the features learned by VFMGL at each center, indicating the con-
sistency in multi-center distribution and the effectiveness of dis-
criminative classification features. Additionally, Fig. 7c illustrates the
overall distribution of prediction scores for both classes. The results
indicate that there are significant differences in the positive and
negative sample prediction scores of VFMGL at centers A, B, and D
(p < 0.05). The predictive distributions of VFMGL model on the train-
ing and testing sets are consistent.

Adaptive knowledge and common knowledge learned
by VFMGL
To further explore the interpretability of VFMGL, we analyzed the
adaptive knowledge and common knowledge learned by VFMGL on
the EC dataset (use case 1). Adaptive knowledge refers to the unique
classification feature characteristics within each center,while common
knowledge refers to the classification feature characteristics shared by
all centers45. Based on the construction process of VFMGL,we visualize
the correlation heatmaps of the model features from both stages,
reflecting the intra-center feature relationships and cross-center fea-
ture relationships.

In Phase I, VFMGL constructs robustness critical layers adap-
tively based on the common knowledge from VFM. The details of the
robustness critical layers of local models in each center are shown in
Supplementary Tables 7 and 15. Taking the features learned by
VFMGL on MI cases as an example, in the analysis of adaptive
knowledge, the features of each center exhibit strong intra-group
correlation (Fig. 8a and c), while inter-group correlation is weak,
especially between Center A and Center D. The heatmap of common
features (Fig. 8b and d) indicates good inter-group correlation of
common features. The heatmaps of the training set and test set

(a)(a)

Center

L
o
ca

l 
m

o
d
el

(AUC)

(c)(c)

L
o
ca

l 
m

o
d
el

Center

(Dice)

(b)(b) (AUC)

Center

L
o
ca

l 
m

o
d
el

(d)

L
o
ca

l 
m

o
d
el

Center

L
o
ca

l 
m

o
d
el

(Dic

Center

L
o

ca
l 

m
o
d

el

(d)
(Dice)

Fig. 6 | Cross-center generalization of the VFMGL on the four tasks. a Cross-
center generalization maps for use case 1. b Cross-center generalization maps for
use case 2. c Cross-center generalization maps for use case 3. d Cross-center

generalization maps for use case 4. AUC Area Under the Curve. Source data are
provided as a Source Data file.
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(Fig. 8a, b vs Fig. 8c, d) show consistent shapes in corresponding
positions, indicating the stability of the features learned and the
relationships between them in this phase. Further comparison of the
correlation heatmaps of MI (Fig. 8a–d) and NMI (Supplementary
Fig. 7a–d) shows that adaptive features from each center consistently
appear in both types of heatmaps, demonstrating the potential value
of enhancing the robustness of VFMGL predictions.

In Phase II, VFMGL utilizes common knowledge from the shared
model to enhance generalization performance. Compared to Phase I,
the features of MI cases in each center do not exhibit strong intra-
group correlation (Fig. 8e, g); however, in the heatmap of common
features (Fig. 8f, h), the common features learned by VFMGL in this
phase show high inter-group correlation and maintain weak intra-
group correlation. Common features possess similar representation
capabilities across centers, assisting VFMGL in achieving general-
ization performance on multi-center data. The correlation heatmap of
adaptive features and common features for NMI cases can be seen in
Supplementary Fig. 4.

The lightweight performance of VFMGL
We evaluate the performance of the proposed VFMGL technique using
model parameter count and Floating Point Operations (FLOPs). Para-
meter count refers to the total number of parameters that need to be
trained during model training, measuring the model’s spatial com-
plexity. FLOPs represent the number of floating-point operations
during model inference, i.e., the theoretical computational load of the
model, measuring the model’s computational time complexity. In our
experiments, the parameter count of the VFM is approximately 86M,
with a computational load of about 21.96 GFLOPs, while the parameter
count of the VFMGL is approximately 11M, with a computational load
of about 1.82 GFLOPs. After lightweighting using the HAKD technique,

the compression ratio of the model parameter count is approximately
1:8, and the computational load is compressed by a factor of 1:12.
Deployment and use of the VFMGL require less than 500MiB of GPU
memory or CPU usage, while maintaining fast inference speeds.

Ablation study
We further conducted ablation experiments on public datasets (use
case 3-4) to investigate the impact of HGKT and DDBL on model per-
formance. Figure 9 and Supplementary Fig. 16 illustrate the perfor-
mance changes of VFMGL. Subfigures (a), (b), and (c) respectively
represent the model performance of using only HGKT, HGKT +KD,
and HGKT+KD+DDBL. To facilitate the comparison of performance
differences among thesemethods,we further plotted theperformance
variations. Subfigures (d), (e), and (f) correspond to the performance
changes from subfigure (a) to (b), subfigure (a) to (c), and subfigure (b)
to (c), respectively.

In use case 3, KD improved the model’s average performance
across centers by 0.0110, while KD + DDBL raised the average per-
formance by 0.0429. Among the 36 cross-center generalization
results, KD + DDBL significantly enhanced the model’s performance
in 22 results (Fig. 9e). In use case 4, KD improved the average per-
formance across centers by 0.0068, while KD + DDBL increased it by
0.0097. For the 36 cross-center generalization results, KD + DDBL
significantly enhanced the model’s performance in 25 results (Sup-
plementary Fig. 16e). These experimental results indicate that the
HGKT method enables local models to achieve excellent general-
ization performance, while KD andDDBL further enhance the overall
performance of VFMGL across all centers. These comparisons
show that, without compromising local models’ performance on
their own data, their performance on data from other centers can
still be improved.

Center A Center B Center C Center D

NMI

MI

NMI

MI

(a)(a)

(b)(b)
Train set Test set

Center Center

NMI

MI
NMI

MI

(c)(c)

p=3.863e-22 p=0.014 p=0.265 p=9e-6 p=1.249e-8 p=0.034 p=0.434 p=0.001

Fig. 7 | Visualizations for model interpretability. a The heatmap shows the
information acquired by the VFMGL for images in the MI and NMI classes. The red
areas indicate a high level of model attention, while the blue areas indicate a low
level of model attention. b The feature distribution of VFMGL in the four centers.
c The score charts illustrate the MI and NMI cases of the four centers evaluated by
the VFMGL. The statistical test used for this data analysis is the Independent t-test
(two-tailed). In the training set, Center A (n = 410, p = 3.863e-22; mean± std:
0.707 ±0.109, 0.904±0.128); Center B (n = 42, p =0.014;mean ± std: 0.731 ± 0.078,

0.823 ± 0.093), Center C (n = 22, p =0.265; mean± std: -, 0.953 ± 0.017), Center D
(n = 176,p = 9e-6;mean ± std: 0.846 ± 0.013,0.943 ± 0.070); In the test set, CenterA
(n = 275, p = 1.249e-8; mean± std: 0.753 ±0.107, 0.875 ± 0.115); Center B (n = 29,
p =0.034; mean ± std: 0.721 ± 0.079, 0.815 ± 0.094), Center C (n = 15, p =0.434;
mean ± std: -, 0.948± 0.017), Center D (n = 118, p =0.001;mean± std: 0.858 ± 0.041,
0.940±0.069). MI Myometrial Invasion, NMI Non Myometrial Invasion, PCA Prin-
cipal Component Analysis, p significance value, std standard deviation. Source data
are provided as a Source Data file.
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Fig. 8 | Correlation heatmaps of adaptive knowledge and common knowledge.
a Adaptive knowledge correlation heatmap of the first stage of VFMGL in the test
set. b Common knowledge correlation heatmap of the first stage of VFMGL in the
test set. c Adaptive knowledge correlation heatmap of the first stage of VFMGL in
the training set. d Common knowledge correlation heatmap of the first stage of
VFMGL in the training set. eAdaptive knowledgecorrelationheatmapof the second
stage of VFMGL in the test set. f Common knowledge correlation heatmap of the

second stage of VFMGL in the test set. g Adaptive knowledge correlation heatmap
of the second stage of VFMGL in the training set.hCommonknowledge correlation
heatmap of the second stage of VFMGL in the training set. The first column shows
the heatmap of correlation for adaptive features, while the second column displays
the heatmap of correlation for common features. VFMGL Vision FoundationModel
General Lightweight. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-025-57427-z

Nature Communications |         (2025) 16:2097 10

www.nature.com/naturecommunications


Discussion
Precision diagnosis based on medical imaging (MRI, WSI, etc.) can
provide patients with more personalized medical services, reduce
treatment risks, and improve treatment outcomes1–7. However, owing
to the intricate nature of imaging manifestations in many diseases,
achieving accurate diagnoses remains challenging2,46. Deep learning
(DL) is emerging as a potential solution to address this issue. DL can
directly extract target information from images, perform quantitative
analysis, and provide objective reference information for diagnosis.
Tang et al. employed deep learning (DL) to identify specific neuro-
pathological lesions in immunohistochemistry-stained tissue slices47.
Huang et al. developed PENet for detecting pulmonary embolism48.
Jiang et al. utilized DL to predict peritoneal recurrence of gastric can-
cer on CT images49.

However, due to the challenges of multi-center DH4,11,12, the
aforementioned DL systems may face performance limitations.
Because of the need for medical data privacy and security, medical
centers generally prohibit the sharing of patient data, making it diffi-
cult for single centers to obtain diverse, large-scale medical data for
researchonDL diagnostic systems. A large number ofmedical imaging
studies are based on training DL models with single-center data50–53,
using standardized machines and imaging protocols for data collec-
tion. However, in scenarios involving multiple centers, institutions,
and operators, traditional DL training methods often encounter chal-
lenges related to DH. These mainly include: (1) DL models trained in a
single centermaynotwork inother centersdue todifferences in image
acquisition equipment or parameters across centers; (2) DL models
may lack robustness when facing prediction challenges such as dif-
ferences in patient demographics; Additionally, (3) the healthcare
sector has strict regulations and ethical requirements regarding the
transparency and interpretability of model decisions.

The powerful feature extraction capability and general repre-
sentation ability of VFMs endow them with robustness in predicting
unknown objects. However, training VFMs for medical purposes
requires vast amounts of data, abundant computational resources, and

extensive time. Additionally, conducting interpretability work for
foundation models is challenging8. In this study, we proposed a HGKT
technique for lightweight parameterization of foundation model
parameters, adapting to utilize the universal knowledge from VFM to
assist deep learning models in building robust critical layers, enabling
DLmodels to possess good robustness for tasks within the center. The
preliminary lightweighting results show that themodel parameter size
can be compressed to one-eighth of its original size, and the theore-
tical computational workload can be reduced to one-twelfth of its
original value. Robustness testing(use case 1–4) validated the perfor-
mance of VFMGL, showing predictive stability under various data
distribution. For example, in use case 1, AUC variations were observed
in robustness testing: 0.778 ±0.042, 0.845 ±0.026, 0.837 ±0.019, and
0.852± 0.022. Further exploration of features learned by local models
in this phase revealed unique characteristics distinguishing them from
other centers, with stable feature expression and relationship struc-
tures in local datasets. General knowledge from VFM helped local
models achieve robust feature expression on local data, enhancing
their robustness against perturbations such as population differences
and data distribution changes.

In the VFMGL framework, each center refrains from sharing
medical data and collaborates solely by sharing model parameters
to train models, ensuring the privacy and security of patient data.
We propose a DDBL method tailored to multi-center DH, which
selects data with low heterogeneity from each center’s dataset for
training local models (Supplementary Fig. 11). Leveraging knowl-
edge distillation techniques, we aim to assist local models in
acquiring common knowledge from the shared model, thereby
enhancing the generalization performance of local models. Com-
pared to existing FL algorithms, the developed VFMGL demon-
strated superior performance, proving its effectiveness in medical
classification and segmentation(use case 1–4). Using local models
from VFMGL for testing on data from other centers demonstrated
that VFMGL possesses cross-center generalization capabilities(use
case 1–4). The features learned by the local models at this stage
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Fig. 9 | Ablation experiments of VFMGL in use case 3. a Performance when
constructing models using only the HGKT method. b Performance when con-
structing models using only the HGKT +KD method. c Performance when con-
structing models using the HGKT+KD+DDBL method. d Models performance

change from subfigure (a) to (b). eModels performance change from subfigure (a)
to (c). f Models performance change from subfigure (b) to (c). HGKT
Heterogeneous-model General Knowledge Transfer, KD Knowledge Distillation,
DDBLDataDeduction in BatchLevel. Source data are provided as a SourceDatafile.
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exhibit sharing properties, and these features demonstrate repre-
sentational capabilities across multiple centers.

The capability of VFMGL to handle variousmedical tasks has been
validated on one private dataset (use case 1) and three public datasets
(use cases 2–4). In use case 1, for well-differentiated endometrioid
endometrial carcinoma (EEC) patients, there is a potential to preserve
fertility if myometrial invasion is absent2. The combined test sets from
centers A-E comprised 157 cases of well-differentiated EEC patients
(including an external test set), with VFMGL achieving a prediction
accuracy of 70.70% (111/157) for the presence or absence of MI in such
patients. This aids in identifying individuals without MI, where the
lesion is confined to the uterus, potentially enabling fertility-sparing
treatments. Furthermore, VFMGL achieved promising results in breast
cancer histological image classification (use case 2), histological cell
nucleus segmentation (use case 3), and prostate MRI segmentation
(use case 4), demonstrating VFMGL’s potential in medical image clas-
sification and segmentation.

In addition to these advantages, the predictive performance of
VFMGL exhibits excellent interpretability. VFMGL can effectively
identify adaptive features, demonstrating high similarity within each
data center and low similarity between data centers. Itmaintains stable
representation relationships within local data, promoting the differ-
entiation of positive and negative samples, enhancing predictive sta-
bility. VFMGL reveals highly similar crucial common features between
each data center, allowing for accurate differentiation of EC with and
without MI across different data centers. An overall analysis of the
multi-center data features learned by VFMGL indicates that the dis-
tribution of features has better consistency while possessing excellent
classification characteristics.

Furthermore, considering the potential future real-world appli-
cation of VFMGL, where centers may lack independent diagnostic
capabilities or independent centers not involved in VFMGL training
may need to use the VFMGL for disease diagnosis, we analyzed the
similarity between the data features from independent centers and the
data features of VFMGL training set data based on the idea of data
inference. This allowed us to select the better local model for inde-
pendent external validation testing, and experimental results (use case
1) demonstrated that the higher the data features similarity (Center A:
0.15; Center B: −0.05; Center C: −0.06; Center D: 0.08), the better the
predictiveperformanceof the localmodel for that center (ModelAwas
0.742; Model B: 0.694; Model C: 0.661; Model D: 0.710).

A caveat of our observations is that the ground truthmight not be
perfect. Firstly, this study did not explore the potential relationship
between common and adaptive features and clinical information,
which would enhance the interpretability of the VFMGL mechanism
and provide higher clinical value. Secondly, this study primarily
investigated model robustness and generalization without exhaus-
tively optimizing each model hyperparameter, suggesting that
VFMGL’s performance might be better than described in the paper,
and considering the speed of knowledge distillation, we initially chose
medium-sized VFMs for experimentation. In fact, the HAKD method
can be used to distill larger-scale VFMs. Finally, the contributions of
adaptive features and common features to model robustness and
generalization still require further exploration, aiding in the discovery
of methods to further enhance model performance.

Methods
Materials and pre-processing
EC dataset (use case 1): This study was implemented under the
approval of the Jiangmen Central Hospital, the Yuebei People’s Hos-
pital, Affiliated Dongguan Hospital Southern Medical University, the
Maoming People’s Hospital, the KaipingCentral Hospital and the Third
Affiliated Hospital of GuangzhouMedical University, and conducted in
accordance with the 1964 Helsinki Declaration and its later amend-
ments or comparable ethical standards. Informed consent was waived

by our Institutional Review Board because of the retrospective nature
of our study. For Center A (n = 685), we included patient data who
underwent total hysterectomy for endometrial cancer from August
2010 to December 2022. For Centers B (n = 71), C (n = 37), D (n = 294),
and E (n = 63), we included patient data who underwent total hyster-
ectomy for endometrial cancer fromDecember 2016 to February 2023.
In addition,we have collected 117 cases ofpatients fromanewcenter F.
In total, data from 6 medical centers comprising 1267 patients were
included. Inclusion criteria were: (1) histologically confirmed endo-
metrial cancer (malignant epithelial tumors of uterus); (2) underwent
total hysterectomy; (3) had pelvic MRI images within 21 days before
surgery; (4) had complete postoperative pathological results. Exclu-
sion criteria were: (1) interval between pelvic MRI examination date
and surgery date exceeding 21 days; (2) received neoadjuvant therapy
before surgery; (3) presence of artifacts or poor image quality in pelvic
MRI; (4) concomitant presence of other malignant tumors, such as
ovarian cancer, cervical cancer, etc. The dataset was randomly divided
into training and testing sets at a ratio of 6:4 for each center, and the
distribution of patient data is shown in Table 1 and Supplementary
Fig. 5a. During the initial phase of the study, highly experienced radi-
ologists delineated the Region of Interest (ROI) as the input for the
local models. This ROI constitutes a rectangular region encompassing
the entirety of the uterus. All ROI images have been resized to
224 × 224× 3. Further information on ROI acquisition is available in
Supplementary Note 1.

Breast cancer histology image dataset (use case 2): The dataset12 is
derived from the CAMELYON17 dataset3, which includes patient slides
from five different medical centers in the Netherlands. These slides
comprise both H&E slides and IHC slides. The dataset consists of
450,000patches of breast cancermetastases on lymph node slides, all
patches being of size 96 × 96 × 3. For each medical center (Supple-
mentary Table 8 and Supplementary Fig. 5b), 20% of the data is allo-
cated to the test set, while the remaining 80% is divided into a 4:1 ratio
for the training and validation sets.

Prostate MRI dataset (use case 3): The dataset4,38 comprises T2-
weighted MRI data from six different data centers of three public
datasets54–56, with images resized to 384 × 384. Different centers uti-
lized various scanners, field strengths, resolutions and coil type. Cen-
ter A employed a GE scanner with a field strength of 3.0T and a
resolution of 0.25/2.2–3mm, using endorectal coil. Center B utilized a
Siemens scannerwith a field strength of 1.5 T and a resolution of 0.625/
3.6mm, also using endorectal coil. Center C used a Siemens scanner
with a field strength of 3.0 T and a resolution of 0.67–0.79/1.25mm,
without using endorectal coil. Center D employed a Siemens scanner
with a field strength of 3.0 T and a resolution of 0.6–0.625/3.6–4mm,
using endorectal surface coil. Center E utilized a Philips scanner with a
field strength of 1.5 T and a resolution of 0.4/3mm, using endorectal
coil. Center F employed a Siemens scanner with field strengths of 1.5 T
and 3.0T, with a resolution of 0.325–0.625/3–3.6mm, without using
endorectal coil. For eachmedical center, 20%of the data is allocated to
the test set, while the remaining 80% is divided into a 4:1 ratio for the
training and validation sets (Supplementary Table 8 and Supplemen-
tary Fig. 5c).

Histology nuclei dataset (use case 4): The dataset consists of three
public datasets: MoNuSAC201842, MoNuSAC202040, and TNBC41. For
the data from MoNuSAC2020, it is divided into four centers based on
different hospitals, forming a total of six centers. The division criterion
follows the official multi-organ split, where each organ group includes
specific hospitals without overlapping with other groups. The dataset
includes epithelial cells, lymphocytes, neutrophils, macrophages,
normal epithelial cells, myoepithelial breast cells (located in ducts and
lobules), invasive carcinoma cells, and more. These cells are sourced
from various organs such as breast, kidney, lung, prostate, and others.
All images have been resized to 256× 256 × 3. For eachmedical center,
20% of the data is allocated to the test set, while the remaining 80% is
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divided into a 4:1 ratio for the training and validation sets (Supple-
mentary Table 8 and Supplementary Fig. 5d).

Experimental Setting: We use DINOv215 as the open-source visual
foundationmodel (VFM) and adopt two commonly used deep learning
frameworks, ResNet1857 and UNet58, as local and shared models for
classification tasks (use case 1–2) and segmentation tasks (use case
3–4), respectively. In use case 1, we use standard cross-entropy loss
and an SGD optimizer to update the local model. The model is trained
for 20 epochs with a learning rate of 0.0001, weight decay of 0.0001,
and a batch size of 25. In use case 2, we use standard cross-entropy loss
and an SGD optimizer to update the local model. The model is trained
for 10 epochs with a learning rate of 0.01, weight decay of 0.001, and a
batch size of 32. In use case 3, we use Dice loss and an Adamoptimizer
to update the local model. The model is trained for 100 epochs with a
learning rate of 0.0001, weight decay of 0.0001, and a batch size of 3.
In use case 4,weuseDice loss and anSGDoptimizer to update the local
model. The model is trained for 100 epochs with a learning rate of
0.001, weight decay of 0.0001, and a batch size of 2. For all four tasks,
the optimizer momentum is set to 0.9, and the meta-network para-
meters are updated using an SGD optimizer with a learning rate and
weight decay of 0.001. Local model training is performed once per
communication round.

Vision foundation model general lightweight framework
The VFMGL framework allows each center to train models in a
decentralized manner based on VFM general knowledge and shared
model knowledge, ensuring both robustness and generalization of the
models. It offers an HGKTmethod to transfer general knowledge from
VFM to lightweight models, assisting local models in building robust
criticalmodel layers. In the case ofmulti-center DH, it provides a DDBL
method based on shared model knowledge to select low-
heterogeneity data from each center’s dataset for knowledge distilla-
tion from the shared model to the local model, enhancing the gen-
eralization of local models with common knowledge.

The lightweighting of VFM based on HGKT
Unlike convolutional neural networks (CNN) such as ResNet1857 and
VGG1659, the VFM with a transformer structure possesses robust gen-
eral visual representation capabilities15. This ability allows VFM to
maintain outstanding recognition stability across various types of
images, including different categories, resolutions, and perturbations.
However, this capability comes at the cost of having a large number of
model parameters, leading to challenges such as difficult training,
deployment, and slow inference speed, especially in low-resource
scenarios. Current research primarily employs transfer learning
methods24,60–65 like fine-tune to retrain open-source large models.
However,fine-tuning requires a great amount of annotated data. Some
researchers propose knowledge distillation methods to leverage large
models to guide the training of smallermodels66–69. However, they face
challenges such as label sensitivity, model structure, selection of
model layers, and knowledge redundancy.

Given the significant domain differences between natural and
medical images, arbitrarily matching model layers for knowledge
transfer may not benefit, and could even hinder, medical tasks. Some
researchers rely on empirical or experimental selection of fixed
intermediate layers for matching and knowledge transfer35,70,71, a time-
consuming task, particularly for VFMs with large model layers. With
task and dataset changes, the effectiveness of layer-matching based on
manual methods remains uncertain. Moreover, in a multi-center sce-
nario, DH can lead to variation in the knowledge needed for each
center’s local model12. Accordingly, the type of knowledge each center
requires from VFMs can vary.

Therefore, we propose a method called HGKT to assist CNNs in
learning general knowledge fromVFMs and achieve the lightweighting
of foundational models. The training tasks and data of open-source

VFMs are typically different from the target domain, implying that not
all VFM knowledge is beneficial for the target task. In the process of
knowledge transfer, we construct a robust feature transfer network
(Supplementary Note 2) that automatically calculates knowledge
transfer weights to match the transfer positions of model layers
between heterogeneous models and build knowledge transfer chan-
nels, helping CNN networks obtain beneficial general knowledge from
VFMs for the target task. The robust feature transfer network dyna-
mically updates transfer weights (Supplementary Note 3) based on the
performance changes of CNN networks on the target task, adaptively
selecting stable representations of general knowledge from VFMs for
CNN tasks.

Building robustness critical layers based on HGKT
Confronted with the impact of multi-center DH on the predictive
robustness of AI models and inspired by the universal visual repre-
sentation capabilities of VFM, we employ HGKT to extract universal
knowledge from VFM for constructing the model robustness critical
layers. In this study, eachmedical center possesses its ownprivate data
and localmodel, and the learning process of the first stage of VFMGL is
illustrated in Fig. 1b. Utilizing HGKT, an adaptive transfer pipeline is
formed from VFMs to local model. Local model autonomously build
model robustness based on private data and the general knowledge
from VFMs.

CNN parameters exhibit redundancy, and existing studies have
demonstrated the possibility of simultaneously ensuring robustness
and generalization72. The robust feature transfer network calculates
the adaptability of model layer transfer between VFMs and local
models, reflecting the quantity of general knowledge learned by local
model layers from VFMs and the criticality of model layer robustness.
We freeze the critical layers of model robustness to prevent local
models from forgetting robust knowledge during the learning process
of the second stage.

Enhancing model generalization based on DDBL
Applying deep learningmodels in a clinical context, the generalization
performance of deep learning models will expand the prospects of
model applications, especially in terms of cross-center generalization
capabilities. The introduction of federated learning (FL)28 provides a
solution for exchanging model knowledge among various medical
centers. ProxyFL29 validated the feasibility of efficient communication
and privacy protection in federated learning (FL). In the FL framework,
the sharedmodel is aggregated from local models of multiple centers,
integrating knowledge and decision information from various
sources12,28,73.

The imagingdata frommultiplemedical centers exhibitDHdue to
differences in imaging equipment, scanning parameters, and image
quality, resulting in biased data features across centers. This allows
local models to easily fit local data but perform poorly on data from
other centers. As neural networks become increasingly powerful, they
can learn specific feature patterns on particular datasets to achieve
good performance26,27. Therefore, we propose the DDBL method,
which selects low-heterogeneity data from each center based on the
knowledge of the shared model. This allows local models to learn
common knowledge, thereby suppressing the learning of specific
feature patterns and leveraging the model’s redundant parameters to
further enhance cross-center generalization ability.

Local models learn unique feature distributions and biased deci-
sion boundaries from private data within their respective centers, with
their focus centered on these representative heterogeneous data. This
results in better performance on private data but leads to failure when
applied to data from other centers11. In the second stage of VFMGL
(Fig. 1c), both the sharedmodel and localmodels compute features for
randomly sampled batches of private data, with the shared model’s
classification head generating prediction distributions for each. The
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representation knowledge learned by local models on private data
facilitates the identification of prominently heterogeneous data,
rapidly reducing the discrepancy between model prediction distribu-
tions and true label distributions. This enlarges the difference in pre-
diction distributions between the shared model and local models. By
measuring the speedof these changes, datawith commonalities canbe
distilled from private data, aiding local models in learning generalized
decision boundaries from the shared model, capturing the common-
alities of data distributions, and enhancing generalization abilities
(Supplementary Notes 4, 5 and 7). After constructing local models,
each user sends their local model to the server (Fig. 1a), where the
server aggregates shared model parameters using weighted
averages12,28,34.

Exploration of adaptive knowledge and common knowledge
In order to explore the inference basis of robust models across
centers, identify common features for category prediction, and
adaptive features for handling differences in data from various
research centers, this study utilized VFMGL to extract DL features
from each research center. Specifically, local models from each
center were employed to extract four sets of DL features from all
data samples (use case 1). The mRMR algorithm was applied to filter
out 256 most valuable radiomics features from each feature set.
Subsequently, the correlation between the four sets of DL features
was calculated. Features showing the highest correlation within each
data center and between different data centers were determined as
adaptive features and common features, respectively. The Pearson
correlation coefficient74 was used in this study, and more details can
be found in Supplementary Note 6.

To assess the commonality and adaptability features in VFMGL, a
classification heatmap was generated to provide a visual representa-
tion of VFMGL’s focus on two types of image data from different
centers. The correlation heatmap offers insights into how the model
emphasizes common and adaptive features within the data. Further-
more, the similarity between adaptive features and common features
wasevaluatedby computing the correlationmatrix ofDL features from
different centers. This allowed an understanding of the relationships
and similarities among features from different centers. Through these
methods, the study assessed commonandadaptive features inVFMGL,
revealing VFMGL’s attention and relationships to different types of
features and data from various centers.

Statistical analyses
We use AUC, sensitivity, specificity, accuracy, positive predictive value
(PPV), and negative predictive value (NPV) to evaluate the perfor-
mance of VFMGL in classification tasks. Dice coefficient, ASSD, Inter-
section over Union (IOU), PPV, specificity, and sensitivity are used to
evaluate the model’s performance in segmentation tasks. These eva-
luation metrics provided a comprehensive assessment of the pre-
dictive capabilities of the algorithms and allowed for statistical
comparisons between different models. The ROC curve was used to
illustrate the overall performance of the different modelling methods,
and DCAwas used to evaluate the clinical effectiveness of themodel in
predicting EC-MI (use case 1).

Statistical analyses were conducted using two-tailed tests, and a p
value < 0.05 was considered statistically significant.

Hardware and software
For deep learning tasks, the CPU(Intel(R) Xeon(R) Platinum 8358P CPU
@2.60GHz), the NVIDIA RTXA6000graphics cardwith CUDA version
12.2 and 48GB of GPU memory was utilized. The deep learning fra-
mework employed was PyTorch 2.0.0+cu117, implemented in Python
(version 3.9.18; http://www.python.org/). Additionally, MATLAB ver-
sion 2021b was used for certain analysis tasks. Statistical tests were
performed using SPSS (SPSS Statistics 26.0).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The EC dataset (use case1) in the current study are not publicly avail-
able for patient privacy policy. However, if researchers wish to access
our data solely for scientific research purposes, access can be obtained
by sending anemail request to the corresponding author.Requestswill
be processed by the corresponding author within 3 months and fol-
lowed upwith the requesting party. Any requests will be pending prior
approval and revision by the Ethics Committee of Jiangmen Central
Hospital, the Ethics Committee of Yuebei People’s Hospital, the Ethics
Committee of Affiliated Dongguan Hospital Southern Medical Uni-
versity, the EthicsCommittee ofMaoming People’s Hospital, the Ethics
Committee of Kaiping Central Hospital and the Ethics Committee of
the Third Affiliated Hospital of Guangzhou Medical University. The
Breast Cancer Histology Image dataset (use case 2) used in this study
are available in link: https://worksheets.codalab.org/rest/bundles/
0xe45e15f39fb54e9d9e919556af67aabe/contents/blob/. The Prostate
MRI dataset (use case 3) used in this study are available in link: https://
liuquande.github.io/SAML/. The Histology Nuclei dataset (use case 4)
used in this study are available in link: https://monusac-2020.grand-
challenge.org/Data/; https://zenodo.org/record/1175282/files/TNBC_
NucleiSegmentation.zip; https://monuseg.grand-challenge.org/Data/.
The deidentified relevant data generated in this study are provided
in the Supplementary Information/Source Data file and can be
downloaded from the following link: https://pan.baidu.com/s/
1ZOzXIsG3ez3F9xyxsKZD8g?pwd=cyww, with the access code: cyww.
Source data are provided with this paper.

Code availability
The codes are provided at GitHub (https://github.com/baofengguat/
VFMGL/tree/main).
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