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Semi-automated IT-scATAC-seq profiles
cell-specific chromatin accessibility in
differentiation and peripheral blood
populations

Wei Jin 1,2,3,5 , Jingchun Ma3,5, Li Rong3,5, Shengshuo Huang3, Tuo Li4,
Guoxiang Jin 2 & Zhongjun Zhou 1,2,3

Single-cell ATAC-seq (scATAC-seq) enables high-resolution mapping of chro-
matin accessibility but is often limited by throughput, cost, and equipment
requirements. Here, we present indexed Tn5 tagmentation-based scATAC-seq
(IT-scATAC-seq), a semi-automated, cost-effective, and scalable approach that
leverages indexed Tn5 transposomes and a three-round barcoding strategy.
This workflow prepares libraries for up to 10,000 cells in a single day, reduces
the per-cell cost to approximately $0.01, and maintains high data quality.
Comprehensive benchmarking demonstrates that IT-scATAC-seq achieves
robust library complexity, high signal specificity, and improved cost-efficiency
compared to existing methods. We apply IT-scATAC-seq to mouse embryonic
stem cells, capturing chromatin remodelling during early differentiation, and
to human peripheral blood mononuclear cells, resolving cell-type–specific
regulatory programs. Here, we show that IT-scATAC-seq provides a robust and
efficient approach for high-resolution single-cell epigenomic investigations,
balancing scalability, data quality, and accessibility.

Studying gene regulation at the single-cell level is becoming increas-
ingly important for understanding cellular heterogeneity in complex
biological systems1–3. While single-cell transcriptomics captures gene
expression dynamics, single-cell epigenomics provides insights into
the regulatory mechanisms underlying these profiles1,2,4. Assay for
Transposase-Accessible Chromatin Sequencing (ATAC-seq) is a pow-
erful tool that maps open chromatin regions that control gene
expression without needing prior knowledge of epigenetic markers or
transcription factors5. Single-cell ATAC-seq (scATAC-seq) extends this
capability, enabling chromatin accessibility profiling at the resolution
of individual cells. Recent advances in scATAC-seqmethods – through

microfluidics-based6 or in-house prepared single-cell combinatorial
indexing (sci)-ATAC-seq7, plate-based scATAC-seq8 and µATAC-seq9,
alone or integrated with other single-cell omics10–15 – have broadened
our understanding of how genetic and environmental factors shape
cellular identity, cell state transitions, functional variations, and dis-
ease mechanisms, thereby expanding the scope of transcriptional
regulation research.

Library quality underlies accurate interpretation of scATAC-seq
data. Key technical determinants include sensitivity (the ability to
detect all accessible chromatin regions, reflected in library complex-
ity), accuracy (the correspondence between sequenced fragments and
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authentic ATAC-seq signals from single cells), and specificity (the
ability to discern ATAC signals specific to different cell types and
states). Another important consideration is tomaximise the number of
cells analysed while minimising time, manual effort, and cost. How-
ever, current methods struggle to simultaneously achieve high sensi-
tivity, accuracy, throughput, and affordability, which hinders the
widespread application and development of scATAC-seq
technology8,9,16. For example, droplet-based microfluidic systems or
nanowell-based platforms, such as Bio-Rad ddSEQ17, Fluidigm C16, and
Takara ICELL89, can be expensive and require specialised equipment,
limiting their use only in well-resourced settings. Although plate-based
scATAC-seq is relatively simple and robust, its throughput constraints
analysis to hundreds to thousands of cells and further scaling results in
a disproportionate increase in labour and PCR costs8. Meanwhile, sci-
scATAC-seq boosts throughput to an organ scale through multiple
rounds of splitting and pooling7,18–20, but it often comes at the expense
of compromising library quality and demands a large amount of
indexed Tn5 to be prepared. These challenges highlight the need for a
more cost-effective, sensitive, and scalable solution accessible to var-
ious academic and clinical applications.

To address these limitations, we developed IT-scATAC-seq, a
streamlined and semi-automated method that employs a three-round
indexing strategy. This approach leverages barcoded Tn5 for the first
indexing, followed by two rounds of indexed PCR to achieve easy
scalability. Combining parallel bulk tagmentation with fluorescence-
activated nuclei sorting (FANS), IT-scATAC-seq reduces both per-cell
costs and hands-on time while maintaining robust library complexity
and high signal specificity.

Benchmarking analysis showed IT-scATAC-seq yields high library
complexity, low mitochondrial contamination, and strong ATAC-seq
signal enrichment around transcription start sites (TSS), with more
than 60% of reads in peaks (FRiP). To demonstrate its utility, we
applied IT-scATAC-seq to mouse embryonic stem cells(mESCs)
undergoing differentiation, showing chromatin accessibility dynamics
as cells transition from naïve pluripotency. Additionally, we profiled
human peripheral blood mononuclear cells (PBMCs), demonstrating
the method’s ability to resolve distinct immune subsets and their cell-
type-specific regulatory elements. Together, these findings establish
IT-scATAC-seq as a cost-effective and high-throughput technology for
profiling single-cell chromatin accessibility. By eliminating theneed for
specialised equipment and enabling library preparation for 10,000
cells in a single day at less than $0.01 per cell, IT-scATAC-seq reduces
costs while maintaining high-quality data. With its scalable and effi-
cient workflow, this method expands the accessibility of single-cell
chromatin profiling, making it adaptable to various biological and
clinical research contexts.

Results
Benchmark of IT-scATAC-seq
We developed IT-scATAC-seq, a simple and scalable strategy to profile
the single-cell chromatin accessibility using indexed Tn5 tagmentation
and a three-round indexing strategy (Fig. 1a, Supplementary
Fig. 1 and 2, and Supplementary Data 1). In this method, nuclei are
isolated following the refined Omni-ATAC protocol21 to minimise
mitochondrial DNA contamination and then divided into multiple
parts for parallel bulk transposition reactions with in-house purified
and assembled indexed Tn5 complexes (number of reactions = N)
(Supplementary Fig. 1 and 2). The transposed nuclei from each tag-
mentation reaction are individually distributed into 384-well plates via
fluorescence-activated nuclei sorting (FANS) (Supplementary Fig. 3).
Each well houses N uniquely first-round indexed nuclei after sorting.
Nuclei in thewells are lysed in thepre-loadedbuffer containing sodium
dodecyl sulphate (SDS) and proteinase K. The lysis process is then
quenched, followed by DNA amplification using pre-loaded indexed
PCR primers for the second-round barcoding. The PCR products are

then pooled for a final round of PCR to add standard Illumina TruSeq
adapters, preparing them for next-generation sequencing (NGS)
(Supplementary Fig. 2). Using the liquid handler, all steps in 384-well
plates can be automated to avoid intricate pipetting.

The accuracy of IT-scATAC-seq was assessed using a species-
mixing experiment with mixed human and mouse cell lines. After
quality control, the high-quality cells with the number of unique
fragments over 2000 were predominantly identified as either mouse
(n = 1784) or human (n = 1234),with only 39 cells identified asdoublets,
yielding an accuracy rate of 98.72% (Fig. 1b). IT-scATAC-seq was then
applied to three human cell lines—HEK293T, H1, and K562—with two
replicates per cell line, each containing 384 cells. High correlations in
read coverage were observed between replicate libraries for each cell
line (Pearson correlation r > 0.97) (Fig. 1c). The aggregated single-cell
libraries showed strong signal enrichment at TSS and clear nucleo-
some periodicity patterns (Fig. 1d–f). All input single cells were suc-
cessfully retrieved. For HEK293T, H1, and K562 cell lines, median
unique fragments per cell were 50,276, 23,054, and 23,273, respec-
tively, and the median TSS enrichment scores were 18, 12, and 15,
respectively; 100%, 98.7%, and 93.2% out of input cells met the
ENCODE’s established quality control criteria (TSS score >5 andunique
fragments >1000) (Fig. 1e).

Bulk Omni-ATAC-seq was performed in HEK293T cells to evaluate
the IT-scATAC-seq profiles further. The bulk libraries exhibited a
typical periodic fragment pattern, minimal mitochondrial contamina-
tion, high TSS scores, and high FRiP scores (Supplementary Fig. 4),
qualifying them as suitable reference libraries. Pseudo-bulk profiles of
IT-scATAC-seq libraries (rep#1 and rep#2) showed robust correlations
(r >0.90) with bulk libraries(Supplementary Fig. 5a). Additionally, 20
randomly selected single-cell profiles demonstrated high congruence
with bulk data with Pearson correlation coefficients ranging from 0.52
to 0.94 (Supplementary Fig. 5a). The aggregated and randomly selec-
ted single-cell profiles closely resembled bulk signals in accessible
regions and specific loci (Supplementary Fig. 5b). These results con-
firm the high quality of IT-scATAC-seq libraries regarding the accuracy
and signal specificity at the single-cell level.

We merged libraries from cell lines to test IT-scATAC-seq’s ability
to distinguish different cell types. Using ArchR22’s Latent Semantic
Indexing (LSI) for dimension reduction, followed by uniformmanifold
approximation and projection (UMAP) for visualisation, we identified
three distinct cell populations corresponding to embryonic stem cells,
myeloid cells, and epithelial cells, and the cell identities matched their
cell-type encoded barcode (Fig. 1g). While housekeeping locus GAPDH
loci showed comparable accessibility among all cell types, loci such as
NANOG,GATA1, and XIST exhibited strong cell-type specificity (Fig. 1h).
Next, the single cells were clustered based on chromVar23-calculated
bias-corrected deviations (Fig. 1i). This analysis identified cell line-
specific transcription factor (TF) motifs: GATA family motifs were
enriched in K562 cells, POU5F1 in H1 cells, and HOX, FOS, and JUN
family motifs in HEK293T cells (Fig. 1j, k). Together, these results
demonstrate that IT-scATAC-seq is robust in identifying cell types and
specific TF motif enrichments.

Comparing IT-scATAC to other scATAC-seq methods
To further demonstrate the quality of IT-scATAC-seq, we compared its
cell line metrics with those of other scATAC-seq methods, including
droplet-based scATAC-seq (10X Chromium and Hydrop24),
microfluidics-based scATAC-seq (Fluidigm C1)6, plate-based8, and sci-
ATAC-seq7 and its derivate CH-ATAC-seq25. At lower sequencing
depths, indicated by amedian duplication rate of 54–57% compared to
over 95% in plate-based and C1 scATAC-seq (Fig. 2a), IT-scATAC-seq
still achieved comparable or higher library complexity, as evidenced
by a comparable or higher number of unique fragments per cell
(Fig. 2b).While theproportionof sequencing readsmapped tonuclear,
but not mitochondrial, DNA was similar (Fig. 2c), IT-scATAC-seq
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achieved the highest percentage of reads aligned with chromatin
accessibility peaks, with a median FRiP score over 65% (Fig. 2d).
Additionally, IT-scATAC-seq produced higher or similar median TSS
enrichment scores compared with existing methods (Fig. 2e). Unlike
the variability seen in the other datasets, IT-scATAC-seq displayed
more consistent quality control metrics at the single-cell level, with

data more tightly clustered around the median, indicating stable and
consistent single-cell profiles.

Scalability, accuracy, and cost-effectiveness are crucial for
implementing scATAC-seq, especially in resource-limited settings. IT-
scATAC-seq enhances the throughput by at least one order of mag-
nitude compared to plate-based scATAC-seq8, increasing cell
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processing capacity from 102-3 to 104-5, comparable to the droplet-
based scATAC-seq17 and 10x Genomics scATAC-seq. For accuracy, the
doublet rate of IT-scATAC-seq only depends on the accuracy of
nuclei sorting (Supplementary Fig. 3), contrasting with droplet-based
and sci-ATAC-seq frameworks, which typically have misassignment
and barcode collision rates of around 10%7,17. IT-scATAC-seq uses
parallel bulk tagmentation instead of single-cell individual tagmen-
tation, effectively minimising potential benchtop variations7,8. Nota-
bly, IT scATAC-seq requires significantly less manual labour than
plate-based scATAC-seq8. For example, capturing 5000 cells with
plate-based methods requires handling at least ten 384-well plates,
whereas IT-scATAC-seq achieves this with just a single plate. Fur-
thermore, using the liquid handling system significantly reduces
complex and labour-intensive pipetting and lowers the risk of primer
cross-contamination during PCR. Library preparation for 10,000
cells can be completed within a single day (Supplementary Fig. 6a).
Although sorting is time-consuming, most processes are automated
(Supplementary Fig. 6b). As for reagent cost, IT-scATAC-seq sig-
nificantly reduces the per-cell cost by up to 100 times, depending on
the number of cells profiled (the more cells processed, the lower the
cost per cell). As a result, the library preparation cost is substantially
reduced to ~$0.01 per cell (Supplementary Fig. 6c), making it con-
siderably more cost-effective than many scATAC-seq methods
(Supplementary Table 1)16. Moreover, all reagents required for IT-
scATAC-seq are listed and can be readily prepared in-house (Meth-
ods). Overall, IT-scATAC balances single-cell omics’ sensitivity,
accuracy, precision, throughput, and cost-effectiveness, providing a
strategy for high-quality single-cell chromatin accessibility profiling
(Supplementary Data 2).

IT-scATAC-seq detects high plasticity of cell fate during early
embryogenesis
Naïvemouse embryonic stem cells (ESCs) were subjected to a two-day
differentiation period to primed epiblast-like stem cells (EpiLCs), a
transient interval that has already acquired competence for differ-
entiating towards downstream mesodermal (Meso), endodermal
(Endo) and ectodermal (Ecto) lineages (Fig. 3a). Analysis of the EpiLCs
IT-scATAC-seq library showed that 4167 passed the quality control
(Fig. 3b). From these cells, we harvested a total of 131.81 million frag-
ments, with the fragment size distribution displaying a typical
nucleosomal pattern and an enrichment of signal around the TSS
region (Fig. 3c, d). With a sequencing depth marked by a 44% dupli-
cation rate (Fig. 3e), IT-scATAC-seq demonstrated a 98% read align-
ment rate and a median of 18,058 unique fragments per cell,
confirming high library complexity (Fig. 3f, g). Additionally, cells
demonstrated an average TSS enrichment score of 14.35, low mito-
chondrial contamination (median 1.62%) and ahigh FRiP score (median
0.69) (Fig. 3h–j). These results showed the high quality of the IT-
scATAC-seq library.

Previous research demonstrated that the EpiLCs are competent to
differentiate into all three germ layers26. However, the mechanisms by
which naïve ESCs transit to EpiLCs and how gene cascades are selec-
tively activated to determine the cell fate have not been fully eluci-
dated by scRNA-seq alone27. We used gene activity scores22, which
quantify chromatin accessibility around genes weighted by distance
and size, normalised across the gene region, to infer potential reg-
ulatory impacts on gene expression. We leveraged a targeted panel of
lineage marker genes27,28 and calculated lineage scores for each cell
based on the average marker activity following the same strategy
previously described in itChIP-seq(see Methods)29. Unsupervised
clustering of 4167 single cells based on normalised accessibility pro-
files of lineage-specific markers identified 10 distinct clusters (Fig. 3k).
These clusters entailed a spectrumof cellular state, ranging fromnaive
ESCs with pronounced accessibility in ESC marker regions to cells
exhibiting increased accessibility across both ESC andmultiple lineage
markers, suggestive of priming for germ layer differentiation, and cells
with commitment to specific germ layers (Fig. 3k).

Notably, a substantial number of cells occupied intermediate
states, including those with relatively low accessibility for all four
categorical markers compared with primed ESCs, indicative of for-
mative ESCs (Fig. 3k). Additionally, cellswith transitional combinations
of marker gene accessibility, such as meso-endo-ecto (n = 171) and
endo-ecto (n = 120), underlined the multifaceted nature of naïve to
epiblast-like transition. Pseudo-temporal trajectory plots, comparing
germ-layer scores against ESC scores, revealed an increase in meso-
derm accessibility as cells transitioned from the naïve ESC state; in
contrast, endoderm and ectoderm accessibility scores remained rela-
tively stable or slightly declined before the loss of pluripotency
(Fig. 3l), suggesting a potential epigenetic restriction prior to definitive
lineage commitment. These observations collectively echoed the
concept of cell fate plasticity, where cells exhibit the potential to
transit between states and adapt to developmental cues through
dynamic epigenetic remodelling30–32. The simultaneously increased
accessibility of multiple lineage markers post-ESC state exiting sub-
stantiated this plasticity, highlighting the cells’ adaptability and the
non-fixed nature of development. These findings underscore the
importance and effectiveness of advanced high-resolution single-cell
technologies, such as IT-scATAC-seq, for dissecting the regulatory
mechanisms that govern dynamic and transient cell states.

IT-scATAC-seq distinguishes the cellular heterogeneity across
human PBMCs
To evaluate IT-scATAC-seq’s ability to resolve diverse cell types and
dissect epigenomic heterogeneity, we applied it to cryopreserved
PBMCs collected from healthy donors during routine hospital check-
ups. These samples provide a more physiologically relevant setting
compared to cell lines. We additionally incorporated two published
healthy PBMC scATAC-seq datasets16, generated using different

Fig. 1 | Benchmark of IT-scATAC-seq. a Workflow of IT-scATAC-seq library pre-
paration. Nuclei are isolated and subjected to parallel bulk transposition reactions
with indexed Tn5 complexes. The transposed nuclei from each reaction are sorted
individually into 384-well plates. After lysis, the first round of barcoded PCR is
performed to distinguish cells from different wells. The PCR products are pooled
for a second round of barcoded PCR to cover more plates and incorporate the
TruSeq adapters. b Species mixing experiments for IT-scATAC-seq. Number of
unique reads per cell aligning to the human ormouse genome. Cells with less than
90% alignment rate are considered as doublets. c Scatter plots showing pairwise
Pearson correlation (r) in read coverage as log₂ of count per million mapped reads
(CPM) across all accessible loci between replicates of IT-scATAC-seq libraries from
HEK293T, H1, and K562 cells. Each cell line was profiled with two replicates of 384
single cells, totalling n = 768 per cell line. P-values were determined using a two-
sided Pearson correlation test. d Distribution of ATAC-seq signals around ±2 kb
from transcription starts sites (TSS) of single-cell aggregates. e ATAC-seq insert

fragments frequencies distribution showing nucleosome periodicity of libraries
from aggregated single cell profiles. f TSS enrichment score plotted against the
number of unique fragments for HEK293T, H1, and K562 IT-scATAC-seq libraries.
g UMAP visualisation of integrated scATAC-seq libraries coloured by cell type
identity. h Genome tracks displaying aggregated single-cell ATAC-seq signals and
per-cell fragment abundance around the GAPDH, NANOG, GATA1, and XIST loci.
i Correlation of bias-corrected motif deviations between replicates. j Heatmap
showing deviations of motifs across single cells (top panel); dot plot displaying
motif enrichment, assessed using a two-sided hypergeometric test, with -log₁₀ of P-
values adjusted for multiple comparisons using the Benjamini–Hochberg
method (bottom panel). k TF footprinting analysis of GATA and FOS in IT-scATAC-
seq signals of three cell lines, normalised for Tn5 insertion bias by dividing the
footprint signal by the expected insertion frequency. Source data are provided as a
Source Data file.
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technologies – 10X Genomics v2.1 (10X) and s3-ATAC (s3) – for com-
parative analyses (Supplementary Fig. 7a).

From our IT-scATAC-seq library, a total of 7628 single cells
passed quality control, exhibiting clear nucleosome banding pat-
terns and strong signal enrichment around the TSS region(Supple-
mentary Fig. 7a–e). Although the sequencing depth was relatively

modest (~10,000 reads per cell)—yielding a lower median number of
unique fragments (3026.5) than those reported for 10X (13,771) and
s3 (15,395)33—the IT-scATAC-seq PBMC profiles showed higher signal
specificity, as shown by higher median TSS enrichment (25.03 vs.
16.16 and 7.39, respectively) and higher median FRiP (0.54 vs. 0.52
and 0.23, respectively) (Supplementary Fig. 7d–f). After LSI

Fig. 2 | Comparison of IT-scATAC-seq with other scATAC-seq methods in
cell lines. Box plots show duplication rate (a), an indicator of sequencing depth,
library complexity (b), measured as log₁₀ of unique fragments per cell, percentage
of fragments mapped to the genome (c), FRiP per cell (d), and TSS enrichment
score (e) across different methods, where the centre line represents the median,
the box bounds indicate the interquartile range (IQR, 25th to 75th percentile), and
the whiskers extend to the minimum and maximum values. The number of single

cells analysed for each method and cell line are as follows: 10X GM12878 (n = 996),
10X A20 (n = 474), Hydro MCF-7 (n = 889), Hydro MEL (n = 461), CH NIH3T3
(n = 2083), CH HEK293T (n = 2846), sci HEK293T (n = 343), sci GM12878 (n = 1197),
Plate K562 (n = 192), Plate mESCs (n = 192), Plate NIH3T3 (n = 139), Plate HEK293T
(n = 172), C1 K562 (n = 192), C1 mESCs (n = 192), IT H1 (n = 767), IT K562 (n = 766), IT
HEK293T (n = 768). Source data are provided as a Source Data file.
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dimension reduction and batch effect correction34, cells from all
three datasets were dispersed throughout the UMAP space, revealing
14 distinct immune cell populations (Fig. 4a and Supplementary
Fig. 7g). This suggests that IT-scATAC-seq robustly captures a wide
spectrum of immune cell lineages in a manner comparable to
established scATAC-seq platforms.

To refine and merge clusters, We integrated single-cell gene
expressionhemopoiesis scRNA-seqdatasets35,36, identifying ninemajor
cell clusters from all PBMCs: B cells (n = 1601), basophils (n = 257),
CD14monocytes (n = 2044),CD16monocytes (n = 631), CD4memoryT
cells (n = 5035), CD4 naive T cells (n = 2257), CD8 memory T cells
(n = 1701), CD8 naive T cells (n = 2279), natural killer cells (n = 3739),
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conventional dendritic cells (cDC, n = 188), and progenitors (n = 161)
(Fig. 4b). The per-cell gene activity overlay on the UMAP embedding
showed consistent aggregated accessibility for cell-type-specific genes
such as PAX5, MS4A1 and EBF1 for B cells; CD3G, IL7R, CD8A for T cell
lineages; CD16a (FGCR3A), NKG7 and IL2RB for NK cells; and CD14,
CEBPB, and CCR2 – corresponded well with the identified cluster
identities (Fig. 4c).

To explore the regulatory landscape underlying these cell types,
we called peaks using pseudo-bulk replicates from the nine cell types,
creating a union set of 185,353 reproducible accessible peaks and
identifying 64,606 differential peaks across cell types (FDR ≤0.1 & log2
fold change >1) (Fig. 4d and SupplementaryData 3).We next examined
the enrichment of TF-binding motifs (FDR ≤0.1 & log2 fold change
>0.5) within the differentially accessible regions across major PBMC
populations. We showed their distinct transcriptional programs
(Fig. 4e and Supplementary Fig. 8). Members of the IRF and ETS
families (including SPI1 and SPIB), along with BCL11, displayed strong
enrichment in myeloid lineages, cDCs, and B cells, with IRF prominent
in B cells. By contrast, the C/EBP family (CEBPA, CEBPB, CEBPD, CEBPE,
CEBPG) exhibited significant enrichment only tomonocytes. In NK and
CD8 Memory T cell subsets, we observed characteristic T-box (TBX4,
TBX5, TBX10, TBX20) and RUNX (RUNX1, RUNX2) motifs, reflecting
their regulatory impact on cytotoxic functions. Meanwhile, naïve
T cells showed TCF-family motif variability (e.g., TCF7, TCF7L1, LEF1),
highlighting TF networks that maintain an undifferentiated state and
govern T cell receptor repertoire. Basophils were marked with GATA-
family motifs, which aligns with GATA-driven regulation of their gen-
eration and activation. Notably, the Sp-family, C/EBP family, BCL11,
FOS, JDP2, NFE2 and NF-Y were identified as key TFs driving lineage-
specific differences (Fig. 4f and Supplementary Data 3). These findings
were in concordance with those observed at the single-cell
transcriptome16,37,38 and bulk scale39, indicating that IT-scATAC-seq
can effectively distinguish and characterise cell type-specific gene
regulatory programs. These results further validate IT-scATAC-seq as a
scalable and cost-effective platform for single-cell chromatin accessi-
bility profiling when applied to clinical samples, capable of resolving
immune cell heterogeneity with high fidelity.

Discussion
Single-cell chromatin accessibility profiling has become a critical tool
for understanding gene regulation, cellular heterogeneity, and epige-
nomic dynamics. Here, we introduce IT-scATAC-seq, a cost-effective,
scalable and robust method that enables high-throughput single-cell
chromatin accessibility profiling at lower per-cell cost. The IT-scATAC-
seq process involves four main steps: (1) assembly of indexed Tn5
transposome complex, (2) parallel bulk nuclei tagmentation, (3) sort-
ing different indexed nuclei into the same well for barcoded PCR, and
(4) pooling and PCR for Illumina Truseq adapter addition. This
streamlined workflow allows for 104 cells to be completed within
one day.

Through benchmarking analyses, IT-scATAC-seq demonstrated
high library complexity, strong enrichment at TSS, and low mito-
chondrial contamination. The overall data quality is either compar-
able to or exceeds established plate-based scATAC-seq8 and

commercial 10x Genomics ATAC-seq16. To validate the method’s
broad applicability, we applied IT-scATAC-seq to mouse embryonic
stem cell (mESC) differentiation and human peripheral blood
mononuclear cells (PBMCs). During mESC differentiation, chromatin
accessibility profiles revealed an intermediate state where cells
exhibited accessibility at both pluripotency and lineage-specific
regulatory elements, suggesting a dynamic priming process during
cell-fate commitment. These findings align with the concept of cell-
fate plasticity, highlighting the gradual and coordinated chromatin
remodelling that occurs during early embryogenesis. In cryopre-
served human PBMCs, IT-scATAC-seq successfully resolved immune
cell subsets, demonstrating its ability to capture epigenomic het-
erogeneity in complex primary tissues. These results confirm that IT-
scATAC-seq is well-suited for profiling chromatin accessibility across
diverse biological systems.

Compared with existing scATAC-seq methodologies, IT-scATAC-
seq balances cost efficiency, scalability, and data quality (Supple-
mentary Table 1). By implementing parallel bulk tagmentation with
indexedTn5 transposases, IT-scATAC-seq significantly reduces per-cell
reagent consumption, achieving a cost of ~$0.01 per cell, which is
lower than the single-cell tagmentation-based method. Unlike sci-
based methods, it does not require assembling many indexed Tn5
complexes, simplifying the workflow while maintaining high library
complexity. Unlike commercial platforms such as 10X Genomics,
Fluidigm C16, and Takara ICELL89, IT-scATAC-seq does not require
specialised single-cell instrumentation, making it compatible with
standard laboratory equipment. Compared to the plate-based
approach, which has been demonstrated to be robust and accessible
to most laboratories8,40, IT-scATAC-seq significantly enhances
throughput and processing efficiency. Analysing thousands to tens of
thousands of cells is now achievable at reduced labour and consum-
able costs. Optionally, the automated liquid handling system can be
used during the second indexing step to reduce intricate pipetting,
thereby substantially mitigating the risk of primer cross-
contamination. Furthermore, TruSeq-compatible library design
ensures broad sequencing compatibility and significantly lowers
sequencing costs, making IT-scATAC-seq a practical solution for large-
scale epigenomic studies.

While IT-scATAC-seq offers several advantages, it also has some
trade-offs, primarily due to its in-house nature. First, indexed Tn5
transposase may be a barrier for labs without enzyme preparation
capabilities, though commercial Tn5 is available. Second, although IT-
scATAC-seq simplifies the workflow, its cell throughput—given
equivalent time and labour— is lower than sci-ATAC-seq7 and its deri-
vatives like EasySciATAC20. Third, IT-scATAC-seq improves resolution
and lowers barcode misassignment through FANS but requires flow
cytometry resources and constitutes the most time-consuming stage
of the workflow. Future optimisations could develop alternative
nuclei-handling strategies to reduce FANS dependency and improve
throughput.

Beyond its current applications, IT-scATAC-seq holds the poten-
tial for expanding its compatibility with other single-cell multi-omics
platforms and multimodal integration. For example, the IT workflow
could be integrated with single-cell whole genome sequencing41,

Fig. 3 | IT-scATAC-seq revealed a high degree of cell fate plasticity during
mouse early embryogenesis. a Schematic images showing naïve mouse embryo-
nic stem cells (ESCs) were undergone a 48-h differentiation and were subjected to
IT-scATAC-seq profiling.b Log10of numberofunique fragments plotted against the
TSS score, and cells within the upper right quadrant (n = 4167) passed QC and were
subjected to downstream analysis. c Fragment size distribution. d Enrichment of
ATAC-seq signals up and downstream 2 kb to the TSS region (d). Violin plots of per
cell (n = 4167) duplication rate (e), read alignment rate (f), Log10 of number of
unique fragments (g), TSS enrichment score (h), mitochondrial fraction of total

uniquely mapped reads (i), and fraction of reads in peaks (FRiP) (j). k Heatmap
displaying 10 groups of 4167 single cells clustered based on lineage scores for ESC,
mesoderm (Meso), endoderm (Endo), and ectoderm (Ecto), where lineage scores
for each cell were calculated using gene activity scores of marker genes specific to
each lineage (seeMethods). l Scatter plots of ESC lineage scores plot against Meso,
Endo, and Ecto lineage scores for each single cell. The regression line was fitted
using generalized additive model, and the shaded band represents the 95% con-
fidence interval of the fitted line. Source data are provided as a Source Data file.
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CUT&Tag42 and HiC-seq43, to extend its capabilities in single-cell epi-
genomics. Additionally, IT-scATAC-seq could be adapted for simulta-
neous chromatin accessibility and transcriptomic profiling (e.g.,
scATAC-seq + scRNA-seq), enabling a more comprehensive view of
gene regulatory networks at the single-cell level10,13–15,44–46, offering
comprehensive insights into cellular function and regulation.

In summary, IT-scATAC-seq represents a robust, cost-effective,
and scalable alternative to existing scATAC-seq methods. It provides
high-quality single-cell chromatin accessibility data while
eliminating the need for specialised microfluidic instruments. While
limitations such as indexed Tn5 production, lower throughput
compared to EasySciATAC, and reliance on FANS should be

B
Basophil
CD4 Memory
CD4 Naive
CD8 Memory
CD 8 Naive

CD14 Mono
CD16 Mono
cDC
NK
Progenitor

10x (n = 9,410)
IT (n = 7,628)
s3 (n = 2,855)

UMAP Dimension 1

U
M

A
P

 D
im

en
si

on
 2

PAX5

CD3G

FCGR3A

CD14

MS4A1

IL7R

NKG7

CEBPB

EBF1

CD8A

IL2RB

CCR2

0 25 50 75 100

10X

IT

s3

Frequency

Positive TF Regulator NO YES

a b

c d

e f

UMAP Dimension 1

U
M

A
P

 D
im

en
si

on
 2

UMAP Dimension 1

U
M

A
P

 D
im

en
si

on
 2

cD
C

C
D

14
 M

on
o

C
D

16
 M

on
o

P
ro

ge
ni

to
r

B
as

op
hi

l B

C
D

4 
N

ai
ve

C
D

8 
M

em
or

y

N
K

C
D

4 
M

em
or

y

C
D

8 
N

ai
v

Lo
g2

(N
or

m
C

ou
nt

s 
+

 1
)

H
ig

h
Lo

w

Lo
g2

(N
or

m
C

ou
nt

s 
+

 1
)

H
ig

h
Lo

w

Lo
g2

(N
or

m
C

ou
nt

s 
+

 1
)

H
ig

h
Lo

w

Lo
g2

(N
or

m
C

ou
nt

s 
+

 1
)

H
ig

h
Lo

w

Row Z-scores
64606 features
PeakMatrix

−2 2

-Log10 P adj.
0 1

BCL11A

SPI1

CEBPA

SP4

FOS

NFE2
NFYA

CEBPD

CEBPB

SPIB

JDP2
NFE2L2

NFYB

0

5

10

15

−0.5 0.0 0.5 1.0

Correlation To Gene Score

M
ax

 T
F

 M
ot

if 
Δ

CD14 Mono

B

cDC

CD16 Mono

NK

CD8 Memory

Basophil

CD8 Naive

CD4 Memory

CD4 Naive

Progenitor

S
TA

T
2

P
R

D
M

1
IR

F
1

IR
F

4
B

C
L1

1A
B

C
L1

1B
IR

F
3

S
P

I1
S

P
IB

S
P

IC
C

E
B

P
A

C
E

B
P

D
C

E
B

P
E

C
E

B
P

B
C

E
B

P
G

F
O

S
R

U
N

X
1

C
B

F
B

R
U

N
X

2
E

N
S

G
00

00
02

50
09

6
T

B
X

20
T

B
X

5
T

B
X

4
M

G
A

E
O

M
E

S
T

B
R

1
T

B
X

10
T

C
F

7
LE

F
1

T
C

F
7L

1
T

C
F

7L
2

P
O

U
2F

3
P

O
U

5F
1B

P
O

U
2F

2
M

E
C

O
M

G
A

TA
6

G
A

TA
3

G
A

TA
4

G
A

TA
5

G
A

TA
2

G
A

TA
1

Article https://doi.org/10.1038/s41467-025-57931-2

Nature Communications |         (2025) 16:2635 8

www.nature.com/naturecommunications


considered, its strengths in data resolution, cost efficiency, and
accessibility make it a valuable tool for single-cell epigenomics
research. Further optimisations could enhance its automation and
scalability, expanding its applications to developmental biology, and
clinical genomics.

Methods
Cell culture
The human HEK293T and mouse NIH/3T3 were ordered from ATCC
and routinely maintained in High-glucose Dulbecco’s modified Eagle’s
medium (DMEM) containing 10% Fetal Bovine Serum (FBS) and 1%
Penicillin/Streptomycin. The K562 cells were purchased from ATCC
and maintained in an IMDM medium containing 10% FBS. The H1 was
obtained fromWiCell Research Institute (WA01). Cells were cultured in
Essential 8with ROCK inhibitor Y-27632 (HY-10071,MedChemExpress)
on plates pre-coated with Matrigel (Corning). The medium was refre-
shed daily, and the cells were passaged with Accutase (Gibco) every
3 days. The B6murine ESCs were obtained as a gift from Pengtao Liu’s
lab at the University of Hong Kong (HKU) and cultured on gelatin-
coated dishes in 2i medium composed of High-glucose DMEM sup-
plemented with 15% stem-cell qualified FBS, 2mM GlutaMAX, Non-
essential amino acids (NEAA), 0.1mM β-mercaptoethanol, 1000 U/ml
recombinant mouse LIF (ESG1107, MerckMillipore), 2i 1μM PD032591
and 3μMCHIR99021(HY-10254 and HY-10182, MedChemExpress) and
1% Penicillin/Streptomycin. The basic medium and supplements for
cell culture were purchased from Thermofisher. All the cells were
cultured at 37 °C in 5% CO2 and tested negative for mycoplasma
infection using the PCR method by the Centre for PanorOmic
Sciences, HKU.

Purification of transposase Tn5
ThepTBX1-Tn5plasmidwaspurchased fromAddgene (60240). Briefly,
pTBX1-Tn5 plasmidwas transformed into competent E. coliC3013 cells
(C2527I, NEB) and induced with 250 µL 1M Isopropyl β- d-1-
thiogalactopyranoside (IPTG) at 23 °C for 5 hours. Cell pellet was
resuspended in 60ml HEGX buffer (20mMHEPES buffer pH 7.2, 1.0M
NaCl, 1mM ethylenediaminetetraacetic acid (EDTA), 10% v/v glycerol,
0.2% v/v triton X-100 and 10mM PMSF) and sonicated using Covaris
sonicator with 10 cycles of 30 s on and 30 s off, 40% duty. The cleared
Tn5-CBD protein fraction was enriched with chitin resin (S6651S, NEB)
in the cold room for 2 hours and further washed with 200ml of HEGX
buffer. The Tn5 protein was released by 100mM dithiothreitol (DTT)
cleavage, concentrated with Pierce™ Protein 30K MWCO Con-
centrators and dialysed twice in 1 L 2X HEPES dialysis buffer (100mM
HEPES pH 7.2, 0.2M NaCl, 0.2mM EDTA, 20% w/v glycerol, and 2mM
dithiothreitol (DTT). After dialysis, the Tn5 was equilibrated with pure
glycerol to 60% concentration. The final Tn5 was quantified by SDS-
PAGE and Coomassie Blue Staining using the fitting curve plotted by
standard BSA. Tn5 was quantified as 1.6 µg/µL, approximately 30 µM in
this study.

Preparation of indexed Tn5 transposome complex
Dissolve the indexed adapters andTn5 reverse adapters (ordered from
IDT; sequences provided in Supplementary Data 1) with annealing
buffer (10mM Tris-HCl pH 8.0, 50 NaCl, 2mM EDTA) to make 200 µM
stock. Prepare 15 µL of individual adapter with 15 µL reverse adapter in
200 µL PCR tube and anneal in a thermocycler as follows: 98 °C for
10min, and slowly cool down to 23 °Cwith −0.1 °C/s. Mix the annealed
adapter with 100 µL 30 µM Tn5 and 70 µL coupling buffer (100mM
HEPES-NaOH, 500mM NaCl, 50% v/v Glycerol, 0.5mM EDTA, 2mM
DTT), and incubate in thermomixer at 25 °C, 1000 rpm for one hour.
The indexed Tn5 transposome was prepared by mixing 20 µL of the
paired two Tn5-adapters with 80 µL coupling buffer, and the resulting
Tn5 transposome complex was 5 µM and can be stored at −20 °C
without activity loss for more than one year.

Quality control of assembled transposases
Prepare 1 µL 300 ng/µL genomicDNA, 4 µL 5xTAPS-DMF buffer (50mM
TAPS-NaOH pH 8.2, 25mM MgCl2, 50% DMF), 13 µL H2O, 2 µL assem-
bled Tn5. Incubate at 55 °C for 10min, then add 2 µL 10X STOP buffer
(2% SDS, 40mM EDTA) and quench at 37 °C 15min to dissociate Tn5
fromDNA. Add 5 µL 6x Loading dye and run 1.5%DNAgel. Themajority
of tagmentated DNA sizes were less than 1000bp, indicating the
assembled transposases are qualified for downstream experiments. In
this study, we randomly picked indexed Tn5 for quality assessment.

mESCs-epiblast differentiation
mESCs were cultured in 2i medium to 60–80% confluency and dis-
sociated into single cells using 0.1% Trypsin. After washing twice with
PBS buffer, themESCs were then resuspended in fresh embryoid body
media (withdraw of 2i andmLIF) and seeded on a gelatin-coated plate.
The spontaneously differentiated cells were collected on day 2 and
ready for IT-scATAC-seq.

Isolation of humanperipheral bloodmononuclear cells (PBMCs)
The study design and conduct complied with all relevant regulations
regarding theuseof humanstudyparticipants, approvedbyDongguan
Children Hospital and The University of Hong Kong, and was con-
ducted in accordance with the criteria set by the Declaration of Hel-
sinki. About 5mL of blood was taken from two healthy donors, with
informed consent and human tissue procurement under the guidance
of ethical regulations of Dongguan Children Hospital and the Uni-
versity of Hong Kong. The PBMCs were isolated using Ficoll-Paque-
based gradient separation and frozen in liquid nitrogen until usage.
The frozen cells were rapidly thawed in a water bath at 37 °C and
transferred to a 15ml tube containing 10mL prewarmed medium. The
cell suspension was centrifuged at 500 × g for 5min at room tem-
perature to pellet down. The cell pellet was resuspended in 1mL pre-
warmedmedium, and 10 µLwas taken to check the cell viability. PBMCs
from two healthy donors were mixed. Considering that some cells in
PBMCs were fragile and easily break up upon nuclei isolation, we

Fig. 4 | IT-scATAC-seq dissects cellular heterogeneity in humanPBMCs. aUMAP
plots showing IT-scATAC-seq profiles of PBMC samples from healthy donors (IT,
n=7628), and two additional PBMC scATAC-seq datasets from healthy donors pro-
filed by 10X (10X, n=9411) and s3 (s3, n= 2855), coloured by sample origin. b UMAP
visualisation coloured by cell type identity, including B cells, NK cells, T cells, mono-
cytes and progenitors with a top panel showing cell type fractions for each sample.
c Lineage-specific markers overlaid on the UMAP embedding, including PAX5,MS4A1,
and EBF1 for B cells;CD3G, IL7R, andCD8A for T cells; FCGR3A (CD16),NKG7, and IL2RB
for NK cells; and CD14, CEBPB, and CCR2 for monocytes. Visualisation is coloured by
normalised gene scores, with the MAGIC algorithm used to smooth drop-out noise.
d Heatmap showing Z-scores of normalised chromatin accessibility for 64,606 cell
identity-specific marker peaks (FDR≤0.1, log₂ fold change> 1) identified across
scATAC-seq clusters using the two-sided Wilcoxon rank-sum test, with P-values

adjusted for multiple comparisons using the Benjamini–Hochberg correction.
e Heatmap displaying the top 10 TF binding motifs with the highest variability in
respectivemarker peaks of each cluster ranked by adjusted P-value, calculated using a
two-sided hypergeometric test, and P-values adjusted for multiple comparisons using
the Benjamini–Hochbergmethod. f Scattered plot illustrating the correlation between
motif accessibility and gene expression. Each point represents a TF, with the x-axis
showing the correlation to gene expression and the y-axis indicating themaximumTF
motif delta (variability) across clusters. P-values were derived from a two-sided Pear-
son correlation test and adjusted for multiple comparisons using the Bonferroni
method. TFs identified as positive regulators (correlation >0.5 and adjusted P-
value<0.01, withmax delta in the top quartile) are highlighted in red and other TFs in
grey. Source data are provided as a Source Data file.
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gently fixed the cells with 0.2% formaldehyde at room temperature for
5minutes, which was then quenched with 125mM glycine before
nuclei isolation for IT-scATAC-seq.

IT-scATAC-seq library preparation
Nuclei were prepared following Omni-ATAC protocol and resus-
pended in0.33x PBS buffer. Next, 76 µL nuclei (~5 × 104) were aliquoted
to several 1.5ml Eppendorf DNA LoBind ® Tubes, and 20 µL 5xTAPS-
DMF buffer and 4 µL 5 µM indexed Tn5 transposome complex were
added. The tagmentation reactions were performed on a thermomixer
at 37 °C, 500 rpm for 30min. Then, 500 µL stop buffer (1xPBS, 1% BSA
and 20mM EDTA) was added to quench the reaction on ice for 10min
and transferred to FANS tubes.DAPI was added at afinal concentration
of 1μg/mL to stain the nuclei before sorting. During the tagmentation,
350 nL lysis buffer (10mM Tris-HCl, 10mM NaCl, 0.2% SDS and 0.2 µ/
ml Proteinase K) were distributed to 384-plates by Echo® 550 Liquid
Handler (Labcyte) and centrifuge at 3000 × g for 3min. Different
index-tagmentated nuclei can be sorted into the same well. After
sorting, the plates were centrifuged at 3000× g for 3min and the
nuclei were lysed at 55 °C for 10min and 100 nL 10% Triton X100 was
added to quench SDS. Then, 25 nL 20μM indexed forward and reverse
primers (H5XX and H7XX), as well as 0.5 µL High-Fidelity 2X PCR
MasterMix (M0494L, NEB), were added to eachwell. The first roundof
amplification was performed following 72 °C 5min, 98 °C 30 s; 12
cycles of 98 °C 20 s, 63 °C 30 s; 72 °C 1min; 72 °C 5min, 4 °C hold. The
PCR product was pooled by centrifuge, followed by purification using
MinElute PCR purification kit and eluted with 50 µL nuclease-free H2O.
The undesired fragments, primers and adapterswere removedby Exo I
digestion (M0293S, NEB), 1.0 x AMPure XP beads selection, and eluted
with 25 µL nuclease-free H2O. The Truseq P5/P7 adapters containing
different barcoded primers were added by the second PCR with
another 2–3 amplification cycles. After another double AMPure XP
beads selection (0.5×/0.35×), the libraries were sent for quality control
and NGS by ANOROAD GENOME. A step-by-step protocol is also
deposited at protocols.io named IT-scATAC-seq (DOI: dx.doi.org/
10.17504/protocols.io.5jyl8d4wrg2w/v1).

Bulk Omni-ATAC-seq processing and visualisation
Quality control of bulk HEK293T ATAC-seq data was processed fol-
lowing Omni-ATAC protocol47. Briefly, cutadapt48 4.5 was used to
remove Nextera adapters at both 5’- and 3’-end of each read. The
trimmed reads were mapped to the human GRCh38 genome using
BWA-MEM49 v.0.7.17.MarkDuplicates of Picard Tools 3.1.0 was used to
mark and remove duplicated reads. CollectInsertSizeMetrics of Picard
Tools 3.1.0 were used to calculate the fragment size. Deeptools50

(version 3.5.2) were used to compute the matrix and plot the heatmap
to visualise the enriched signal around±5 kbupanddownstream to the
TSS region and to estimate the TSS score.

Single-cell ATAC-seq data pre-processing
Cutadapt48 4.5 was used to remove TruSeq Index 1 (i7) Adapters and
Index 2 (i5) Adapters at both 5’- and 3’-end of each read. The barcode
sequences were then extracted from 5’-end of each read sequence and
appended to read headers of the paired-end reads by Cutadapt 4.5
with --rename=CB:Z: (r1.adapter_name)(r2.adapter_name) -e 0.01 --no-
indels --action=trim, and adapter sequences and name are specified in
FASTA files with parameters -g and -G. The trimmed and barcode-
extracted reads were mapped to the corresponding reference gen-
omes, includinghuman (GRch38) forHEK293TandhumanPBMCs, and
human (GRCh38) and mouse (mm10) hybrid genome assembly for
species-mixing experiments, using BWA-MEM49 v.0.7.17. The bam file is
then sorted by the cell barcode (CB) tag and split into BAM file by CB
using SAMtools51 1.17.MarkDuplicates of Picard Tools 3.1.0 was used to
mark and remove duplicated reads for the demultiplexed BAM file for
each single cell. The deduplicated BAM were then merged using

SAMtools into a deduplicated single-cell aggregate BAM file for
downstream analysis. Using deduplicated single cell aggregates BAM
file, accessible chromatin regions (peaks) were called using MACS252,
with parameters -f BAMPE -g hs --shift -75 --extsize 150 --nomodel --call-
summits --nolambda --keep-dup all -p 0.01 -B.

Bamcoverage of Deeptools suite (version 3.5.2) was used first to
normalise total reads to 10,000,00 andgenerate BigWig andBedgraph
files with the parameters --scaleFactor 10,000,000/reads_number
--binSize 50. We used Deeptool’s multiBigwigSummary and plotCorre-
lation to calculate the Pearson correlation coefficient between the
normalised single-cell aggregate, randomly selected single-cell profiles
and bulk Omni-ATAC-seq of HEK293T.

Species mixing experiments data analysis
For the BAM file generated for each single cell, SAMtools idxstats were
used to calculate the fraction of reads mapped to human (GRCh38)
and mouse (mm10) genomes. Cells with over 2000 unique fragments
were retained as high-quality cells. If the fraction mapped to the
human genome >0.90, the cell was identified as a human cell; if the
fractionmapped to the humangenome0.10, the cell was identified as a
mouse cell; the cell otherwise is classified as a doublet.

IT-scATAC-seq library quality control
Deeptools bamCoverage and multiBigwigSummary was used to calcu-
late the normalised coverage of single-cell aggregates of each sample
in CPM with default parameter. Deeptools outRawCounts was used to
generate raw metrics for calculating the Pearson correlation coeffi-
cient (r) for the replicates of the single-cell libraries. CollectInsertSize-
Metricsof Picard Tools 3.1.0were used to calculate the fragment size of
single-cell aggregates’ libraries. The duplication rate was estimated
using the metric file generated by Picard MarkDuplicates. SAMtools
idxstatswas used to calculate the number of unique fragments and the
percentage of mitochondrial fragments. Sinto (0.10.0, https://timoast.
github.io/sinto) were used to generate fragment files from the single
cell aggregates BAM file. The fragment file was imported to ArchR22 to
generate Arrow files and obtain quality control data, including the
number of unique fragments per cell, TSS enrichment score, and FRiP.
Aggregated single-cell ATAC-seq signal and per-cell fragment abun-
dance were plotted using Signac53.

Comparison with existing scATAC-seq methods performed on
cell lines
Quality control metrics were obtained from plate-based methods
to compare quality control metrics with the plate-based and C1-
based methods8(https://github.com/dbrg77/plate_scATAC-seq).
10X GM12878 and A20 Cells quality control metrics were obtained
from www.10xgenomics.com/datasets/. For other scATAC-seq
methods, fragments files of the following dataset were down-
loaded from the Gene Expression Omnibus (GEO) or website,
including sci54 (GSM2970932), CH-ATAC-seq25(https://bis.zju.edu.
cn/chatac/), HydropATAC24 (GSM5343842), and imported to
ArchR to calculate the quality control metrics.

Analysis of IT-scATAC-seq EpiLC library
The BAM file of deduplicated single-cell aggregates was converted to a
fragment BED file with Tn5 insertion centering correction using frag-
ment function in Sinto 0.10.0 with parameters --collapse_within. The
fragment file was compressed using bgzip 1.18 and indexed by tabix
1.18. ArchR22 was used to create an Arrow file using the fragment file;
the quality control criteria were set as TSS > 5 and a number of unique
fragments >1000. The TSS enrichment score for each single cell was
calculated at the same time.When creating theArrowfile, a TitleMatrix
counting the number of fragments that fall into genome-wide 500-bp
bins, and a Gene Score Matrix counting calculating each gene’s
accessibility score based on tile distance, gene size, and Tn5 insertions,
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and normalising these scores across all genes. An ArchR project was
subsequently created using the Arrow file for downstreamanalysis.We
used the gene score in the Gene Score Matrix to infer the gene activity.
Unsupervised clustering of the single-cell EpiLC data was modified
from the previously described method29. Briefly, a selected panel of
marker genes for ESC and three germ layers were obtained from pre-
vious research27–29. We calculated the standard deviation of gene score
across all single cells for each of the four lineage types — ESC, endo-
derm (Endo), mesoderm (Meso), and ectoderm (Ecto). We then iden-
tified the top 50 genes with the highest standard deviation as lineage-
specific markers for each cell type. To perform lineage scoring, we
normalised the gene scores of these marker genes for each cell,
thereby mitigating the impact of differential gene accessibility levels
on scoring. For each cell, we computed the average normalised gene
score of its lineage markers to derive its lineage score. Unsupervised
clustering using the ward.D method was performed to generate the
heatmap that depicted the transient cell states characterised by the
lineage state.

Dimensionality reduction, clustering analysis for human cell
lines and PBMCs
Two additional previously published PBMC datasets that were profiled
by 10XChromium v2.1 and s3-seq16 were integrated for comprehensive
analysis. The fragment files were retrieved from NCBI GEO under the
accessions GSM7102949 and GSM7102984 for 10X and s3, respec-
tively. We used ArchR to generate Arrow files and created the ArchR
project from corresponding fragment files. Iterative latent semantic
indexing was performed using ArchR’s function addIterativeLSI to
reduce dimensions, and the Harmony34 algorithm was used to correct
different technologies’ batch effect using the addHarmony function.
Cells were clustered using addClusters (resolution = 0.1 for cell lines,
resolution = 0.8 for PBMCs) using Seurat’s FindClusters method and
then embedded using UMAP by the addUMAP function. For PBMCs,
the marker genes were identified by the getMarkerFeatures with Gen-
eScoreMatrix calculated byArchR. TheMAGIC algorithm55 was used by
applying addImputedWieghts to impute gene scores by smoothing
signals across neighbouring cells, and was used to visualise selected
lineagemarker genes’ gene scores overlayed on theUMAPembedding.
Cell identities of PBMC subset were annotated by constrained cross-
platform linkage of scATAC-seq cellswith scRNA-seq cells with ArchR’s
addGeneIntegrationMatrix using firstly with scRNA-seq dataset of
hematopoietic differentiation56. By integrating the results with marker
genes, the cell clusters were annotated and merged.

Marker peaks identification and marker motif analysis
using ArchR
The marker peak identification and differential motif analysis were
performed by ArchR and chromVAR. For pseudo-bulk replicates, the
chromatin-accessible peaks set was created using addGroupCoverages.
Peaks were then called using the addReproduciblePeakSet by MACS2
for each identified cell type, and addPeakMatrix was used to append
the count matrix of the combined peak set to the Arrow file. Differ-
entially accessible regions(noted as marker peaks) were calculated
using the getMarkerFeatures function, with theWilcoxon rank-sum test
chosen as the test method and plotted with markerHeatmap using a
cut-off of FDR ≤0.1, log2 fold change > 1. Motif annotations were first
assigned to the marker peak set using the addMotifAnnotations func-
tion, followed by motif enrichment analysis in marker peaks with
peakAnnoEnrichment. To evaluate TF activity at the single-cell level,
chromVAR was applied using motif annotations as a reference. The
ArchR’s addBgdPeaks function was employed to add background
peaks, accounting for GC-content and fragment count similarities
across samples based on Mahalanobis distance. The per-cell motif
deviation scores were then computed across annotated motifs using
the addDeviationsMatrix function, utilising the enriched marker peaks

for respective clusters to build the motif deviation matrix. The top
motif deviationmatrix was computed using getVarDeviations, which is
based on the chromVAR23 algorithm. The top variable motifs were
plotted with plotVarDev, and TF footprintings were plotted using get-
Positions and plotFootprints and normalised by dividing the foot-
printing signal by the Tn5 bias signals.

Statistical analysis
All statistical analyses were performed using GraphPad Prism (version
9.0) and R (version 4.3.3). For pairwise comparisons, the two-sided
Wilcoxon signed-rank testwas employed. Formultiple comparisons, P-
values were adjusted using the Benjamini–Hochberg method to con-
trol the false discovery rate. Specific statistical tests and significance
levels are detailed in the respective figure legends.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets supporting the conclusions of this article are available in
the NCBI Sequence Read Archive with accession number
PRJNA1073020; SRR32538998 (IT-scATAC-seq of HEK293T cell line),
SRR32538997 (IT-scATAC-seq of K562 cell line), SRR32538996 (IT-
scATAC-seq of H1 cell line), SRR27862248 (IT-scATAC-seq of mixed
species usingHEK293T andNIH/3T3), SRR28081828 (IT-scATAC-seq of
mouse ESCs differentiation), and SRR28081827 (IT-scATAC-seq of
human PBMCs); GSM2970932 (sci-ATAC of GM12878 and HL-60);
GSM5343842 (HyDrop-ATAC of mixture of human MCF-7 cells and
mousemelanomacells.Other datasets used are available from [https://
bis.zju.edu.cn/chatac/] (fragment file of CH-ATAC of HEK293T and 3T3
cells), [https://github.com/dbrg77/plate_scATAC-seq] (quality control
metrics of plate-based and C1-based scATAC-seq), [https://www.
10xgenomics.com/datasets] (quality control metrics of 10X Next
GEM v1.0 of mixture of GM12878 and A20 cells). Source data are
provided with this paper.
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