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Single-cell ATAC-seq (scATAC-seq) enables high-resolution mapping of chro-
matin accessibility but is often limited by throughput, cost, and equipment
requirements. Here, we present indexed Tn5 tagmentation-based scATAC-seq
(IT-scATAC-seq), a semi-automated, cost-effective, and scalable approach that
leverages indexed Tn5 transposomes and a three-round barcoding strategy.
This workflow prepares libraries for up to 10,000 cells in a single day, reduces
the per-cell cost to approximately $0.01, and maintains high data quality.
Comprehensive benchmarking demonstrates that IT-scATAC-seq achieves
robust library complexity, high signal specificity, and improved cost-efficiency
compared to existing methods. We apply IT-scATAC-seq to mouse embryonic
stem cells, capturing chromatin remodelling during early differentiation, and
to human peripheral blood mononuclear cells, resolving cell-type-specific
regulatory programs. Here, we show that IT-scATAC-seq provides a robust and
efficient approach for high-resolution single-cell epigenomic investigations,

balancing scalability, data quality, and accessibility.

Studying gene regulation at the single-cell level is becoming increas-
ingly important for understanding cellular heterogeneity in complex
biological systems'. While single-cell transcriptomics captures gene
expression dynamics, single-cell epigenomics provides insights into
the regulatory mechanisms underlying these profiles***. Assay for
Transposase-Accessible Chromatin Sequencing (ATAC-seq) is a pow-
erful tool that maps open chromatin regions that control gene
expression without needing prior knowledge of epigenetic markers or
transcription factors’. Single-cell ATAC-seq (scATAC-seq) extends this
capability, enabling chromatin accessibility profiling at the resolution
of individual cells. Recent advances in scATAC-seq methods - through

microfluidics-based® or in-house prepared single-cell combinatorial
indexing (sci)-ATAC-seq’, plate-based scATAC-seq® and pATAC-seq’,
alone or integrated with other single-cell omics'®™ - have broadened
our understanding of how genetic and environmental factors shape
cellular identity, cell state transitions, functional variations, and dis-
ease mechanisms, thereby expanding the scope of transcriptional
regulation research.

Library quality underlies accurate interpretation of scATAC-seq
data. Key technical determinants include sensitivity (the ability to
detect all accessible chromatin regions, reflected in library complex-
ity), accuracy (the correspondence between sequenced fragments and
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authentic ATAC-seq signals from single cells), and specificity (the
ability to discern ATAC signals specific to different cell types and
states). Another important consideration is to maximise the number of
cells analysed while minimising time, manual effort, and cost. How-
ever, current methods struggle to simultaneously achieve high sensi-
tivity, accuracy, throughput, and affordability, which hinders the
widespread application and development of scATAC-seq
technology®®°. For example, droplet-based microfluidic systems or
nanowell-based platforms, such as Bio-Rad ddSEQ", Fluidigm C1°, and
Takara ICELLS8’, can be expensive and require specialised equipment,
limiting their use only in well-resourced settings. Although plate-based
ScATAC-seq is relatively simple and robust, its throughput constraints
analysis to hundreds to thousands of cells and further scaling results in
a disproportionate increase in labour and PCR costs®. Meanwhile, sci-
ScATAC-seq boosts throughput to an organ scale through multiple
rounds of splitting and pooling”'®%°, but it often comes at the expense
of compromising library quality and demands a large amount of
indexed TnS5 to be prepared. These challenges highlight the need for a
more cost-effective, sensitive, and scalable solution accessible to var-
ious academic and clinical applications.

To address these limitations, we developed IT-scATAC-seq, a
streamlined and semi-automated method that employs a three-round
indexing strategy. This approach leverages barcoded Tn5 for the first
indexing, followed by two rounds of indexed PCR to achieve easy
scalability. Combining parallel bulk tagmentation with fluorescence-
activated nuclei sorting (FANS), IT-scATAC-seq reduces both per-cell
costs and hands-on time while maintaining robust library complexity
and high signal specificity.

Benchmarking analysis showed IT-scATAC-seq yields high library
complexity, low mitochondrial contamination, and strong ATAC-seq
signal enrichment around transcription start sites (TSS), with more
than 60% of reads in peaks (FRiP). To demonstrate its utility, we
applied IT-scATAC-seq to mouse embryonic stem cells(mESCs)
undergoing differentiation, showing chromatin accessibility dynamics
as cells transition from naive pluripotency. Additionally, we profiled
human peripheral blood mononuclear cells (PBMCs), demonstrating
the method’s ability to resolve distinct immune subsets and their cell-
type-specific regulatory elements. Together, these findings establish
IT-scATAC-seq as a cost-effective and high-throughput technology for
profiling single-cell chromatin accessibility. By eliminating the need for
specialised equipment and enabling library preparation for 10,000
cells in a single day at less than $0.01 per cell, IT-scATAC-seq reduces
costs while maintaining high-quality data. With its scalable and effi-
cient workflow, this method expands the accessibility of single-cell
chromatin profiling, making it adaptable to various biological and
clinical research contexts.

Results

Benchmark of IT-scATAC-seq

We developed IT-scATAC-seq, a simple and scalable strategy to profile
the single-cell chromatin accessibility using indexed Tn5 tagmentation
and a three-round indexing strategy (Fig. 1a, Supplementary
Fig. 1 and 2, and Supplementary Data 1). In this method, nuclei are
isolated following the refined Omni-ATAC protocol” to minimise
mitochondrial DNA contamination and then divided into multiple
parts for parallel bulk transposition reactions with in-house purified
and assembled indexed Tn5 complexes (number of reactions = N)
(Supplementary Fig. 1 and 2). The transposed nuclei from each tag-
mentation reaction are individually distributed into 384-well plates via
fluorescence-activated nuclei sorting (FANS) (Supplementary Fig. 3).
Each well houses N uniquely first-round indexed nuclei after sorting.
Nuclei in the wells are lysed in the pre-loaded buffer containing sodium
dodecyl sulphate (SDS) and proteinase K. The lysis process is then
quenched, followed by DNA amplification using pre-loaded indexed
PCR primers for the second-round barcoding. The PCR products are

then pooled for a final round of PCR to add standard Illumina TruSeq
adapters, preparing them for next-generation sequencing (NGS)
(Supplementary Fig. 2). Using the liquid handler, all steps in 384-well
plates can be automated to avoid intricate pipetting.

The accuracy of IT-scATAC-seq was assessed using a species-
mixing experiment with mixed human and mouse cell lines. After
quality control, the high-quality cells with the number of unique
fragments over 2000 were predominantly identified as either mouse
(n=1784) or human (n =1234), with only 39 cells identified as doublets,
yielding an accuracy rate of 98.72% (Fig. 1b). IT-scATAC-seq was then
applied to three human cell lines—HEK293T, H1, and K562—with two
replicates per cell line, each containing 384 cells. High correlations in
read coverage were observed between replicate libraries for each cell
line (Pearson correlation r> 0.97) (Fig. 1c). The aggregated single-cell
libraries showed strong signal enrichment at TSS and clear nucleo-
some periodicity patterns (Fig. 1d-f). All input single cells were suc-
cessfully retrieved. For HEK293T, H1, and K562 cell lines, median
unique fragments per cell were 50,276, 23,054, and 23,273, respec-
tively, and the median TSS enrichment scores were 18, 12, and 15,
respectively; 100%, 98.7%, and 93.2% out of input cells met the
ENCODE’s established quality control criteria (TSS score >5 and unique
fragments >1000) (Fig. 1e).

Bulk Omni-ATAC-seq was performed in HEK293T cells to evaluate
the IT-scATAC-seq profiles further. The bulk libraries exhibited a
typical periodic fragment pattern, minimal mitochondrial contamina-
tion, high TSS scores, and high FRiP scores (Supplementary Fig. 4),
qualifying them as suitable reference libraries. Pseudo-bulk profiles of
IT-scATAC-seq libraries (rep #1 and rep #2) showed robust correlations
(r>0.90) with bulk libraries(Supplementary Fig. 5a). Additionally, 20
randomly selected single-cell profiles demonstrated high congruence
with bulk data with Pearson correlation coefficients ranging from 0.52
to 0.94 (Supplementary Fig. 5a). The aggregated and randomly selec-
ted single-cell profiles closely resembled bulk signals in accessible
regions and specific loci (Supplementary Fig. 5b). These results con-
firm the high quality of IT-scATAC-seq libraries regarding the accuracy
and signal specificity at the single-cell level.

We merged libraries from cell lines to test IT-scCATAC-seq’s ability
to distinguish different cell types. Using ArchR?”s Latent Semantic
Indexing (LSI) for dimension reduction, followed by uniform manifold
approximation and projection (UMAP) for visualisation, we identified
three distinct cell populations corresponding to embryonic stem cells,
myeloid cells, and epithelial cells, and the cell identities matched their
cell-type encoded barcode (Fig. 1g). While housekeeping locus GAPDH
loci showed comparable accessibility among all cell types, loci such as
NANOG, GATA1, and XIST exhibited strong cell-type specificity (Fig. 1h).
Next, the single cells were clustered based on chromVar®-calculated
bias-corrected deviations (Fig. 1i). This analysis identified cell line-
specific transcription factor (TF) motifs: GATA family motifs were
enriched in K562 cells, POUSFI in H1 cells, and HOX, FOS, and JUN
family motifs in HEK293T cells (Fig. 1j, k). Together, these results
demonstrate that IT-scATAC-seq is robust in identifying cell types and
specific TF motif enrichments.

Comparing IT-scATAC to other scATAC-seq methods

To further demonstrate the quality of IT-scATAC-seq, we compared its
cell line metrics with those of other scATAC-seq methods, including
droplet-based scATAC-seq (10X Chromium and Hydrop?),
microfluidics-based scATAC-seq (Fluidigm C1)¢, plate-based®, and sci-
ATAC-seq’ and its derivate CH-ATAC-seq®™. At lower sequencing
depths, indicated by a median duplication rate of 54-57% compared to
over 95% in plate-based and C1 scATAC-seq (Fig. 2a), IT-scATAC-seq
still achieved comparable or higher library complexity, as evidenced
by a comparable or higher number of unique fragments per cell
(Fig. 2b). While the proportion of sequencing reads mapped to nuclear,
but not mitochondrial, DNA was similar (Fig. 2c), IT-scATAC-seq

Nature Communications | (2025)16:2635


www.nature.com/naturecommunications

* .
Article https://doi.org/10.1038/s41467-025-57931-2
a b 100000
: @® Human (n=1,784)
Isolate nuclei _ @ Mouse (n =1,234)
! = Doublet (n = 39)
_— 75000
E Doublet Rate = 1.28%
Distribute = 2
£ 50000
Indexed ‘ ; £
~ Nuclei -
PN oo Seds Ao AN A = =
@‘/ ﬁ‘ @% o SSo i: LS n Indexed P5  Indexed P7 200
o il W &
Parallel bulk indexed tagmentation Indexed PCR Indexed PCR 0] emm——————e
0 50000 100000 150000 200000 250000
c - hg38
r=0.9913 12 r=09721 r=0.9981 . d
= p<22e-16 p<22e-16 100 p<22e-16 K4
a 10 z s
Q H o z . 251 HEK293T
8 Q 75 R © — H1
3 g g ,~' 2 K562
8 o S
8 5 density [ & density | & 507 density x 204
= -4 53
2 13 ~ c
g i | = R H S
i &4 5 151
= o 00 2
0 i 8 2 4 8 2 0o 25 75 100 125 5
HEK293T rep#1 log2CPM H1 rep#1 1ogoCPM K562 rep#1 1og2CPM @ 10+
e HEK293T (n = 768) H1 (n = 768) K562 (n = 768) g
g 25— ' ; 25 . . S 54 A
& 20-| 3 @:’.‘\ 20 3 s N
£ : e MRS - 208 oF— ‘ E—
g 5 . B Ttk % -2000 -1000 O 1000 2000
S : . Y Dist: From Center (bp)
§ 10 i | 10— I SR % istance enter (bp)
] : : L.,
[ e et B—fmm-mmmm e -t
0 . .
2 ! ! - (¢ HEK293T
o _ ' i '
T T T T
10° 10*° 10* 10*°

T T T T T T
10*° 10° 10°° 10* 10** 10°
Number of Unique Fragments

1
i

T T T T T T
10%° 10° 10°° 10* 10** 10°

T
10°

o
f = w0 .
2 K562
&
E s e o
& o 5
© 06 2
w o
- 10 E
o 04 a
3 05 3
< 05
=
g o 3
o
o
o 00 00
w o 200 400 600 o 200 400 600 200 400 600 UMAP Dimension 1
—_ ATAC-seq Fragment Size(bp)
h =
23 -
28 b . L.l
s ¥ g
o g
No ¢
K]
ESE
R
£t — - =
= 5
z . Ex
o T & §
3 [
S — [y
& . = 0.0
2 g 25
£ 5.0
S & = g :
L3 H
- : 75
g :
8 GAPDH
2 NANOG GATA1
3 SEED P
8 '_ XIST
6534000 6536000 6538000 7780000 7785000 7790000 48784000 48788000 48792000 48796000 48800000 73820000 73830000 73840000 73850000 73860000

chr12 position (bp) chri2 position (bp)

i

chrX position (bp)

k

chrX position (bp)

L voDevaen

GATA1

I1 ! =
H1
q 0.5 2
i 38 HEK293T|
£
e 38 K562
§ aE
/] -0.5 Pyl
J 23
283, S8 .
RBw wg
N E
S23 s o
2812 e
X0 ) z |, ,f“"'“mM,J S,
[SLe)
.05 S W m
. 10 Distance to motif center (bp)
K562 s0evee X . Fos
15
HEK293T & & sse S ® 20 o °
B8
L0G10 Pug ST,
k-1
H1 ') . . so e $3
1500 BE
- - P - 29
sspegyEEygzssagseeryzsssisiiey M 2B
Log10 nFrags Sample E%OBlﬁgééégﬁ%éOﬂj%?zﬁﬁ o6=EEL mé
DI W H1rep#1 [ HEK293T rep#t | K562 rep#1 < + = SN 500 cE -
3 4 5 6 [MH1rep#2 Ml HEK293T rep#2 K562 rep#2 2
Enriched Motifs ° ) -

achieved the highest percentage of reads aligned with chromatin
accessibility peaks, with a median FRiP score over 65% (Fig. 2d).
Additionally, IT-scATAC-seq produced higher or similar median TSS
enrichment scores compared with existing methods (Fig. 2e). Unlike
the variability seen in the other datasets, IT-scATAC-seq displayed
more consistent quality control metrics at the single-cell level, with

: Distaﬁce to motif center (bp)

data more tightly clustered around the median, indicating stable and
consistent single-cell profiles.

Scalability, accuracy, and cost-effectiveness are crucial for
implementing scATAC-seq, especially in resource-limited settings. IT-
scATAC-seq enhances the throughput by at least one order of mag-
nitude compared to plate-based scATAC-seq®, increasing cell
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Fig. 1| Benchmark of IT-scATAC-seq. a Workflow of IT-scATAC-seq library pre-
paration. Nuclei are isolated and subjected to parallel bulk transposition reactions
with indexed Tn5 complexes. The transposed nuclei from each reaction are sorted
individually into 384-well plates. After lysis, the first round of barcoded PCR is
performed to distinguish cells from different wells. The PCR products are pooled
for a second round of barcoded PCR to cover more plates and incorporate the
TruSeq adapters. b Species mixing experiments for IT-scATAC-seq. Number of
unique reads per cell aligning to the human or mouse genome. Cells with less than
90% alignment rate are considered as doublets. ¢ Scatter plots showing pairwise
Pearson correlation (r) in read coverage as log, of count per million mapped reads
(CPM) across all accessible loci between replicates of IT-scATAC-seq libraries from
HEK293T, H1, and K562 cells. Each cell line was profiled with two replicates of 384
single cells, totalling n=768 per cell line. P-values were determined using a two-
sided Pearson correlation test. d Distribution of ATAC-seq signals around +2 kb
from transcription starts sites (TSS) of single-cell aggregates. e ATAC-seq insert

fragments frequencies distribution showing nucleosome periodicity of libraries
from aggregated single cell profiles. f TSS enrichment score plotted against the
number of unique fragments for HEK293T, H1, and K562 IT-scATAC-seq libraries.
g UMAP visualisation of integrated scATAC-seq libraries coloured by cell type
identity. h Genome tracks displaying aggregated single-cell ATAC-seq signals and
per-cell fragment abundance around the GAPDH, NANOG, GATA1, and XIST loci.

i Correlation of bias-corrected motif deviations between replicates. j Heatmap
showing deviations of motifs across single cells (top panel); dot plot displaying
motif enrichment, assessed using a two-sided hypergeometric test, with -logyo of P-
values adjusted for multiple comparisons using the Benjamini-Hochberg

method (bottom panel). k TF footprinting analysis of GATA and FOS in IT-scATAC-
seq signals of three cell lines, normalised for Tn5 insertion bias by dividing the
footprint signal by the expected insertion frequency. Source data are provided as a
Source Data file.

processing capacity from 10> to 10*°, comparable to the droplet-
based scATAC-seq"” and 10x Genomics scATAC-seq. For accuracy, the
doublet rate of IT-scATAC-seq only depends on the accuracy of
nuclei sorting (Supplementary Fig. 3), contrasting with droplet-based
and sci-ATAC-seq frameworks, which typically have misassignment
and barcode collision rates of around 10%”". IT-scATAC-seq uses
parallel bulk tagmentation instead of single-cell individual tagmen-
tation, effectively minimising potential benchtop variations”®. Nota-
bly, IT scATAC-seq requires significantly less manual labour than
plate-based scATAC-seq®. For example, capturing 5000 cells with
plate-based methods requires handling at least ten 384-well plates,
whereas IT-scATAC-seq achieves this with just a single plate. Fur-
thermore, using the liquid handling system significantly reduces
complex and labour-intensive pipetting and lowers the risk of primer
cross-contamination during PCR. Library preparation for 10,000
cells can be completed within a single day (Supplementary Fig. 6a).
Although sorting is time-consuming, most processes are automated
(Supplementary Fig. 6b). As for reagent cost, IT-scATAC-seq sig-
nificantly reduces the per-cell cost by up to 100 times, depending on
the number of cells profiled (the more cells processed, the lower the
cost per cell). As a result, the library preparation cost is substantially
reduced to -$0.01 per cell (Supplementary Fig. 6c), making it con-
siderably more cost-effective than many scATAC-seq methods
(Supplementary Table 1)'°. Moreover, all reagents required for IT-
SCATAC-seq are listed and can be readily prepared in-house (Meth-
ods). Overall, IT-scATAC balances single-cell omics’ sensitivity,
accuracy, precision, throughput, and cost-effectiveness, providing a
strategy for high-quality single-cell chromatin accessibility profiling
(Supplementary Data 2).

IT-scATAC-seq detects high plasticity of cell fate during early
embryogenesis

Naive mouse embryonic stem cells (ESCs) were subjected to a two-day
differentiation period to primed epiblast-like stem cells (EpiLCs), a
transient interval that has already acquired competence for differ-
entiating towards downstream mesodermal (Meso), endodermal
(Endo) and ectodermal (Ecto) lineages (Fig. 3a). Analysis of the EpiLCs
IT-scATAC-seq library showed that 4167 passed the quality control
(Fig. 3b). From these cells, we harvested a total of 131.81 million frag-
ments, with the fragment size distribution displaying a typical
nucleosomal pattern and an enrichment of signal around the TSS
region (Fig. 3c, d). With a sequencing depth marked by a 44% dupli-
cation rate (Fig. 3e), IT-scATAC-seq demonstrated a 98% read align-
ment rate and a median of 18,058 unique fragments per cell,
confirming high library complexity (Fig. 3f, g). Additionally, cells
demonstrated an average TSS enrichment score of 14.35, low mito-
chondrial contamination (median 1.62%) and a high FRiP score (median
0.69) (Fig. 3h-j). These results showed the high quality of the IT-
SCATAC-seq library.

Previous research demonstrated that the EpiLCs are competent to
differentiate into all three germ layers?®. However, the mechanisms by
which naive ESCs transit to EpiLCs and how gene cascades are selec-
tively activated to determine the cell fate have not been fully eluci-
dated by scRNA-seq alone”. We used gene activity scores’, which
quantify chromatin accessibility around genes weighted by distance
and size, normalised across the gene region, to infer potential reg-
ulatory impacts on gene expression. We leveraged a targeted panel of
lineage marker genes”® and calculated lineage scores for each cell
based on the average marker activity following the same strategy
previously described in itChIP-seq(see Methods)”. Unsupervised
clustering of 4167 single cells based on normalised accessibility pro-
files of lineage-specific markers identified 10 distinct clusters (Fig. 3k).
These clusters entailed a spectrum of cellular state, ranging from naive
ESCs with pronounced accessibility in ESC marker regions to cells
exhibiting increased accessibility across both ESC and multiple lineage
markers, suggestive of priming for germ layer differentiation, and cells
with commitment to specific germ layers (Fig. 3k).

Notably, a substantial number of cells occupied intermediate
states, including those with relatively low accessibility for all four
categorical markers compared with primed ESCs, indicative of for-
mative ESCs (Fig. 3k). Additionally, cells with transitional combinations
of marker gene accessibility, such as meso-endo-ecto (n=171) and
endo-ecto (n=120), underlined the multifaceted nature of naive to
epiblast-like transition. Pseudo-temporal trajectory plots, comparing
germ-layer scores against ESC scores, revealed an increase in meso-
derm accessibility as cells transitioned from the naive ESC state; in
contrast, endoderm and ectoderm accessibility scores remained rela-
tively stable or slightly declined before the loss of pluripotency
(Fig. 31), suggesting a potential epigenetic restriction prior to definitive
lineage commitment. These observations collectively echoed the
concept of cell fate plasticity, where cells exhibit the potential to
transit between states and adapt to developmental cues through
dynamic epigenetic remodelling®*?. The simultaneously increased
accessibility of multiple lineage markers post-ESC state exiting sub-
stantiated this plasticity, highlighting the cells’ adaptability and the
non-fixed nature of development. These findings underscore the
importance and effectiveness of advanced high-resolution single-cell
technologies, such as IT-scATAC-seq, for dissecting the regulatory
mechanisms that govern dynamic and transient cell states.

IT-scATAC-seq distinguishes the cellular heterogeneity across
human PBMCs

To evaluate IT-scATAC-seq’s ability to resolve diverse cell types and
dissect epigenomic heterogeneity, we applied it to cryopreserved
PBMC:s collected from healthy donors during routine hospital check-
ups. These samples provide a more physiologically relevant setting
compared to cell lines. We additionally incorporated two published
healthy PBMC scATAC-seq datasets'®, generated using different
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Fig. 2 | Comparison of IT-scATAC-seq with other scATAC-seq methods in

cell lines. Box plots show duplication rate (a), an indicator of sequencing depth,
library complexity (b), measured as logo of unique fragments per cell, percentage
of fragments mapped to the genome (c), FRiP per cell (d), and TSS enrichment
score (e) across different methods, where the centre line represents the median,
the box bounds indicate the interquartile range (IQR, 25th to 75th percentile), and
the whiskers extend to the minimum and maximum values. The number of single

cells analysed for each method and cell line are as follows: 10X GM12878 (n=996),
10X A20 (n=474), Hydro MCF-7 (n = 889), Hydro MEL (n =461), CH NIH3T3
(n=2083), CH HEK293T (n=2846), sci HEK293T (n =343), sci GM12878 (n=1197),
Plate K562 (n=192), Plate mESCs (n=192), Plate NIH3T3 (n=139), Plate HEK293T
(n=172), C1K562 (n=192), C1 mESCs (n=192), IT H1 (n=767), IT K562 (n=766), IT
HEK293T (n=768). Source data are provided as a Source Data file.

technologies - 10X Genomics v2.1 (10X) and s3-ATAC (s3) - for com-
parative analyses (Supplementary Fig. 7a).

From our IT-scATAC-seq library, a total of 7628 single cells
passed quality control, exhibiting clear nucleosome banding pat-
terns and strong signal enrichment around the TSS region(Supple-
mentary Fig. 7a-e). Although the sequencing depth was relatively

modest (-10,000 reads per cell)—yielding a lower median number of
unique fragments (3026.5) than those reported for 10X (13,771) and
s3 (15,395)*—the IT-scATAC-seq PBMC profiles showed higher signal
specificity, as shown by higher median TSS enrichment (25.03 vs.
16.16 and 7.39, respectively) and higher median FRiP (0.54 vs. 0.52
and 0.23, respectively) (Supplementary Fig. 7d-f). After LSI
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dimension reduction and batch effect correction®, cells from all
three datasets were dispersed throughout the UMAP space, revealing
14 distinct immune cell populations (Fig. 4a and Supplementary
Fig. 7g). This suggests that IT-scATAC-seq robustly captures a wide
spectrum of immune cell lineages in a manner comparable to
established scATAC-seq platforms.

To refine and merge clusters, We integrated single-cell gene
expression hemopoiesis sScCRNA-seq datasets®, identifying nine major
cell clusters from all PBMCs: B cells (n=1601), basophils (n=257),
CD14 monocytes (n = 2044), CD16 monocytes (n = 631), CD4 memory T
cells (n=5035), CD4 naive T cells (n=2257), CD8 memory T cells
(n=1701), CD8 naive T cells (n=2279), natural killer cells (n=3739),
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Fig. 3 | IT-scATAC-seq revealed a high degree of cell fate plasticity during
mouse early embryogenesis. a Schematic images showing naive mouse embryo-
nic stem cells (ESCs) were undergone a 48-h differentiation and were subjected to
IT-scATAC-seq profiling. b Log;o of number of unique fragments plotted against the
TSS score, and cells within the upper right quadrant (n = 4167) passed QC and were
subjected to downstream analysis. ¢ Fragment size distribution. d Enrichment of
ATAC-seq signals up and downstream 2 kb to the TSS region (d). Violin plots of per
cell (n=4167) duplication rate (e), read alignment rate (f), Log;o of number of
unique fragments (g), TSS enrichment score (h), mitochondrial fraction of total

uniquely mapped reads (i), and fraction of reads in peaks (FRiP) (j). k Heatmap
displaying 10 groups of 4167 single cells clustered based on lineage scores for ESC,
mesoderm (Meso), endoderm (Endo), and ectoderm (Ecto), where lineage scores
for each cell were calculated using gene activity scores of marker genes specific to
each lineage (see Methods). I Scatter plots of ESC lineage scores plot against Meso,
Endo, and Ecto lineage scores for each single cell. The regression line was fitted
using generalized additive model, and the shaded band represents the 95% con-
fidence interval of the fitted line. Source data are provided as a Source Data file.

conventional dendritic cells (cDC, n=188), and progenitors (n=161)
(Fig. 4b). The per-cell gene activity overlay on the UMAP embedding
showed consistent aggregated accessibility for cell-type-specific genes
such as PAX5, MS4AI and EBFI for B cells; CD3G, IL7R, CD8A for T cell
lineages; CDI16a (FGCR3A), NKG7 and IL2RB for NK cells; and CD14,
CEBPB, and CCR2 - corresponded well with the identified cluster
identities (Fig. 4c).

To explore the regulatory landscape underlying these cell types,
we called peaks using pseudo-bulk replicates from the nine cell types,
creating a union set of 185,353 reproducible accessible peaks and
identifying 64,606 differential peaks across cell types (FDR < 0.1 & log,
fold change >1) (Fig. 4d and Supplementary Data 3). We next examined
the enrichment of TF-binding motifs (FDR<0.1 & log, fold change
>0.5) within the differentially accessible regions across major PBMC
populations. We showed their distinct transcriptional programs
(Fig. 4e and Supplementary Fig. 8). Members of the IRF and ETS
families (including SPII and SPIB), along with BCL11, displayed strong
enrichment in myeloid lineages, cDCs, and B cells, with IRF prominent
in B cells. By contrast, the C/EBP family (CEBPA, CEBPB, CEBPD, CEBPE,
CEBPG) exhibited significant enrichment only to monocytes. In NK and
CD8 Memory T cell subsets, we observed characteristic T-box (TBX4,
TBX5, TBX10, TBX20) and RUNX (RUNXI, RUNX2) motifs, reflecting
their regulatory impact on cytotoxic functions. Meanwhile, naive
T cells showed TCF-family motif variability (e.g., TCF7, TCF7L1, LEFI),
highlighting TF networks that maintain an undifferentiated state and
govern T cell receptor repertoire. Basophils were marked with GATA-
family motifs, which aligns with GATA-driven regulation of their gen-
eration and activation. Notably, the Sp-family, C/EBP family, BCLI1,
FOS, JDP2, NFE2 and NF-Y were identified as key TFs driving lineage-
specific differences (Fig. 4f and Supplementary Data 3). These findings
were in concordance with those observed at the single-cell
transcriptome’®*”*® and bulk scale®, indicating that IT-scATAC-seq
can effectively distinguish and characterise cell type-specific gene
regulatory programs. These results further validate IT-scATAC-seq as a
scalable and cost-effective platform for single-cell chromatin accessi-
bility profiling when applied to clinical samples, capable of resolving
immune cell heterogeneity with high fidelity.

Discussion

Single-cell chromatin accessibility profiling has become a critical tool
for understanding gene regulation, cellular heterogeneity, and epige-
nomic dynamics. Here, we introduce IT-scATAC-seq, a cost-effective,
scalable and robust method that enables high-throughput single-cell
chromatin accessibility profiling at lower per-cell cost. The IT-scATAC-
seq process involves four main steps: (1) assembly of indexed Tn5
transposome complex, (2) parallel bulk nuclei tagmentation, (3) sort-
ing different indexed nuclei into the same well for barcoded PCR, and
(4) pooling and PCR for Illumina Truseq adapter addition. This
streamlined workflow allows for 10* cells to be completed within
one day.

Through benchmarking analyses, IT-scATAC-seq demonstrated
high library complexity, strong enrichment at TSS, and low mito-
chondrial contamination. The overall data quality is either compar-
able to or exceeds established plate-based scATAC-seq® and

commercial 10x Genomics ATAC-seq. To validate the method’s
broad applicability, we applied IT-scATAC-seq to mouse embryonic
stem cell (mESC) differentiation and human peripheral blood
mononuclear cells (PBMCs). During mESC differentiation, chromatin
accessibility profiles revealed an intermediate state where cells
exhibited accessibility at both pluripotency and lineage-specific
regulatory elements, suggesting a dynamic priming process during
cell-fate commitment. These findings align with the concept of cell-
fate plasticity, highlighting the gradual and coordinated chromatin
remodelling that occurs during early embryogenesis. In cryopre-
served human PBMCs, IT-scATAC-seq successfully resolved immune
cell subsets, demonstrating its ability to capture epigenomic het-
erogeneity in complex primary tissues. These results confirm that IT-
SscATAC-seq is well-suited for profiling chromatin accessibility across
diverse biological systems.

Compared with existing scATAC-seq methodologies, IT-scATAC-
seq balances cost efficiency, scalability, and data quality (Supple-
mentary Table 1). By implementing parallel bulk tagmentation with
indexed Tn5 transposases, IT-scATAC-seq significantly reduces per-cell
reagent consumption, achieving a cost of ~-$0.01 per cell, which is
lower than the single-cell tagmentation-based method. Unlike sci-
based methods, it does not require assembling many indexed Tn5
complexes, simplifying the workflow while maintaining high library
complexity. Unlike commercial platforms such as 10X Genomics,
Fluidigm C1°, and Takara ICELLS’, IT-scATAC-seq does not require
specialised single-cell instrumentation, making it compatible with
standard laboratory equipment. Compared to the plate-based
approach, which has been demonstrated to be robust and accessible
to most laboratories®°, IT-scATAC-seq significantly enhances
throughput and processing efficiency. Analysing thousands to tens of
thousands of cells is now achievable at reduced labour and consum-
able costs. Optionally, the automated liquid handling system can be
used during the second indexing step to reduce intricate pipetting,
thereby substantially mitigating the risk of primer cross-
contamination. Furthermore, TruSeq-compatible library design
ensures broad sequencing compatibility and significantly lowers
sequencing costs, making IT-scATAC-seq a practical solution for large-
scale epigenomic studies.

While IT-scATAC-seq offers several advantages, it also has some
trade-offs, primarily due to its in-house nature. First, indexed Tn5
transposase may be a barrier for labs without enzyme preparation
capabilities, though commercial TnS5 is available. Second, although IT-
scATAC-seq simplifies the workflow, its cell throughput—given
equivalent time and labour— is lower than sci-ATAC-seq’ and its deri-
vatives like EasySciATAC?. Third, IT-scATAC-seq improves resolution
and lowers barcode misassignment through FANS but requires flow
cytometry resources and constitutes the most time-consuming stage
of the workflow. Future optimisations could develop alternative
nuclei-handling strategies to reduce FANS dependency and improve
throughput.

Beyond its current applications, IT-scATAC-seq holds the poten-
tial for expanding its compatibility with other single-cell multi-omics
platforms and multimodal integration. For example, the IT workflow
could be integrated with single-cell whole genome sequencing,
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In summary, IT-scATAC-seq represents a robust, cost-effective,
and scalable alternative to existing scATAC-seq methods. It provides
high-quality single-cell chromatin accessibility data while
eliminating the need for specialised microfluidic instruments. While
limitations such as indexed Tn5 production, lower throughput
compared to EasySciATAC, and reliance on FANS should be
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Fig. 4 | IT-scATAC-seq dissects cellular heterogeneity in human PBMCs. a UMAP
plots showing IT-scATAC-seq profiles of PBMC samples from healthy donors (IT,
n=7628), and two additional PBMC scATAC-seq datasets from healthy donors pro-
filed by 10X (10X, n=9411) and s3 (s3, n=2855), coloured by sample origin. b UMAP
visualisation coloured by cell type identity, including B cells, NK cells, T cells, mono-
cytes and progenitors with a top panel showing cell type fractions for each sample.
c Lineage-specific markers overlaid on the UMAP embedding, including PAXS, MS4Al1,
and EBFI for B cells; CD3G, IL7R, and CD8A for T cells; FCGR3A (CD16), NKG7, and I[2RB
for NK cells; and CD14, CEBPB, and CCR2 for monocytes. Visualisation is coloured by
normalised gene scores, with the MAGIC algorithm used to smooth drop-out noise.
d Heatmap showing Z-scores of normalised chromatin accessibility for 64,606 cell
identity-specific marker peaks (FDR < 0.1, log, fold change >1) identified across
SCATAC-seq clusters using the two-sided Wilcoxon rank-sum test, with P-values

adjusted for multiple comparisons using the Benjamini-Hochberg correction.

e Heatmap displaying the top 10 TF binding motifs with the highest variability in
respective marker peaks of each cluster ranked by adjusted P-value, calculated using a
two-sided hypergeometric test, and P-values adjusted for multiple comparisons using
the Benjamini-Hochberg method. f Scattered plot illustrating the correlation between
motif accessibility and gene expression. Each point represents a TF, with the x-axis
showing the correlation to gene expression and the y-axis indicating the maximum TF
motif delta (variability) across clusters. P-values were derived from a two-sided Pear-
son correlation test and adjusted for multiple comparisons using the Bonferroni
method. TFs identified as positive regulators (correlation >0.5 and adjusted P-

value < 0.01, with max delta in the top quartile) are highlighted in red and other TFs in
grey. Source data are provided as a Source Data file.

considered, its strengths in data resolution, cost efficiency, and
accessibility make it a valuable tool for single-cell epigenomics
research. Further optimisations could enhance its automation and
scalability, expanding its applications to developmental biology, and
clinical genomics.

Methods

Cell culture

The human HEK293T and mouse NIH/3T3 were ordered from ATCC
and routinely maintained in High-glucose Dulbecco’s modified Eagle’s
medium (DMEM) containing 10% Fetal Bovine Serum (FBS) and 1%
Penicillin/Streptomycin. The K562 cells were purchased from ATCC
and maintained in an IMDM medium containing 10% FBS. The H1 was
obtained from WiCell Research Institute (WAO1). Cells were cultured in
Essential 8 with ROCK inhibitor Y-27632 (HY-10071, MedChemExpress)
on plates pre-coated with Matrigel (Corning). The medium was refre-
shed daily, and the cells were passaged with Accutase (Gibco) every
3 days. The B6 murine ESCs were obtained as a gift from Pengtao Liu’s
lab at the University of Hong Kong (HKU) and cultured on gelatin-
coated dishes in 2i medium composed of High-glucose DMEM sup-
plemented with 15% stem-cell qualified FBS, 2mM GlutaMAX, Non-
essential amino acids (NEAA), 0.1 mM (-mercaptoethanol, 1000 U/ml
recombinant mouse LIF (ESG1107, Merck Millipore), 2i 1 uM PD032591
and 3 uM CHIR99021(HY-10254 and HY-10182, MedChemExpress) and
1% Penicillin/Streptomycin. The basic medium and supplements for
cell culture were purchased from Thermofisher. All the cells were
cultured at 37°C in 5% CO2 and tested negative for mycoplasma
infection using the PCR method by the Centre for PanorOmic
Sciences, HKU.

Purification of transposase Tn5

The pTBX1-Tn5 plasmid was purchased from Addgene (60240). Briefly,
pTBX1-Tn5 plasmid was transformed into competent E. coli C3013 cells
(C25271, NEB) and induced with 250uL 1M Isopropyl B- d-1-
thiogalactopyranoside (IPTG) at 23°C for 5hours. Cell pellet was
resuspended in 60 ml HEGX buffer (20 mM HEPES buffer pH 7.2,1.0 M
NaCl, 1 mM ethylenediaminetetraacetic acid (EDTA), 10% v/v glycerol,
0.2% v/v triton X-100 and 10 mM PMSF) and sonicated using Covaris
sonicator with 10 cycles of 30 s on and 30 s off, 40% duty. The cleared
Tn5-CBD protein fraction was enriched with chitin resin (§6651S, NEB)
in the cold room for 2 hours and further washed with 200 ml of HEGX
buffer. The Tn5 protein was released by 100 mM dithiothreitol (DTT)
cleavage, concentrated with Pierce™ Protein 30K MWCO Con-
centrators and dialysed twice in 1L 2X HEPES dialysis buffer (100 mM
HEPES pH 7.2, 0.2 M NaCl, 0.2 mM EDTA, 20% w/v glycerol, and 2 mM
dithiothreitol (DTT). After dialysis, the Tn5 was equilibrated with pure
glycerol to 60% concentration. The final Tn5 was quantified by SDS-
PAGE and Coomassie Blue Staining using the fitting curve plotted by
standard BSA. Tn5 was quantified as 1.6 pg/uL, approximately 30 uM in
this study.

Preparation of indexed Tn5 transposome complex

Dissolve the indexed adapters and Tn5 reverse adapters (ordered from
IDT; sequences provided in Supplementary Data 1) with annealing
buffer (10 mM Tris-HCI pH 8.0, 50 NaCl, 2 mM EDTA) to make 200 uM
stock. Prepare 15 pL of individual adapter with 15 L reverse adapter in
200 uL PCR tube and anneal in a thermocycler as follows: 98 °C for
10 min, and slowly cool down to 23 °C with —0.1 °C/s. Mix the annealed
adapter with 100 uL 30 uM Tn5 and 70 pL coupling buffer (100 mM
HEPES-NaOH, 500 mM NacCl, 50% v/v Glycerol, 0.5 mM EDTA, 2mM
DTT), and incubate in thermomixer at 25°C, 1000 rpm for one hour.
The indexed Tn5 transposome was prepared by mixing 20 uL of the
paired two Tn5-adapters with 80 uL coupling buffer, and the resulting
Tn5 transposome complex was 5uM and can be stored at —-20°C
without activity loss for more than one year.

Quality control of assembled transposases

Prepare 1 uL 300 ng/uL genomic DNA, 4 uL 5XTAPS-DMF buffer (50 mM
TAPS-NaOH pH 8.2, 25 mM MgCI2, 50% DMF), 13 uL H20, 2 uL assem-
bled TnS. Incubate at 55 °C for 10 min, then add 2 uL 10X STOP buffer
(2% SDS, 40 mM EDTA) and quench at 37 °C 15 min to dissociate Tn5
from DNA. Add 5 uL 6x Loading dye and run 1.5% DNA gel. The majority
of tagmentated DNA sizes were less than 1000 bp, indicating the
assembled transposases are qualified for downstream experiments. In
this study, we randomly picked indexed TnS5 for quality assessment.

mESCs-epiblast differentiation

mESCs were cultured in 2i medium to 60-80% confluency and dis-
sociated into single cells using 0.1% Trypsin. After washing twice with
PBS buffer, the mESCs were then resuspended in fresh embryoid body
media (withdraw of 2i and mLIF) and seeded on a gelatin-coated plate.
The spontaneously differentiated cells were collected on day 2 and
ready for IT-scATAC-seq.

Isolation of human peripheral blood mononuclear cells (PBMCs)
The study design and conduct complied with all relevant regulations
regarding the use of human study participants, approved by Dongguan
Children Hospital and The University of Hong Kong, and was con-
ducted in accordance with the criteria set by the Declaration of Hel-
sinki. About 5mL of blood was taken from two healthy donors, with
informed consent and human tissue procurement under the guidance
of ethical regulations of Dongguan Children Hospital and the Uni-
versity of Hong Kong. The PBMCs were isolated using Ficoll-Paque-
based gradient separation and frozen in liquid nitrogen until usage.
The frozen cells were rapidly thawed in a water bath at 37°C and
transferred to a 15 ml tube containing 10 mL prewarmed medium. The
cell suspension was centrifuged at 500 x g for 5min at room tem-
perature to pellet down. The cell pellet was resuspended in 1 mL pre-
warmed medium, and 10 uL was taken to check the cell viability. PBMCs
from two healthy donors were mixed. Considering that some cells in
PBMCs were fragile and easily break up upon nuclei isolation, we
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gently fixed the cells with 0.2% formaldehyde at room temperature for
5Sminutes, which was then quenched with 125mM glycine before
nuclei isolation for IT-scATAC-seq.

IT-scATAC-seq library preparation

Nuclei were prepared following Omni-ATAC protocol and resus-
pended in 0.33x PBS buffer. Next, 76 uL nuclei (-5 x 10*) were aliquoted
to several 1.5 ml Eppendorf DNA LoBind ® Tubes, and 20 uL 5XTAPS-
DMF buffer and 4 pL 5uM indexed Tn5 transposome complex were
added. The tagmentation reactions were performed on a thermomixer
at 37 °C, 500 rpm for 30 min. Then, 500 L stop buffer (IXPBS, 1% BSA
and 20 mM EDTA) was added to quench the reaction on ice for 10 min
and transferred to FANS tubes. DAPI was added at a final concentration
of 1 pg/mL to stain the nuclei before sorting. During the tagmentation,
350 nL lysis buffer (10 mM Tris-HCI, 10 mM NaCl, 0.2% SDS and 0.2 p/
ml Proteinase K) were distributed to 384-plates by Echo® 550 Liquid
Handler (Labcyte) and centrifuge at 3000 x g for 3 min. Different
index-tagmentated nuclei can be sorted into the same well. After
sorting, the plates were centrifuged at 3000 x g for 3 min and the
nuclei were lysed at 55 °C for 10 min and 100 nL 10% Triton X100 was
added to quench SDS. Then, 25 nL 20 uM indexed forward and reverse
primers (H5XX and H7XX), as well as 0.5uL High-Fidelity 2X PCR
Master Mix (M0494L, NEB), were added to each well. The first round of
amplification was performed following 72°C 5min, 98°C 30s; 12
cycles of 98 °C 20's, 63 °C 30 s; 72 °C 1 min; 72 °C 5 min, 4 °C hold. The
PCR product was pooled by centrifuge, followed by purification using
MinElute PCR purification kit and eluted with 50 pL nuclease-free H20.
The undesired fragments, primers and adapters were removed by Exo |
digestion (M0293S, NEB), 1.0 x AMPure XP beads selection, and eluted
with 25 uL nuclease-free H,O. The Truseq P5/P7 adapters containing
different barcoded primers were added by the second PCR with
another 2-3 amplification cycles. After another double AMPure XP
beads selection (0.5%/0.35x), the libraries were sent for quality control
and NGS by ANOROAD GENOME. A step-by-step protocol is also
deposited at protocols.io named IT-scATAC-seq (DOI: dx.doi.org/
10.17504/protocols.io.5jyl8d4wrg2w/vl).

Bulk Omni-ATAC-seq processing and visualisation

Quality control of bulk HEK293T ATAC-seq data was processed fol-
lowing Omni-ATAC protocol*. Briefly, cutadapt*® 4.5 was used to
remove Nextera adapters at both 5- and 3-end of each read. The
trimmed reads were mapped to the human GRCh38 genome using
BWA-MEM*’ v.0.7.17. MarkDuplicates of Picard Tools 3.1.0 was used to
mark and remove duplicated reads. CollectinsertSizeMetrics of Picard
Tools 3.1.0 were used to calculate the fragment size. Deeptools™
(version 3.5.2) were used to compute the matrix and plot the heatmap
to visualise the enriched signal around +5 kb up and downstream to the
TSS region and to estimate the TSS score.

Single-cell ATAC-seq data pre-processing

Cutadapt*® 4.5 was used to remove TruSeq Index 1 (i7) Adapters and
Index 2 (i5) Adapters at both 5’- and 3-end of each read. The barcode
sequences were then extracted from 5-end of each read sequence and
appended to read headers of the paired-end reads by Cutadapt 4.5
with --rename=CB.Z: (rl.adapter name)(r2.adapter name) -e 0.01 --no-
indels --action=trim, and adapter sequences and name are specified in
FASTA files with parameters -g and -G. The trimmed and barcode-
extracted reads were mapped to the corresponding reference gen-
omes, including human (GRch38) for HEK293T and human PBMCs, and
human (GRCh38) and mouse (mm10) hybrid genome assembly for
species-mixing experiments, using BWA-MEM*’ v.0.7.17. The bam file is
then sorted by the cell barcode (CB) tag and split into BAM file by CB
using SAMtools™ 1.17. MarkDuplicates of Picard Tools 3.1.0 was used to
mark and remove duplicated reads for the demultiplexed BAM file for
each single cell. The deduplicated BAM were then merged using

SAMtools into a deduplicated single-cell aggregate BAM file for
downstream analysis. Using deduplicated single cell aggregates BAM
file, accessible chromatin regions (peaks) were called using MACS2%,
with parameters -f BAMPE -g hs --shift -75 --extsize 150 --nomodel --call-
summits --nolambda --keep-dup all -p 0.01 -B.

Bamcoverage of Deeptools suite (version 3.5.2) was used first to
normalise total reads to 10,000,00 and generate BigWig and Bedgraph
files with the parameters --scaleFactor 10,000,000/reads number
--binSize 50. We used Deeptool’s multiBigwigSummary and plotCorre-
lation to calculate the Pearson correlation coefficient between the
normalised single-cell aggregate, randomly selected single-cell profiles
and bulk Omni-ATAC-seq of HEK293T.

Species mixing experiments data analysis

For the BAM file generated for each single cell, SAMtools idxstats were
used to calculate the fraction of reads mapped to human (GRCh38)
and mouse (mm10) genomes. Cells with over 2000 unique fragments
were retained as high-quality cells. If the fraction mapped to the
human genome >0.90, the cell was identified as a human cell; if the
fraction mapped to the human genome 0.10, the cell was identified as a
mouse cell; the cell otherwise is classified as a doublet.

IT-scATAC-seq library quality control

Deeptools bamCoverage and multiBigwigSummary was used to calcu-
late the normalised coverage of single-cell aggregates of each sample
in CPM with default parameter. Deeptools outRawCounts was used to
generate raw metrics for calculating the Pearson correlation coeffi-
cient (r) for the replicates of the single-cell libraries. CollectinsertSize-
Metrics of Picard Tools 3.1.0 were used to calculate the fragment size of
single-cell aggregates’ libraries. The duplication rate was estimated
using the metric file generated by Picard MarkDuplicates. SAMtools
idxstats was used to calculate the number of unique fragments and the
percentage of mitochondrial fragments. Sinto (0.10.0, https://timoast.
github.io/sinto) were used to generate fragment files from the single
cell aggregates BAM file. The fragment file was imported to ArchR? to
generate Arrow files and obtain quality control data, including the
number of unique fragments per cell, TSS enrichment score, and FRiP.
Aggregated single-cell ATAC-seq signal and per-cell fragment abun-
dance were plotted using Signac®.

Comparison with existing scATAC-seq methods performed on
cell lines

Quality control metrics were obtained from plate-based methods
to compare quality control metrics with the plate-based and Cl1-
based methods®(https://github.com/dbrg77/plate_scATAC-seq).
10X GM12878 and A20 Cells quality control metrics were obtained
from www.10xgenomics.com/datasets/. For other scATAC-seq
methods, fragments files of the following dataset were down-
loaded from the Gene Expression Omnibus (GEO) or website,
including sci** (GSM2970932), CH-ATAC-seq*(https://bis.zju.edu.
cn/chatac/), HydropATAC** (GSM5343842), and imported to
ArchR to calculate the quality control metrics.

Analysis of IT-scATAC-seq EpiLC library

The BAM file of deduplicated single-cell aggregates was converted to a
fragment BED file with Tn5 insertion centering correction using frag-
ment function in Sinto 0.10.0 with parameters --collapse within. The
fragment file was compressed using bgzip 1.18 and indexed by tabix
1.18. ArchR? was used to create an Arrow file using the fragment file;
the quality control criteria were set as TSS > 5 and a number of unique
fragments >1000. The TSS enrichment score for each single cell was
calculated at the same time. When creating the Arrow file, a Title Matrix
counting the number of fragments that fall into genome-wide 500-bp
bins, and a Gene Score Matrix counting calculating each gene’s
accessibility score based on tile distance, gene size, and Tn5 insertions,
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and normalising these scores across all genes. An ArchR project was
subsequently created using the Arrow file for downstream analysis. We
used the gene score in the Gene Score Matrix to infer the gene activity.
Unsupervised clustering of the single-cell EpiLC data was modified
from the previously described method®. Briefly, a selected panel of
marker genes for ESC and three germ layers were obtained from pre-
vious research” ?°. We calculated the standard deviation of gene score
across all single cells for each of the four lineage types — ESC, endo-
derm (Endo), mesoderm (Meso), and ectoderm (Ecto). We then iden-
tified the top 50 genes with the highest standard deviation as lineage-
specific markers for each cell type. To perform lineage scoring, we
normalised the gene scores of these marker genes for each cell,
thereby mitigating the impact of differential gene accessibility levels
on scoring. For each cell, we computed the average normalised gene
score of its lineage markers to derive its lineage score. Unsupervised
clustering using the ward.D method was performed to generate the
heatmap that depicted the transient cell states characterised by the
lineage state.

Dimensionality reduction, clustering analysis for human cell
lines and PBMCs

Two additional previously published PBMC datasets that were profiled
by 10X Chromium v2.1 and s3-seq'® were integrated for comprehensive
analysis. The fragment files were retrieved from NCBI GEO under the
accessions GSM7102949 and GSM7102984 for 10X and s3, respec-
tively. We used ArchR to generate Arrow files and created the ArchR
project from corresponding fragment files. Iterative latent semantic
indexing was performed using ArchR’s function addIterativeLSI to
reduce dimensions, and the Harmony** algorithm was used to correct
different technologies’ batch effect using the addHarmony function.
Cells were clustered using addClusters (resolution = 0.1 for cell lines,
resolution = 0.8 for PBMCs) using Seurat’s FindClusters method and
then embedded using UMAP by the addUMAP function. For PBMCs,
the marker genes were identified by the getMarkerFeatures with Gen-
eScoreMatrix calculated by ArchR. The MAGIC algorithm® was used by
applying addimputedWieghts to impute gene scores by smoothing
signals across neighbouring cells, and was used to visualise selected
lineage marker genes’ gene scores overlayed on the UMAP embedding.
Cell identities of PBMC subset were annotated by constrained cross-
platform linkage of scATAC-seq cells with scRNA-seq cells with ArchR’s
addGenelntegrationMatrix using firstly with scRNA-seq dataset of
hematopoietic differentiation. By integrating the results with marker
genes, the cell clusters were annotated and merged.

Marker peaks identification and marker motif analysis

using ArchR

The marker peak identification and differential motif analysis were
performed by ArchR and chromVAR. For pseudo-bulk replicates, the
chromatin-accessible peaks set was created using addGroupCoverages.
Peaks were then called using the addReproduciblePeakSet by MACS2
for each identified cell type, and addPeakMatrix was used to append
the count matrix of the combined peak set to the Arrow file. Differ-
entially accessible regions(noted as marker peaks) were calculated
using the getMarkerFeatures function, with the Wilcoxon rank-sum test
chosen as the test method and plotted with markerHeatmap using a
cut-off of FDR < 0.1, log, fold change > 1. Motif annotations were first
assigned to the marker peak set using the addMotifAnnotations func-
tion, followed by motif enrichment analysis in marker peaks with
peakAnnoEnrichment. To evaluate TF activity at the single-cell level,
chromVAR was applied using motif annotations as a reference. The
ArchR’s addBgdPeaks function was employed to add background
peaks, accounting for GC-content and fragment count similarities
across samples based on Mahalanobis distance. The per-cell motif
deviation scores were then computed across annotated motifs using
the addDeviationsMatrix function, utilising the enriched marker peaks

for respective clusters to build the motif deviation matrix. The top
motif deviation matrix was computed using getVarDeviations, which is
based on the chromVAR? algorithm. The top variable motifs were
plotted with plotVarDev, and TF footprintings were plotted using get-
Positions and plotFootprints and normalised by dividing the foot-
printing signal by the Tn5 bias signals.

Statistical analysis

All statistical analyses were performed using GraphPad Prism (version
9.0) and R (version 4.3.3). For pairwise comparisons, the two-sided
Wilcoxon signed-rank test was employed. For multiple comparisons, P-
values were adjusted using the Benjamini-Hochberg method to con-
trol the false discovery rate. Specific statistical tests and significance
levels are detailed in the respective figure legends.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The datasets supporting the conclusions of this article are available in
the NCBI Sequence Read Archive with accession number
PRJNA1073020; SRR32538998 (IT-scATAC-seq of HEK293T cell line),
SRR32538997 (IT-scATAC-seq of K562 cell line), SRR32538996 (IT-
SCATAC-seq of H1 cell line), SRR27862248 (IT-scATAC-seq of mixed
species using HEK293T and NIH/3T3), SRR28081828 (IT-scATAC-seq of
mouse ESCs differentiation), and SRR28081827 (IT-scATAC-seq of
human PBMCs); GSM2970932 (sci-ATAC of GMI12878 and HL-60);
GSM5343842 (HyDrop-ATAC of mixture of human MCF-7 cells and
mouse melanoma cells. Other datasets used are available from [https://
bis.zju.edu.cn/chatac/] (fragment file of CH-ATAC of HEK293T and 3T3
cells), [https://github.com/dbrg77/plate_scATAC-seq] (quality control
metrics of plate-based and Cl-based scATAC-seq), [https://www.
10xgenomics.com/datasets] (quality control metrics of 10X Next
GEM V1.0 of mixture of GM12878 and A20 cells). Source data are
provided with this paper.
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