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Coding schemes in neural networks learning
classification tasks

Alexander van Meegen 1 & Haim Sompolinsky 1,2

Neural networks posses the crucial ability to generate meaningful repre-
sentations of task-dependent features. Indeed, with appropriate scaling,
supervised learning in neural networks can result in strong, task-dependent
feature learning. However, the nature of the emergent representations is still
unclear. To understand the effect of learning on representations, we investi-
gate fully-connected, wide neural networks learning classification tasks using
the Bayesian framework where learning shapes the posterior distribution of
the network weights. Consistent with previous findings, our analysis of the
feature learning regime (also known as ‘non-lazy’ regime) shows that the net-
works acquire strong, data-dependent features, denoted as coding schemes,
where neuronal responses to each input are dominated by its class member-
ship. Surprisingly, the nature of the coding schemes depends crucially on the
neuronal nonlinearity. In linear networks, an analog coding scheme of the task
emerges; in nonlinear networks, strong spontaneous symmetry breaking leads
to either redundant or sparse coding schemes. Our findings highlight how
network properties such as scaling of weights and neuronal nonlinearity can
profoundly influence the emergent representations.

The remarkable empirical success of deep learning stands in
strong contrast to the theoretical understanding of trained neural
networks. Although every single detail of a neural network is
accessible and the task is known, it is still very much an open
question how the neurons in the network manage to collabora-
tively solve the task. While deep learning provides exciting new
perspectives on this problem, it is also at the heart of more than a
century of research in neuroscience.

Two key aspects are representation learning and generalization. It
is widely appreciated that neural networks are able to learn useful
representations from training data1–3. But from a theoretical point of
view, fundamental questions about representation learning remain
wide open: Which features are extracted from the data? And how are
those features represented by the neurons in the network? Further-
more, neural networks are able to generalize even if they are deeply in
the overparameterized regime4–9 where the weight space contains a
subspace—the solution space—within which the network perfectly fits
the training data. This raises a fundamental question about the effect

of implicit and explicit regularization: Which regularization biases the
solution space towards weights that generalize well?

We here investigate the properties of the solution space using the
Bayesian framework where the posterior distribution of the weights
determines how the solution space is sampled10,11. For theoretical
investigations of this weight posterior, the size of the network is taken
to infinity. Crucially, the scaling of the network and task parameters, as
the network size is taken to infinity, has a profound impact: Neural
networks can operate in different regimes depending on this scaling.
Here, the relevant scales are the width of the networkN and the size of
the training data set P. A widely used scaling limit is the infinite width
limit where N is taken to infinity while P remains finite12–19. A scaling
limit closer to empirically trained networks takes both N and P to
infinity at a fixed ratio α = P/N20–26.

In addition to the scaling of P and N, the scaling of of the final
network output with N is important because it has a strong effect on
representation learning27–29 (illustrated in Fig. 1b,d). If the readout
scales its inputs with 1=

ffiffiffiffi
N

p
the network operates in the ‘lazy’ regime.
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Lazy networks rely predominantly on random features, and repre-
sentation learning is only a 1/N correction both for finite P18,30–33 and
fixed α20 (illustrated in Fig. 1c); in the latter case, it nonetheless affects
the predictor variance20,24,25. If the readout scales its inputs with 1/N the
network operates in the ‘non-lazy’ (also called mean-field or rich)
regime and learns strong, task-dependent representations34–40 (illu-
strated in Fig. 1e). However, the nature of the solution, in particular
how the learned features are represented by the neurons, remains
unclear. Work-based on a partial differential equation for the
weights34–37 only provides insight in effectively low dimensional set-
tings; investigations based on kernel methods38–41 average out impor-
tant structures at the single neuron level.

In this paper, we develop a theory for the weight posterior of non-
lazy networks in the limitN, P→∞. We show that the representations in
non-lazy networks trained for classification tasks exhibit a remarkable
structure in the form of coding schemes, where distinct groups of
neurons are characterized by the subset of classes that activate them.
Another central result is that the nature of the learned representation
strongly depends on the type of neuronal nonlinearity (illustrated in
Fig. 1e). We consider three nonlinearities: Linear, sigmoidal, and ReLU
leading to analog, redundant, and sparse coding schemes, respectively.
We start the manuscript with the learned representations on training
inputs in the simple setting of a toy task. Next, we analyze the dynamics
in weight space, focusing on spontaneous symmetry breaking. Moving
beyond the toy task, we investigate learned representations on training
and test inputs and generalization on MNIST and CIFAR10. The paper
concludes with a brief summary and discussion of our results.

Results
Non-lazy networks
We consider fully-connected feedforward networks with L hidden
layers and m outputs (Fig. 1a)

f rðx;ΘÞ= 1
N

XN
i= 1

ar
iϕ zLi ðxÞ

� �
, r = 1, . . . ,m, ð1Þ

where ϕ(z) denotes the neuronal nonlinearity, zLi ðxÞ the last layer
preactivation, and x is an arbitrary N0-dimensional input. The pre-
activations are z‘i ðxÞ= 1ffiffiffi

N
p

PN
j = 1 W

‘
ijϕ½z‘�1

j ðxÞ� in the hidden layers

ℓ = 2,…, L and z1i ðxÞ= 1ffiffiffiffiffi
N0

p PN0
j = 1 W

1
ijxj in the first layer. The activations

are ϕ½z‘i ðxÞ� and we assume for simplicity that the width of all hidden
layers is N. We call the last hidden layer ℓ = L the feature layer.

The trainable parameters of the networks are the readout and
hidden weights, which we collectively denote by Θ. The networks are
trained using empirical training data D= fðxμ, yμÞgPμ= 1 containing P
inputs xμ of dimension N0 and P targets yμ of dimension m (for clas-
sificationm is the number of classes). The N0 × Pmatrix containing all
training inputs is denoted byX; the P ×mmatrix containing all training
targets is denoted by Y.

Importantly, the multiplication with 1/N in (1) puts the network in
the non-lazy regime; a multiplication with 1=

ffiffiffiffi
N

p
corresponds to the

lazy regime. The importance of the multiplicative factor can be
understood geometrically: In the lazy regime (Fig. 1b), the feature layer
activations (called the feature vectors) ϕ½zLi ðxμÞ�, i = 1, …, N, are pre-
dominantly random resulting in a small overlap of Oð

ffiffiffiffi
N

p
Þ with the

readout vectorwhich requires a relatively large readout normalization,
1=

ffiffiffiffi
N

p
. In the non-lazy regime (Fig. 1d), the feature layer activations

exhibit a strong learned component, such that they have a large
overlap of O(N) with the readout vector, which makes the normal-
ization with 1/N in Eq. (1) appropriate. Put differently, for non-lazy
networks, the learned feature vectors and the readout vector are
aligned.

To study the properties of the network after learning, we
employ a Bayesian framework where, following learning, the
parameters Θ are drawn from a posterior distribution
PðΘÞ= 1

Z P0ðΘÞ exp �βLðΘÞ½ � where P0(Θ) is a Gaussian prior, LðΘÞ a
mean squared error loss, and Z the normalization constant (see
Methods for details). We denote expectations w.r.t. the weight
posterior by 〈⋅〉Θ. In the “zero temperature limit” β → ∞ any set of
parameters Θ drawn from the posterior corresponds to a network,
which perfectly solves the training task.
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Fig. 1 | Overview of lazy and non-lazy regimes. a Sketch of the network with two
hidden layers (L= 2) and twooutputs (m = 2).b,d Last layer feature space in the lazy
regime where predominantly random features are almost orthogonal to the read-
out weight vector (b) and in the non-lazy regimewhere learned features are aligned
to the readout weight vector (d). c, e Kernels and activations of feature layer

neurons in lazy (c) and non-lazy (e) networks for a binary classification task and
three neuronal nonlinearities (linear, sigmoidal, and ReLU). For ReLU networks,
only the 20 most active neurons are shown. In (e), all three kernels show a similar,
pronounced task-learned structure. However, the patterns of activation are strik-
ingly different.
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The geometrical intuition given above about the effect of non-lazy
scaling of the output implicitly assumed that the individual compo-
nents of both the readout vectors as well as the feature vectors are of
O(1), hence their norms are ofOð

ffiffiffiffi
N

p
Þ. However, learning could change

the order of magnitude of these norms, for example, during learning
the readout weights could grow by a factor

ffiffiffiffi
N

p
which would trivially

undo the non-lazy scaling and result in a network operating in the lazy
regime, despite the O(1/N) scaling of the output. To control the
properties of the network after learning within the Bayesian frame-
work, we adjust in particular the prior variance of the readout weights
σ2
a such that all preactivation norms as well as the norm of the readout

weights are Oð
ffiffiffiffi
N

p
Þ. In summary, we consider networks drawn from a

weight posterior such that they are perfectly trained and such that the
non-lazy scaling is not trivially undoneby learning, allowing us to study
the salient properties of learning in non-lazy networks.

To understand the properties of the emergent representations,
we develop amean-field theoryof theweight posterior. To this end, we
consider the limit N, N0, P → ∞ while the number of readout units, as
well as the number of layers remain finite, i.e.,m, L = O(1). The relation
between P and the size parameters will be discussed below.

Kernel and coding schemes
The properties of learned representations are frequently investigated
using the kernel20,39,42,43, which measures the overlap between the
neurons’ activations at each layer induced by pairs of inputs:

K‘ðx1,x2;ΘÞ= 1
N

XN
i = 1

ϕ z‘i ðx1Þ
� �

ϕ z‘i ðx2Þ
� � ð2Þ

where the inputs x1, x2 can be either from the training or the test set.
We denote the posterior averaged kernel by K‘ðx1,x2Þ=
hK‘ðx1,x2;ΘÞiΘ; the posterior averaged P × P kernel matrix on all
training inputs is denoted by Kℓ. In addition to capturing the learned
representations, the kernel is a central observable because it deter-
mines the statistics of the output function in wide networks12–15.

Crucially, the kernels are insensitive to how the learned features
are represented by the neuronal activations. Consider, for example,
binary classification in two extreme cases: (1) Each class activates a
single (different) neuron and all remaining neurons are inactive; (2)
each class activates half of the neurons and the remaining half of the
neurons are inactive. In both scenarios the kernels agree up to an
overall scaling factor despite the drastic difference in the underlying
representations (illustrated in Fig. 1e).

The central goal of our work is to understand the nature of the
representations using a theory that goes beyond kernel properties. To
this end, we use the notion of a neural code, which we define as the
subset of classes that activate a given neuron (see Table 1). At the
population level, this leads to a “coding scheme”: The collection of
codes implemented by the neurons in the population. As we will show
the coding schemes encountered in our theory are of three types
(illustrated in Fig. 1e): (1) Sparse coding where only a small subset of
neurons exhibit codes (as in the first scenario above). (2) Redundant

coding, where all the codes in the scheme are shared by a large subset
of neurons (as in the second scenario above). (3) Analog coding where
all neurons respond to all classes but with different strengths.

Surprisingly, the nature of the learned representations varies
drastically with the choice of the activation function of the hidden
layer, ϕ(z), although the kernel matrix is similar in all cases (Fig. 1e).
Specifically, in the linear case, ϕ(z) = z, the coding is analog, in the
sigmoidal case, ϕðzÞ= 1

2 ½1 + erfð
ffiffiffiffi
π

p
z=2Þ�Þ, the coding is redundant, and

in the case of ReLU, ϕðzÞ= maxð0, zÞ, the coding is sparse.

Main theoretical result
To explain the emergence of the coding schemes, we have derived a
mean-field theory for the kernels, the learned representations, the
input-output function (predictor statistics) as well as the performance
of the networks, which applies to general distributions of inputs and
outputs (see supplements A-C). To illustrate the theoretical predic-
tions regarding the learned representations, we first employ a toy
classification task where all inputs xμ are mutually orthogonal,
1
N0

x>
μ xν = δμν , and the class memberships are randomly assigned. The

corresponding targets yμ are one-hot encoded: If xμ belongs to the r-th
class, the r-th element of yμ is y+, and all other elements are y−. The
simplicity of the data allows for extensive numerical evaluations across
parameters. Later, we will show results for MNIST44 and CIFAR1045

image classification, where representations of both training and test
inputs are shown, and the consequences for the generalization per-
formance are investigated.

A general, remarkable outcome of the theory is that the joint
posterior of the readout weights and the activations factorizes across
neurons and layers,

YN
i= 1

½PðaiÞPðzLi jaiÞ�
YL�1

‘ = 1

YN
j = 1

Pðz‘j Þ
" #

, ð3Þ

where ai denotes the m-dimensional vector containing the readout
weights for neuron i and z‘i denotes the P-dimensional vector containing
the preactivations of neuron i on all training inputs. Importantly, while
the feature layer representations zLi depend on the corresponding
readout vector, ai, the distribution of the activations of previous layers
are completely decoupled, so that evenwhen the readout and top layers
break permutation symmetry, this broken symmetry does not affect
lower layers as we will see below. The form of the posteriors of both
readout weights and preactivations depends on the nature of the neu-
ronal activation functions. Belowwepresent thekey results of the theory
for the different activation functions (further details in supplements A-C
for linear, sigmoidal, and ReLU, respectively).

Analog coding scheme
We begin with linear networks ϕ(z) = z. In this case, the single neuron
readout posterior P(ai) is Gaussian, PðaiÞ=N ðai j0,UÞ, where U is a
m × m matrix determined by UL+ 1 = σ2L

a Y>K�1
0 Y with the input kernel

K0 =
1
N0

X>X . Because Y>K�1
0 Y =OðPÞ, where P is the size of the train-

ing set, the predicted norm-squared of the posterior readout weights
grows with σ2L

a P where σ2
a is the readout weights variance of the prior

and L is the network depth. Hence, to prevent growth of the norm of
the readout weights with P we set σ2

a = 1=P
1=L. Furthermore, the pos-

terior mean of the feature layer activations zLi , conditioned on ai, is
YU−1ai, whereY is the training labelmatrix, yielding an analog coding of
the task where the strength of the code is determined by the strength
of the Gaussian distributed readout weight ai.

For linear networks, the single neuron posterior of the activations
in the lower layers ℓ < L is a multivariate Gaussian: Pðz‘i Þ=N ðz‘i j0,K ‘Þ
for ℓ = 1, …, L − 1, where the covariance is given by the kernel matrix
K ‘ =K0 + σ

2ðL�‘Þ
a YU�ðL�‘ + 1ÞY> consisting of a contribution K0 due to

the prior and a learned low-rank contribution σ2ðL�‘Þ
a YU�ðL�‘ + 1ÞY>. The

strength of the learned part increases across layers, σ2ðL�‘Þ
a = 1=P1�‘

L. In

Table 1 | Glossary of neural coding terminology

Term Definition

code The subset of classes that activate a neuron.

coding scheme The collection of codes implemented by a neuronal
population.

sparse coding Only a small subset of neurons exhibit codes.

redundant coding All the codes in the scheme are shared by a large subset
of neurons.

analog coding All neurons respond to all classes but with different
strengths.
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the last layer, it is O(1), indicating that even in the linear case the
network learns strong features with a strength that increases across
layers, culminating in anO(1) contribution in the feature layer. This is in
strong contrast to the lazy case where the learned contribution to the
kernels is suppressed by 1/N in all layers20.

A sample of the analog coding scheme is shown in Fig. 2b for the
single-hidden-layer network on the toy classification task. For the task,
we use three classeswith unequal proportions: half of the training inputs
belong to the first class, and the remaining inputs belong to the other
two classes with equal ratios. The corresponding structure is clearly
recognizable in the activations. Furthermore, the activations are sorted
by their mean squared activity, which shows the analog nature of the
code: There is a continuous gradient from weakly to strongly coding
neurons. In linewith theGaussian readoutposterior, the readout vectors
display no clear structure (Fig. 2a), but in combination with the activa-
tions, they are perfectly adjusted to solve the task (Fig. 2c).

We show a sample of the lower layer activations in Fig. 3 for a
three-hidden-layer network and the toy task with three classes. In
contrast to the feature layer activations (Fig. 3c), the learned structure
is hardly apparent in the first layers (Fig. 3a, b). Corresponding to the
theory, the learned low-rank contribution to the kernel increases in
strength across layers (Fig. 3d–f) until the kernel perfectly represents
the task in the last layer.

Redundant coding scheme
We now consider nonnegative sigmoidal networks, ϕðzÞ=
1
2 ½1 + erfð

ffiffiffiffi
π

p
z=2Þ�. To avoid growth of the readout weights with P we

must choose σ2
a = 1=P for arbitrary depth (see supplement B).

With sigmoidal nonlinearity, the readout posterior is drastically
different from Gaussian: It is a weighted sum of Dirac deltas
PðaiÞ=

Pn
γ = 1 Pγδðai � aγÞwhere the weights Pγ and them-dimensional

vectors aγ are determined jointly for all γ = 1, …, n by a set of self-
consistency equations which depend on the training set (see supple-
ment B.1). Thismeans that the vector of readout weights is redundant:
Each of the N neurons chooses one of n possible readout weights aγ

with a probability Pγ. The number of distinct readout weights n
determines the number of codes employed by the network.

The readout weights ai determine the last layer preactivation zLi
through the single neuron conditionaldistributionPðzLi jaiÞ. Due to the

redundant structure of the readout posterior, a redundant coding
scheme emerges in which, on average, a fraction Pγ of the neurons
exhibit identical preactivation posteriors PðzLi jaγÞ. These posteriors
have pronounced means that reflect the structure of the task and the
code but also significant fluctuations around the mean which do not
vanish in the limit of large N and P (see Fig. 4c).

For the single-hidden-layer network on the toy task with three
classes, the redundant coding of the task is immediately apparent
(Fig. 2b) but also the remaining fluctuations across inputs from the
same class are visible. In this example, there are four codes: 1-1-0, 0-1-1,
1-0-1, and 1-1-1. Note that the presence of code 1-1-1, which is imple-
mented only by a small fraction of neurons, is accurately captured by
the theory (Fig. 4a middle peak). The relation between the neurons’
activations and their readout weights is straightforward: For neurons
with code 1-1-0, the readoutweights are positive for classes 0 and 1 and
negative for class 2 (Fig. 2a), and vice versa for the other codes, leading
to a perfect solution of the task (Fig. 2c).

Clearly, this coding scheme with four codes is not a unique solu-
tion. Indeed, the theory admits other coding schemes which are,
however, unlikely to occur (see supplement B.1). Interestingly, the
details of the coding scheme depend on the choice of values for the
targets yrμ; for example, increasing y− from 0.1 to 0.5 in the above toy
task leads to successive transitions between four different coding
schemes (see supplement E).

The posterior of the preactivations Pðz‘i Þ in the lower layers ℓ < L
is multimodal with each mode corresponding to a code (see supple-
ment B.1). Since all neurons sample independently from Pðz‘i Þ, a
redundant coding schemeemergeswhere all neurons coming from the
same mode of Pðz‘i Þ share their code. Due to the appearance of a
coding scheme in the activations, the corresponding kernels posses a
strong low-rank component reflecting the task.Weuse the toy task and
a three-hidden-layer network to show the redundant coding schemes
across layers (Fig. 3a–c) and the corresponding kernels (Fig. 3d–f). For
the feature layer representations, the main impact of the increased
depth is a reduction of fluctuations across inputs from the same class
(Fig. 2b vs. Fig. 3c)—the coding scheme “sharpens”. Across layers, the
coding scheme sharpens from the input to the feature layer (Fig. 3a–c).
Furthermore, the coding scheme can vary across layers, e.g., there are
five codes in the first layer (Fig. 3a) and six codes in the second and
third layers (Fig. 3b, c).

Sparse coding scheme
Last, we consider ReLU networks, ϕðzÞ= maxð0, zÞ. Here we set
σ2
a = 1=P

1=L as in the linear case owing to the homogeneity of ReLU. For
the theory we consider only single-hidden-layer networks L = 1.

The nature of the readout posterior is fundamentally different
compared to the previous two cases: It factorizes into a small number
n =O(1) of outlier neurons and a remaining bulk of neurons,Qn

i= 1½PiðaiÞ�
QN

i=n+ 1½PðaiÞ�. The readout posteriors of the outlier neu-
rons i = 1,…, n are Dirac deltas atOð

ffiffiffiffi
N

p
Þ values, PiðaiÞ= δðai �

ffiffiffiffi
N

p
�aiÞ.

For the bulk neurons i = n + 1,…, N, the readout weight posterior is a
single Dirac delta with a probability mass ofO(1), P(ai) = δ(ai − a0). The
values of a0 and �ai are determined self-consistently (see
supplement C.1).

The feature layer representations are determined by the condi-
tional distribution of the preactivations. For the outliers, the pre-
activation posterior is a Dirac delta at Oð

ffiffiffiffi
N

p
Þ values,

Pðzi j
ffiffiffiffi
N

p
�aiÞ= δðzi �

ffiffiffiffi
N

p
�ziÞ. Thus, for the n = O(1) outlier neurons the

Oð
ffiffiffiffi
N

p
Þ preactivations and readout weights exploit the homogeneity of

the activation function to jointly overcome the non-lazy scaling. All
N−nneuronsof thebulk are identically distributed according to anon-
Gaussian posterior P(zi ∣ a0), which means that the neurons from the
bulk share the same code.

In total, the bulk and outliers provide n + 1 codes. Since m codes
are necessary to solve a task, the minimal number of outliers is

Fig. 2 | Coding schemes in the feature layer for linear (top), sigmoidal (middle),
and ReLU (bottom) nonlinearity. a Sample of the readout weight vectors of all
three classes. For ReLU, only readout weights of the nine most active neurons are
shown.bActivations on all training inputs for a givenweight sample. For ReLU, only
the ninemost active neurons are shown. cNetwork output for theweighted sample
shown in (a, b). The output perfectly matches the one-hot coding of the task where
the first half of the inputs belong to the first class, and the remaining inputs belong
to the two remaining classes with equal proportions.
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n = m − 1; if the bulk is task agnostic the minimal number of outliers
increases to n =m. On the toy taskwith three classes, the latter occurs:
There are three outliers coding for a single class each while the bulk is
largely task agnostic (Fig. 2b). The relation between outlier readout
weights and activations is straightforward: Readout weights for the
outlier neurons are positive for the coded class and negative otherwise
(Fig. 2a) leading in combination to a perfect solution of the
task (Fig. 2c).

We investigate deeper ReLU networks only empirically. For a
three-hidden-layer network on the toy task, all layers display task-
dependent representations (Fig. 3a–c): The first layer displays a
sparse coding scheme with two outlier neurons coding for the sec-
ond and third class and a bulk which is active on all classes, the
second layer a coding schemewith redundant outliers coding for the
first and second class, and the feature layer a sparse coding scheme
with three outlier neurons coding for one class each as in the single-
hidden-layer case. Corresponding to the task-dependent repre-
sentations, the kernels posses low-rank components in all layers,

which increase in strength towards the feature layer (Fig. 3d–f). For
the feature layer representations, increasing the depth has no effect:
Already for a single hidden layer there are no fluctuations across
inputs from the same class, thus the sparse coding scheme cannot
sharpen, unlike the redundant coding scheme in sigmoidal
networks.

Dynamics
So far, we considered a single sample drawn from the weight posterior
to reveal the structure of a typical solution. Next, we investigate the
impact of this structure on the dynamics of readout weights and
representations during sampling from the posterior.

For linear networks, the posteriors of both readout weights
(Fig. 4a) and activations (Fig. 4c) are Gaussian and thus unimodal.
During sampling, their single peak is fully explored by any given
readout weight (Fig. 4b) and activation (Fig. 4d).

In sigmoidal networks the readout posterior splits into dis-
connected branches (Fig. 4a). This leads to a fundamental con-
sequence of the theory: For any given neuron sampling is restricted to
one of the branches of the posterior (Fig. 4b), i.e., ergodicity is broken.
Since the readout weights determine the code through the conditional
distribution PðzLi jaγÞ (Fig. 4c),fixing the readoutweights impliesfixing
the code, despite the non-vanishing fluctuations of preactivations
(Fig. 4d). This has an important consequence for the permutation
symmetry of fully connected networks: The permutation symmetry
cannot be restored dynamically. In the linear case, all permutation
symmetric solutions are visited during sampling, i.e., permutation
symmetry is restored through the dynamics, while in the sigmoidal
case, the neurons cannot permute across codes, and the permutation
symmetry remains broken.

Remarkably, there is a fundamental difference between the lower
layers and the feature layer in sigmoidal networks: In the feature layer,
a neuron’s code is fixed, but not in the lower layers (Fig. 5). This can
be understood from the factorization of the posterior across layers,
Eq. (3), where the lower layers are decoupled from the feature layer
and thus not affected by the permutation symmetry breaking in the
feature layer. Although the individual neurons change their code
during sampling, the global structure of the code is preserved: For
each weight sample, the neurons can be reordered such that the
coding scheme is apparent (Fig. 5c, d).

Similar to the sigmoidal case, the readout posterior of ReLU net-
works splits into disconnected branches which correspond to the bulk
and the outliers (Fig. 4a). Again, this implies ergodicity breaking:
During sampling the readout weights are restricted to their branch of
the posterior (Fig. 4b). Corresponding to the fixed readout weights

Fig. 4 | Feature layer dynamics for linear (top), sigmoidal (middle), and ReLU
(bottom) nonlinearity. a Readout weight posterior on first class; theoretical dis-
tribution as black dashed line (for sigmoidal networks with finite P correction, see
supplement B.1).bReadoutweightdynamics for selectedneuronsduring sampling.
c Last-layer-preactivation posterior on inputs from the first class; theoretical dis-
tribution as black dashed line. For sigmoidal and ReLU networks distributions
conditioned on selected codes are shown. d Last-layer-preactivation dynamics
during sampling. Neurons selected corresponding to the distributions shown in c.
preact., preactivation.

Fig. 3 | Lower layer representations in linear (top), sigmoidal (middle), and ReLU (bottom) networks with three hidden layers. a–c Activations on all training inputs
for a given weight sample across layers. For ReLU, only the nine most active neurons are shown. d–f Posterior-averaged kernels on training inputs across layers.
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also the code is fixed: The outlier neurons do not permute, and the
bulk neurons remain in the bulk during sampling (Fig. 4d). In contrast
to the sigmoidal case and the bulk neurons, the activations of outlier
neurons freeze as well; otherwise fluctuations cannot average out
across neurons in the final readout. While the details between sig-
moidal and ReLU networks differ, in both cases, permutation sym-
metry is broken.

Generalization
Going beyond the training data, we investigate generalization to
unseen test inputs. We consider both the representations of the test
inputs, quantified by the posterior-averaged kernel
K‘ðx1,x2Þ= hK‘ðx1,x2;ΘÞiΘ, as well as the generalization performance
of the mean predictor f rðxÞ= hf rðx;ΘÞiΘ.

To extend the theory to account for test inputs, we include the P*
dimensional vector of test activations z‘, *i with elements z‘i ðx*

μÞ on a set
of test inputs x*

μ, μ = 1,…, P*, in the joint posterior. The joint posterior
still factorizes across neurons and layers into single neuron posteriors
PðzL, *i jzLi ÞPðzLi jaiÞPðaiÞ in the last layer and Pðz‘, *i jz‘i ÞPðz‘i Þ in the pre-
vious layers ℓ < L. For all nonlinearities, the distribution of the test
preactivations conditioned on the training preactivations, Pðz‘, *i jz‘i Þ, is
Gaussian in all layers ℓ = 1, …, L (see supplements A.2, B.2, C). This
allows to compute themeanpredictor aswell as the kernel on arbitrary
inputs.

An important result of the theory is that the fluctuations of

the predictor hδf rðx;ΘÞ2iΘ can be neglected, unlike in lazy
networks20. This implies that the (non-negative) variance contribu-

tion from the bias-variance decomposition h½yrμ � f rðxμ;ΘÞ�2i
Θ
=

½yrμ � f r ðxμÞ�2 + hδf rðxμ;ΘÞ2i
Θ

is absent in the generalization

error εr =
1
P*

PP*
μ= 1 h½ yr, *μ � f rðx*

μ;ΘÞ�2i
Θ
. The remaining generalization

error εr =
1
P*

PP*
μ= 1 ½yrμ � f rðxμÞ�2 is, therefore, reduced compared to

the lazy case.

For linear networks, the mean predictor evaluates to

f ðxÞ=Y>K�1
0 k0ðxÞ with k0ðxÞ= 1

N0
X>x and K0 =

1
N0

X>X and the

posterior averaged kernel is K‘ðx1,x2Þ= κ0ðx1,x2Þ+ σ2ðL�‘Þ
a

f ðx1Þ>U�ðL�‘+ 1Þf ðx2Þ with κ0ðx1,x2Þ= 1
N0

x>
1 x2 (see supplement A.2).

The test kernel is identical to the training kernel except that the
training targets are replaced by the predictor. As in the training kernel,
the learned part is low rank and becomes more prominent across
layers, reaching O(1) in the last layer. Remarkably, despite the strong
learned representations, the mean predictor is identical to the lazy
case20 and the Gaussian Process (GP) theory (see supplement D.3). In
contrast to the lazy case, the varianceof thepredictor can beneglected
(see supplement A.3).

We apply the theory to the classification of the first three digits
of MNIST. The nature of the solution is captured by an analog
coding scheme, as in the toy task, which generalizes to unseen test
inputs (Fig. 6a). The generalization of the representations is con-
firmed by the test kernel which has a block structure corresponding
to the task (Fig. 6b). Also the mean predictor generalizes well

(Fig. 6c) and the class-wise generalization error is reduced com-
pared to the GP theory (Fig. 6d). Since the mean predictors are
identical for non-lazy networks and the GP theory, the reduced
generalization error is exclusively an effect of the reduced variance
of the predictor.

For sigmoidal networks, the mean predictor combines
contributions from all n codes employed by the network,
f r ðxÞ=

Pn
γ = 1 Pγa

r
γhhϕ½zLðxÞ�izLðxÞjzL izLjaγ

(see supplement B.2). Similarly,

the feature layer kernel is composed of the contributions from all
codes KLðx1,x2Þ=

Pn
γ = 1 Pγhhϕ½zLðx1Þ�ϕ½zLðx2Þ�izLðx1Þ, zLðx2ÞjzL izLjaγ

.

We apply the theory again to the classification of the first three
digits inMNISTwith a single-hidden-layer network. Tomake the theory
tractable, we neglect the fluctuations of the preactivation conditioned
on the readout weights. The test activations display a clear redundant
coding schemewith small deviations on certain test inputs (Fig. 6a). In
the test kernel, this leads to a clear block structure (Fig. 6b). Themean
predictor is close to the test targets except on particularly difficult test
inputs and accurately captured by the theory (Fig. 6c); the resulting
generalization error is smaller than its counterpart based on the GP
theory (Fig. 6d). Similar to linear networks, reduction of the general-
ization error is mainly driven by the reduced variance of the predictor
although in this case also the non-lazy mean predictor performs
slightly better.

Using randomly projected MNIST to enable sampling in the
regime P > N0 leads to similar results—a redundant coding scheme on
training inputs and good generalization (see supplement E). In con-
trast, using the first three classes of CIFAR10 instead of MNIST with
P = 100 still leads to a redundant coding on the training inputs but the
coding scheme is lost on test inputs, indicating that the representa-
tions do not generalize well, which is confirmed by a high general-
ization error (see supplement E). Increasing the data set size to all ten
classes and the full training set with P = 50, 000 inputs and using a two-
hidden-hidden layer network with N = 1 000 neurons improves the
generalization to an overall accuracy of 0.45; in this case, the feature
layer training activations show a redundant coding schemeon training
inputs (Fig. 7b) which generalize to varying degree to test
inputs (Fig. 7e).

For ReLU networks themean predictor comprises the contributions

from the bulk and the outliers, f r ðxÞ=ar
0hhϕ½zðxÞ�izðxÞjzizja0

+Pn
i = 1�a

r
iϕð�ziðxÞÞ with �ziðxÞ= �z>i K

+
0 k0ðxÞ for i = 1, …, n. As in the other

cases, the predictor variance can be neglected. The test kernel is also
composed of the contributions from the bulk and the outliers,
Kðx1,x2Þ= hhϕ½zðx1Þ�ϕ½zðx2Þ�izðx1Þ, zðx2Þjzizja0

+
Pn

γ = 1 ϕ½zγðx1Þ�ϕ½zγðx2Þ�.
Note that for the outliers, the product of two Oð

ffiffiffiffi
N

p
Þ activations jointly

overcomes the 1/N in the kernel, Eq. (2), similar to the predictor where
theOð

ffiffiffiffi
N

p
Þ readout weights and theOð

ffiffiffiffi
N

p
Þ activations jointly overcome

the non-lazy scaling.
On thefirst threedigits ofMNIST, the test activations exhibit three

outliers which code for one class each (Fig. 6a), leading to a test kernel
that displays a clear block structure due to the outliers (Fig. 6b). The
meanpredictor is accurately captured by a theorywhichonly takes the
outliers into account (Fig. 6c). In terms of the generalization error, the
non-lazy network outperforms the GP predictor (Fig. 6d), againmainly
due to the reduction of the predictor variance.

Discussion
We developed a theory for the weight posterior of non-lazy networks
in the limit of infinite width and data set size, from which we derived
analytical expressions for the single neuron posteriors of the readout
weights and the preactivation on training and test inputs. These single
neuron posteriors revealed that the learned representations are
embedded into the network using distinct coding schemes. Further-
more, we used the single neuron posteriors to derive the mean

Fig. 5 | Dynamics in the first layer of a two-hidden-layer sigmoidal network.
a Preactivation dynamics of selected first layer neurons on the first training input
during sampling. b, c Activations of all neurons using first (b) and last (c) weight
sample. d Reordered activations shown in c. preact., preactivation.
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predictor and themean kernels on training and test inputs.We applied
the theory to two classification tasks: A simple toy model using
orthogonal data and random labels to highlight the coding schemes
and image classification using MNIST and CIFAR10 to investigate
generalization. In both cases, the theoretical results are in excellent
agreement with empirical samples from the weight posterior.

Coding schemes
We show that the embedding of learned representations by the neu-
rons exhibits a remarkable structure: A coding scheme where distinct
populations of neurons are characterized by the subset of classes that
activate them. The details of the coding scheme depend strongly on
the nonlinearity (Fig. 2): Linear networks display an analog coding
scheme where all neurons code for all classes in a graded manner,
sigmoidal networks display a redundant coding scheme where large
populations of neurons are active on specific combinations of classes,
and ReLU networks display a sparse coding scheme in which a few
individual neurons are active on specific classes while the remaining
neurons are task agnostic. In networks withmultiple hidden layers, the
coding scheme appears in all layers but is sharpened across layers; the
coding scheme in the last layer remains the same as in the single-layer
case (Fig. 3).

We have shown that the analog coding scheme is a unique feature
of linear networks, that a redundant coding scheme emerges for sig-
moidal nonlinearities, and that the sparse coding scheme appears for
rectified activation functions. The sparse coding scheme does not
appear to be the result of the non-smoothness or the homogeneity of
the ReLU nonlinearity. In fact, this scheme also arises for
ϕðzÞ= logð1 + ez Þ and ϕðzÞ= maxð0, z2Þ (see supplement E).

Sparse representations have classically been associated with rec-
tified nonlinearities in combination with L1 regularization in both
neuroscience46,47 and machine learning48. Moreover, it was recently
shown that input noise can induce sparse representations in ReLU
networks without L1 regularization49. In our case, the sparse repre-
sentations emerge with L2 instead of L1 regularization on the weights
and without input noise.

The fact that L2 regularization is frequently employed in practice
raises the question: Why were the coding schemes not previously
observed? Compared to standard training protocols, there are two
main differences: (1) The sampling from the posterior, i.e., training for
a long time with added noise, and (2) the data set size-dependent
strength of the readout weight variance, which corresponds to a data
set size dependent regularization using weight decay. Empirically, we

see that a clear redundant coding scheme emerges also in the absence
of noise and data set size-dependent regularization on the toy task
(see supplement E), indicating the the coding scheme char-
acterizes the minimum norm solution. However, in general, we
expect that the minimum norm solution is separated from
the initialization by barriers such that noise is necessary to
overcome these barriers. Adding noise, in turn, requires the
stronger regularization implemented through the scaled readout
weight variance (see supplement E). Furthermore, we note that
the final coding schemes only emerge after orders of magnitude
more training steps (see supplement E).

From a theoretical perspective, we hypothesize that the coding
schemes were elusive because they are not captured by the kernel,
which is a frequently used observable in theoretical studies26,38–41.
Furthermore, the coding schemes are controlled by the distribution of
the readout weights, which have been marginalized in previous
work18,25,26,41,50. Here, we established the readout weights themselves as
crucial order parameters controlling the properties of the learned
representations.

Permutation symmetry breaking
The coding schemes determine the structure of a typical solution
sampled from the weight posterior, e.g., for sigmoidal networks, a
solution with a redundant coding scheme. Due to the neuron permu-
tation symmetry of the posterior, each typical solution has permuted
counterparts which are also typical solutions. Permutation symmetry
breaking occurs if these permuted solutions are disconnected in
solution space, i.e., if the posterior contains high barriers between the
permuted solutions.

In sigmoidal and ReLU networks, permutation symmetry is bro-
ken. The theoretical signature of this symmetry breaking is the dis-
connected structure of the posterior of the readoutweights,where the
different branches are separated by high barriers. Numerically, sym-
metry breaking is evidenced by the fact that, at equilibrium, neurons
do not change their coding identity with sampling time. We note that
for the readout weights, the symmetry broken phase is also a frozen
state, namely not only the coding structure is fixed, but also there are
no fluctuations in the magnitude of each weight (Fig. 2). In contrast,
activations in the hidden layer, which are also constant in their coding,
do exhibit residual temporal fluctuations around a pronounced mean
which carries the task-relevant information.

Interestingly, the situation is more involved in networks with two
hidden layers (Fig. 4). In the first layer, permutation symmetry is bro-
ken, and the neurons’ code is frozen in ReLU networks but not in
sigmoidal networks. In the latter case, the typical solution has a

Fig. 6 | Generalization in single-hidden-layer networks on MNIST for linear
(top), sigmoidal (middle), and ReLU (bottom) nonlinearity. a Activations of all
neurons on 100 test inputs for a given weight sample; for ReLU only the ten most
active neurons are shown. b Posterior-averaged kernel on 100 test inputs. c Mean
predictor for class 0 from sampling (gray) and theory (black dashed).
dGeneralization error for each class averaged over 1000 test inputs from sampling
(gray bars), theory (black circles), and GP theory (back triangles). gen. error,
generalization error.

Fig. 7 | Generalization of two-hidden-layer sigmoidal networks trained on full
CIFAR10 training set. a,b,d, eActivationsof 100 randomly selectedfirst (a,d) and
second (b, e) layer neurons on 1000 randomly selected training (a,b) and test (d, e)
inputs for a given weight sample. c Readout weights of all three classes for the
100 selected neurons. f Predictor for first class using the weighted sample used in
the other panels (gray) and test target (black).
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prominent coding scheme, but individual neurons switch their code
during sampling.

Symmetry breaking has been frequently discussed in the context
of learning in artificial neural networks, for example, replica symmetry
breaking in perceptrons with binary weights51–53, permutation sym-
metry breaking in fully connected networks54,55 and restricted Boltz-
mann machines56, or continuous symmetry breaking of the “kinetic
energy” (reflecting the learning rule)57,58. Furthermore, the breaking of
parity symmetry has been linked to feature learning50, albeit in a dif-
ferent scaling limit. The role of an intact (not broken) permutation
symmetry has been explored in the context of the connectedness of
the loss landscape59–61. Here, we establish a direct link between sym-
metry breaking and the nature of the neural representations.

Limitations of the theory
For our theory, we assume that the network width N and the data set
size P are large, formally captured by the limitN, P→ ∞. Both limits are
necessary for the coding schemes to emerge. Surprisingly, the limits
are not coupled in the theory, i.e., we do not need to assume a fixed
ratio α = P/N. Correspondingly, we observe a redundant coding
scheme for a N = 1000 sigmoidal network using the full CIFAR10
training set with P = 50, 000. Still, we expect that our theory ceases to
hold close to the network’s capacity, i.e., when P = O(N2).

A second important assumption is that we work in the zero tem-
perature limit where the posterior is restricted to the solution space.
Which aspects of the theory hold at higher temperatures is an
important open question. Empirically, we observe a critical tempera-
ture above which there is no longer a redundant coding scheme for
sigmoidal network (see supplement E).

Our theory is valid only if the number of hidden layers and the
number of outputs is small. The extension to deeper networks, in
particular networks with residual connections, or to networks with a
large number of outputs, as necessary, for example, for ImageNet, are
interesting questions for future research.

Neural collapse
The redundant coding scheme in sigmoidal networks and the sparse
coding scheme in ReLU networks are closely related to the phenom-
enon of neural collapse62. The two main properties of collapse are (1)
vanishing variability across inputs from the same class of the last
layer activations and (2) last layer activations forming an equiangular
tight frame (centered class means are equidistant and equiangular
with maximum angle). There are two additional properties which,
however, follow from the first two under minimal assumptions62. We
note that collapse is determined only by training data in the original
definition.

Formally, the first property of collapse is violated in the non-lazy
networks investigated here due to the non-vanishing across-neuron
variability of the activations given the readout weights. However, the
mean activations conditional on the readout weights, which carry the
task-relevant information, generate an equiangular tight frame in both
sigmoidal and ReLU networks. This creates an interesting link to
empirically trained networks where neural collapse has been shown to
occur under a wide range of conditions62,63.

Neglecting the non-vanishing variability, the main difference
between neural collapse and the coding schemes is that the latter
imposes a more specific structure. Technically, the equiangular tight
frame characterizing neural collapse is invariant under orthogonal
transformations, while the coding schemes are invariant under per-
mutations, which is a subset of the orthogonal transformations. This
additional structure makes the representations highly interpretable in
terms of a neural code—conversely, applying, e.g., a rotation in neuron
space to the redundant or sparse coding scheme would hide the
immediately apparent structure of the solution.

Representation learning and generalization
The case of non-lazy linear networks makes an interesting point about
the interplay between feature learning and generalization: Although
the networks learn strong, task-dependent representations, the mean
predictor is identical to the Gaussian Process limit where the features
are random. The only difference between non-lazy networks and ran-
dom features is a reduction in the predictor variance. Thus, this pro-
vides an explicit example where feature learning only mildly helps
generalization through the reduction of the predictor variance.

More generally, in all examples, the improved performance of
non-lazy networks (Fig. 6) is mainly driven by the reduction of the
predictor variance; the mean predictor does not generalize sig-
nificantly better than a predictor based on random features. This
shows an important limitation of our work: In order to achieve good
generalization performance, it might be necessary to consider deeper
nonlinear architectures or additional structures in themodel. This is in
line with recent empirical results which try to push multi-layer per-
ceptrons to better performance64.

While the learned representations might not necessarily help
generalization on the trained task, they can still be useful for few-shot
learning of a novel task65–68. Indeed, neural collapse has been shown to
be helpful for transfer learning if neural collapse still holds (approxi-
mately) on inputs from the novel classes69. Due to the relation between
coding schemes and neural collapse, this suggests that the learned
representations investigated here are useful for downstream tasks—if
the nature of the solution does not change on the new inputs. This
remains to be systematically explored.

Lazy vs. non-lazy regime
The definition of a lazy vs. non-lazy regime is subtle. Originally, the lazy
regime was defined by the requirement that the learned changes in
the weights affect the final output only linearly70. This implies that the
learned changes in the representations are weak since changes in
the hidden layer weights nonlinearly affect the final output. To over-
come the weak representation learning, the non-lazy regime was
defined as O(1) changes of the features during the first steps of gra-
dient descent38,39. This definition leads to an initialization where the
readout scales its inputs with 1/N39. However, the scalingmight change
during training—which is not captured by a definition at initialization.

We here define the non-lazy regime such that the readout scales
its inputs with 1/N after learning, i.e., under the posterior. Importantly,
we prevent the readoutweights overcome the scaling by growing their
norm,which leads to the requirement of a decreasing prior variance of
the readout weights with increasing P. The definition implies that
strong representations are learned: The readout weights must be
aligned with the last layer’s features on all training inputs, which is not
the case for random features.

Methods
Weight posterior
The weight posterior is20

PðΘÞ= 1
Z
exp �βLðΘÞ+ logP0ðΘÞ� � ð4Þ

where Z =
R
dP0ðΘÞ exp½�βLðΘÞ� is the partition function,

LðΘÞ= 1
2

Pm
r = 1

PP
μ= 1 ½yrμ � f rðxμ;ΘÞ�2 a mean-squared error loss, and

P0(Θ) an i.i.d. zero-mean Gaussian prior with prior variances σ2
a, σ

2
‘ for

readout and hidden weights, respectively. Temperature T = 1/β
controls the relative importance of the quadratic loss and the prior. In
the overparameterized regime, the limit T →0 restricts the posterior
to the solution space where the network interpolates the training data.
For simplicity, we set σℓ = 1 in the main text. Throughout, we denote
expectations w.r.t. the weight posterior by 〈⋅〉Θ.
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The interplay between loss and prior shapes the solutions found
by the networks. Importantly, on the solution space the prior alone
determines the posterior probability. Thus, the prior plays a central
role for regularization which complements the implicit regularization
due to the non-lazy scaling. The Gaussian prior used here can be
interpreted as an L2 regularization of the weights.

Samples from the posterior can be obtained using Langevin
dynamics d

dtΘ= � ∇LðΘÞ+T∇ log P0ðΘÞ+
ffiffiffiffiffiffi
2T

p
ξðtÞ where ξ(t) are

independent Gaussian white noise processes. These dynamics
first approach the solution space on a timescale of O(1) and subse-
quently diffuse on the solution space on a much slower time scale of
O(T−1)71; after equilibration the dynamics provide samples from the
posterior.

Scaling limit. We consider the limit N, N0, P → ∞ while the number of
readout units as well as the number of layers remain finite, i.e.,
m, L = O(1). Because the gradient of LðΘÞ is small due to the non-lazy
scaling of the readout, the noise introduced by the temperature needs
to be scaled down as well, requiring the scaling T → T/N. In all other
parts of the manuscript T denotes the rescaled temperature which
therefore remains ofO(1) asN increases. In the present work, we focus
on the regime where the training loss is essentially zero, and therefore
consider the limit T → 0 for the theory; to generate empirical samples
from the weight posterior we use a small but non-vanishing rescaled
temperature.

Under the posterior, the non-lazy scaling leads to large readout
weights: The posterior norm per neuron grows with P, thereby com-
pensating for the non-lazy scaling. To avoid this undoing of the non-
lazy scaling, we scale down σ2

a with P, guaranteeing that the posterior
norm of the readout weights per neuron is O(1). The precise scaling
depends on the depth and the type of nonlinearity.

In total there are three differences between (4) and the corre-
sponding posterior in the lazy regime20: (1) The non-lazy scaling of the
readout in (1) with 1/N instead of 1=

ffiffiffiffi
N

p
. (2) The scaling of the tem-

perature with 1/N. (3) The prior variance of the readout weights σ2
a

needs to be scaled down with P.

Parameters used in Figures
Figure 1 : single-hidden-layer networks L = 1 with a single output
m = 1 and N = P = 500, N0 = 510. For the task the classes are
assigned with probability 1/2, the targets are binary y = ±1
according to the class.

Figures 2, 4: single-hidden-layer networks L = 1 with m = 3 out-
puts. Parameters for linear, sigmoidal, and ReLU networks, respec-
tively:N = P = 200,N0 = 220, classes assignedwith fixed ratios [1/2, 1/
4, 1/4], targets y+ = 1 and y− = 0; N = P = 500, N0 = 520, classes
assigned with fixed ratios [1/2, 1/4, 1/4], targets y+ = 1 and y− = 1/2;
N = P = 500,N0 = 520, classes assignedwith fixed ratios [1/2, 1/4, 1/4],
targets y+ = 1 and y− = −1/2.

Figure 3 : three-hidden-layer networks L = 3 with m = 3 outputs.
Parameters for linear, sigmoidal, and ReLU networks, respectively:
N = P = 200,N0 = 220, classes assignedwith fixed ratios [1/2, 1/4, 1/4],
targets y+ = 1 and y− = − 1/2; N = P = 200, N0 = 220, classes assigned
with fixed ratios [1/2, 1/4, 1/4], targets y+ = 1 and y− = − 1/2;N = P = 100,
N0 = 120, classes assigned with fixed ratios [1/2, 1/4, 1/4], targets y+ = 1
and y− = −1/2.

Figure 5 : two-hidden-layer sigmoidal networks L = 2 withm = 3
outputs. Parameters: N = P = 500, N0 = 520, classes assigned with
fixed ratios [1/2, 1/4, 1/4], targets y+ = 1 and y− = 1/2.

Figure 6 : single-hidden-layer networks L = 1 withm = 3 outputs.
Parameters: N = P = 100, N0 = 784, classes 0, 1, 2 assigned randomly
with probability 1/3, targets y+ = 1 and y− = −1/2.

Figure 7 : two-hidden-layer sigmoidal networks L = 2 withm = 10
outputs. Parameters:N = 1000, P = 50,000,N0 = 3072, targets y+ = 1
and y− = −1/10.

Data availability
The sampled weights are available on figshare with the identifier
https://doi.org/10.6084/m9.figshare.26539129.

Code availability
The code is available on figshare with the identifier https://doi.org/10.
6084/m9.figshare.26539129.
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