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Spatial transcriptomics of the aging mouse
brain reveals origins of inflammation in the
white matter

Lin Wang1, Chang-Yi Cui1, Christopher T. Lee1, Monica Bodogai2, Na Yang 1,
Changyou Shi1,8, Mustafa O. Irfanoglu3, James R. Occean 1,9, Sadia Afrin1,
Nishat Sarker1, Ross A. McDevitt 4, Elin Lehrmann 5, Shahroze Abbas6,
Nirad Banskota5, Jinshui Fan 5, Supriyo De 5, Peter Rapp7, Arya Biragyn2,
Dan Benjamini 7, Manolis Maragkakis 1 & Payel Sen 1

To systematically understand age-induced molecular changes, we performed
spatial transcriptomics of young, middle-aged, and old mouse brains and
identified seven transcriptionally distinct regions. All regions exhibited age-
associated upregulation of inflammatory mRNAs and downregulation of
mRNAs related to synaptic function. Notably, aging white matter fiber tracts
showed themost prominent changes with pronounced effects in females. The
inflammatory signatures indicatedmajor ongoing events:microglia activation,
astrogliosis, complement activation, and myeloid cell infiltration. Immuno-
fluorescence and quantitative MRI analyses confirmed physical interaction of
activated microglia with fiber tracts and concomitant reduction of myelin in
oldmice. In silico analyses identifiedpotential transcription factors influencing
these changes. Our study provides a resourceful dataset of spatially resolved
transcriptomic features in the naturally aging murine brain encompassing
three age groups and both sexes. The results link previous disjointed findings
and provide a comprehensive overview of brain aging identifying fiber tracts
as a focal point of inflammation.

It is estimated that 50 million people worldwide have neurodegen-
erative diseases, and by 2050, this number will triple1. Age is the
strongest risk factor for many neurodegenerative conditions, includ-
ing late-onset sporadic Alzheimer’s disease and related dementias
(ADRD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS),
etc2. Brain aging is accompanied by gross morphological changes and
cognitive deficits that likely contribute to disease onset3. Mapping the
progressive cellular and molecular alterations that drive age-related

cognitive decline is thus critical for designing ameliorative therapies.
Importantly, there is an emphasis on more diagnostic (after disease)
over pre-diagnostic (aging but no disease) experimentations that
prevent our understanding of disease incidence mechanisms.

Aging and age-related diseases show spatial bias in most complex
tissues, including the brain, due to differences in bloodflow,metabolic
demands, and chemoattractant or chemorepellent signals. Recent
studies have only begun to reveal some interesting spatial signatures
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of aging. Cells responding to acute or chronic injury have been shown
to organize into cellular neighborhoods and reside in niches that
depend on the presence or absence of other cells. For example, in the
aging liver, the zone 3 pericentral hepatocytes undergo accelerated
aging4 and have the greatest neoplastic potential5. In the injured kid-
ney, immune-active altered cellular niches form in the proximal
tubules and thick ascending limbs6. In aged skeletal muscle, cell types
are mislocalized and show signs of both early injury and late
regeneration7. In AD brains, transcriptional changes occur around
amyloid plaques8.

A common spatial signature across tissues during injury or aging
is the activation of a localized immune response (sterile inflammation)
concurrent with productive or maladaptive repair. The brain is an
otherwise immune-privileged organ due to the presence of the
blood–brain barrier (BBB), a tightly controlled system of blood vessels
that allow only select agents to pass through. Thus, immune activation
in the aging or diseased brain is of particular interest and may con-
tribute to the rapid loss of neurons and cognitive impairment. Several
brain-resident cell types havebeen implicated in this pro-inflammatory
response, including microglia, astrocytes, and oligodendrocytes9.
Alternatively, or simultaneously, age-related BBB deterioration can
cause peripheral immune cell infiltration and an aggravated inflam-
matory response10.

To comprehensively understand brain aging at the cellular and
molecular level, we undertook a deep spatiotemporal profiling of
aging coronal brain sections frombothmale and femalemice.Our data
captured previously known and unknown transcriptomic changes as a
function of age and sex and identified the white matter fiber tract
(hereon fiber tract) as a key anatomical region vulnerable to age-
related inflammation. We present our work as a resource to the com-
munity for interrogation of age-related disease mechanisms in
the brain.

Results
Profiling the aging murine brain using spatial transcriptomics
Spatial transcriptomics (ST) can reveal mRNA differences, paracrine
signaling, and cellular networks not captured in averaged spatially
naive analyses of homogenized biopsies11. This prospect of multi-
dimensional in situ output motivated us to use ST in aging mouse
brains across 3 age groups (young (Y, ~11 weeks), middle-aged (M,
~57.5 weeks), and old (O, ~126 weeks)) and both sexes of C57BL/6JN
mice (Supp. Data 1). Each age group contained four biological repli-
cates (males (M) n = 2 and females (F) n = 2) and 2 technical replicates
(A or B) i.e., independent, succeeding coronal sections from the same
OCT block, for a total of 24 samples (Fig. 1A, steps 1 and 2).

We used the Visium ST platform (10X Genomics) to measure total
mRNA in intact tissue sections. The Visium slides contain spatial bar-
codes that retrospectively link gene activity to its location. Our choice
for the Visium platform was motivated by greater tissue coverage,
resolution, and throughput compared to existing techniques such as
lasermicrodissection RNA-seq or in situ hybridization12. Prior to working
with real samples, we performed a careful permeabilization optimiza-
tion on one young sample (Supp. Fig. 1A). Mouse brain sections (16 µm)
were fixed, stained, and permeabilized for different lengths of time
(3–30min) on a tissue optimization slide (seeMethods). mRNA released
during permeabilization bound to capture probes on the optimization
slide with minimum lateral diffusion. cDNA was generated using fluor-
escently labeled nucleotides to enable visualization bymicroscopy. After
fluorescence imaging, we selected 30min as the optimum permeabili-
zation time as it showed the maximum fluorescence signal and the
lowest signal diffusion. The brightfield image confirmed that the lack of
or suboptimal fluorescence signal at other time points was due to
insufficient permeabilization and not missing tissue. This optimized
permeabilization timewas applied to all experimental sections to release
mRNA on a Visium spatial gene expression slide.

Each Visium spatial gene expression slide contains 4 capture
areas, with each area containing ~5000 barcoded spots, being about
55 µm in diameter, and covering ~5–25 cells per spot for a 16 µm
section. We randomized tissue sections and hemispheres from each
age group over several gene expression slides (Supp. Data 2). Tissue
sections were first stained with Hematoxylin-Eosin (H&E), followed
by cDNA synthesis, amplification, barcoding, and library construc-
tion (see Methods). Following this demonstrated protocol, we
obtained high-quality spatially resolved RNA-seq data from these
24 samples and sequenced them on the NovaSeq™ 6000 platform
achieving an average coverage of 171 million read pairs per sample, in
line with recommendations (Fig. 1A, steps 3–6). Representative
bioanalyzer traces post-cDNA amplification and library PCR are
shown in Supp Fig. 1B. We observed the expected average fragment
size and yield of cDNA (top) and libraries (bottom) for each sample.
After next generation sequencing, we processed the data through
Space Ranger (10X Genomics) which aligned, extracted barcodes,
counted uniquemolecular identifiers (UMIs), and compiled a feature-
barcode matrix for each sample. Space Ranger was further used to
assess quality control metrics which revealed an average of
3590 spots under the tissue (~72% coverage of 5000 spots), including
an average of 45,995mean reads per spot and 4179median genes per
barcode (Supp. Data 2).

Spatial transcriptomic profiles partition the brain into discrete
anatomical regions
We next imported the feature-barcode matrix from Space Ranger into
Partek Flow Genomic Analysis Software (Partek Inc.)13 for further ana-
lysis. The data were first preprocessed by filtering out low-quality
spots, removing lowly expressedmRNAs (value≤1.0 in at least99.0%of
spots), defining thresholds for mitochondrial (0–35%) and ribosomal
(0–14%) RNA counts (Supp. Fig. 1C, D), variance stabilizing by log
normalization andfinally normalizingRNAcounts to sequencingdepth
(counts per million or CPM) (Supp. Fig. 1E). This filtered list contained
10109 mRNAs (Supp. Data 3). A correlation analysis of counts across
these ~10,000mRNAs showedhigh concordance (Pearson’s r = 0.93–1)
between technical and biological replicates and even among different
age groups suggesting few global transcriptional changes in the brain
with age.

We next performedprincipal component analysis (PCA) to reduce
the dimensionality of the data followed by graph-based clustering
using the Louvain algorithm (Fig. 1B top). We annotated the clusters to
the captured H&E image of each sample and fine-tuned the fit by
adjusting the resolution and manually correcting any misidentified
spots (Fig. 1B bottom). Remarkably, the clusters neatly classified into
seven different brain anatomical regions as seen in the Allen Mouse
Brain Atlas14; striatum/cerebral nuclei (CNU), isocortex, olfactory
region with cortical subplate (OLF.CTXsp), fiber tracts, hippocampus,
hypothalamus, and thalamus (Fig. 1C, D). The top ten marker mRNAs
unique to each cluster are shown for young, middle-aged, and old age
(Fig. 1C, left) andmale and female (Fig. 1C, right) groups. Somemarker
mRNAs based on the clustering into seven anatomical regions are
annotated to the histological sections and shown in Fig. 1E.We used an
orthogonal and non-clustering-based approach called SpatialDE15, to
mapmRNA profiles across the mouse brain. SpatialDE uses a Bayesian
hierarchical model and assumes that the mRNA levels vary smoothly
across the tissue, and that nearby cells are more similar in their
expression profiles than distant cells. SpatialDE also identified distinct
transcriptomic profiles across the seven anatomical regions of the
mouse brain (Fig. 1F).

Overall, both approaches confirmed that spatial transcriptomic
profiles partition the brain into distinct anatomical regions which then
allowed us to comparemRNA profiles in these different regions across
age and sex groups. The number of spots covered by each region was
proportional to its size (Supp. Fig. 1F), and there were no observable
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differences between the groups based on age (young,middle, and old)
(Supp. Fig. 1G) or sex (male and female) (Supp. Fig. 1H).

Anatomical regions of the brain display both shared and unique
sets of age-correlated mRNAs
At first pass, we used ANOVA to identify differentially abundant
mRNAs across all brain regions (akin topseudobulk transcriptomics) in

the three age groups. We classified an mRNA to be differentially
abundant (DAR) in one age group if the false discovery rate from the
Benjamini–Hochberg method (FDR) <0.05 and fold change (FC) ≥1.5
(upregulated) or ≤–1.5 (downregulated) (Fig. 2A, B, Supp. Fig. 2A, B,
and Supp. Data 4). DARs upregulated with age showed a distinct
immune activation signature and included mRNAs related to antigen
processing and presentation such as proteasome 20S subunit beta 8
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(Psmb8 mRNA) and cathepsin H (Ctsh mRNA), microglia activation
such as allograft inflammatory factor (Aif1 mRNA), galectin-3 (Lgals3
mRNA), cluster of differentiation 68 (Cd68mRNA), triggering receptor
expressed on myeloid cells 2 (Trem2 mRNA), tyrosine kinase-binding
protein (Tyrobp mRNA), lysozyme 2 (Lyz2 mRNA), glycoprotein non-
metastatic melanoma protein B-like protein (Gpnmb mRNA), and
secreted phosphoprotein 1 (Spp1 mRNA), complement system activa-
tion such as complement proteins 1q (C1qmRNA) and 4b (C4bmRNA),
reactive astrogliosis such as serine peptidase inhibitor, clade A mem-
ber 3N (Serpina3n mRNA), S100 calcium binding protein A4 (S100a4
mRNA), glial fibrillary acidic protein (Gfap mRNA) and vimentin (Vim
mRNA), as well as neuronal excitation and synaptic plasticity such as
leucine-rich glioma inactivated 4 (Lgi4 mRNA), cluster of differentia-
tion 9 (Cd9 mRNA), S100 calcium binding protein A4 (S100a4 mRNA)
and nuclear protein transcriptional regulator 1 (Nupr1 mRNA). By
contrast, DARs downregulated with age were related to brain devel-
opment and adult neurogenesis, such as growth hormone (GhmRNA),
fatty acid binding protein 7 (Fabp7 mRNA), neuronal regeneration-
related protein (NrepmRNA), and Kruppel-like factor 10 (Klf10mRNA).
The expanded Gene Ontology (GO) terms associated with these age-
related DARs are shown in Supp. Fig. 2C–E for three-way comparison
between young, middle-aged, and old samples. When plotting the
pseudobulk DARs across the three age groups, it was evident that a
majority were gradually upregulated with age (Supp. Fig. 3, clusters 1,
2, and 4,n = 149), withmuchof the increase occurring in the oldest age
group. A smaller group of mRNAs were gradually downregulated with
age (Supp. Fig. 3, clusters 9–10, n = 23).

We next queried whether age-related DARs showed any spatial
bias in the mouse brain. Even when visualizing all 10109 mRNAs at
once, it was evident that different anatomical regions of the brain were
unique in their mRNA signatures (Supp. Fig. 2F–G). The strip chart in
Fig. 2B displays DARs in each of the seven brain regions. A total of 818
DARs, significantly affected by aging, were identified in at least one
region. About 544 of these DARs were uniquely assigned to only one
region, while only 39 were shared across all brain regions suggesting
strong spatial preference in the aging brain transcriptome (Fig. 2C,
top). Interestingly, 505 DARs were traced to the fiber tract region
(Fig. 2C, bottom), a region that is composed largely of myelinated
axons and responsible for facilitating communication across brain
regions. Some prominent tracts visible in the coronal section are the
corticospinal tract and the corpus callosum. The corticospinal tract is
the largest at the rostrocaudal level, encompassing the internal capsule
and cerebral peduncle16. This tract connects primary motor and
somatosensory cortices with subcortical structures, en route to the
spinal cord. The corpus callosum connects interhemispheric cortical

regions, and shows age-related decline in size, microstructural integ-
rity, and associated cognitive function17. Most upregulated DARs were
shared across brain regions (Fig. 2D) and were related to immune
activation; 38 upregulated DARs were shared across all seven regions,
73 across at least five regions, and 183 in at least two regions, sug-
gesting a coordinated change (Supp. Data 5). Approximately 91
downregulated DARs shared across at least two brain regions were
related to neuropeptide signaling and nervous system development
(Supp. Data 5). Among the uniquely upregulated DARs, the fiber tracts
showed the highest number (n = 177, Fig. 2E, Supp. Data 5), with many
DARs being related to the extracellular matrix, wound healing, cell
motility, and migration suggestive of ongoing injury and repair. Simi-
larly, fiber tracts also showed the most downregulated DARs (n = 126,
Fig. 2E and Supp. Data 5). The upset plot in Fig. 2F shows a summarized
matrix layout of DARs shared across and specific to each region.

Overall, our data show that different brain regions have strong
spatial preference in age-related transcriptomic changes, although
there are some shared features. Of interest, the fiber tract region
appears to show the strongest changes in mRNA with age.

Aging fiber tracts exhibit signs of immune activation
In the DARs that showed shared regulation across brain regions (Supp.
Data 4), it was intriguing to note that they undergo the highest FC (old
vs young) in the fiber tract (Fig. 2G). Figure 2H demonstrates sub-
stantial region-dependence of two strong DARs, C4b and Lyz2, with
strong age-related upregulation at fiber tracts compared to other
regions. By contrast, the uniqueDARs showed amuchweaker FC (note
the log10 scale in Fig. 2D, E). The annotated Visium images of some
shared upregulated DARs are shown in Supp. Fig. 4A–R highlighting
the spatial bias at fiber tracts.

We next performed a region-by-region gene set enrichment ana-
lysis (GSEA) to query the functional relevance of mRNAs that are
strongly enriched with age (Supp. Fig. 5 and Supp. Data 6). All seven
regions showed an enrichment in immune-related pathways in the old.
By contrast, pathways related to synaptic function, particularly in the
thalamus and hypothalamus and evident at the pseudobulk level
(Supp. Fig. 2C–E) were strongly depleted. Given that fiber tracts show
the strongest FC in shared age-associated mRNAs (Fig. 2G), we con-
clude that immune-modulatory mRNAs are markedly increased in the
fiber tracts of aging brains.

Among the immune-modulatory mRNAs upregulated through-
out the brain and particularly the fiber tract, several mRNAs related
to microglia activation (Lgals3, Aif1, Trem2, Tyrobp, Lyz2, Gpnmb
mRNAs), complement system activation (C1q, C4b mRNAs), and
reactive astrogliosis (Serpina3n, Gfap, Vim, Gpnmb mRNAs) were

Fig. 1 | Spatial transcriptomic profiles partition the brain into discrete anato-
mical regions. A Overview of ST workflow using the 10X Genomics Visium plat-
form. B Representative Visium image of O2FB (top, n = 3419 spots) showing spatial
transcriptional profiles colored by cluster-based annotation (bottom). C Heatmap
of top tenmarkermRNAs (countmean values) in young,middle-aged, and old (left)
or male and female (right) groups unique to each region. D Allen Brain Atlas P5614

coronal section images from http://mouse.brain-map.org/static/atlas showing the
spatial locations of the seven major regions identified in (C). The relevant links are:
Isocortex: https://atlas.brain-map.org/atlas?atlas=1&plate=100960084#atlas=
1&plate=100960084&resolution=20.94&x=5519.9993896484375&y=3904.
8334765434265&zoom=-4&structure=315&z=6. Hypothalamus: https://atlas.brain-
map.org/atlas?atlas=1&plate=100960084#atlas=1&plate=100960084&resolution=
20.94&x=5519.9993896484375&y=3904.8334765434265&zoom=-4&structure=
1097&z=6. Thalamus: https://atlas.brain-map.org/atlas?atlas=1&plate=
100960084#atlas=1&plate=100960084&resolution=20.94&x=5519.
9993896484375&y=3904.8334765434265&zoom=-4&structure=549&z=6.
OLF.CTXsp: https://atlas.brain-map.org/atlas?atlas=1&plate=100960084#atlas=
1&plate=100960084&resolution=20.94&x=5519.9993896484375&y=3904.
8334765434265&zoom=-4&structure=698&z=6. https://atlas.brain-map.org/atlas?

atlas=1&plate=100960084#atlas=1&plate=100960084&resolution=20.94&x=5519.
9993896484375&y=3904.8334765434265&zoom=-4&structure=703&z=6. Fiber
tract: https://atlas.brain-map.org/atlas?atlas=1&plate=100960084#atlas=1&plate=
100960084&resolution=20.94&x=5519.9993896484375&y=3927.
9999804496765&zoom=-4&structure=1009&z=6. Hippocampus: https://atlas.
brain-map.org/atlas?atlas=1&plate=100960084#atlas=1&plate=
100960084&resolution=20.94&x=5519.9993896484375&y=3904.
8334765434265&zoom=-4&structure=1080&z=6. CNU/striatum: https://atlas.
brain-map.org/atlas?atlas=1&plate=100960084#atlas=1&plate=
100960084&resolution=20.94&x=5519.9993896484375&y=3904.
8334765434265&zoom=-4&structure=623&z=6. E Visium images (top) and UMAP
(bottom) visualization of seven major regions showing the expression of repre-
sentative well-known region-specific marker mRNAs in an old female sample
(O2FB). Numbers in the color scale reflect the number of UMIs detected for the
specifiedmRNA for each spot. F Same as (E) except profiles generated using a non-
cluster-based method, SpatialDE (see Methods). Illustration credit for parts of (A)
goes to Endosymbiont GmbH, and BioRender. Sen, P. (2025) https://BioRender.
com/u24a349. Source data are provided as a Source Data file.
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evident (Figs. 2H, 3A–C). Among those previously reported, LGALS3
is strongly expressed in white matter-associated microglia (WAM)18

and forms nodular clusters in the corpus callosum of aged mice
brains, while TREM2 classifies both WAM18 and the rare disease-
associated microglia subtype stage 2 (DAM2)19, spatially associated
with sites of AD pathology (Supp. Data 7). DAM conversion occurs in

two stages (DAM1 and DAM2) and stage 2 depends on TREM2/TYR-
OBP signaling and presence of APOE19.

WAM and DAM2 share many features18,19 including expression of
phagocytic mRNAs such as CD68 (Cd68 mRNA), C-type lectin domain
containing 7A (Clec7a mRNA), and lysozyme (Lyz2 mRNA), mRNAs
associated with lipid metabolisms such as lipoprotein lipase (Lpl
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mRNA) and apolipoprotein E (ApoemRNA), cathepsins B (CtsbmRNA),
S (Ctss mRNA), and Z (Ctsz mRNA), and antigen processing and pre-
sentation such as histocompatibility 2, D region locus 1 (H2-D1mRNA)
or K region locus 1 (H2-K1 mRNA) (Supp. Data 7). Similarly, activated
microglia18 (set 2 in Supp. Data 7) share some features with DAM119 (for
example, ribosome-related Rps and RplmRNAs and Aif1mRNA) (Supp.
Data 7). To systematically assess the microglial signatures in our
dataset, we calculated the normalized counts of four mRNA sets pre-
viously reported in fourmicroglia subtypes in the aging brain by ref. 18
(Supp. Data 7). We traced set 1 mRNAs corresponding to WAM/DAM2,
set 2mRNAs corresponding to activated/DAM1microglia, and sets 3–4
mRNAs corresponding to homeostatic microglia across the three age
groups (Fig. 3D). The set 1 WAM/DAM2 mRNAs were dramatically
upregulated across all brain regions in the oldest group, but more
prominently in the fiber tracts. A modest increase in set 2 activated/
DAM1mRNAswas also noted across the different brain regions (except
the fiber tract), suggesting a generally activated state of microglia
during aging. Set 3 mRNAs, in general, did not change with age except
Cyba, Fcerg1 and TyrobpmRNAs. Of interest, set 4 homeostaticmRNAs
that include a set of cytokines and chemokines involved in homeo-
static signaling, were strongly upregulated in the fiber tract (sum-
marized in Fig. 3D). Next, we implemented SPAtial Transcriptomic
Analysis (SPATA) to visualize WAM (n = 29), DAM1 (n = 77), top DAM2
(n = 92) signatures across aging. We also included the SenNet20 (n = 17)
focused panel, which includes a gene set commonly upregulated in
senescence in the central nervous system. As shown in Fig. 3E, and in
congruence with Fig. 3D, WAM and DAM2mRNA sets were specifically
upregulated in the fiber tract region with age. In contrast, the
DAM1 signature did not show any prominent changes. Curiously, there
was an upregulation of a senescence signature at the fiber tracts sug-
gesting cells localized to this region could be senescent. Notably, 17
out of the original 37 mRNAs in the SenNet panel20 could be identified
in our processed data.

To validate our spatial transcriptomic findings at the protein
level, we performed immunofluorescence assays in young and old
mouse brains. In hemisphere sections, we observed strong staining
for AIF1 and LGALS3 at the corpus callosum and corticospinal tract
area of oldmurine brains (Fig. 4A, note correspondingDAR images in
Supp. Fig. 4G, R). This positive signal was confirmed by zooming in to
the corpus callosum or corticospinal tract areas where AIF1 and
particularly LGALS3 showed strong age-enrichment (Fig. 4B–E).
LGALS3-AIF1-positive microglia assembled in nodular structures
(clusters of 3–5) as previously reported for WAM18 and shown in the
3D images in Fig. 4D and quantified in 4F. The activated astrocyte
marker, GFAP, was also evident in the corpus callosum area of old
brains (Fig. 4G, H).

Overall, the increase of inflammatory mRNAs/proteins in the fiber
tract area with age indicates a response to injury in this region, which
has also been reported in disease conditions such as AD, amyotrophic
lateral sclerosis (ALS), multiple sclerosis (MS), and Pelizaeus-
Merzbacher disease (PMD)18,19,21.

Evidence of loss of structural integrity in the aging fiber tracts
One manifestation of white matter injury is demyelination. Given
previous reports of demyelination events with aging22, and the
increase with age of the highly phagocytic WAM/DAM2 population
engulfing degradedmyelin18, we looked for evidence of demyelination
in our data.We found reduced staining of twomyelin-related proteins,
myelin basic protein and 2’,3’-cyclic nucleotide 3’-phosphodiesterase
(MBP and CNPase, respectively) with age. The decrease in signal for
these proteins was evident in hemisphere sections (Fig. 5A, B), and the
corpus callosum area (Fig. 5C–F). In 3D images, AIF1- and LGALS3-
positive microglia formed large nodules and were in direct opposition
to the myelin-rich areas of the old brains (Fig. 5G, H).

We next used diffusion magnetic resonance imaging (dMRI) to
investigate microstructural changes in the fiber tract regions with
age (Fig. 5I–K). We applied the mean apparent propagator (MAP)
model23 to ex vivo dMRI data obtained from young and old mice
(n = 2 biological replicates per group). MAP-MRI explicitly measures
the diffusion propagators (i.e., the probability density function of 3D
net displacements of diffusing water molecules) in each voxel and
can, therefore, capture arbitrary fiber configurations, and in parti-
cular, both normal24 and abnormal25 age-related changes. The zero-
displacement parameter maps, return-to-origin probability (RTOP),
return-to-axis probability (RTAP), and return-to-plane probability
(RTPP), which are all inversely proportional to the spatial dimensions
within the microstructure were obtained. We also mapped the non-
Gaussianity (NG), which quantifies the dissimilarity between the full
propagator and its Gaussian component and reflects the deviation
from a simple tensor model, and the propagator anisotropy (PA),
which quantifies the directional dependence of the diffusion process.
These maps are shown in Fig. 5I from a representative young sample.
The Turone atlas (https://www.nitrc.org/docman/?group_id=1411)
was used as a common template for registration. Percent change
maps of dMRI metrics between group average young and old mice
are shown in Fig. 5J, indicating decreases with age in the major white
matter tracts, in agreement with our implication of the fiber tract
injury with age and in vivo human findings24. Quantitative compar-
isons of dMRI parameters averaged across the whole-brain white
matter between the young and old groups are shown in Fig. 5K. Our
collective imaging data thus confirms the loss of white matter
integrity in the aged brain.

Innate myeloid immune cells are increased in the old
mouse brain
ST can be used to infer cell types from complex mixtures, such as a
Visium barcode spot that contains 5–25 cells, by comparing to a
reference. We implemented the computational algorithm robust cell-
type decomposition (RCTD)26, which uses a supervised learning
approach to deconvolute cell types while correcting for platform dif-
ferences. We used as a reference a recently published single-cell
dataset of the aging mouse brain from ref. 27 containing 25 distinct
cell-type signatures. Six cell types were significantly altered with age

Fig. 2 | Anatomical regions of the brain display both shared and unique sets of
age-correlated mRNAs. A Volcano plot showing -log10(FDR) and log2(FC) values
for all 10109mRNAs with 149 significantly upregulated (purple dots; FDR <0.05, FC
≥1.5) and 30 significantly downregulated (blue dots; FDR <0.05, FC ≤−1.5) DARs in
old vs young. B Strip chart showing log2FC value for all 10109mRNAs across seven
regions with significantly upregulated and significantly downregulated (as in (A))
DARshighlighted ineach region.CBar plot showing thenumber of regions inwhich
a given DAR was detected (top), and number of DARs that were either significantly
upregulated or downregulated (as in (A)) with age in each region (bottom).
D Heatmap showing log10FC values for age-correlated mRNAs across at least two
brain regions. EHeatmap showing log10FC values for age-correlatedmRNAs unique
to each region. F Upset plot of age-correlatedmRNAs shared across and unique to
each region (eachmatrix column represents either DARs specific to a region (single

circle with no vertical lines) or DARs shared between regions (with a vertical line
connecting regions that share a given DAR). Vertical bar plots on top display the
number of DARs in each combination of regions. Horizontal bar plots on the left
display the total number ofDARs for a given region. Sets with ≥5mRNAs are shown.
G Heatmap showing FC (old vs young) values for 73 mRNAs upregulated with age
and shared between at least five regions.H Bar plot of C4b (top) and Lyz2 (bottom)
expression at indicated regions. Each dot shows the average expression of the two
technical replicates for each mouse relative to the mean of the young group,
equivalent to n = 4 biological replicates per group. Data were summarized as
mean ± standard error of the relative mean counts. p values are reported from an
unpaired two-tailed t-test with Welch’s correction comparing old vs. young and
middle vs. young. Note that the slope of the gray lines connecting the means is the
highest in fiber tracts. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-025-58466-2

Nature Communications |         (2025) 16:3231 6

https://www.nitrc.org/docman/?group_id=1411
www.nature.com/naturecommunications


(Supp. Fig. 6A, B), primary among which were astrocyte restricted
precursors (ARPs) which increased with age in the fiber tract. The
presence of ARPs in the fiber tract area was interesting and suggests
that they co-occur with phagocyticWAM andmaybe actively targeting
the myelin sheath. Mature neurons showed a trend of decrease with
age in the cortical and hippocampal area (Supp. Fig. 6A), although it
did not reach statistical significance (Supp. Fig. 6B). Oligodendrocytes

showed a trend of increase with age in the fiber tract area (Supp.
Fig. 6A) but also did not reach statistical significance (Supp. Fig. 6B).

Neurons, astrocytes, and oligodendrocytes are some of the most
abundant cell types in the brain and, therefore, could be visualized
easily in the brain sections (Supp. Fig. 6A). Other cell types (not evident
by mapping) could be quantified from their calculated RCTD normal-
ized weights and compared across samples. We noted that innate
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immune myeloid cells (microglia, monocytes, dendritic cells, macro-
phages, and neutrophils)were selectively over-represented in the aged
brain (Supp. Fig. 6B). As a validation, we tested the brain for the pre-
sence of neutrophils in both male and female mice (n = 5 biological
replicates per group). Neutrophils are short-lived cells (lifespan of
hours), otherwise found only in peripheral blood by flow cytometry.
Importantly, we perfused the animals with PBS to remove any con-
taminant blood prior to brain harvest. Our data revealed increased
numbers of neutrophils in the aged brain parenchyma in both males
and females, with differences reaching statistical significance in
females (Supp. Fig. 6C–E).

Since aging is accompanied by a myeloid bias in peripheral
blood28, we questioned whether this increase in neutrophils in the
brain was perhaps due to a compromise in BBB integrity. There was
evidence in our data of reactive astrogliosis, marked by an increase in
Serpina3n which encodes α-1 anti-chymotrypsin (α1-ACT), a serine
protease inhibitor. In fact, Serpina3n was one of the strongest upre-
gulatedmRNAs in old brains in our dataset (Fig. 2A, B and Figs. S2A, S3,
S4C, S7).α1-ACT is a critical regulator of BBB damage29 and its increase
typically suggests leakiness in the BBB, as has been evidenced in the
aging brain and in disease context30. Thus, the presence of neutrophils
in the brain is likely due to infiltration incurred from BBB damage, as
has been noted in AD brains31.

Together, our data indicate two nodes of damage in the aging
brain: (1) fiber tracts with extensive demyelination and (2) BBBdamage
and astrogliosis with infiltration of peripheral blood cells.

Female mouse brains exhibit stronger pro-inflammatory
changes
The impact of sex on neurodegeneration is a complex and poorly
understood topic, however, there are clear differences in incidence
rates, clinicalmanifestations, and progression driven by sex hormones
or genes on sex chromosomes. Our primary dataset (Figs. 1–5 and
Supp. Figs. 1–5) had representation from both sexes but was not
powered to address sex-specific differences (n = 2 per age per sex).
Nevertheless, when analyzing the 73 (mostly inflammatory) mRNAs
commonly upregulated with age across five brain regions (Fig. 2G), it
was clear that females showed stronger expression thanmales (Fig. 6A,
left). We next performed a priori power analysis to determine a rea-
sonable sample size required to confidently assess sex differences in
ST data. Accordingly, we added three additional biological replicates
of young and old mouse brains for a total of n = 5 per age per sex. An
increase of sample size from n = 2 to n = 5 led to a power increase from
0.51 to 0.98, considering a difference betweenmeans of 3.5 S.D. and an
FDR <0.05 for identifying DARs. When analyzing the new data (n = 3
per age per sex, Fig. 6A,middle) or combinedwith our primary dataset
(which we call cohort 2, n = 5 per age per sex, Fig. 6A, right), we noted
stronger transcriptional signatures in females compared to males.
These results also confirm the reproducibility of our results. Addi-
tionally, in cohort 2, we find n = 37 out of 69 DARs were significantly
higher in old females than old males (FDR <0.05, and FC ≥1.5, labeled
red in Fig. 6A, right). Notably, we re-pooled the young and old libraries
from our primary dataset with the three additional replicates and
sequenced all libraries together for the combined analysis tominimize
batch effects due to sequencing. We noted that females had more

DARs compared to males (although there was a significant overlap of
upregulated mRNAs) and that the fiber tracts had an over-
representation of the upregulated DARs compared to other regions
(Fig. 6B, C). These pro-inflammatoryDARs are shownas a scatterplot in
pseudobulk data from all brain regions in Supp. Fig. 7B and specifically
for fiber tracts in Fig. 6D. A few select DARs are further graphed to
showwithin-group variations across the 5 animals in Fig. 6E. Together,
our results suggest that, at least in mice, the age-related neuroin-
flammatory response is stronger in females at the transcriptional level.

Regions other than fiber tracts that showed sex-biased expression
included (among others) hippocampus, thalamus, and hypothalamus
(Supp. Fig. 7C–E and Supp. Data 9). Of mRNAs with sex-specific reg-
ulation during aging, the mRNAs encoding chloride intracellular
channel 6 (Clic6mRNA) and transthyretin (TtrmRNA), both involved in
chronic psychogenic stress, are upregulated in female hippocampus
with age but downregulated in males (Supp. Fig. 7C). The mRNA
encoding cortexin 3 (Ctxn3 mRNA), is selectively upregulated in the
thalamus of aged male mice but downregulated in females (Supp.
Fig. 7D). Similarly, the precerebellin mRNA (Cbln1 mRNA), important
for synapse integrity and synaptic plasticity was downregulated in
females but upregulated in males in the thalamus and fiber tracts
(Fig. 6D and Supp. Fig. 7D). In contrast, antidiuretic hormone vaso-
pressin (Avp mRNA) expression was upregulated in the thalamus in
female mice but strongly downregulated in males (Supp. Fig. 7D). In
the hypothalamus, the leucine-rich repeat containing 17 mRNA (Lrrc17
mRNA) was upregulated in male mice but downregulated in females
(Supp. Fig. 7E).

Overall, there are many sex-specific differences in the tran-
scriptomic profiles of male and female aging brains, with the latter
showing stronger inflammatory features.

Machine learning prediction of epigenetic drivers of gene
expression in the aging mouse brain
Gene expression is tightly regulated by the activity of transcription
factors (TFs), proteins that bind to specific DNA sequences located in
upstream promoter regions of genes. Therefore, we sought to build a
predictive model to identify key TFs most likely to regulate gene
expression changes in the aging brain (see Methods). We did this
separately for each of the seven brain regions identified in our data
(Fig. 1C). The two inputs in this process were (1) ChIP-seq data for the
TFs of interest and (2) transcriptomics data for the target genes in
each region. For the first input data from ref. 32, was a subset for TF
binding, and codified into a binary format representing the presence
or absence of target gene binding for each TF. For the second input,
we used our ST data from this study (cohort 1 and 2 separately)
categorized as up if the FC >1.2, down if <−1.2. For cohort 1 an FDR
<0.05 was used whereas for cohort 2 FDR <0.1 was used. Any mRNA
not passing the FDR or FC filter was categorized as constant. The
integrated inputs allowed for the creation of a matrix (Supp.
Data 10)33 that represented the binding of the TFs to the regulatory
regions of the target genes.We then trained random forestmodels to
predict whether anmRNA is upregulated or downregulated in a given
brain region using the TF binding profile as model features. Our
results indicate that training on one brain region best predicts
expression within that region (Fig. 7A, cohort 1 on top and cohort 2

Fig. 3 | Aging fiber tracts are enriched inWAM andDAM2 signatures. A Bar plot
of activated microglia marker mRNAs Lgals3, Aif1, Trem2, Tyrobp, and Gpnmb,
B complement pathway marker mRNAs C1qa, C1qb, and C1qc, and C activated
astrocytemarkermRNAs Serpina3n, Gfap,Gpnmb, and Vim in fiber tracts of young,
middle, and old mice. Each dot shows the average expression of the two technical
replicates for each mouse relative to the mean of the young group, equivalent to
n = 4 biological replicates per group. Data were summarized as mean± standard
errorof the relativemean counts.p values are reported fromanunpaired two-tailed
t-test with Welch’s correction comparing middle vs. young and old vs. young.

D Heatmap showing average expression in young, middle, and old groups of four
mRNA sets (set 1–4) from ref. 18. Values in the color scale are signals normalized on
a per mRNA basis. E Visualization of average expression of WAM (n = 29), DAM1
(n = 77), top DAM2 (n = 92), and SenNet (n = 17) mRNA sets in young (Y1MB, Y2FB),
middle (M2MA,M1FB), andold (O2MB,O1FB)miceusing SPATA (seeMethods). The
WAM mRNA set is from ref. 18, the DAM1 and DAM2 mRNA sets are from ref. 19,
and the SenNetmRNA set is from ref. 20 (Supp.Data 7). Values in the color scale are
the expression scores of the mRNA sets. Source data are provided as a Source
Data file.
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on bottom), but also that trained models can generalize to other
regions, arguably with lower accuracy, indicating shared features and
regulatory pathways between brain regions.

To identify the most informative features (most influential TFs),
we ranked the TFs according to their impact on prediction perfor-
mance when the corresponding TF was removed from the training set

(see Methods). The top 50 most important proteins were chosen for
further analysis from cohort 1 and 2 with 35 proteins shared between
the two. To further increase our predictive power, we performed Lisa
analysis34, a method that leverages a comprehensive database of ChIP-
seq and DNase-seq data (CistromeDB) to identify TFs and other
chromatin regulators perturbing a user-provided gene set (in our case,
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pseudobulk upregulated DARs). Figure 7B shows a scatterplot of
chromatin regulators based on their rank in Lisa andmachine learning.
We selected twoTFs, CCAAT/enhancer binding protein β (C/EBPβ) and
Yin Yang 1 (YY1), both known to mediate inflammatory gene expres-
sion inmyeloid cells35,36, for further validation. Additionally, Cebpbwas
among the unique mRNAs upregulated with age in the fiber tract
(Fig. 7C, left and Supp. Data 5).

We isolated primary microglia from young and old brains (n = 3
biological replicates per age per sex) using a bead-based method and
performed Cleavage Under Targets and Release Using Nuclease
(CUT&RUN)37 with C/EBPβ or YY1 antibodies (Fig. 7C, right). Control
reactionswere incubatedwith IgG antibodies. Binding patterns of both
TFs revealed strong enrichments near TSSs of the 73 upregulated
genes shared across five regions fromFig. 2D, G (Fig. 7D, E, top panels).
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C/EBPβ showed a statistically significant increase in binding with age,
while YY1 showed a slight (but significant) decrease, although the
effect sizes were small. In contrast, we observedmuchweaker binding
at the 91 downregulated genes fromFig. 2D (Fig. 7D, E, bottompanels),
which was not statistically different between the age groups. Some
representative browser shots of C/EBPβ and YY1 binding are shown in
Fig. 7F (from the gene set in Fig. 7D, E top). While most of the genes
were co-bound with C/EBPβ and YY1, some, such as Lgals3, were
exclusively bound by C/EBPβ (Fig. 7F, top). More importantly, we
noted that both TFs were bound even in the young state, suggesting
that inflammatory genes are primed for expression by the pre-binding
of critical TFs. Further work is needed to elucidate the role of coacti-
vator recruitment by these TFs during brain aging.

Discussion
In this study, we performed systematic, spatiotemporal mapping of
the agingmouse brain spanning three age groups (young, middle, and
old), both sexes (male and female), and two technical replicates per
animal (A andB) for a total of 24 high-quality, high-depth, reproducible
datasets (Fig. 1 and Supp. Fig. 1). This initial cohort data covered a total
of 67,998 spatial spots, with an average tissue coverage of 2833, ~56 K
mean reads, and ~5219mediangenes per spot. The average coverageof
2833 out of 5000 spots within a Visium capture area represents ~56%
and alignswith Image J estimates of tissue coverage for a single coronal
hemisphere section. These parameters were comparable in cohort 2
where we increased the sample size for estimation of sex differences
(total n = 5 per age per sex, Supp. Data 2) for a total of 36 Visium
libraries combining both cohorts. This benchmarking process lent
confidence to our sample preparation step.

We found that it was possible to develop a detailed whole-brain
spatial annotation based purely on gene expression signatures
(Figs. 1B–F, 2C, top). Using a pseudobulk approach first, we identified a
strong immune signature in the aging brain (Fig. 2 and Supp. Figs. 2, 5)
as has been reported in numerous previous studies (reviewed in ref. 9).
To unambiguously discern DARs that emerge due to age, we incor-
porated a middle-age group as a design feature in our study in this
initial cohort. Our spatial data was thus able to derive all possible
differential gene expression trajectories across the lifespan (Supp.
Fig. 3). We found 37 DARs were upregulated frommiddle-age onwards
(Supp. Fig. 3, clusters 1–2) while 112 DARs in old age (Supp. Fig. 3,
cluster 4). DownregulatedDARswere fewerwith 23DARs that declined
from middle-age (Supp. Fig. 3, clusters 9–10). Additionally, we found
smaller DAR sets that were exclusively up- or down-regulated in
middle-age (Supp. Fig. 3, clusters 5–7 (up), n = 22 and clusters 3 and 8
(down), n = 7). Importantly, we found that the age-related immune
signature (primarily cluster 4) wasmost prominent in the oldest group
(average age 126 weeks) while being only modestly upregulated in the
middle-age group (average age 57.5 weeks) (Fig. 2 and Supp. Figs. 2–7),
suggesting that inflammatory changes in the brain occur late in life.
Furthermore, we found that a smaller group of mRNAs related to

synaptic functionwas downregulatedwith age (Fig. 2 and Supp. Figs. 2,
3, 5), suggesting a loss of brain connectivity. We speculate the reason
we find more upregulated than downregulated DARs is because neu-
roinflammation is an active response, driven by TFs (Fig. 7). Addi-
tionally, we find that at least two tested TFs, C/EBPβ and YY1, are
already bound to TSS regions of upregulated DARs in the young,
suggesting these genes are primed to launch a robust response. In
turn, this suggests that glia-mediated clearance mechanisms are pro-
grammatically activated in the aging brain. In contrast, the weaker
downregulation of synaptic genes is indicative of secondary degen-
erative processes in the neurons.

Our dataset thus presents a systematic, reproducible view of age-
related neuroinflammation and reflects a snapshot of processes likely
to be physiologically relevant. Most single-cell investigations of the
aging or diseased brain involve making single-cell suspensions from
tissue homogenates, with the loss of relevant cellular connections
through ligand-receptor pathways. In fact, a previous seminal study38

reported that mature microglia rapidly lose their identity after isola-
tion but regain it after engraftment back into the central nervous
system environment, suggesting that continuous niche input is
required to maintain its structure and function. Other studies have
used microglia and astrocytic cultures in a serum-containing medium,
which dramatically alter expression profiles and phagocytic activity,
perhaps mitigating differences due to age38,39. Our data, in contrast,
overcomes these challenges with direct expression profiling in situ
and, therefore, shows many statistically significant changes with
robust fold changes. Notably, we find some mRNAs not reported in
prior single-cell studies of the aging brain27,40,41. For example, Gpnmb,
an mRNA upregulated with age in our dataset, is a transmembrane
senescence marker recently reported in the context of
atherosclerosis42 and found to be elevated in microglia in AD mouse
models and human patients, along with TREM2 and APOE43. CCAAT/
enhancer binding protein delta (CebpdmRNA), alsoupregulated in our
dataset, is an innate immuneplayer implicated inAD44. Other examples
areprotein tyrosinephosphatasenon-receptor type 18 (Ptpn18mRNA),
coiled-coil domain containing 3 (Ccdc3mRNA), and Strawberry notch
homolog 2 (Sbno2 mRNA).

Interestingly, differential mRNA abundance analysis on each
individual brain region identified from the spatial profiles high-
lighted the fiber tract as a particularly sensitive area, showing not
only the largest number of DARs but also the largest FC in expression
(Fig. 2 and Supp. Fig. 2). Aging fiber tracts have been implicated as a
vulnerable region in an independent spatial study while this manu-
script was in preparation45 and were previously identified as a
degenerative center in MRI measures of myelin content and axonal
density46–50. Our dMRI results showed significant age-related
decreases in white matter for the PA and RTAP indices (Fig. 5I–K),
suggesting reduced fiber orientational coherence, and an increase in
microscopic water displacement, respectively, with age. These find-
ings support themicrostructural scenario of axonal degradation with

Fig. 5 | Evidence of loss of structural integrity in the aging fiber tracts.
A Immunofluorescence microscopy of MBP (green) and AIF1 (red) -positive
microglia in mouse hemisphere sections with nuclear staining with DAPI (blue).
Scale bars are 500 µm. B Immunofluorescence microscopy of LGALS3 (green) and
CNPase (red) proteins in themousebrain. Scale bars are 500 µm.CConfocal images
of MBP (green) and AIF1 (red) in the corpus callosum area. Scale bars are 50 µm.
D Bar plot showing quantification of mean fluorescence intensity mean of MBP
from five fields in the corpus callosum and corticospinal tract areas per mouse
(n = 3 mice per group; average age, young = 14.67 weeks, old = 85.67 weeks).
EConfocal images of LGALS3 (green) andCNPase (red) in the corpus callosumarea.
Scale bars are 50 µm. F Same as (D) except quantification from CNPase signal. For
(D, F), data were summarized as mean ± standard error of the mean fluorescence
intensity from 15 fields of three mice. p values are reported from an unpaired two-
tailed t-test with Welch’s correction comparing old vs young mice. G Clipped 3D

images of MBP (green) and AIF1 (red) -positive microglia in the corpus callosum
area. The merged images show co-localization of AIF-positive microglia and MBP-
labeled myelin at different angles. Scale bars are 15 µm. H Clipped 3D images of
LGALS3 (green) and CNPase (red) in the corpus callosum area. The merged images
show the co-localization of LGALS3+ microglia and CNPase-labeled myelin in the
old sections at different angles. Scale bars are 15 µm. I Propagator anisotropy (PA),
non-Gaussianity (NG), return-to-axis probability (RTAP), return-to-origin prob-
ability (RTOP), and return-to-plane probability (RTPP) maps in a representative
young sample. J Percent change maps of dMRI metrics between group average
young and old mice. K Box plot showing quantification of white matter PA, NG,
RTAP, RTOP, and RTPP in young and oldmice. The boxes are bounded by the 25th
and 75th percentile values, with the median represented as the bar in the middle.
For (J,K) n = 2 biological replicates per group. Source data are provided as a Source
Data file.
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age, leading to increased extracellular volume, in which water dif-
fuses almost freely with little anisotropy but with a diffusivity similar
to that of cerebrospinal fluid (CSF). Additionally, a recent publication
using multiplexed error-robust fluorescent in situ hybridization
(MERFISH), combined with single-nucleus RNA sequencing (snRNA-
seq), identified the whitematter as a hotspot for age-related glial and
immune cell activation51. Thus, our data, together with results from

independent studies across diverse platforms, pinpoints fiber tracts
as focal points of brain aging.

Why might the white matter be a hotspot for inflammation? We
believe that white matter is an early target during aging due to its
unique macromolecular composition, vascularity, cellular composi-
tion, and structure. The white matter is rich in lipids, forming lipid
peroxide products upon oxidation that are highly damaging52. The
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white matter is less vascularized than gray matter53,54 making it also
susceptible to hypoxic damage. It is also possible that oligoden-
drocytes or oligodendrocyte progenitor cells (OPCs) in the fiber tract
area may become senescent, releasing senescence-associated secre-
tory phenotype (SASP) factors, and attracting microglia. Although not
directly tested,we find amodest senescence signature in thefiber tract
area (Fig. 3E). Additionally, senescent OPCs have been found around
Aβ plaques in AD mouse models and human brains. Finally, comple-
ment proteins, APOE and LGALS3, can serve as opsonins55,56, coating
the whitematter tracts formicroglia targeting. Our snapshot viewmay
be capturing this ongoing event. Relatedly, we find many more upre-
gulatedDARs in this area thandownregulatedDARs,with fewerGOhits
for downregulated mRNAs (Supp. Fig. 5). It is possible that when it
comes to upregulation, there is a signal amplification and spreading
process at fiber tracts. For example, it is possible that senescent oli-
godendrocytes induce bystander senescence which releases more
SASP. Or that there is a high concentration of myelin debris near fiber
tracts that can cause chronic microglial activation, which in turn acti-
vates other nearby microglia. Chronic exposures are also associated
with microglial priming57, an exaggerated response to a secondary
stimulus. In contrast, downregulated DARs, mostly related to synaptic
function, are secondary degenerative effects that are not well-
controlled responses and do not have an amplification component.

The mRNA signature at fiber tracts (and to a lesser extent in the
hippocampus, thalamus, and hypothalamus) had three major indica-
tions: microglia activation, astrogliosis, and innate immune myeloid
cell infiltration (summarized in Fig. 7G). Accumulation and activation
of innate immune cells in heavily myelinated fiber tracts in the old
brain underscore the involvement of immune cells in demyelination/
remyelination or myelin debris removal during natural aging. Previous
literature has reported that aging and neurodegeneration activate
distinctmicroglia subtypes:WAM18 andDAM19. Inmousemodelsof AD,
theWAM signature appears early, followed by gradual upregulation of
DAM1 and DAM218. The high phagocytic activity of DAM2 triggered in
the disease context serves to clear degraded myelin and is said to be
protective. We investigated WAM and DAM expression signatures and
could identify both as being activated in our dataset (Fig. 4). In parti-
cular, Trem2, Tyrobp, Lgals3 mRNA, and early complement pathway
mRNAs C1q and C4b were remarkably upregulated in microglia in old
white matter, implicating their involvement in aging-related fiber tract
pathophysiology.

TREM2 promotes myelin debris removal by microglia in naturally
aging brains, highlighting its neuroprotective role18. However, TREM2
was also shown to convert microglia phenotype from homeostatic to
neurodegenerative, and ablation of TREM2 in AD mice resulted in
suppression of inflammatory reaction58. Furthermore, in humans,
TREM2 variants posea risk for ADRD59. Whether TREM2/TYROBP sig-
naling in themicroglia of old brains, particularly in fiber tracts, serves a
neuroprotective or neurodegenerative role, or both, remains to be
determined41.

Similarly, elevated LGALS3, a WAMmarker, was largely shown to
be detrimental in the brain, with an implied protective function
depending on the context of the surrounding microenvironment60.

Activated but not homeostatic microglia express LGALS358. LGALS3
was increased in neurodegenerative microglia in AD patients, and AD
and MS mouse models, and ablation of LGALS3 suppressed inflam-
matory response and alleviated AD or MS phenotypes in mice58,61,62,
emphasizing neurodegenerative effects of LGALS3 in the context of
AD or MS. Furthermore, the proinflammatory action of LGALS3 was
shown to be mediated by TREM2/TYROBP61 or TLR463 in the brain,
where LGALS3 functions as an endogenous paracrine ligand of these
receptors. However, LGALS3 was required for M2 polarization in
peripheral lung or peritoneal macrophages64, suggesting its protec-
tive anti-inflammatory potential in macrophages. We found that
Lgals3 expression is strikingly upregulated in microglia, and about
20% of LGALS3-positive microglia form nodules that physically
interact with myelin in fiber tracts in the old brain (Figs. 3–5). We
infer that LGALS3 and TREM2 are involved in the deterioration of
white matter myelin sheath during natural brain aging separately or
in combination.

C1q was previously reported to increase in the aging brain65, and
we found evidence of early complement activation, with the expres-
sion of C1q and C4b mRNAs. The C1q-induced classical complement
pathway plays a critical role in synaptic pruning66, and C1q-ablated
mice exhibit improved synaptic plasticity and alleviation of cognitive
andmemory decline during aging65. InMS, early complement pathway
proteins were shown to be increased around progressive white matter
lesions67,68, suggesting an involvement of the complement pathway in
MS pathophysiology, i.e., demyelination and myelin debris removal69.
Consistently, the complement proteins, APOE and LGALS3 are known
to opsonize the myelin sheath in white matter to promote recognition
and clustering of microglia in this region for targeted phagocytosis56.
Collectively, activated microglia and the classical complement path-
way likely contribute to myelin degeneration in white matter during
natural brain aging.

Another important feature evident in our data was reactive
astrogliosis, which suggests a compromise of the extracellular matrix
and BBB integrity, although this was not directly tested in this study29.
Loss of BBB integritywith age facilitates infiltration of peripheral blood
cells into the brain parenchyma, relegating the immune-privileged
status of the brain. Using computation (RCTD) and experimentation
(flow cytometry), we detected an increased myeloid cell signature and
infiltration of neutrophils in the aged brain (Supp. Fig. 6). Together
with activation of resident immune cells like microglia and astrocytes,
infiltrating cells can aggravate inflammation, nerve degeneration
including demyelination and cognitive decline with age70.

Our dataset underscores the importanceof studying both sexes in
aging and demonstrates that neuroinflammation is highly sex-
dimorphic, with females showing a stronger response (Fig. 6). A sex-
specific analysiswas empoweredbyour inclusionof a secondcohort of
three additional biological replicates per sex group in the young and
old categories (total n = 5 biological replicates per age per sex). We
further validated our sex dimorphic data by flow cytometry in an
independent set of animals (n = 5 biological replicates per group),
which shows that aged female mice have greater numbers of infil-
trating neutrophils in the brain parenchyma (Supp. Fig. 6). Notably,

Fig. 6 | Female mouse brains exhibit stronger pro-inflammatory changes.
A Heatmap of count mean values for 73 mRNAs shared among at least five regions
groupedby age and sexatpseudobulk level (left).Heatmapof countmeanvalues of
69 of the 73 mRNAs detected in the second round of experiments with n = 3 bio-
logical replicates per age per sex (middle). Heatmapof the countmean values of 69
of the 73 mRNAs with n = 5 biological replicate per age per sex. n = 37 out 69 DARs
significantly higher in old females than old males (FDR <0.05, and FC ≥1.5) are
labeled red (right). B Bar plot showing the number of age-related DARs in female
and male mice split by brain region. The age-related mRNAs were filtered by FDR
<0.05 and FC ≥1.5 or FC ≤1.5 in old vs. young. C Venn diagram showing overlap of
four indicated groups ofDARs inold vs. young,male and femalemice infiber tracts.

D Scatterplot showing significant DARs in old vs. youngmale and femalemice (FDR
<0.05, FC ≥1.5 or ≤−1.5) in fiber tracts. E Bar plot of activated microglia marker
mRNAs Lgals3, Aif1, Trem2, Tyrobp, and Lyz2; complement pathwaymarker mRNAs
C4b, C1qa, C1qb, and C1qc; and activated astrocyte marker mRNAs Serpina3n, Gfap,
Gpnmb, and Vim in fiber tracts of young and old, male and female mice. Data were
summarized as mean ± standard error of the relative mean counts. Each dot shows
the expression in an individual animal relative to the mean of the young female
group, equivalent to n = 5 biological replicates per age per sex. p values are
reported from a one-way ANOVA with Tukey’s multiple comparisons test. Source
data are provided as a Source Data file.
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recent studies that identified microglia activation and astrogliosis by
Visium profiled either only male brains45 or by MERFISH and snRNA-
seq only female brains40,51. Our data is concordant with previous
reports in humans that show greater immune activation in the hip-
pocampus and cortex of old female brains71. Aged women also show
higher overall prevalence of all-cause dementia72. The consistent sex-
ual dimorphism observed in these different studies likely indicates a
higher risk in females for age-related loss of brain function.

In addition to showing strong female bias, our dataset has several
distinct advantages over recently published papers. Our sample
numbers (n = 5 biological replicates per age per sex, or n = 10 per age)
exceed published single-cell or spatial datasets in aging mouse
brains27,40,45,51 (n = 2–8 biological replicates per group) and include a
geriatric group where we note the strongest inflammatory signatures.
Our useof coronal sections (similar to ref. 45) allowedus to interrogate
seven distinct anatomical regions, while ref. 51 focused on the frontal
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cortex and striatum. A major strength in our study is the additional
validations using multiple orthogonal techniques (Figs. 4, 5, 7 and
Supp. Fig. 6). A key outcome of this validationwas the identification of
two TFs, C/EBPβ, and YY1 that bind in the TSS regions of
neuroinflammatory genes.

Despite the above advantages, our use of coronal sections at
defined anterior-posterior positions in the brain has limited our ability
to query all possible brain regions. Furthermore, we have used a fairly
gross resolution for clustering. A technical limitation is that the Visium
slides used here do not reach single-cell resolution, having ~5–25 cells
per spot from a 16 µm section. As higher-resolution discovery and
validation platforms are being developed, we will be able to pursue
finer-grained dissection of substructures in the brain.

In summary, we identified striking global transcriptomic altera-
tions in seven anatomically distinct brain regions during normal aging,
with the core findings of prominent changes in white matter fiber
tracts, demonstrating widespread and sex-dimorphic patterns of
increased inflammatory gene signatures and decreased synaptic plas-
ticity, likely providing valuable resources for future mechanistic stu-
dies of normal brain aging and possibly insights into the pathogenesis
of Alzheimer’s Disease and related Dementias (ADRD).

Methods
Animals
This studywas approvedby theAnimal Care andUseCommittee of the
NIA in Baltimore, MD, under Animal Study Protocol number 481-LGG-
2025. Young, middle-aged, and old inbred C57BL6/JN mice of both
sexes were acquired from the NIA-aged rodent colony (https://ros.nia.
nih.gov/) and housed in rooms that were maintained at 22.2 ± 1 °C and
30–70% humidity. Routine tests are performed to ensure thatmice are
pathogen-free and sentinel cages aremaintained and tested according
to the American Association for Accreditation of Laboratory Animal
Care (AAALAC) criteria. The age and sex information are available in
Supp. Data 1.

Brain dissection, freeze-embedding, and sectioning
For ST, mice were euthanized following the 2013 AVMA Euthanasia
guidelines by carbon dioxide asphyxiation and then quickly decapi-
tated. Fresh brains were extracted from the mouse skull and the cer-
ebral hemispheres are partially separated from each other along the
interhemispheric fissure (deep groove) of the falx cerebri. The
obtained tissue samples were covered in room temperature optimal
cutting temperature (OCT, Tissue-Tek) followed by simultaneous
freezing and embedding in a bath of isopentane and liquid nitrogen to
prevent RNA degradation and avoid morphological damage. The fro-
zen OCT-embedded tissue block was stored in a sealed container at
−80 °C until ready for cryo-sectioning. Coronal sections of thickness
16 µm were cut using a CM3050S cryostat (Leica). We focused on
capturing sectionswith the hippocampus, as this is a region implicated
in age-related cognitive decline. Consequently, we chose positions

277–293 (an ~400 µmwindow) from the P56 coronal AllenMouse Brain
Atlas14 across different animals. We tried to be as consistent as prac-
tically possible to select the same region focused on the middle of the
hippocampal structure along the dorsoventral axis. Tissue sections
were placed within the frames of the capture areas on a Visium spatial
tissue optimization slide (capture area 8 × 8mm, surrounded by an
etched frame, 10X Genomics, PN3000394) or Visium spatial gene
expression slides (capture area 6.5 × 6.5mm, surrounded by a fiducial
frame for a total area of 8 × 8mm, 10X Genomics, PN2000233). The
slides were stored individually in a sealed container at −80 °C until the
next step. The fresh frozen protocol was followed for ST.

Fixation, H&E staining, and imaging of tissue sections
The slides containing tissue sections were removed from −80 °C and
transported to lab space on dry ice in a sealed container. The ther-
mocycler adapter (10X Genomics, PN3000380) was placed on a ther-
momixer C (Eppendorf) set at 37 °C for 5min. The slide was incubated
on the thermocycler adapterwith the active surface facing up for 1min
at 37 °C and then immersed in prechilledmethanol (Sigma-Aldrich) for
30min at −20 °C. After fixation, the slide was uniformly covered in
isopropanol (Sigma-Aldrich) for 1min at room temperature and air
dried (not exceeding 10min). After drying, the slide was stained in
Mayer’s hematoxylin (Dako, S3309) for 7min at room temperature,
followed by 35 washes in water. Subsequently, the slide was incubated
in a bluing buffer (Dako, CS702) for 2min at room temperature, fol-
lowed by five washes in water. The slide was then stained in a prepared
Eosin mix for 1min at room temperature (100 µl Eosin (Dako, CS701)
and 900 µl 0.45M Tris-acetic acid buffer, pH 6.0) followed by 15
washes in water. The tissue was air dried until opaque followed by
incubation on the thermocycler adapter for 5min at 37 °C. The slide
was imaged on the all-in-one fluorescence microscope (Keyence, BZ-
X710) at the desired magnification using brightfield imaging settings.
The spatial gene expression imaging guideline technical note (10X
Genomics, CG000241) was consulted for reference.

Optimization of tissue permeabilization times
To optimize permeabilization time for mouse brain tissue, the Visium
spatial tissue optimization slide was placed in the slide cassette (10X
Genomics, PN3000406). The tissue sections on the slide were incu-
bated with the permeabilization enzyme (10X Genomics, PN2000214)
for a time course of 30, 24, 18, 12, 6, and 3min to identify an optimal
tissue permeabilization time for further use in the visium spatial gene
expression. About 70 µl permeabilization enzyme was added to the
first well, and then the slide cassette was placed on the thermocycler
adapter at 37 °C. After 6mins, 70 µl permeabilization enzyme was
added to the second well and the process was repeated for the other
wells until the shortest incubation time 3min. After time course
completion, all wells were washed with 100 µl 0.1X SSC buffer (15mM
NaCl, 1.5mM sodium citrate, pH 7.0). Subsequently, the reverse tran-
scription (RT) master mix containing RT reagents and fluorescently

Fig. 7 | Machine learning prediction of epigenetic drivers of gene expression in
the aging mouse brain. A Heatmap showing the balanced classification accuracy
of random forestmodels for cohort 1 (top) and cohort 2 (bottom) over three classes
(up/down/constant) across seven brain regions. The final predictionwas defined as
upordown if at least 75%of themodels agreed, aspreviously described33. For cross-
region validation, the entire data of the tested region was used. The color scale
shows the accuracy values.B Scatterplot of top 50 features obtained frommachine
learning on cohort 1 (left) or cohort 2 (right) and Lisa ranks of predicted TFs from
upregulated DARs in pseudobulk data. C/EBPβ and YY1, labeled in red,were chosen
for testing.CBar plot ofCebpbmRNA infiber tracts of young,middle, and oldmice.
Each dot shows the average expression of the two technical replicates for each
mouse relative tomeanof younggroup, equivalent ton = 4biological replicatesper
group. Data were summarized as mean ± standard error of the relative mean
counts. **p <0.01, from an unpaired two-tailed t-test with Welch’s correction

comparing middle vs. young and old vs. young (left). Schematic showing the study
design of CUT&RUN experiments in primarymicroglia isolated from young and old
mouse brains (right).DMetaplot showing binding of C/EBPβ near TSSs of 73 genes
upregulated during aging (Fig. 2D, G) and shared across five regions (top) or a
background set of 91 genes that are downregulated with age also from Fig. 2D
(bottom). E Same as (D), except for YY1. For (D, E), ***p <0.001 from an unpaired
two-tailed t-test with Welch’s correction comparing AUC values across the gene
body in old vs young. F Representative genome browser tracks showing binding of
C/EBPβ (left) and YY1 (right) at key upregulated genes. G Comprehensive model
derived from this study showingBBBdamage anddemyelination atfiber tracts with
consequential microglia activation (WAM/DAM2 signature), astrogliosis, and neu-
trophil infiltration. Illustration credit for parts of (C) goes to Endosymbiont GmbH,
and BioRender. Sen, P. (2025) https://BioRender.com/m70w321. Source data are
provided as a Source Data file.
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labeled nucleotides (10X Genomics, PN1000192) was added on top of
the tissue sections to make fluorescently labeled cDNA. After cDNA
synthesis, tissue sections were removed with the tissue removal mix
(10X Genomics, PN1000191) and then washed with 0.2X SSC and 0.1X
SSC buffer. After removing all the tissues on the slide, all capture areas
were imaged by the all-in-one fluorescence microscope (Keyence, BZ-
X710) at the desired magnification using fluorescence imaging set-
tings. The spatial gene expression imaging guideline technical note
(10X Genomics, CG000241) was consulted for reference. In our stu-
dies, 30min was identified as the optimal permeabilization time for
16 µm sections from pilot studies using both young and old brains.
Although therewas a saturationoffluorescence signal from 18–30min,
we decided to use 30min for all age groups to reduce any technical
variability due to different permeabilization times and ensure all
regions were well permeabilized. We carefully analyzed the size dis-
tribution of extracted cDNAs for indications of degradation. Our ana-
lyses revealed no significant changes (Supp. Fig. 1B, top panel).
Additionally, we performed downstream count normalization, which
tackles any global differences in RNA extraction (Supp. Fig. 1D).

On-slide tissue permeabilization, cDNA synthesis, and probe
release
The Visium gene expression slide was retrieved post-fixation and H&E
staining. About 70 µl permeabilization enzyme (10X Genomics,
PN2000214) was added to the fixed and stained sections and the slide
was incubated for 30min at 37 °C. After permeabilization, all wells
were washed with 100 µl 0.1X SSC buffer followed by addition of 75 µl
RT master mix. After RT, the tissue sections were incubated with 75 µl
0.08M KOH for 5min, washed with 100 µl elution buffer (EB, Qiagen),
and then treated with 75 µl s strand mix. After the second strand
synthesis, the cDNA from each capture area was washed with 100 µl
buffer EB and then denatured and diluted with 35 µl 0.08M KOH and
5 µl Tris (1M, pH 7.0). cDNA (35 µl) from each well was transferred to a
corresponding tube before proceeding to cDNA amplification and
library construction.

cDNA amplification
A 1 µl cDNA sample was used for the estimation of cycles of amplifi-
cation using the Kapa SYBR fast qPCR master mix (Kapa Biosystems,
KK4600) and cDNAprimers (10XGenomics, PN2000089). A total of 25
cycles was first performed, and the threshold was set along the
exponential phase of the amplification plot at ~25% of the peak fluor-
escence value. In the end, our estimate determined 17 cycles of cDNA
amplification. Spatially barcoded full-length cDNA from all samples
were amplified using 17 cycles PCR by adding 65 µl cDNA amplification
mix (10X Genomics, PN2000189).

ST library construction and sequencing
The post-cDNA amplification product was cleaned with SPRIselect
(Beckman, Coulter B23318) and eluted in a volume of 40 µl; 1 µl of
eluate was run on an Agilent bioanalyzer DNA 1000 chip (Agilent
Technologies, 5067-1504) to assess cDNA quality and quantity and
10 µl (25%) of the total amplified cDNA was used as input to perform
enzymatic fragmentation, end repair and A-tailing (10X Genomics,
PN1000196). A double-sided size selection was then performed with
SPRIselect (Beckman, Coulter B23318). TruSeq read2 primer was
added via adapter ligation (10X Genomics, PN1000196). P5, P7, i7, and
i5 sample indices were added via index PCR with the individual dual
index TT set A (10X Genomics, 3000431). The cycle number for index
PCR was calculated based on the yield of the 25% carry forward cDNA
material, and 15 cycles were used. A double-sided size selection of the
post-index PCR sample was performed with SPRIselect (Beckman,
Coulter B23318). The purified library (1 µl) was run on an Agilent
bioanalyzer DNA 1000 chip (Agilent Technologies, 5067-1504) to
assess cDNA quality and quantity. The average fragment size was

determined from the bioanalyzer trace and used as the insert size for
library quantification. Libraries from individual sampleswerepooled in
equimolar amounts, re-quantified using the NEBNext Quant kit (New
England Biolabs), and loaded on the NovaSeq 6000 sequencer (Illu-
mina). For the initial cohort, two runs were performed using NovaSeq
S1 100 cycle kits for a total of 4.1 billion paired-end reads. For the
second cohort, one NovaSeq S1 100 cycle kit was used for a total of 2
billion paired-end reads.

Immunofluorescence imaging
Mouse brain coronal sections (30 µm) were cut from an OCT block
onto positively charged glass slides using a CM3050S cryostat (Leica).
Floating sections were first incubated in permeabilization buffer (0.2%
Triton™ X-100 in 1X PBS) for 5min at room temperature. Antigen
retrieval was performed by placing the sections in 1X sodium citrate
solution (Thermo Fisher) in an 80 °C bath for 30min, followed by
incubation in blocking buffer (5%normal serum, 0.3% Triton™X-100 in
1X PBS) for 1 h at room temperature. Sections were incubated with
primary antibodies diluted in antibody dilution buffer (1% BSA, 0.3%
Triton™ X-100 in 1X PBS) overnight at 4 °C. The sections were then
incubatedwith secondary antibody conjugated to afluorescent dye for
2 h at room temperature, followed by washes with PBST and staining
with 5 µg/ml DAPI for 15min at room temperature. After a wash with
PBS, the sections were mounted with Epredia Lab Vision PermaFluor
Aqueous Mounting Medium (Fisher Scientific). Photographs were
taken using a Zeiss LSM 710 confocal microscope. The quantification
was accomplished from n = 3 mice per group; average age,
young = 14.67 weeks, old = 85.67 weeks. Five fields from the corpus
callosum and corticospinal tract region per mouse were captured
using a 20X objective. In each field, the fiber tract area of interest was
marked for quantification of myelin. Alternatively, IBA1+ or LGALS3+
microglia were labeled in each field and cell numbers/intensities were
quantified using Image J (Fiji, https://imagej.nih.gov/ij/). Antibody
information is provided in Supp. Data 1.

Flow cytometry
Micewere anesthetized byCO2 asphyxiation andperfused through the
circulatory system by injection of 60ml cold DPBS (Gibco,14190-144).
The mouse was quickly decapitated after perfusion and fresh brain
tissue was dissected. The brain was dissociated into single-cell sus-
pensionswith theAdult BrainDissociation kit (Miltenyi Biotec,130-107-
677). Two million brain cells were seeded per well in a round bottom
96-well plate. Cells were stained with the following panel: the fixable
viability dye FVD780, anti-CD45 BUV395, anti-CD11b BV510, anti-Gr1
Pacific Blue, anti-Ly6G BV650, F4/80 BUV661, and MHC II FITC. Flow
cytometry was performed with the Cytoflex-LX Flow Cytometer
(Beckman Coulter). Data were analyzed using CytExpert software.
Antibody information is provided in Supp. Data 1.

Magnetic resonance imaging (MRI) of young and old
mouse brains
Data acquisition. Mice were anesthetized by isoflurane inhalation and
perfused through the circulatory systemby injectionof 50ml cold PBS
(Thermo Fisher) followed by 50ml paraformaldehyde (PFA, Thermo
Fisher). The dissected perfused brains were stored overnight in PFA,
washed with PBS, and then stored in PBS for ~10 days at 4 °C. Prior to
MRI scanning, each specimen was placed in a 10mm tube, and
immersed in perfluoropolyether (Fomblin LC/8, Solvay Solexis, Italy), a
proton free fluid void of a proton-MRI signal. Specimens were imaged
using a 7T Bruker vertical bore MRI scanner equipped with a micro-
imaging probe and a 10mmRF coil. For dMRI, 261 image volumeswere
acquired for each specimen using a 3D echo-planar imaging pulse
sequencewith the following parameters: echo time = 42ms; repetition
time= 800ms; number of segments = 10; and isotropic voxel dimen-
sion = 75μm. Data were acquired using a multi-shell acquisition with
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six directions and three repetitions for b = 200, 500, and 1000 s/mm2,
32 directions and 1 repetition for b = 1700 and 3800 s/mm2, 56 direc-
tions and 1 repetition for b = 6700 s/mm2, and 87 directions and 1
repetition for b = 10,000 s/mm2. An additional b = 0 s/mm2 image was
also acquired with reversed phase-encoding for distortion correction
purposes. All dMRI data were acquired using δ = 3ms and Δ = 20ms. A
T2-weighted structural image was also acquired using a multi-slice
multi-echo sequence with the following parameters: 16 echo times
linearly sampled between 10.6 and 169ms; repetition time= 2000ms;
and the same spatial parameters described for dMRI.

Dataprocessing. DiffusionMRI preprocessingwasperformedusing the
TORTOISEV4 pipeline (https://github.com/eurotomania/TORTOISEV4).
The dMRI data was first denoised using the MP-PCA denoising
technique73 and subsequently corrected for eddy-currents distortions.
During this process, each diffusion-weighted image was initially
quadratically74 registered to an average b=0 s/mm2 to image, and sub-
sequently registered to a synthetic image generated using the same
bval/bvec with either the DTI model (for b-values up to 6000 s/mm2) or
the MAP-MRI model (for b-values larger than 6000 s/mm2). Center fre-
quency drifts were then estimated using a linear regression model75 and
applied to all data. The final step in processing was susceptibility dis-
tortion correction with the DRBUDDI technique76, which used both the
blip-up and blip-down dMRI data along with the corresponding T2W
image for correction. The final dMRI data was generated by con-
catenating the blip-up and -down datasets.

Microglia isolation
Fresh brain tissue was quickly dissected after anaesthetization. The
brain was dissociated into single-cell suspension with the Adult Brain
Dissociation kit (Miltenyi Biotec, 130-107-677). Primarymicroglia were
isolated from the dissociated cells usingCD11b (Microglia)MicroBeads
(Miltenyi Biotec, 130-093-634) following the manufacturer’s protocol.
CD11b+ cells were collected and counted using a Cellometer K2 image
cytometer (Nexcelom). Microglia from n = 2 mice per age/sex group
were pooled into one biological replicate.

CUT&RUN
CUT&RUN was performed using the CUT&RUN Assay Kit (Cell Signal-
ing Technology, 86652) following the manufacturer’s instructions.
About 500,000 microglia from one biological replicate (as defined
above) were used for each reaction. The cells and concanavalin
A-coatedmagnetic beads slurrywere incubatedwith 1.5 µg anti-C/EBPB
antibody (Santa Cruz, sc-7962) or 0.1 µg anti-YY1 antibody (Cell Sig-
naling Technology, 46395), or 0.1 µg IgG isotype control (Abcam,
ab171870) overnight at 4 °C. The pAG-MNase digestion was stopped
with a 1X stop buffer. DNA was purified from enriched chromatin
samples using the NEB Monarch DNA Cleanup Kit (NEB, T1130) fol-
lowing the manufacturer’s instructions. Libraries were constructed
with the NEBNext Ultra™ II DNA Library Prep Kit (NEB, E7645S). The
version 1 protocol (https://www.protocols.io/view/library-prep-for-
cut-amp-run-with-nebnext-ultra-ii-kxygxm7pkl8j/v1) was used to
enrich for sub-nucleosomal fragments. Notable modifications include
incubation at 50 °C for 1 h in the end prep step and 65 °C for 10 s in the
Annealing/Extension step in PCR cycles. The libraries were size-
selected and purified with SPRIselect (Beckman Coulter, B23318), and
quality checked on Agilent Bioanalyzer High Sensitivity DNA chip
(Agilent Technologies, 5067-4626). The pooled library was sequenced
in two rounds, first using a NextSeq 2000 P2 100 cycle kit (mixed with
other samples) and then using a NextSeq 2000 P4 XLEAP-SBS 100
cycle kit for a total of 3.6 billion reads.

Bioinformatic analysis
ST data analysis using Partek Flow. After next generation sequen-
cing, we processed FASTQ files and preliminarily assessed quality

control metrics on Space Ranger (v2.0.0 for cohort 1 and v2.1.1 for
cohort 2, 10X Genomics). The list of QC metrics for each sample is
available in themetrics_summary output of Space Ranger and includes
mapping, sequencing, and spot quality checks. Additionally, one can
view UMI count distribution on tissue section, preliminary clustering
and t-SNE projections. All our samples passedthe initial QC check on
Space Ranger. The Space Ranger filtered feature-barcode matrix in
HDF5 format, and the spatial information (available on GEO, see Data
availability section) was then transferred to Partek Flow (v10.0.23.0531
for cohort 1 and 11.0.23.1204 for cohort 2, Partek Inc.)13 to perform
further quality assessments. The filtered feature-barcode matrix con-
tains only tissue-associated barcodes in MEX format. Rows are fea-
tures, barcodes are columns, and each element is the number of UMIs
associatedwith a given feature andbarcode. Thisfile is typically passed
into third-party packages (in our case, Partek) for further filtering,
outlier removal, normalization, etc. In Partek, for cohort 1, the bar-
coded spots were filtered by counts at low.cutoff = 1 and high.cut-
off = 38,855, detected genes at low.cutoff = 1 and high.cutoff = 8012, %
mitochondrial counts at low.cutoff = 0, high.cutoff = 35%, % ribosomal
counts at low.cutoff = 0, high.cutoff = 14%. For cohort 2, the barcoded
spots were filtered by counts at low.cutoff = 1 and high.cutoff = 31,732,
detected genes at low.cutoff = 1 and high.cutoff = 7515, % mitochon-
drial counts at low.cutoff = 0, high.cutoff = 48%, % ribosomal counts at
low.cutoff = 0, high.cutoff = 18% (representative cohort 1 in Supp.
Fig. 1C, D). FilteredmRNAs with a value ≤1.0 in at least 99 % of the cells
were excluded for both cohorts. The data after these initial filtering
steps contained 82,672 barcoded spots for cohort 1 and 74,899 for
cohort 2, with data for 10,109mRNAs for cohort 1 and 9317mRNAs for
cohort 2 (Supp. Data 3). Next, the data were variance stabilized by log
normalization and scaled to counts permillion (CPM, add:1.0, log:2.0).
PCAwas performed, and the top 100 principal components (PCs) were
stored. The data were then clustered using graph-based cluster ana-
lysis with a clustering resolution set to 0.5. Spots on visium imagewere
classified based on histology and Uniform Manifold Approximation
and Projection (UMAP) and annotated to the graph-based clusters. The
annotated spots were named based on specific enriched marker
mRNAs defined by Allen Mouse Brain Atlas14 and assigned to brain
regions. Ultimately, we included 67998 barcoded spots for cohort 1
and 57,893 for cohort 2, representing seven brain region clusters.

To determine if our data had batch effects, we merged the sam-
ples in cohort 1 (n = 2per ageper sex) or cohort 2 (n = 5per age per sex)
and performed dimension reduction, clustering, and UMAP con-
struction. We observed that the data was segregated by brain region
and not by sample. Further application of batch correction (either scvi,
generalized linear model, or Seurat integration) had little effect. We
thus concluded that a batch correction was not required for our
dataset. Important steps undertaken to prevent batch effects were as
follows: (1) we randomized young, middle-aged, and old samples
across slides, (2) we used the same permeabilization time and PCR
cycles for both cDNA and library amplification across slides, and (3) we
pooled all samples (in each of the two cohorts) and sequenced toge-
ther to minimize platform differences. Furthermore, we used the a
priori knowledge of brain anatomy from the Allen Brain Atlas to
annotate our histological images and further refine the clusters.

For differential analysis, after initial preprocessing, quality con-
trol, CPM normalization, and determination of spatial identities from
clusters, we split the normalized counts into seven regions based on
their brain region classification. This was done one by one for each
sample. At the end of the region classification process, spots were
assigned to a defined brain region across all samples. For each region,
differentially abundant mRNAs (DARs) were identified based on age
groups (young, middle, and old). ANOVA statistics were applied to
each age group comparison with sex included as a covariate. Sig-
nificant DARs affected by age were filtered by FDR using the
Benjamini–Hochbergmethod <0.05, and FC ≥1.5 or ≤−1.5. Visualization
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of DARs by strip chart and heatmaps was performed in R (v4.3.0) or
GraphPad Prism (v9.4.1).

For pseudobulk analysis, we combined spots of all 7 regions from
the initial counts post-QC, to represent counts from the entire coronal
section and performed CPM normalization. DARs were identified
based on age groups (young, middle, and old). ANOVA statistics were
applied to each age group comparison for differential analysis with sex
included as a covariate. Significant DARs affected by age were filtered
by FDR using the Benjamini–Hochberg method <0.05, and FC ≥1.5 or
≤−1.5. Visualization of DARs by volcano plots and heatmaps was per-
formed in R (v4.3.0).

For sex comparisons, we split the CPM normalized counts into
female and male groups for each region or pseudobulk. In each sex
group, ANOVA statistics were applied to old versus young comparison
for differential analysis. Significant DARs affected by age were filtered
by FDR using the Benjamini–Hochberg method <0.05, and FC ≥1.5 or
≤−1.5. Visualization of the DARs by age and sex via scatterplots was
performed in R (v4.3.0) or GraphPad Prism (v9.4.1).

Cell-type identification by RCTD. Cell-type identification was per-
formed using robust cell-type decomposition (RCTD)26, a method that
learns from single-cell RNA-seq references and decomposes cell-type
mixtures in spatial data. RCTD first constructs a single-cell reference
(reference) from counts, cell-type information, and nUMIs using the
Reference constructor function. Next, it takes the spatial tran-
scriptomics data and loads it into a SpatialRNA object (puck). The
RCTD run using the reference and puck generates results stored in the
@results field. @results$weights is a data frame of cell-type weights
for each spot and can be interpreted as the proportion of RNA mole-
cules originating from each cell type in each spot. Finally, RCTD per-
forms a platform effect normalization step, which normalizes the
scRNA-seq cell type profiles tomatch the platformeffects of the spatial
transcriptomics dataset.

The reference single-cell RNA-seq data was from ref. 27. RCTD
(v2.2.1) was run in R (v4.3.0) using the open-source R package at
https://github.com/dmcable/RCTD. The doublet_mode argument
was set to run RCTD in full mode. The plot_puck_continuous function
was used to plot the continuous value over locations on the puck
(Supp. Fig. 6A). RCTD outputs a normalized weight for each of the 25
cell types per sample. Normalized weight mean values were calcu-
lated by taking the average weight of all spots for each cell type.
These mean values were further averaged across two technical
replicates for each mouse (n = 4 per age group, Supp. Data 8) to
determine the cell composition per sample and plotted in
Supp. Fig. 6B.

Identification of differentially abundant mRNAs by SpatialDE. Spa-
tialDE package (v1.1.0)15 in Python (3.8) was used to validate the
expression of representativewell-known region-specificmarkers in the
brain. The open-source implementation of SpatialDE is available at
GitHub (https://github.com/Teichlab/SpatialDE).

Analysis of WAM/DAM signatures using SPATA. SPAtial Tran-
scriptomic Analysis (SPATA2)77 was performed to visualize WAM and
DAM signatures within a spatial context. The SPATA2 (v0.1.0) was run
inR (v4.3.0). The source codeof SPATA2 (v0.1.0) is available onGitHub
(https://github.com/theMILOlab/SPATA).

Machine learning. To define input features for the machine learning
models, we used ChIP-seq data previously described in ref. 33.
The ChIP-seq data were converted to a binary representation indicat-
ing whether a TF had any binding sites on a gene or not. In total
452 TFs and 5191 mRNAs were used. Differential expression measure-
mentswerealso codified independently for eachbrain regionbasedon
their FC as up, down, or constant. Differential mRNA results were

categorized as up if the FC >1.2 and down if <−1.2. For cohort 1 an FDR
<0.05was usedwhereas for cohort 2 FDR<0.1wasused. AnymRNAnot
passing the FDR or FC filter was categorized as constant. A machine
learning model was trained to predict the FC class in each region
independently. The Random Forest model was used from the R library
caret and code previously described in ref. 33. Two-thirds of the genes
were used as the training partition, while the remaining third was used
to test prediction accuracy. 100 models were trained for each region
using random initialization, where each model had genes sampled
within the training set to ensure equal numbers of the three FC classes.
The final prediction was defined as up or down if at least 75% of the
models agreed as previously described33. Feature importance was
estimated by quantifying the reduction in model accuracy when the
feature was shuffled in the input.

CUT&RUN analysis. CUT&RUN analysis was performed as outlined in
Zheng et al., following the protocols.io tutorial (https://doi.org/10.
17504/protocols.io.bjk2kkye). Briefly, sequencing reads (~107 million
paired-end reads per sample) were de-multiplexed to generate com-
pressed FASTQ files by bcl-convert (v4.1.50). Paired-end reads were
trimmed using Trim Galore (v0.6.7) to remove the adapter. The qua-
lities of the FASTQs were assessed using FASTQC (v0.11.9). Reads were
then aligned to themouse genome (mm10) using Bowtie2 (v2.5.3) with
the parameters -very-sensitive-local, -I 10, and -X 700. SAMoutput files
from Bowtie2 were then filtered to retain alignments with a minimum
mapping quality of 2 using samtools (v1.19)78. Aligned reads mapping
to Encyclopedia of DNA Elements (ENCODE) blacklist regions79 were
removed using intersect function in bedtools (v2.30.0). RPKM (reads
per kilobase per million mapped reads) normalized bigWig files were
generated using the bamCoverage function in deepTools (v3.5.4)80.
Genome browser tracks were created by uploading bigWig files on the
University of California, Santa Cruz Genome Browser using custom
tracks.

Violin plots. Violin plot showing the distribution of UMI counts,
detected mRNAs, % mitochondrial counts, and % ribosomal counts of
each barcoded spot in each age group was made in Partek Flow
(v10.0.23.0531, Partek Inc.)13.

Volcano plots. Volcano plots were made by ggplot2 package in R
(v4.3.0) to show -log10(FDR) and log2(FC) values for all 10109 mRNAs.

Metaplots. Metaplots of CUT&RUN data were generated with
deepTools (v3.5.5)80. The computeMatrix function was first used to
calculate the signal intensity on the bodies of the 73 upregulated
genes shared across at least five brain regions (Fig. 2D) and then
metaplots drawn with the plotProfile function. Control regions were
bodies of 91 downregulated genes (Fig. 2D). bwtool (v1.0)81 was used
to get genome coverage information (AUC) across the regions of
interest and statistical differences were assessed by GraphPad
Prism (v10.2.1).

Heatmaps. Heatmaps of shared and unique age-related mRNAs were
made by Heatmapper (www.heatmapper.ca/expression)82. All other
heatmaps were made by the pheatmap package in R (v4.3.0).

Gene Ontology (GO) analysis. Age-related pathways were identified
by gene set enrichment analysis (GSEA)83. GSEA (v4.3.2) was used fol-
lowing software documentation. The input was all 10,109 mRNAs
which were ranked based on their DAR changes and significance. GO
biological processes database was applied as a reference. 1000 ran-
dom permutations were performed to calculate the p values for each
pathway. The top ten significant (FDR <0.05) age-related pathways of
each comparison were shown in heatmap and bubble plots by nor-
malized enrichment scores (NES).
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw and processed spatial transcriptomics data and CUT&RUN data
generated in this study are available through theNCBIGene Expression
Omnibus (GEO) repository under accession number GSE284202.
Source data are provided with this paper and also available at Men-
deleyData (https://doi.org/10.17632/96wzkvjm6n.1).

Code availability
The code and pipeline for the analyses performed in this study are
available at https://github.com/PSenlab/Wang_2025 and published at
https://doi.org/10.5281/zenodo.14750569.
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