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Uncertainty quantificationwith graph neural
networks for efficient molecular design

Lung-Yi Chen 1 & Yi-Pei Li 1,2

Optimizing molecular design across expansive chemical spaces presents
unique challenges, especially in maintaining predictive accuracy under
domain shifts. This study integrates uncertainty quantification (UQ), directed
message passing neural networks (D-MPNNs), and genetic algorithms (GAs) to
address these challenges.We systematically evaluatewhether UQ-enhancedD-
MPNNs can effectively optimize broad, open-ended chemical spaces and
identify themost effective implementation strategies. Using benchmarks from
the Tartarus andGuacaMol platforms, our results show that UQ integration via
probabilistic improvement optimization (PIO) enhances optimization success
in most cases, supporting more reliable exploration of chemically diverse
regions. In multi-objective tasks, PIO proves especially advantageous, balan-
cing competing objectives and outperforming uncertainty-agnostic approa-
ches. This work provides practical guidelines for integrating UQ in
computational-aided molecular design (CAMD).

The exploration of novel chemical materials is a pivotal scientific
endeavorwith the potential to significantly advanceboth the economy
and society1–4. Historically, the discovery of innovative molecules has
led to major breakthroughs in various fields, including the develop-
mentof enhancedmedical therapies5, innovative catalysts for chemical
reactions6, and more efficient carbon capture technologies7. These
discoveries have traditionally resulted from labor-intensive experi-
mental processes characterized by extensive trial and error.

In response to the limitations of these traditional experimental
approaches, computational-aided molecular design (CAMD) has
emerged as a crucial innovation. By conceptualizingmaterial design as
an optimization problem, where molecular structures and their
properties are treated as variables and objectives, CAMD harnesses
computational power to efficiently predict and identify promising
materials. The advent of sophisticated machine learning algorithms
has marked a paradigm shift from conventional knowledge-based
methods, such as the group contribution method8–10, to advanced
learning-based strategies11. Among these, deep learning has demon-
strated exceptional accuracy and flexibility, modeling complex inter-
relations between chemical structures and properties that challenge
traditional theoretical approaches12. For example, graph neural net-
works (GNNs) have emerged as powerful tools for representing

molecular structures13. Unlike traditional models that rely on fixed
molecular descriptors, GNNs operate directly on molecular graphs,
capturing detailed connectivity and spatial relationships between
atoms. This graph-based approach enables GNNs to model molecular
interactions with high fidelity14,15, making them particularly well-suited
for applications in molecular design, where accurate structural
representation is critical. Furthermore, GNNs offer scalability16,
enabling efficient processing of large datasets, which is essential for
exploring the expansive chemical spaces required in CAMD.

As CAMD has evolved, it has incorporated various generative
models and sophisticated optimization strategies that employ surro-
gate models as objective functions to enhance molecular design. For
example, variational autoencoders (VAEs) have been widely used for
molecular generation by encodingmolecules into a latent spacewhere
new structures can be sampled and decoded, facilitating exploration
of chemical space17,18. These VAEs are often coordinated with optimi-
zation techniques, such as evolutionary algorithms19–21, Bayesian opti-
mization (BO)18,22, or Monte Carlo tree search (MCTS)23 to guide the
search toward novel molecules with desired properties. Similarly,
SMILES-based recurrent neural networks (RNNs) have been employed
to generate molecular structures24–26. After a pretraining phase, RNNs
are often fine-tuned using reinforcement learning, enhancing the
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model’s ability to achieve goal-directed optimization. However, a sig-
nificant challenge for generative models can be ensuring diversity in
the generated molecules, especially if training data is limited or nar-
rowly focused, which may limit their utility for exploring diverse che-
mical spaces27. Beyond generative models, some approaches apply
optimization algorithms directly tomolecular representations without
requiring latent spaces. For instance, genetic algorithms (GAs) operate
on molecular graphs28,29 or SMILES strings30,31, iteratively generating
improved candidates through mutation and crossover operations.
This approach bypasses the need for a pretrained generative model,
making GAs adaptable and accessible for a variety of CAMD tasks.
Compared with generative models, GAs can work well even with
smaller datasets and may have lower initial computational demands,
which can be beneficial for direct exploration and optimization of
molecular properties. Additionally, their evolutionary principles
naturally maintain diversity, supporting a broad exploration of che-
mical space and adaptability to specific property objectives32.

Despite the promise of these optimization approaches, a major
challenge with data-driven models in CAMD is their tendency to fail in
accurately predicting properties for molecules outside their training
scope. This limitation underscores the importance of integrating
uncertainty quantification (UQ) into CAMD to assess prediction relia-
bility. Previous studies have commonly addressed this challenge
through BO frameworks, often using Gaussian process regression
(GPR), including Krigingmodels33. These non-parametricmodelsmake
predictions with uncertainty estimates based on the posterior dis-
tribution, leveraging a kernel function to define the covariance
between training data points. However, the matrix inversion required
for non-parametricmethods canbecome time-consuming, particularly
for large datasets, as the computational complexity scales O n3

� �
with

the number of training data and O nð Þ with the dimension of molecular
features34,35. As a result, GPR models are typically constrained to
smaller training datasets36, limiting the chemical space that can be
explored in CAMD37. To alleviate this computational bottleneck and
enable the use of larger datasets, several approximation strategies
have been proposed for GPR38. Low-rank or sparse methods (e.g.,
inducing-point approaches) address the Oðn3Þ scaling by selecting a
small subset of points (inducing points), reducing the effective size of
the Gram matrix, and leading to a more manageable Oðnm2Þ com-
plexity. Random feature expansions—such as random Fourier features
—approximate the kernel function by mapping data into a lower-
dimensional feature space, converting GPR into an approximately
linear model that can be trained in O nDð Þ or OðnD2Þ, where D≪n.
Distributed or parallel GPs divide the dataset acrossmultiplemachines
or computational nodes, combining local posteriors to maintain pre-
dictive accuracy while managing larger data volumes. These techni-
ques collectively address the high computational burden of Gaussian
process models and may expand the applicability of BO-driven CAMD
to larger chemical search spaces.

In contrast, parametric models like GNNs offer a scalable alter-
native, as they maintain a fixed number of parameters regardless of
dataset size, allowing efficient handling of larger datasets. UQhas been
successfully integrated with parametric models for active learning and
virtual screening, enhancing workflow efficiency39,40. However, opti-
mizing over expansive chemical spaces presents distinct challenges, as
accurate UQ under domain shifts remains notoriously difficult41,42. To
the best of our knowledge, whether UQ integration within parametric
models can enable effective optimization across broad, open-ended
chemical spaces—and how best to implement this—remains an open
question. Such an approach is particularly valuable for CAMD, as it
enables exploration across vast and less-characterized chemical spaces
essential for discovering novel compounds.

In this work, we address this issue by combining GNNs with GAs
for molecular optimization, allowing direct exploration of chemical
space without reliance on predefined libraries or generative models.

To mitigate errors associated with surrogate model predictions in
extrapolated regions, we integrate UQ into our GNN framework43–45.
Inspired by acquisition functions used in BO46, we systematically
investigate different ways to incorporate UQ into CAMD, including
probabilistic improvement and expected improvement methods. Our
experiments show that the probabilistic improvement optimization
(PIO) approach, which uses probabilistic assessments to guide the
optimization process, is particularly effective in facilitating explora-
tion of chemical space with GNNs. Given that practical applications
often require molecular properties to meet specific thresholds rather
than extreme values47,48, the PIO method quantifies the likelihood that
a candidate molecule will exceed predefined property thresholds,
reducing the selection of molecules outside themodel’s reliable range
and promoting candidates with superior properties.

Our study includes a comprehensive evaluation of uncertainty-
agnostic and uncertainty-aware optimization approaches using the
Tartarus49 and GuacaMol48 platforms, both open-source molecular
design tools addressing a range of design challenges. Tartarus utilizes
physical modeling across various software packages to estimate target
properties, effectively simulating the experimental evaluations
required in molecular design processes, while GuacaMol focuses on
drug discovery tasks such as similarity searches and physicochemical
property optimization. The benchmarking workflow, illustrated in
Fig. 1, starts with datasets from these platforms to develop GNN-based
surrogate models using the directed message passing neural network
(D-MPNN) implemented in Chemprop50. These models predict mole-
cular properties and their uncertainties, which, when coupled with a
GA, optimizemolecular structures based on the PIOandother selected
fitness functions. Our results indicate that the PIO method sub-
stantially improves the likelihood of meeting threshold requirements,
especially in multi-objective optimization tasks.

In summary, this integration of UQ with GNNs for CAMD repre-
sents a pioneering approach, offering a more reliable and scalable
strategy for discovering novel chemical materials. Through extensive
benchmarking and validation, our work demonstrates the potential of
uncertainty-aware GNN algorithms in molecular design, with promis-
ing applications across domains such as organic electronics, bio-
chemistry, and materials science.

Results
Molecular design benchmarks
To effectively evaluate molecular design strategies, tasks must be
complex enough to reflect the challenges encountered in real-world
applications. Our study provides a comprehensive assessment of dif-
ferent optimization approaches across 19molecularproperty datasets,
encompassing 10 single-objective and 6multi-objective tasks (Table 1),
derived from the Tartarus49 and GuacaMol48 platforms.

The first platform, Tartarus49, offers a sophisticated suite of
benchmark tasks tailored to address practical molecular design chal-
lenges within the realms of materials science, pharmaceuticals, and
chemical reactions. Utilizingwell-established computational chemistry
techniques, including force fields and density functional theory (DFT),
Tartarus models complex molecular systems with high computational
efficiency. The benchmarks encompass a wide array of applications,
ranging from optimizing organic photovoltaics and discovering novel
organic light-emitting diodes (OLEDs) to designing protein ligands and
pioneering new chemical reactions. This breadth enables a compre-
hensive evaluation of various molecular design algorithms across
multiple real-world simulation scenarios.

Three molecular design categories from Tartarus, comprising
seven single-objective and two multi-objective tasks, are listed in
Table 1. Each task employs specific computational methods: organic
emitter design involves conformer sampling51, semi-empirical quan-
tum mechanical methods for geometry optimization52,53, and time-
dependent DFT for single-point energy calculations54. Protein ligand
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design utilizes docking pose searches to determine stable binding
energies55, supplemented by empirical functions for final score
calculations56. Reaction substrate design tasks employ force fields for
optimizing reactant and product structures57, with transition state
structures further refined using the SEAM method58. These methods
include stochastic elements suchas conformer search anddocking site
sampling, introducing variability in simulation outcomes due to the
inherent randomness of geometry optimization. For multi-objective
tasks, a typical approach might involve aggregating multiple objec-
tives into a single composite score. However, this can lead to sub-
optimal compromises where certain objectives are sacrificed to
maximize the overall score. In practical applications, molecules often
need to satisfy multiple objectives simultaneously, which can be par-
ticularly challenging when these objectives are mutually constraining.
To evaluate the efficacy of molecular design strategies under these
conditions, we analyzed each objective within multi-objective tasks,
choosing scenarios where objectives could potentially conflict. For
example, the taskof simultaneouslyminimizing both activation energy

and reaction energy was excluded due to their positive correlation, as
explained by the Bell–Evans–Polanyi principle59,60. Conversely, we
included the task of simultaneously maximizing activation energy
whileminimizing reaction energy, as it poses a significant challenge by
deviating fromconventional expectations and thus alignsmore closely
with the aims of our study. These choices are detailed in Table 1,
illustrating the structured approach to assessing molecular design
algorithms against complex, real-world criteria.

The second molecular design platform, GuacaMol48, serves as a
widely recognized benchmark in drug discovery and is extensively
utilized in various molecular optimization studies. The design tasks
include marketed drug rediscovery, similarity assessment, median
molecule generation, and isomer generation. From these, we selected
tasks suitable for molecular property optimization, comprising three
single-objective tasks aimed at identifying structures similar to a spe-
cific drug and four multi-objective tasks focused on finding median
molecules between two drugs or achieving multi-property optimiza-
tion (MPO), as detailed in Table 1. Unlike the physical simulations in
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Fig. 1 | Workflow and methodology for illustrating probabilistic improvement
optimization (PIO) strategy. a Schematic diagram illustrating the overall work-
flow used in this study to evaluate the optimization strategy. b Description of the
benchmark tasks comprising three molecular design challenges from the Tartarus
suite, which utilize physical modeling across different software packages to esti-
mate target properties, circumventing the need for actual experimental assess-
ments. Seven additional drug discovery tasks were selected from GuacaMol, using
similarity metrics and physicochemical descriptor calculations as oracle functions
to evaluate molecular properties. c Schematic representation of the genetic

algorithm (GA), where the mutation operator randomly modifies molecular struc-
tures, and crossover operations generate new molecular structures through
recombination. d Construction of a machine learning (ML) surrogate model
employing the directed message passing neural network (D-MPNN) architecture,
designed to predict molecular properties and their associated uncertainties via
either the evidential method or the ensemblewithmean-variance estimation (MVE)
method. e The PIO fitness function, calculated using probability improvement,
generally enhances the likelihood ofmeeting threshold requirements. TS transition
state, logP octanol-water partition coefficient, TPSA topological polar surface area.
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Tartarus, GuacaMol uses deterministic functions implemented in
RDKit to compute property values, thereby eliminating data random-
ness. To simulate real-world scenarios where machine learning (ML)
surrogate models are rarely perfect, we downsample the GuacaMol
dataset to build ML surrogate models for fitness prediction during the
GA process. In this setup, the molecular design process initially relies
on a potentially imperfect surrogate model to propose molecular
structures, which are subsequently validated using the RDKit-based
oracle functions.

Uncertainty-aware and uncertainty-agnostic fitness functions
In conventional molecular design, the typical single-objective optimi-
zation approach focuses on maximizing a specific fitness function
FDOM mð Þ without consideration of uncertainty. This naïve approach,
referred to as the direct objective maximization (DOM), or greedy
method61, is defined as

FDOM mð Þ=ημ mð Þ ð1Þ

where μ mð Þ represents the predicted property value of moleculem by
the surrogate model, and η is the sign factor taking the values of +1 or
-1. This factor is assigned a value of +1when a higherμ is desired, and −1
when a lower μ is preferred. However, practical applications often do
not necessitate driving the property values to their extremes. Instead,
it is usually sufficient for the property to meet a certain threshold δ
that is deemed acceptable for a given application47,48.

In such scenarios, the goal should shift from merely optimizing
the property value to ensuring that the property of the molecule m
exceeds this threshold δ. Assuming the property predicted by the
surrogate model follows a Gaussian distribution with mean μ mð Þ and
variance σ2 mð Þ, the PIO fitness function can be defined as

FPIO m;δð Þ=η
Z η1

δ

1

σ mð Þ
ffiffiffiffiffiffi
2π

p exp � 1
2

x � μ mð Þ
σ mð Þ

� �2
 !

dx ð2Þ

where FPIO m; δð Þ ranges between 0 and 1. In this expression, FPIO m;δð Þ
quantifies the probability that the property value of molecule m will
exceed the threshold δ. The PIO approach inherently incorporates the
uncertainty (variance) of the prediction and mitigates the risk of extra-
polating the surrogate model beyond its reliable range and has been
recently adopted in other works utilizing active learning for drug
discovery61, co-cured polycyanurates62, organic semiconductors63 and

boron–carbon–nitrogen crystal structure design64. By establishing a
realistic threshold δ, this method significantly enhances the practicality
and applicability ofmolecular designoptimization in real-world settings.

An alternative approach to incorporating uncertainty into the
fitness function is the expected improvement (EI) method, which
evaluates the expected magnitude of the improvement46. Assuming
the property predicted by the surrogate model follows a Gaussian
distribution with mean μ mð Þ and variance σ2 mð Þ, the fitness function
for EI can be defined as

FEI m;δð Þ= η
Z η1

δ

x � δ

σ mð Þ
ffiffiffiffiffiffi
2π

p exp � 1
2

x � μ mð Þ
σ mð Þ

� �2
 !

dx ð3Þ

The primary difference between PIO (Eq. 2) and EI (Eq. 3) lies in
whether the integration over possible improvements at a given x is
considered. The PIO method focuses solely on the likelihood of
improvement at a specific threshold, making it a unitless probability
value, whereas the EI method considers both the probability and
magnitude of potential gains, yielding a valuewith the same unit as the
target variable. Both approaches are commonly used as acquisition
functions in BO46. In this work, we compare the performance of DOM
with both PIO and EI for single-objective optimization tasks. This
comparative analysis aims tohighlight the advantages of incorporating
UQwith GNN inmolecular design and to determine the most effective
optimization strategy for various practical applications.

When considering multiple properties in molecular design, a
common method, known as scalarization, aggregates all objectives
into a single value using their corresponding weights. The weights
should be carefully chosen to balance the contributions of each
property in the objective function. One approach is to use the reci-
procal of the standard deviation eσ of each target’s distribution in the
dataset as weights65, scaling the contribution of each property
according to the potential variability of its values:

Fmulti
WS mð Þ=

Xk
i= 1

Fi
DOM mð Þeσi

ð4Þ

where k is the number of properties considered. However, this
weighted sum (WS) approach can still lead to suboptimal compro-
mises where certain objectives are sacrificed to enhance the overall
score65. In practical scenarios, molecules often need to meet multiple
objectives simultaneously, typically represented by thresholds. To

Table 1 | Summary of the molecular design tasks investigated in this study

Benchmark platform Design task Objective No. of reference data

Tartarus Organic emitters Singlet-triplet gap (↓) 403,947

Organic emitters Oscillator strength (↑)

Organic emitters Singlet-triplet gap (↓) +Oscillator strength (↑) + Absolute differ-
ence of vertical excitation energy (VEE) (↓)

Protein ligands 1SYH score (↓) 152,296

Protein ligands 6Y2F score (↓)

Protein ligands 4LDE score (↓)

Reaction substrates Activation energy (↓) 60,828

Reaction substrates Reaction energy (↓)

Reaction substrates Activation energy (↑) + Reaction energy (↓)

GuacaMol Aripiprazole similarity Similarity to aripiprazole (↑) 22,000 (downsampled from 1.2 million
GuacaMol entries)Albuterol similarity Similarity to albuterol (↑)

Mestranol similarity Similarity to mestranol (↑)

Median molecules 1 Similarity to tadalafil (↑) + Similarity to sildenafil (↑)

Median molecules 2 Similarity to camphor (↑) + Similarity to menthol (↑)

Fexofenadine MPO Similarity to fexofenadine (↑) + TPSA (↑) + logP (↓)

Ranolazine MPO Similarity to ranolazine (↑) + TPSA (↑) + logP (↑)
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address this, we propose calculating the product of individual prob-
abilities that each property surpasses its respective threshold, repre-
senting the overall probability of meeting all specified targets:

Fmulti
PIO m; δ1,δ2, . . . ,δk

� �
=
Yk
i = 1

Fi
PIO m; δi

� � ð5Þ

If any single probability approaches zero, the overall fitness score
will also approach zero, regardless of high scores in other targets. This
method emphasizes balancing trade-offs and aligns more closely with
the complex demands of real-world applications66–68.

One limitation of theWSmethod in Eq. 4 is that it does not account
for specific optimization thresholds, which may lead to unbalanced
solutions in multi-objective optimization. Inspired by the ε-constraint
method69, which reformulates additional objectives as constraints with
threshold values to ensure feasible trade-offs, this study explores
alternative formulations, such as the normalized Manhattan distance
(NMD) to the ideal threshold values δ1, δ2, . . . , δk

� �
as the objective

function70. This approach treats objective values that meet or exceed
the thresholds as equally favorable, potentially reducing the risk of
overemphasizing certain properties at the expense of others

Fmulti
NMD m; δ1, δ2, . . . , δk

� �
=
Xk
i= 1

min ηi μ mð Þ�δi

� �
, 0

� �
eσi

ð6Þ

where Fmulti
NMD ≤0. Both the NMD and ε-constraint methods aim to

achieve balanced solutions by incorporating objective-specific limits.
However, while NMD minimizes cumulative deviations to treat all
objectives meeting thresholds as equally favorable, the ε-constraint
method enforces strict feasibility by converting secondary objectives
into constraints, resulting in a more rigid adherence to specified
bounds. A key limitation of NMD, though, is that it restricts further
optimization once all thresholds are met. To overcome this, we
propose a hybrid fitness function that combines the NMD and the
simple WS approach, transitioning form Fmulti

NMD to Fmulti
WS once all

property values meet their respective thresholds

Fmulti
NMD�WS m; δ1, δ2, . . . , δk

� �
=

Fmulti
NMD m; δ1, δ2, . . . , δk

� �
, ifFmulti

NMD m; δ1,δ2, . . . ,δk

� �
<0

Fmulti
WS m;δ1, δ2, . . . , δk

� �
, ifFmulti

NMD m;δ1, δ2, . . . , δk

� �
= 0

(
ð7Þ

This hybrid approach (NMD-WS), similar to methods combining
ε-constraint and weighted sum techniques69, aims to combine the
strengths of both methods, achieving a balanced optimization that
respects the thresholds while allowing further improvements once the
initial conditions are met.

Surrogate model and UQ performance
For effective CAMD, it is crucial that the surrogate model accurately
represents the molecular properties of interest. To this end, we first
assessed the performance of the D-MPNN model along with two UQ
methods—deep ensemble combined with mean-variance estimation
(MVE)71 and evidential learning72—on the target properties of the design
tasks specified in Table 1. Our evaluations revealed that neither UQ
method delivered consistent performance across all datasets. Notably,
the MVE loss function exhibited a tendency to diverge when training
models on the reactivity dataset, which occasionally led to the pre-
mature termination of training sessions. In contrast, the evidential loss
function faced convergence issues during the training ofmodels for the
organic emitter dataset, resulting in reduced accuracy. These chal-
lenges inmodel trainingmay be partly attributed to data noise inherent
in the property values, a consequence of the non-deterministic com-
putational procedures used to generate these data, as detailed in the
method section and illustrated in Supplementary Figs. S1, S2, and S3.
These observations highlight the critical need for further development

and refinement of these UQ methods to enhance their robustness. In
response to these findings, we selected the deep ensemble and MVE
approach for the organic emitter dataset, while applying evidential
regression for the other datasets in our molecular design experiments.
The efficacyof these approacheswas visually assessedusingparity plots
and confidence-based calibration curves, displayed in Figs. 2 and 3,
respectively. These figures show that the D-MPNN effectively captures
the trends in property values,with the estimateduncertainties generally
well-calibrated against the test set.

It is important to recognize that prediction uncertainties may
arise frommultiple sources, such as data noise andmodel uncertainty,
meaning that the residuals between predicted and reference values
may not always follow a Gaussian distribution. Therefore, we validated
the Gaussian distribution assumption by examining the actual dis-
tribution of residuals. This was achieved by using confidence-based
calibration curves (Fig. 3)73,74. These curves assess the proportion of
test data points that fall within a confidence interval around their
predicted values. The intervals are calculated based on predicted
variance under the Gaussian assumption, and the observed propor-
tions are then compared to the expected confidence levels. Ideally, a
perfect calibration curvewould follow a diagonal line, wherepredicted
probabilities align with observed proportions across various con-
fidence levels. To quantify deviations from this ideal calibration, we
calculated the area under the calibration error curve (AUCE), with
higher AUCE values reflecting greater deviations from perfect cali-
bration. As shown in Fig. 3, the calibration curves closely follow the
diagonal line across all test sets,with AUCE values remaining below0.1,
suggesting that the residual distribution for the test data does not
significantly deviate from Gaussian assumptions and aligns well with
estimated variance. Nonetheless, further improvement in uncertainty
estimation may be achieved through additional recalibration steps75,76

or by employing alternative UQmethods77,78 that do not rely on strong
distributional assumptions. Incorporating these enhanced UQ meth-
ods with uncertainty-aware optimization presents a promising direc-
tion for future research.

Optimization results of single-objective task
This section evaluates the optimization results obtained using DOM
(Eq. 1), PIO (Eq. 2), and EI (Eq. 3) fitness functions across ten single-
objective tasks, focusing on the hit rate of molecules—i.e., their ability
to exceed predetermined threshold values. This metric assesses whe-
ther the integration of uncertainty into the fitness function could
improve the success rate of generating molecules that surpass these
thresholds. As shown in Table 2, the PIOmethod consistently achieved
the highest hit rates for most tasks. Additionally, Fig. 4 illustrates that,
under the PIO approach, the top-100molecules for these tasks exhibit
a greater proportion of candidates meeting or exceeding the thresh-
old, compared to those generated by DOM, further demonstrating the
benefit of incorporating uncertainty in the optimization process.
However, despite integrating uncertainty, the EI method does not
consistently outperform the uncertainty-agnostic DOM method.

To understand why only the PIO method outperformed its
uncertainty-agnostic counterpart while the EI method did not, we
generated parity plots of the molecules optimized by each method
(Fig. 5). These plots show that the leadingmolecules selected by EI tend
to exhibit the highest uncertainties in the surrogatemodel compared to
those identified by DOM and PIO. Conversely, DOM-selectedmolecules
often display extreme predicted mean values—either lowest or highest
for minimization or maximization tasks, respectively. This outcome is
expected, as DOM focuses solely on optimizing the predicted mean
without considering uncertainty, often pushing optimization toward
extrapolative regions where predictions are less reliable. While EI does
incorporate uncertainty, its performance in most single-objective
optimization tasks was not particularly robust. This outcome likely
stems from EI’s tendency to favor candidates with high uncertainty
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when their predicted mean values are similar, as it calculates expected
improvements as the fitness function. Such a preference can lead to the
selection of molecules with significant prediction uncertainties, which
often causes discrepancies between predicted and actual properties,
contributing to EI’s relatively unstable performance across tasks. It is
worth noting that EI is widely used as an acquisition function in BOwith
Gaussian processes79–83, where it effectively identifies optimal solutions
within smaller, more confined search spaces over fewer iterations.
However, molecular design requires navigating a much larger chemical
space, where D-MPNN surrogate models can assign considerable

uncertainty to numerous candidate structures, inflating expected
improvements and diminishing EI’s effectiveness in our test cases. In
contrast, PIO focuses exclusively on the probability of improvement,
yielding a bounded fitness value between 0 and 1, which makes it less
susceptible to the issues of extreme variance. By emphasizing candi-
dates with a higher probability of exceeding the threshold without
overemphasizing uncertain regions, PIO achieves more stable and reli-
able performance. This balance enables PIO to identify candidates that
meet cutoff criteria while maintaining lower uncertainties, leading to
more reliable predictions.

a b c d

e f g h

i j k l

m n o p

q r s

Fig. 2 | Parity plots comparing reference values with predictions from the
directed message passing neural network (D-MPNN) surrogate models on the
test set. The color coding of the data points indicates the level of total uncertainty
(σ2

total) in the model predictions. Uncertainty quantification (UQ) across the panels
varies: a–c ensemble and mean-variance estimation (MVE) methods were utilized;

d–s the evidentialmethodwas applied in panels. Themolecular structure similarity
is calculated using the Tanimoto similarity metric. Abs. diff. of VEE absolute dif-
ference of vertical excitation energy, R2 (coefficient of determination), logP
octanol-water partition coefficient, TPSA topological polar surface area. Source
data is provided as a Source Data file.
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Fig. 3 | Confidence-based calibration curves (orange) for various models
assessed using testing data.The area under the calibration error curve (AUCE), or
miscalibration area106 (gray area in thisfigure), is calculated,with perfect calibration
indicatedby anAUCEof0. Uncertainty quantification (UQ) across the panels varies:
a–c ensemble andmean-variance estimation (MVE) methods were utilized; d–s the

evidential method was applied. The molecular structure similarity is calculated
using the Tanimoto similaritymetric. Abs. diff. of VEE absolutedifferenceof vertical
excitation energy, logP octanol-water partition coefficient, TPSA topological polar
surface area. Source data is provided as a Source Data file.
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However, certain challenging tasks reveal limitations across all
methods—DOM, EI, and PIO—in identifying candidates that surpass
thresholds. For example, tasks involving singlet-triplet gap, 1SYH
score, and similarity tomestranol demonstrate cases where all of these
approaches struggle to find candidates meeting the set criteria, high-
lighting areas for further improvement. The first limitation arises from
the dependency of both PIO and EI on threshold-based guidance
during the search process.When thresholds are set too stringently, far
beyond the performance range of the current population, the fitness
score remains zero regardless of optimization direction, which can
impede the search for high-performing molecules. In our study, most
thresholds were set near the performance of top molecules within
each task’s original dataset (as shown in Supplementary Table S5).
Consequently, the difficulty of exceeding these thresholds varies
depending on the structural diversity in each dataset. The second
limitation involves decreased model accuracy in predicting property
mean and variance in extrapolated regions. This issue is evident in the
mestranol similarity task, where the objective is to identify molecules
resembling mestranol’s complex polycyclic structure, featuring four
fused rings (Fig. 4j). Accurately capturing these complex ring struc-
tures remains challenging for D-MPNN, which would benefit from
additional structural features—such as ring size indicators—to improve
prediction accuracy for complex species in highly extrapolated

regions84. Therefore, although D-MPNN performed reasonably well on
the test set for this task (Fig. 2k), it struggled to identify similar
molecules within the broader chemical space, consistently yielding
similarity predictions for recommended candidates that deviated sig-
nificantly from the true reference values (Fig. 5j). An additional con-
cern is that these predictions frequently showed small uncertainty
estimates, suggesting that D-MPNN may have inaccurately assessed
uncertainty in these cases. This finding underscores a critical limita-
tion: evenwell-calibratedmodelsmay struggle to generalize accurately
during molecular optimization over an extensive chemical space,
leading to unreliable predictions not only for mean values but also for
variance estimateswith currentUQmethods. One approach to address
these challenges is adaptive modeling, which iteratively incorporates
newly validated molecules to refine predictions and improve uncer-
tainty estimates. However, improving the reliability of UQ methods is
essential to address these challenges and strengthen the robustness of
molecular design workflows.

Optimization results of multi-objective tasks
In this subsection, we evaluate the impact of various fitness function
designs on the performance of molecule generation for multi-
objective tasks. These designs included uncertainty-agnostic
methods such as the WS (Eq. 4), NMD (Eq. 6), and the hybrid
approach NMD-WS (Eq. 7), as well as the uncertainty-aware PIO
method (Eq. 5), which calculates the product of single-objective
probabilities where each indicator exceeds its corresponding cut-
off. Amolecule was considered a hit in multi-objective tasks if it met
all specified property cutoffs.

As detailed in Table 3, the PIO approach emerged as the most
effective in identifying molecules that satisfied criteria for multi-
objective criteria, achieving thehighesthit rates formost tasks. Among
the uncertainty-agnostic methods, no single approach demonstrated
consistent superiority across all tasks. The NMD method showed
higher success rates in generating viablemolecules for organic emitter
designs and the fexofenadine MPO task, while the hybrid NMD-WS
method outperformed other uncertainty-agnostic approaches in the
remaining multi-objective tasks. In contrast, the WS method con-
sistently struggled, failing to identify molecules that met all required
thresholds in any multi-objective task.

A primary challenge inmulti-objective tasks, as opposed to single-
objective tasks, lies in balancing the contributions of different prop-
erties. For instance, in the organic emitter design task, there is a
moderate positive correlation between the singlet-triplet gap and
oscillator strength (Supplementary Fig. S24), complicating the task,
which demands minimizing the singlet-triplet gap while maximizing
oscillator strength, thereby creating conflicting optimization direc-
tions. This complexity was exacerbated by the disproportionate
emphasis on oscillator strength, whose unbounded maximum value
could lead theWSmethod to overly prioritize this trait, neglecting the
other (Fig. 6). Similar challenges were observed in the fexofenadine
and ranolazine MPO tasks, which involve maximizing similarity to
target molecules while optimizing octanol-water partition coefficient
(logP) and topological polar surface area (TPSA). Here, theWSmethod
tended to prioritize logP and TPSA optimization at the expense of
similarity scores (Fig. 6). This observation aligns with previous
research85, emphasizing the challenge of balancing each target’s con-
tribution in the fitness function to prevent bias in multi-objective
optimization scenarios. Methods such as NMD and NMD-WS, which
incorporate cutoff values into fitness functions, better address this
balancing challenge. However, these uncertainty-agnostic methods
can still lead to over-optimization in regions beyond the model’s pre-
dictive range, potentially resulting in discrepancies between predicted
and actual outcomes. Consequently, the PIO method generally
demonstrates a higher hit rate by incorporating uncertainty informa-
tion and thus achieving a better balance across all targets.

Table 2 | Comparison of top-k hit rates for single-objective
optimization results across various methods

Design task Objective Method Top-
10
hit
rate

Top-
50
hit
rate

Top-
100
hit rate

Organic
emitters

Singlet-triplet
gap (↓)

DOM 0 0 0

EI 0 0 0

PIO (ours) 0 0 0.02

Organic
emitters

Oscillator
strength (↑)

DOM 0.20 0.12 0.16

EI 0 0.14 0.12

PIO (ours) 0.30 0.28 0.21

Protein ligands 1syh score (↓) DOM 0 0 0

EI 0 0 0

PIO (ours) 0 0.02 0.02

Protein ligands 4lde score (↓) DOM 0.40 0.48 0.49

EI 0 0.02 0.03

PIO (ours) 0.90 0.94 0.92

Protein ligands 6y2f score (↓) DOM 0.40 0.54 0.50

EI 0 0 0

PIO (ours) 0.80 0.56 0.49

Reaction
substrates

Activation
energy (↓)

DOM 0.20 0.48 0.56

EI 0.50 0.46 0.58

PIO (ours) 0.50 0.56 0.67

Reaction
substrates

Reaction
energy (↓)

DOM 0.50 0.36 0.40

EI 0.70 0.68 0.57

PIO (ours) 0.90 0.82 0.76

Aripiprazole
similarity

Similarity to ari-
piprazole (↑)

DOM 0.50 0.52 0.53

EI 0 0 0.06

PIO (ours) 1.00 0.72 0.58

Albuterol
similarity

Similarity to
albuterol (↑)

DOM 0 0.04 0.03

EI 0 0 0

PIO (ours) 1.00 0.76 0.62

Mestranol
similarity

Similarity to
mestranol (↑)

DOM 0 0 0

EI 0 0 0

PIO (ours) 0 0 0

The highest hit rate is highlighted in bold font.
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Despite the overall success of the PIOmethod, one task presented
challenges for all optimizers: the median molecules 2 task, which
aimed to find molecules similar to both camphor and menthol. In this
case, none of the optimization methods succeeded in identifying
molecules with similarity scores exceeding the cutoff of 0.2. This dif-
ficulty is likely due to the low similarity scores in the original dataset,
where the majority of scores fall below 0.1 for these target molecules
(Supplementary Figs. S17 and S18). This task proved more challenging
compared to themedianmolecules 1 task, where similarity scores with

the target molecules (tadalafil and sildenafil) in the original data gen-
erally ranged between 0.1 and 0.2, closer to the target value of 0.2
(Supplementary Figs. S15 and S16).

Multi-objective optimization problems are prevalent infields such
as chemical, drug, and material design, where property cutoffs are
often required to meet specific commercial objectives. The PIO
method achieves the highest hit rates across most multi-objective
tasks by integrating uncertainty information and balancing optimiza-
tion across all targets. In the PIO fitness function (Eq. 5), any molecule

Fig. 4 | Comparative distribution of true property values for the top-100
molecules generatedby differentmethods. a–jThese plots showdirect objective
maximization (DOM, brown), expected improvement (EI, purple), and probabilistic
improvement optimization (PIO, green) results. The black dotted line represents
the cutoff values, while orange arrows illustrate the desired optimization direction.

For the final three similarity optimization tasks, the structures of the target mole-
cules are displayed within their respective figures. The molecular structure simi-
larity is calculated using the Tanimoto similarity metric. Source data are provided
as a Source Data file.

Fig. 5 | Parity plots comparing reference values with predictions as well as
uncertainties from the directed message passing neural network (D-MPNN)
models. a–j These plots show top-50 candidate molecules generated based on the
fitness values from direct objective maximization (DOM, brown), expected
improvement (EI, purple), and probabilistic improvement optimization (PIO,
green). Predictions are presented as means with standard deviations (error bars),

capturing both aleatoric and epistemic uncertainty, as estimated by the D-MPNN
model. The black dotted line represents the cutoffs, while the orange arrows
illustrate the desired direction for optimization. The molecular structure similarity
is calculated using the Tanimoto similarity metric. Source data is provided as a
Source Data file.
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deviating significantly from a target threshold receives a lower overall
score, guiding the optimization process to consider all objectives
equally. When certain objectives are of lower priority, cutoff values for
these properties can be relaxed to minimum acceptable levels, redu-
cing their impact on the overall fitness score as long as the values
remain within acceptable ranges. Conversely, if a property approaches
its minimum acceptable threshold, it appropriately impacts the fitness
score, signaling the need for further optimization in that direction.

Discussions
This study addresses a central challenge in molecular design: opti-
mizing across expansive chemical spaces, where maintaining pre-
dictive accuracy is difficult, especially under domain shifts. The PIO
method introduced here integrates UQ within molecular optimiza-
tion frameworks, combining D-MPNNs with GAs to enhance relia-
bility in exploring broad chemical spaces. Our systematic analysis
evaluates the strengths and limitations of PIO in comparison to
another UQ-integrated method, EI, providing insights into each
method’s ability to adapt to domain shifts and effectively guide
exploration. Previous research has indicated that in virtual screen-
ing settings, uncertainty-agnostic acquisition functions can exhibit
surprisingly equivalent or even superior performance compared to
uncertainty-aware active learning approaches39,86, suggesting that
purely exploitative methods can be highly efficient in the well-
defined chemical library. In contrast, our experimental setup
explores an open-ended chemical space and continuously updates
the optimization trajectory using fitness values. Under these con-
ditions, PIO outperforms uncertainty-agnostic methods in most
instances, whereas the EI approach proves less effective.

Benchmarking results on the Tartarus and GuacaMol platforms
indicate that PIO generally improves optimization success compared
to traditional uncertainty-agnostic methods. In single-objective tasks,
PIO balances the search between well-understood regions and less-
explored areas, reducing the risk of selecting candidates where pre-
dictions may be unreliable. This approach contrasts with EI, which
often focuses on high-variance areas, leading to inconsistent perfor-
mance. However, it is important to note that PIO’s performance may
diminish in tasks where the required properties differ significantly
from those represented in the availabledata. This highlights anarea for
further methodological improvement.

Inmulti-objective optimization scenarios, PIO consistently proves
advantageous, balancing competing objectives more effectively than
weighted scalarization methods, which can skew optimization toward
particular properties at the expense of others. By incorporating UQ
directly into the fitness function, PIO supports a more balanced
approach, generally achieving higher hit rates across multiple objec-
tives. This is particularly relevant in CAMD, where real-world applica-
tions often require that multiple property thresholds be met
concurrently. The ability of PIO to adapt to varying objectives without
overemphasizing any single goal enhances its practical utility in dis-
covering compounds suitable for complex applications.

This study’s comparative analysis of UQ-integrated methods also
reveals the critical role of UQ calibration in determining optimization
outcomes. Our results show that robust UQ calibration is fundamental
to the success of UQ-driven methods. When UQ calibration is poor,
PIO’s advantages are reduced, underscoring the need for more accu-
rate and robust UQ techniques in molecular optimization. This finding
suggests a direction for future research, where advancements in UQ
methodologies, such as those that dynamically adapt to domain shifts,
could further enhance the reliability of PIO and similar approaches in
broad chemical spaces. In conclusion, this research provides valuable
insights into the role of UQ in optimizing molecular design across
diverse chemical spaces, demonstrating that the integration of UQ can
mitigate some of the limitations posed by domain shifts. The PIO
method presents a promising pathway for exploring large chemical
spaces with enhanced reliability, paving the way for uncertainty-
informed optimization strategies in CAMD.

Methods
Surrogate models and uncertainty quantification
The choice of surrogate method is crucial in molecular design, as it
directly impacts predictive accuracy and computational efficiency. For
this study, we selected D-MPNN, a type of GNN architecture, due to its
scalability, computational efficiency, and established performance in
predicting both mean properties and associated uncertainties in mole-
cular datasets. Although Bayesian inference-based87 methods offer the-
oretical advantages, their adoption inmolecular propertypredictionhas
been limited by challenges such as computational costs, intractability in
deep neural networks, and complex implementation requirements41.
This has restricted their scalability in large datasets, which is a key
requirement for molecular design. To assess the effectiveness of mole-
cular design strategies, we utilized the D-MPNNmodel, as implemented
in Chemprop50, which facilitates the automatic extraction and learning
of significant structural features of molecules by leveraging atom and
bond information. It updates hidden atom states based on molecular
connectivity, ultimately deriving a molecular fingerprint from the sum-
mation or averaging of all hidden atomic vectors88. This fingerprint is
then utilized as input for subsequent feed-forward neural networks. The
D-MPNN model has demonstrated robust performance in various stu-
dies focused on the prediction of chemical properties89–91.

Various methods have been proposed to quantify uncertainty,
such as Bayesian neural networks92, Monte Carlo dropout93, ensemble
learning94, MVE71, and evidential learning72,95. Chemprop also incor-
porates techniques to quantify uncertainty from various sources,

Table 3 | Comparison of top-k hit rates for multi-objective
optimization results across various methods

Design task Objective Method Top-
10
hit
rate

Top-
50
hit
rate

Top-
100
hit
rate

Organic
emitters

Singlet-triplet gap
(↓) + Oscillator
strength (↑) + Abso-
lute difference of
VEE (↓)

WS 0 0 0

NMD 0.60 0.36 0.35

NMD-WS 0 0.20 0.29

PIO (ours) 0.80 0.56 0.36

Reaction
substrates

Activation energy
(↑) + Reaction
energy (↓)

WS 0.20 0.08 0.07

NMD 0.10 0.10 0.10

NMD-WS 0.40 0.16 0.11

PIO (ours) 0.40 0.22 0.22

Median mole-
cules 1

Similarity to tadala-
fil (↑) + Similarity to
sildenafil (↑)

WS 0 0 0

NMD 0.60 0.62 0.59

NMD-WS 0.90 0.86 0.84

PIO (ours) 0.90 0.90 0.83

Median mole-
cules 2

Similarity to cam-
phor (↑) + Similarity
to menthol (↑)

WS 0 0 0

NMD 0 0 0

NMD-WS 0 0 0

PIO (ours) 0 0 0

Fexofenadine
MPO

Similarity to fex-
ofenadine
(↑) + TPSA
(↑) + logP (↓)

WS 0 0 0

NMD 0.40 0.32 0.31

NMD-WS 0.10 0.08 0.12

PIO (ours) 0.30 0.32 0.38

Ranolazine
MPO

Similarity to ranola-
zine (↑) + TPSA
(↑) + logP (↑)

WS 0 0 0

NMD 0 0.12 0.12

NMD-WS 0 0.04 0.10

PIO (ours) 0.20 0.12 0.20

The highest hit rate is highlighted in bold font.
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categorizing it into aleatoric and epistemic types96. Aleatoric uncer-
tainty, arising from inherent data randomness due to experimental or
computational errors, poses challenges for mitigation as it requires
enhancements in data accuracy. Conversely, epistemic uncertainty,
stemming from model ignorance, can be addressed by enriching the
training dataset or improving molecular feature encoding.

One of the UQ methods implemented in Chemprop is the com-
bination of deep ensemble and MVE71. The deep ensemble method
estimates epistemic uncertainty, σ2

e, by training multiple models and
evaluating the variance among their predictions94. Specifically, for M
models within Chemprop, with eachmodel’s prediction denoted as ŷi,
the final predictioney is the average of these individual predictions, and
the epistemic uncertainty is calculated as:

σ2
e =

1
M

XM
i

ey� ŷi
� �2 ð8Þ

In this study, we prepared ten models with different initialization
seeds to form the deep ensemble. On the other hand, MVE is used to
calculate aleatoric uncertainty, σ2

a, by introducing an additional output
neuron that predicts the data-dependent uncertainty, ensuring posi-
tivity via the softplus activation. In MVE, the residuals between the
predicted value and the reference value are assumed to follow a
Gaussian distribution with mean 0 and variance σ2

a. This assumption
justifies the use of the negative log likelihood (NLL) of a Gaussian
distribution as the loss function:

NLL y, ŷi,σ
2
a

� �
=
1
2
ln 2πð Þ+ 1

2
ln σ2

a

� �
+

y� ŷi
� �2

2σ2
a

ð9Þ

where y2R is the reference property value. When using the ensemble
approach, the aleatoric uncertainties of each model are averaged to
derive a composite aleatoric uncertainty value, with each model
trained using the NLL as the loss function44.

Additionally, evidential learning, another UQ method in Chem-
prop, avoids the need for multiple model training by directly pre-
dicting the parameters of an evidential distribution72. This approach
involves imposing a prior Gaussian distribution on the unknownmean

μ � N γ, σ2

v

� �
and an inverse-Gamma prior on the unknown variance

σ2 � Γ�1 α,βð Þ. The joint posterior distribution p μ, σ2
� �

=p μ
		σ2

� �
p σ2
� �

takes the form of Normal Inverse-Gamma (NIG) distribution:

p μ, σ2
		γ, v,α,β� �

= p μ
		σ2, γ, v

� � � p σ2
		α,β� �

=
ffiffiffi
v

pffiffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp � v γ � μð Þ2
2σ2

 !
� βα

Γ αð Þ
1
σ2

� �α + 1

exp � β
σ2

� �

=
β
ffiffiffi
vα

p

Γ αð Þ
ffiffiffiffiffiffiffiffiffiffiffi
2πσ2

p 1
σ2

� �α + 1

exp � 2β+ v γ � μð Þ2
2σ2

 !
ð10Þ

where Γ �ð Þ represents the gamma function, and the NIG parameters
γ2R, v>0, α > 1, β>0 determine the mean (E μ½ �= γ) and uncertainty
associated with the likelihood function. In Chemprop, four neuron
outputs are used to predict the NIG parameters. The softplus activa-
tion function is applied to v, α and β, ensuring their outputs are always
greater than zero. The aleatoric uncertainty and epistemic uncertainty
can be separately derived by:

σ2
a =E σ2
 �

=
β

α � 1
ð11Þ

σ2
e = Var μ½ �= β

v α � 1ð Þ ð12Þ

Ultimately, both deep ensemble with MVE and evidential
learning can estimate total uncertainties by combining aleatoric
and epistemic uncertainties: σ2

a + σ
2
e = σ

2
total

41. The PIO and EI algo-
rithm for molecular design then both use total uncertainty to cal-
culate the probability that a molecule’s properties will meet the
specified cutoff.

Genetic algorithm for molecular optimization
In this study, we employed the GA for molecular optimization. GA is a
population-basedmetaheuristic designed to iteratively refine a pool of
candidate solutions, aiming to discover the optimal configuration for
complex problems characterizedby large search spaces97. Ourmethod
utilizes an advanced version of GA, known as Janus98, which specifically
manipulates SELFIES99 representations of molecular structures. In
contrast to traditional SMILES100 representations, which are limited by
stringent syntax rules101, SELFIES ensures that any textual modifica-
tions maintain chemical validity, thus preserving the structural integ-
rity ofmolecules even after randommodifications. For further insights
into the operational principles and efficiency of the Janus algorithm,
readers are encouraged to refer to the foundational work by Nigam
et al.98. Within our experiments, all hyperparameters were set
according to the default specifications of the Janus package unless
otherwise noted.

Computational details
The data volumes used to develop the D-MPNN model for each
prediction task are summarized in Table 1. For the Tartarus dataset,
each of the three design tasks was divided into training, validation,
and testing subsets using an 8:1:1 random split. Within each task, a
multi-task learning strategy was employed, enabling the model to
predict all designated targets simultaneously for the given dataset.
In the case of GuacaMol, all design tasks utilized the same training,
validation, and testing subsets, consisting of 10,000, 2000, and
10,000 data points, respectively. These subsets were randomly
downsampled from the platform’s original dataset. The distribution
of molecular properties for each dataset is illustrated in Supple-
mentary Figs. S4–S22.

In this study, we systematically examine the performance of each
fitness function formulation for single (Eqs. 1–3) and multi-objective
(Eqs. 4–7) optimization tasks in molecular design. Each design task
incorporates a penalty term P mð Þ to ensure that the molecules adhere
to specific structural constraints required for each task. The specific
definitions of these penalty terms can be found in Supplementary
Tables S1–S4, and closely align with the original definitions used in the
Tartarus and GuacaMol platforms. In the EI method, σ mð Þ is capped at
100 to avoid the situation where a very large uncertainty value could
make the EI fitness value infinite. For themedianmolecules tasks in the
GuacaMol dataset, the objective is to identify molecules with high
similarity scores to two target molecules simultaneously. Because
similarity scores range from0 to 1 and there isminimal variation across
the training dataset, no additional weighting was applied between
indicators in the WS, NMD, and NMD-WS methods for these tasks.
Specific thresholds for each design task are listed in Supplementary
Table S5.

For each molecular optimization experiment, we initiated with a
pool of the top 10,000molecules from the datasets, selected based on
their performance under DOM or WS fitness functions (Eqs. 1 and 4).
This pool underwent 15 independent optimization runs using the GA
and the D-MPNN surrogate model, with hyperparameters detailed in
the Supplementary Table S6. Each optimization run was structured to
update the candidate pool across 10 iterations, introducing 500 new
molecules per iteration through mutation and crossover processes.
Thefinal candidatemolecules from these runswere then amalgamated
to minimize variability inherent in the stochastic nature of the GA102.
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The consolidated list of molecules was subsequently ranked based on
their fitness scores.

This procedure was carried out for each fitness function formula-
tion. The top-performingmolecules, derivedusingeachfitness function,
were then subjected to validation simulations within the Tartarus or
GuacaMol frameworks to verify their actual properties. Our primary
metric for evaluation was the hit rate of these molecules, particularly
their ability to exceed the predefined threshold values. This analysis
provides key insights into the optimization strategies that best improve
success rates in generating molecules meeting targeted criteria.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets for the docking, organic emitter, and reactivity designs
within the Tartarus task are available at the Zenodo repository (https://
doi.org/10.5281/zenodo.8072249)103. The GuacaMol dataset for the
drug discovery task is accessible on Figshare (https://doi.org/10.6084/
m9.figshare.7322252.v2)104. The molecules and their properties

a

b

c

d

Organic emitters
Reaction

substrates
Median

molecules 1
Median

molecules 2
Fexofenadine

MPO
Ranolazine 

MPO

Fig. 6 | Parallel coordinate plots illustrating the true property values for the
top-50 molecules derived from various optimization methods in multi-
objective design tasks. Each subplot displays molecules generated by the meth-
ods: a weighted sum (WS), b normalized Manhattan distance (NMD), c hybrid
approach (NMD-WS), and d probabilistic improvement optimization (PIO), orga-
nized into six sections arranged from left to right, corresponding to the design
tasks for organic emitters, reaction substrates, median molecules 1, median
molecules 2, fexofenadine multi-property optimization (MPO), and ranolazine

MPO. Blue lines represent molecules that failed to meet all established cutoffs,
while orange lines signify those that met all criteria. Black dotted lines across the
plots denote the cutoffs. Orange arrows indicate the desired direction for optimi-
zation. The molecular structure similarity is calculated using the Tanimoto simi-
larity metric. Abs. diff. of VEE absolute difference of vertical excitation energy, R2

(coefficient of determination) logP octanol-water partition coefficient, TPSA
topological polar surface area. Source data is provided as a Source Data file.
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generated in this study are provided in the Source Data file. Source
data are provided with this paper.

Code availability
The code described in this manuscript is publicly available at the
Zenodo repository (https://doi.org/10.5281/zenodo.14729022)105.
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