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Accurately genotyping structural variant (SV) alleles is crucial to genomics
research. We present a novel method (kanpig) for genotyping SVs that

leverages variant graphs and k-mer vectors to rapidly generate accurate SV
genotypes. Benchmarking against the latest SV datasets shows kanpig achieves
a single-sample genotyping concordance of 82.1%, significantly outperforming
existing tools, which average 66.3%. We explore kanpig’s use for multi-sample
projects by testing on 47 genetically diverse samples and find kanpig accu-
rately genotypes complex loci (e.g. SVs neighboring other SVs), and produces
higher genotyping concordance than other tools. Kanpig requires only

43 seconds to process a single sample’s 20x long-reads and can be run on
PacBio or Oxford Nanopore long-reads.

The ever-increasing availability of long-read sequencing has begun to
enable applications in population-scale genomic studies™”. This is
possible due to crucial improvements on sample requirements, error
rates, and costs for running long-read sequencing instruments.
Bioinformatics applications that leverage long-reads are also matur-
ing. These innovations lead to the production of fully genotyped
variant files (VCF) with information on each variant’s presence across
samples. This VCF then provides a foundation for subsequent ana-
lyses such as genome-wide association® and population genomics®.
While the process of creating fully genotyped VCFs is streamlined for
smaller mutations (SNV and indels)’® it is not for structural variants
(SVs; i.e. genomic alterations larger than 50 base pairs). The current
state-of-the-art workflows involve per-sample discovery of SVs, which
are then merged with methods such as truvari® before subsequently
reassessing each SV’s presence or absence (i.e. genotyping) across all
samples’.

As discovery of SVs using long-reads has improved? genotypers
have been introduced that can leverage these SVs. Genotyping is the
process of determining the presence of an allele in a sample based on
sequencing evidence’. This is separate from variant discovery which
primarily aims to resolve the structure of alternate alleles. This
separation is best illustrated in the case of a heterozygous SV in a
diploid organism: After discovery of the alternate allele, a genoty-
per’s task is to report that both the reference and alternate allele are

present in the sample. Therefore, genotypers rely heavily on dis-
covery tools and must be robust to deviations between the reported
allele structure and sequencing evidence supporting said allele (e.g.
shifted breakpoints)’.

State-of-the-art genotypers employ various algorithmic approa-
ches including simple assessments of SVs directly from mapped
reads®, analysis of variant and read k-mers’, and graph-based realign-
ment approaches'®". One thing these approaches have in common is
that they have mainly been benchmarked on a single sample. The most
commonly used SV benchmark is the GIAB v0.6 benchmark for
HG002™. This benchmark was built as a consolidation of short-read
and noisy long-read discovered variants with Tier 1 regions defined to
exclude segmental duplications and complex SVs. However, other SV
studies using newer long-reads exclusively or whole-genome assem-
blies have shown the number and complexity of SVs is greater than the
subset found in the GIAB v0.6 Tier 1 regions®. Furthermore, geno-
typing SVs across a population increases evaluation complexity by
increasing the occurrences of loci containing multiple neighboring
and/or overlapping SV alleles. Previous genotypers have some strati-
fication of their benchmarking results based on the presence of
neighboring SVs', however this is only in the context of a single sample
or trios. The diversity of alleles at any given locus, particularly in tan-
dem repeat loci, is expected to grow as more samples are
considered®®.
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Fig. 1| Overview of kanpig’s algorithm. a Schematic of the main steps of kanpig’s algorithm. b Sequence similarity vs Canberra similarity of >50 bp insertion pairs within

500 bp from GIAB v1.1 SVs.

In this work, we describe kanpig, our software for long-read SV
genotyping. We showcase kanpig through a comprehensive bench-
marking framework, evaluating its accuracy using a diverse set of
haplotype-resolved long-read assemblies. We compare kanpig’s gen-
otype accuracy with that of other long-read SV genotypers. In addition
to evaluating kanpig using high-confidence, single-sample SVs, we also
benchmark against SVs discovered by the commonly used SV caller
sniffles and multi-sample SV VCFs. Across all experiments, kanpig
consistently produced more accurate genotypes and successfully
avoided common errors seen in other genotypers, particularly for
neighboring SVs within and across samples.

Results
Kanpig algorithm
The kanpig (K-mer ANalysis of Plleups for Genotyping) algorithm
incorporates four major steps (Fig. 1a). First, a VCF containing SVs is
parsed and SVs within a specified distance threshold of one another
are identified as a “neighborhood”. Second, kanpig constructs a
variant graph from a neighborhood of SVs with nodes holding SVs
and directed edges connecting downstream, non-overlapping SVs.
Next, a BAM file is parsed for long-read alignments that span the
neighborhood of SVs and pileups within user-defined size bound-
aries (default 50 bp to 10 kbp) are generated before reads are clus-
tered to identify up to two haplotypes. Finally, a breadth-first search
connecting the variant graph’s source and sink nodes is performed to
find the path that maximizes a scoring function with respect to an
applied haplotype.

A novelty of kanpig’s approach is its representation of sequences
in a variant graph’s nodes or a read’s pileups as a k-mer vector, using a
small k-value, which defaults to 4 base pairs (bp). A k-mer vector
contains the counts of all possible k-mers (256 for k = 4) and tracks how
often each k-mer is observed in a sequence. These vectors are then
used as part of the scoring function’s measurement of sequence
similarity via Canberra distance'. To calculate this similarity, kanpig
uses the set of variants from the most well-covered haplotype and
includes k-mers that occur a minimum number of times (default: 2)
across the read’s pileups and the SV sequences from a path’s nodes.
This filtering helps reduce the impact of artifacts, such as sequencing
errors. To assess this approach’s utility, we compared Canberra simi-
larity (1 minus distance) of k-mer vectors to sequence similarity mea-
sured using edlib” over 141,680 insertion SV pairs =50 bp and within
500 bp of one another from GIAB v1.1 SVs'. The Canberra similarity of
k-mer vectors has a Pearson correlation coefficient of 0.994 (p <0.01)
with traditional sequence similarity (Fig. 1b) and a root mean squared
error of 0.026. Of these nearby insertion pairs, 41,152 (29%) have a size

and edlib sequence similarity above 95%, which included 30,641
compound heterozygous pairs occurring at the exact same position.
Of these >95% similar insertion pairs, 37,918 (92%) also had a Canberra
similarity above 95%. Therefore, many neighboring SVs are highly
similar and the Canberra similarity metric accurately measures them.

Two crucial components of kanpig’s algorithm are how reads are
clustered into haplotypes before applying them to a variant graph and
how variant graphs lack edges connecting overlapping SVs. K-means
clustering of reads by their k-mer vectors produces up to two haplo-
types. Each haplotype then only needs a single search for the optimal
path through the graph to apply all its constituent reads simulta-
neously and to the same SVs. Furthermore, by disallowing paths
through overlapping variants, kanpig prevents haplotypes from
creating conflicting genotypes. For example, in the neighborhood of
SVs illustrated in Fig. 1a, kanpig’s graph ensures that if a haplotype
supports the red SV, it cannot also support the overlapping green or
blue SVs. Conversely, if either reads or SVs were evaluated indepen-
dently, it is possible for reads from the same haplotype to support
different, conflicting SVs or for overlapping SVs to redundantly recruit
support from the same read. This could give rise to problems such as
two overlapping SVs being genotyped as homozygous. Since human
autosomal chromosomes are diploid, a homozygous variant that
overlaps another present variant in a single sample is conflicting as it is
biologically implausible to e.g. lose both copies and then additional
copies of overlapped deletions at the same time. Kanpig’'s design
prevents this type of genotyping error by correctly handling over-
lapping and nearby SV neighborhoods.

Establishing a baseline of structural variant genotypes

The Genome in a Bottle consortium (GIAB) has released two sets of
structural variants researchers use to evaluate the performance of
their SV discovery and genotyping tools. The first, GIAB v0.6", was
constructed from a merge of multiple SV discovery tools’ results and
the second, draft GIAB v1.1*%, derived from a single highly polished
diploidtelomere-to-telomere assembly. These two benchmarks of
insertions and deletions greater than 50 bp have vastly different levels
of completeness. GIAB v0.6 contains 9646 SVs compared to 27,560
SVs for v1.1. The ratio of heterozygous to homozygous variants (het/
hom ratio) in GIAB v0.6 is 1.16 compared to 4.15 for v1.1. These
benchmarks’ differences are especially notable in the context of
overlapping and closely adjacent SVs. While GIAB v0.6 has no Tier 1
passing SVs within 1kbp of another SV, 15,685 (43%) of GIAB v1.1 SVs
have at least one neighbor. These observations of het/hom ratio and
neighboring SVs are not independent as 92.2% of draft GIAB v1.1 SVs
with at least one neighbor are heterozygous compared to 65.5%
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Fig. 2 | Performance of genotypers on single-sample assembly-derived SVs
across 47 samples. Left side: Genotype concordance a for three read coverages
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location inside or outside tandem repeats. Note that left figures have truncated
y-axes (50-90%) for readability. d Genotype concordance by number of
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neighboring SVs within one thousand base pairs (top) and proportion of SVs by
number of neighbors (bottom). e Average genotype distribution per sample in the
baseline assembly-based variants and for each tool’s result. REF = reference
homozygous, HET heterozygous, HOM homozygous alternate, NON missing gen-
otype (./.). All bar plot error bars represent 95% confidence intervals of the mean.

without neighbors being heterozygous (chi-squared test p<0.01).
Therefore, SV genotypers benchmarked primarily against GIAB v0.6
may be biased towards a subset of homozygous SVs. For these reasons,
in the development of kanpig we leveraged the draft GIAB v1.1 and in-
house sequencing replicates of HG0OO2 for training.

To comprehensively test kanpig, we leveraged high-confidence
assemblies from the Human Pangenome Reference Consortium
(HPRC)" to create SVs from 47 genetically diverse genome assemblies
using dipcall v0.3?° and GRCh38 (see subsection “Data collection” of
section “Methods”). To ensure the assembly-derived SVs are of high
quality, we compared the HPRC HG0OO02 SVs against GIAB v1.1 SVs using
truvari®. This resulted in a 0.996 precision and 0.987 recall with a 99.3%
genotype concordance. The consistency of the HGO02 variants from
the HPRC assembly and dipcall pipeline to GIAB vl.1 suggests the
pipeline is sufficient for generating baseline VCFs across all HPRC
samples for testing.

Single sample SV genotyping

To assess kanpig’s performance, we collected 32x coverage of PacBio
HiFi long-reads derived from the same 47 HPRC individuals which
comprise the assembly-derived baseline variants described above (see
subsection “Data collection” of section “Methods”). We genotyped
autosomal SVs between 50 bp and 10kbp for each sample using kanpig

and three other long-read SV genotypers: SVjedi-graph™ (heretofore
referred to as SVJedi); sniffles2? (hereafter referred to as sniffles);
cuteSV*. Note that sniffles and cuteSV are long-read SV discovery tools
with genotyping-only (a.k.a. “force-calling” or -fc’) modes which are
tested here.

The average genotyping concordance of a sample’s kanpig
predicted genotypes was 82.1% compared to 74.2% for SVJedi, 67.1%
for sniffles-fc, and 63.8% for cuteSV-fc. Measurement of genotyper
performance was repeated across two down-samplings of the reads
to 16x and 8x coverage (Fig. 2a). It was observed that lower coverage
causes lower genotyping concordance. Notably, kanpig's perfor-
mance at 8x (77.8%) was higher than other tools’ performance at 32x.
A full table of tools’ average genotyping concordance across samples
by coverage, SV type, and overlap with TRs is available in Supple-
mentary Data 1.

The assemblies produced an average of 9706 deletions and
16,870 insertions per sample. Stratifying genotyper performance by SV
type found that all tools’ deletion genotypes had higher concordance
than their insertion genotypes (Fig. 2b). The best-performing genoty-
per on deletions was SVJedi at 88.2% average genotype concordance
followed by kanpig at 86.5%. For insertions, kanpig’s 79.5% genotype
concordance was much higher than SVjedi’s at 66.1%. Kanpig’s per-
formance between SV types had the lowest imbalance (i.e. difference

Nature Communications | (2025)16:3218


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-58577-w

between deletion and insertion concordance) at 7.0 percentage points
(p.p) compared to 20.5 p.p to 23.2 p.p for the other tools.

Another important stratification for SVs is their overlap with
tandem repeats since they harbor ~-70% of SVs and pose unique chal-
lenges due to their sequence context”. We found that kanpig’s geno-
type concordance on SVs within TRs was 81.7% and 89.0% outside of
TRs (Fig. 2¢). SVJedi had the second highest performance at 72.4%
inside and 78.6% outside of TRs.

A strong predictor of a genotyper’s ability to correctly assign a
genotype was the presence of neighboring variants since they increase
the complexity of the locus being evaluated. We measured tools’
genotyping concordance stratified by variants having neighbors within
1000 bp and those without (i.e. isolated) (Fig. 2d). In the 50.8% of
isolated SVs per-sample, genotype concordance was between 95.0%
(SVJedi) and 92.7% (kanpig). Over the remaining 49.2% of SVs per
sample with neighbors, kanpig had the highest average genotyping
concordance at 70.9%, followed by SVJedi at 52.5%, while sniffles-fc and
cuteSV-fc were below 40%. This suggests that all tested genotypers
perform reasonably well on isolated SVs while kanpig’s ability to cor-
rectly genotype SVs in close proximity to one another differentiates it.

As observed in the GIAB v1.1 SVs described above, there are
approximately four times as many heterozygous SVs as there are
homozygous SVs expected in an individual, and heterozygous SVs
more frequently neighbor another SV than homozygous SVs. We next
explored the distributions of genotypes in the assembly-derived SVs to
confirm this observation and assess each tool’s ability to classify both
heterozygous and homozygous SVs (Fig. 2e). We found kanpig’s 3.00
average het/hom ratio per sample is closest to the assembly SVs’
average het/hom ratio of 4.58. The other tools had a stronger bias
towards assigning homozygous genotypes with het/hom ratios
between 1.38 and 1.10. Since every variant assessed in this experiment
is known to be present according to their respective assemblies, any
assignment by a genotyper of a reference homozygous state is an
error. Kanpig exhibits the second highest average reference homo-
zygous error rate at 11.4% behind cuteSV-fc at 16.5%. However, the
above genotype concordance measurements are already penalized for
these mistakes and did not prevent kanpig from recording the highest
genotyping concordance. Finally, the highest missingness rate (i.e.
insufficient evidence to assign any genotype:./.), is from kanpig with an
average of 3.5% of variants per sample while SVJedi is second at 1.2%.

These measures of genotype concordance, het/hom ratio, refer-
ence homozygous errors, and missingness rate suggest that in some
stratifications other tools may be able to confirm the presence of
alternate alleles (i.e. recall) slightly better than kanpig. However, kan-
pig’s consistently high assignment of correct genotypes (i.e. precision)
across all stratifications lead to a significantly higher overall genotyp-
ing accuracy.

Single sample discovery genotyping

Most projects generating SVs will not have access to high-quality
assemblies but will instead discover SVs from raw reads’ alignments
using tools such as sniffles”. SV discovery tools are susceptible to
errors in the form of imperfect variant representations, false negatives,
and false positives, each of which challenges the subsequent use of SV
genotypers. To test kanpig's ability to handle errors in the variant
graph, we generated SVs on the 47 HPRC 32x samples using sniffles
discovery, genotyped with the tools being tested, and compared
results to the assembly-derived SV set.

On average, kanpig’s genotype concordance on the 32x coverage
experiments was 85.0% compared to 76.2% for SVjedi, and 78.1% for
cuteSV-fc. Since sniffles was used to discover the SVs, we measured
both its original discovery genotypes as well as its force-genotyping
modes’ concordance separately at 80.5% and 80.4%, respectively. In
general, the same patterns of genotypers’ relative performance by
coverage, SV type, and TR status hold when analyzing the sniffles-

discovery VCF as was seen when analyzing the assembly-derived VCFs
described above (Supplementary Data 2).

In addition to genotype concordance, we measured how the
genotypers changed the precision and recall of present (heterozygous
or homozygous alternate) discovered variants. A perfect genotyper
would call all false positives (FP) as reference homozygous—thus
‘removing’ the FP—while preserving a present status on all true posi-
tives (TP). Unsurprisingly, sniffles force-genotyping on the sniffles
discovery SVs created the least amount of change with only 23 FPs and
87 TPs genotyped as reference homozygous per sample. Kanpig
removed an average of 52 FP variants and 206 TPs whereas cuteSV-fc
removed an average of 51 FP variants and 745 TP variants. Interestingly,
while SVJedi only lost an average of 50 TP variants per sample, it also
found 63 additional FP variants per sample. These additional false
positives were caused by discovered variants that originally had poor
quality and a reference homozygous genotype but SVJedi determined
the variant was present and therefore created an additional present FP.
Supplementary Data 3 contains a full report of tools’ impact on the
average precision and recall across the 47 samples and on three read
coverages of 32x, 16x, and 8x.

Multi-sample SV genotyping

The input to a genotyper analyzing SVs across multiple samples is a
VCF containing SV discovery results per sample which have been
consolidated to remove redundant SVs between samples. To test
kanpig’s ability to process a multi-sample VCF, we merged the sniffles
discovery variants on the 47 HPRC samples introduced above and used
truvari® to collapse putatively redundant variant representations of the
same type, within 500 bp, and >95% similar in sequence and size
(Methods: Data Collection). The initial set of discovered SVs had
561,735 total variants and truvari collapse left 257,323 total variants
(54.1% reduction) as input for the genotypers.

Kanpig had the highest genotype concordance to the baseline SVs
at 84.9% followed by SVJedi at 55.4%, cuteSV-fc at 34.1% and sniffles-fc
at 33.8%. Furthermore, the programs’ present SV f1 score (harmonic
mean of precision and recall) was 0.948 for kanpig, 0.817 for SVjedi,
0.611 for cuteSV-fc, and 0.605 for sniffles-fc. Details of genotyper
performance on multi-sample discovered SVs are available in Supple-
mentary Data 4.

While kanpig’s multi-sample performance was consistent with its
single-sample SV benchmarking, the other tools had a remarkable
decrease in genotyping concordance. To ensure that the processes of
SV discovery and SV merging were not confounding factors to these
changes in performance, we took the assembly-derived SVs per sample
and consolidated them with bcftools merge?. This multi-sample VCF
therefore holds the entire set of un-manipulated high-confidence SVs.
By not merging the SVs before genotyping, the VCF contains many
highly similar SVs which are entirely valid representations within the
context of their derived assembly but ostensibly redundant repre-
sentations in the context of multiple samples*. The consolidated
assembly-derived SVs from the 47 HPRC samples contained 403,031
autosomal SVs between 50 bp and 10kbp. A total of 371,771 SVs (92.2%)
were within 1000 bp of another SV; this included 346,843 (86.0%)
within 500 bp of another SV of the same type that was also at least 95%
similar in terms of size and sequence.

Kanpig had the highest genotype concordance for the assembly-
derived, multi-sample SVs at an average of 86.6% across samples fol-
lowed by SVJedi at 42.8% (Table 1). CuteSV-fc and sniffles-fc had an
even lower average genotype concordance of 12.7% and 12.2%,
respectively. The average kanpig genotyped sample had a precision of
present SVs (non-reference homozygous) of 0.973 (mean 598 FPs)
while SVJedi had a precision of 0.564 (19,515 FPs). Both cuteSV-fc and
sniffles-fc averaged over 100,000 FP SVs per sample, dropping their
precision to under 0.20. Simultaneously, kanpig maintained a rea-
sonable recall of 0.953, which was lower than the other genotypers,
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Table 1| Multi-Sample SV Genotyping Performance

Program GT Concordance TP-base TP-comp FP FN Precision Recall f1

kanpig 86.6% 22,67 21,640 598 129 0.973 0.953 0.963
SVJedi 42.8% 25,153 25,317 19,515 327 0.564 0.987 0.718
cuteSV-fc 12.8% 22,928 22,981 104,495 1,051 0.180 0.956 0.303
sniffles-fc 12.3% 24,886 24,986 121,394 763 0.7 0.970 0.290

Average performance of genotypers across 47 samples when given a multi-sample VCF of assembly-derived SVs and 32x long-read coverage. SV matching was performed using truvari bench and is

detailed in Methods: Measuring Genotyping Performance.
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which achieved a recall of at least 0.956. These observations indicated
that kanpig was able to maintain a high genotyping concordance for
multi-sample SV genotyping due to having high precision while the
other genotypers falsely applied reads to alternate alleles not present
in a sample. Details of genotyper performance on assembly-derived
multi-sample SVs by coverage, SV type, and overlap with TRs are
available in Supplementary Data 5.

For sniffles discovery/truvari merge SVs and assembly-derived
SVs, the strongest predictor of genotyping concordance was the pre-
sence of neighboring SVs within the set of possible SVs at a locus
(Fig. 3). On the 32x coverage experiments, SVs without neighbors

within 1000 bp had high genotyping concordance between 87.9%
(kanpig) and 75.6% (SVJedi) on discovered SVs and between 97.5%
(kanpig) and 82.0% (SVJedi) on the assembly-derived SVs. These iso-
lated SVs account for only 16.5% of the discovered SVs and 7.8% of
the assembly-derived SVs. For the remaining SVs having at least
one neighbor, kanpig’s genotyping concordance was 83.2% on the
discovery-derived SVs and 83.8% on the assembly-derived SVs. The
other tools achieved genotyping concordance below 47.2% on multi-
sample SVs with neighbors.

Analysis of the kanpig results found no evidence of conflicting
genotypes from homozygous SVs overlapping non-reference-
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Table 2 | Computational performance

Single-Sample VCF

Multi-Sample VCF

Chromosome 1 Whole genome

Chromosome 1 Whole genome

kanpig 18s/0.02Gb 43s/1.7Gb 1m 65s/0.41Gb 2m105s/3.42Gb
SVledi 7s/0.2Gb 1m 35s/1.1Gb - 4m 45s/9.61Gb
sniffles-fc 1m10s/0.2Gb 56/1.3Gb 1m 11s/0.44 Gb 1m 32s/16.25Gb
cuteSV-fc 325s/0.8Gb 1m 3s/1.2Gb 355/0.89 Gb 4m 56/9.1Gb

Each cell holds average runtime/maximum memory usage in gigabytes (Gb) for 5 runs on the test data. Runtime is in (h)ours, (m)inutes, and (s)econds. Multi-sample VCF contained SVs from 47
samples. Tests on chromosome 1given 1-core. Whole genome tests given 16 cores. SVJedi was only tested with a single run on the data as it wraps a call to minigraph to generate alignments whereas
other tools use pre-generated BAMs. Minigraph for the multi-sample chromosome 1 experiment was terminated after 12 h of runtime and therefore excluded.

homozygous SVs. However, SVjedi had conflicting genotypes from at
least one sample for 29.4% of multi-sample discovery SVs, cuteSV-fc
had 40.7%, and sniffles-fc had 45.7%. For the multi-sample assembly-
derived SVs, the percent of variants with >1 samples having a con-
flicting genotype was again zero from kanpig, 40.5% from SVJedi, 59.1%
from cuteSV-fc, and 66.5% from sniffles-fc. The majority of errors from
the other genotypers were not from mis-assignment between hetero-
zygous or homozygous status but instead an inability to assign a
reference-homozygous status to variants which are not present in the
sample. To further illustrate where these genotyping errors arise, we
investigated the average genotype state distribution per sample
(Fig. 3¢/d). In the merged assembly-derived VCF, there are 403,031 SVs
found across samples. For any one sample, an average of 7% (-28,000)
of these SVs were expected to be present (heterozygous or homo-
zygous alternate). Kanpig genotyped an average of 7% of SVs as pre-
sent and 6% as missing. SVJedi genotyped 15% of SVs as present and 16%
as missing while sniffles-fc and cuteSV-fc genotyped 33% and 66% of all
SVs as being present per sample, respectively, with both producing
missingness rates below 1%.

Performance on nanopore R9/R10 sequencing

The above experiments were all performed on PacBio HiFi sequen-
cing, which has a reported read accuracy of ~99%>. Another available
long-read sequencing technology is Oxford Nanopore Technologies
(ONT) which recently released an update to their sequencing
chemistry raising read accuracy from ~96% (R9 chemistry) to ~99%
(R10 chemistry)®. To investigate the ability of kanpig to leverage
ONT reads and the impact of read accuracy on genotyping, we ran 3
whole-genome samples with publicly available R9 and R10 replicates
having >30x coverage”. We found that when genotyping the single-
sample assembly SVs, kanpig had a mean genotyping concordance of
77.8% on R9 reads and 80.1% on R10 (Supplementary Data 6). The
comparability of genotyper performance on ONT and PacBio reads
suggests all tools can effectively leverage both technologies. How-
ever, kanpig’s 2.3 percentage point (p.p) drop in concordance using
R9 compared to R10 being higher than other tools (second sniffles-fc
at 1.5p.p) indicated kanpig is more dependent on the base-pair level
accuracy of reads.

The ONT samples were technical replicates of three of the same
individuals in the HPRC PacBio samples. Therefore, we also checked
the ability of genotypers to consistently apply genotypes to a sample’s
assembly-derived SVs across the replicates. The most consistent gen-
otyper was SVJedi which assigned the correct genotype on all three
replicates for 72.2% of SVs. Second was kanpig with 62.2%. When
considering only the pair of technologies with higher read accuracy
(PacBio HiFi and ONT R10), 72.7% of SVJedi’s genotypes and 71.4% of
kanpig genotypes were consistent and concordant (Supplemen-
tary Data 7).

Computational performance
Kanpig was written in Rust in order to achieve high speed and memory
safety and is available under an open source MIT license. Kanpig can be

built from source or run with available statically linked binaries for
POSIX-compliant systems. To test kanpig's speed and memory usage
relative to other genotypers, we first tested each tool’s computational
performance on the chromosome 1 sniffles calls discovered from a
single 32x sample, using only a single core and a 12x readset limited to
chromosome 1. Of the tools that operate on a BAM file, kanpig was the
fastest and least memory intensive (Table 2). SVJedi’s process needs
unaligned reads in FASTQ format as input in order to run minigraph®.
Therefore, for even comparison we subtracted minigraph’s runtime
from SVJjedi’s runtime (4.6 h). All tested genotypers can run using
multiple threads and therefore were also tested when given 16 cores,
the whole-genome 32x sniffles discovery calls, and a single 20x sample.
Again, kanpig was the fastest. We repeated the chromosome 1 and
whole-genome tests on the 47-sample sniffles VCF and found kanpig
was the second fastest and least memory-intensive tool.

Discussion

Here we presented a detailed description and evaluation of our long-
read SV genotyping tool kanpig. By leveraging high-quality SV
benchmarks from multiple samples and testing under various condi-
tions, we showed kanpig’s superior accuracy to other genotypers. Our
results demonstrated that kanpig consistently outperforms other
long-read SV genotypers across most stratifications and use cases.
Specifically, we found that kanpig more frequently assigns the correct
genotype to nearby (i.e. neighboring) SVs that dominate the SV land-
scape, particularly when analyzing SVs across multiple samples.

An ideal genotyping method for SVs should not just try to max-
imize the number of SVs present in a sample. This behavior might
appear successful for single-sample SV genotyping, but, as demon-
strated in this work, will lead to issues such as numerous false positives
and conflicting genotypes when dealing with a population set of SVs. A
major flaw of many SV genotypers is the inability to handle neigh-
boring SVs, which occurs when highly similar, but still distinct SVs are
in close proximity to one another. Neighboring SVs predominantly
reside within tandem repeats, which are highly polymorphic and
contain around 70% of all SVs in the human genome®. If the evaluation
of neighboring SVs is improper, genotypes which produce biologically
implausible haplotypes per sample (e.g. three overlapping deletions in
a diploid genome), can be generated, undermining downstream ana-
lyses. Kanpig is able to properly genotype neighboring SVs due to its
algorithm evaluating variant graphs constructed over windows of the
genome instead of independently searching for read evidence sup-
porting each SV. Furthermore, kanpig’s measurement of sequence
similarity between long-reads and paths through the variant graph
helps ensure that the single, highest scoring, optimal path through
multiple SVs is chosen.

Part of the reason the limitations of other SV genotypers went
unnoticed is due to the choice of baseline SVs against which the tools
were benchmarked. The GIAB v0.6 SV benchmark has been instru-
mental in advancing SV discovery algorithms. However, contemporary
understanding of SV prevalence and composition highlights the need
for more sophisticated benchmarks such as GIAB v1.1 SVs and the
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HPRC assemblies”. As we showed, the draft GIAB v1.1 benchmark has
~2.5x more SVs than its predecessor, including ~43% within 1000 bp of
another SV, and a het/hom ratio of ~4. Additionally, the HPRC assem-
blies - which comprise 47 genetically diverse individuals - supported a
variant count of -26 thousand SVs between 50bp-10kbp and -4 het/
hom ratio per sample. Not only was kanpig able to achieve the best
genotyping concordance on these high-confidence benchmarks, but
we also showed kanpig’s ability to accurately genotype discovered SVs
from sniffles. While this manuscript primarily reports test results using
dipcall and sniffles discovery VCFs, kanpig is able to process any
compliant VCF with SVs having accurate breakpoints and full allele
sequences (i.e. non-symbolic alleles), which are routinely produced by
many long-read SV discovery tools.

We benchmarked kanpig’s accuracy when given PacBio HiFi and
ONT R9 and RI10 reads to demonstrate its utility across multiple long-
read technologies. However, SV genotypers are not only reliant on
sequencing technology but also the quality of the provided input SVs’
description since genotypers are designed to investigate the postu-
lated SVs. Interestingly, kanpig’s precision in applying sequencing to
SVs’ variant graphs was able to reduce the number of falsely dis-
covered SVs while maintaining a high recall, thus, improving not only
the calls’ genotypes but also the set of SVs reported per sample. This is
dependent on the information a SV caller provides in terms of accurate
and complete allele descriptions.

In addition to sequencing technology and SV discovery tools, SV
genotyping of multi-sample projects such as pedigrees or populations
is also dependent on the SV merging strategy employed. We previously
outlined the causes and consequences of inaccurate SV merging and
implemented our findings in truvari®. Alternative methods of SV mer-
ging could be utilized to create inputs to kanpig (e.g. jasmine?). More
generally, researchers need to be aware that over or under merging will
impact the performance of not only the SV genotyping methodology
but all subsequent analysis. Future work is needed to understand
exactly what combination of DNA sequencing technology, SV dis-
covery tool(s), and SV merging approach most efficiently reports SVs
whereas the work presented here serves only as a start to addressing
the field’s need for an accurate SV genotyper, a single step of the
pipeline.

Any bioinformatics tool designed to assist genomics researchers
must undergo continuous development and maintenance. While the
version of kanpig presented here can immediately begin serving
researchers, further improvements are possible. For example, opti-
mized BAM/CRAM access patterns could reduce runtime and kanpig's
design should be able to leverage haplotagged reads to assist read
clustering as well as annotate long-range phasing information. Cur-
rently, kanpig is limited to parsing continuous alignments and does
not leverage the split or clipped alignment signals that typically occur
around larger SVs. As a result, kanpig is currently applicable to variants
smaller than the read length. Future versions of kanpig should be able
to incorporate split/clipped alignments to better genotype SVs larger
than ~10 kbp. Furthermore, kanpig currently requires long-read align-
ments to span the neighborhood of variants in each locus’s variant
graph. However, a future implementation of kanpig could potentially
relax this requirement by applying partial alignments to their corre-
sponding subgraph, thereby increasing kanpig’s sensitivity, particu-
larly in low-coverage scenarios. Though this will require careful design
to ensure there is no regression in kanpig’s accuracy when genotyping
neighboring SVs.

In conclusion, we have described kanpig, a novel SV genotyper,
and the potential impacts of improved SV genotyping to SV research.
The results presented here on high-confidence benchmarks and
other datasets should promote rapid adoption of kanpig for at-scale
SV studies, thus improving the reliability of population SV results and
potentially contributing to novel findings in biological and clinical
research.

Methods

Kanpig algorithm

K-mer vectors. Variant sequences are encoded as k-mer vectors. Let n
be the set of nucleotides n=1{A, G, C, T} and the function E be the two-
bit encoding of each element of nsuchthatA=0;G=1,C=2; T=3. Let
S be a string of nucleotides with length [ such that S=ng, n; n, _ni.. A
k-mer K of size k is a substring of S beginning at 0-based position i and
defined as Ki(S) = n;, njvp..nisr1. K-mer vectors (V) hold the counts of all
k-mers inside of a string of nucleotides. Each possible k-mer combi-
nation of n can map to a unique index;j of a conceptual array V with size
In | . The index j of Ko can be calculated using a left bitshift operation
(<<) and the formula:

J= > [E@S)<(k—i-1)-2)] M

i=[0.k)

As an example, j of the first 3-mer for the sequence “CAGT” is:

(2<<(2 - 2)) +(0<<(1 - 2)) + (1<<(0 - 2)) = binary100001 =33

V; is then incremented. Next, for every n from S, ;, we alter j via

J=(M&)<<D+E(S) 2

This operation updates by first masking (m) the two leftmost bits,
left-shifting the remaining bits twice, and adding the current nucleo-
tide’s encoding before again incrementing V;. For the example
sequence “CAGT”, the second 3-mer’s j is 7 (binary 000111). Sequences
shorter than k cannot be vectorized and therefore return a vector of
all zeros.

Variant comparison. The similarity of two k-mer vectors (p & q) of
length n can be calculated using the Canberra distance function and
the absolute value function abs

SZ(p,g=1- 3 abs(p;—qy/@bs(p)+abs(q) (3

i=[0..n)

To limit the impact of small sequencing errors, infrequent k-mers
(abs(p;) + abs(g;) <minkfreq) are excluded from (3). By default, kanpig
sets minkfreq to 2, but this threshold can be set by users via a para-
meter. The default k-mer size is 4 bp which was chosen from empirical
testing of sequencing experiments’ performance against GIAB draft
v1.1 SVs. The limited impact of k-mer size and its similarity to edlib
sequence similarity is described in Supplementary Data 7.

In addition to comparing variants’ k-mer vectors’ sequence simi-
larity, the size similarity of two variants’ sequences (a,b) can be com-
pared. Deletions constitute a removal of sequence and are thus
negative in length whereas insertions add sequence and are positive in
length. Two vectors’ associated lengths must be of the same sign (e.g.
two deletions would both have negative size) to be compared and their
size similarity is calculated as

SS (a, b) = min(length (a), length (b))/ max(length (a), length (b)) (4)

The thresholds for minimum size and sequence similarity needed
for two vectors to be considered equivalent defaults to 0.90 and can
be set by users via a parameter.

This setup of k-mer vectors and comparison metrics allows mul-
tiple variants within a region to be summed in order to produce a ‘net-
change’ over the region. For example, two 100 bp deletions have 99%
size similarity with a single 198 bp deletion. Likewise, k-mer vectors can
be summed to contain the total k-mer count across multiple variants.

Variant graph construction
A variant call format file (VCF) containing full alleles (REF and ALT
sequence) is parsed and partitioned into chunks of variants which are
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within --chunksize distance from one another. This creates sets of
variants where the distance between the upstream-most variant’s
start position and the downstream-most variant’s end position is at
least --chunksize base pairs away from any other variant on the same
chromosome. A directed graph is constructed with nodes repre-
senting each variant and edges linking variants to all non-overlapping
downstream variants. During conversion of variants into nodes,
anchor bases are trimmed and the remaining reference and alternate
sequences are stored as a k-mer vector of V(ALT)-V(REF). Addition-
ally, the length of the variant’s described change is recorded as
length(ALT)-length(REF). A source node upstream of all variants is
added to the graph with edges to all variants as well as a sink node
downstream with edges from all variants. Note that only variants are
k-mer vectorized and not reference sequences (i.e. invariant bases)
between them.

Pileup generation. For each independent variant graph, read align-
ments’s CIGAR strings from a BAM file which span the graph’s region
are parsed to identity insertion and deletion variants and which reads
support each variant is tracked. By default, only primary alignments
which fully span the region and have above a minimum mapping
quality (-minmapq 5) are included in the pileup and insertion and
deletion variants within a parameterized size range (--sizemin 50
-sizemax 10000) are analyzed. Each variant’s sequence is converted
into a k-mer vector and size is recorded. Reads with identical sets of
pileup variants are consolidated with constituent reads’ count recor-
ded to thus create a putative haplotype.

Haplotype clustering. We define a haplotype as a set of variants
described by aligned reads over a window of the genome. A haplotype
contains the set of variants’ k-mer vectors and the size of variants’
changes relative to the reference. The set of putative haplotypes cre-
ated during pileup generation described above is grouped with
k-means clustering (using k=2) on the sum of their variants’ k-mer
vectors to identify up to two alternate allele haplotypes. For each
resultant cluster, the putative haplotype described by the highest
number of reads is chosen as the representative for the haplotype. If
only one alternate haplotype is identified, the proportions of alternate
and reference homozygous read coverage are analyzed (see Methods:
Genotyping and Annotation) to identify if the locus is homozygous
alternate or heterozygous. If two clusters are identified, kanpig allows
haplotypes above a size similarity threshold (--hapsim default: 1) to be
consolidated and the locus is deemed to have a single alternate allele.
Note this threshold is off by default and therefore performs no con-
solidation. Otherwise, the two alternate haplotypes are considered a
compound heterozygous pair of alleles and returned to be applied to
the variant graph.

Applying a haplotype to a variant graph. Given a haplotype and
variant graph for a locus, kanpig searches for an optimal path through
the variant graph that best matches the haplotype’s variants by max-
imizing the score described in (5). The algorithm begins with a
breadth-first search, starting at the source node, and explores out-
going edges to construct paths to neighboring nodes. These partial
paths are added to a binary min-heap, which prioritizes paths based on
their length, with paths having total nodes’ variants’ length more
similar to the haplotype’s length receiving higher priority.

At each step, kanpig pops the highest-priority path from the heap,
identifies its tail node, and extends the path by visiting all outgoing
edges from this node. Newly extended partial paths are pushed back
onto the heap. When a path reaches the sink node, the haplotype-path
pair is scored by summing the k-mer vectors and sizes of the haplo-
type’s variants and separately the path’s nodes before applying the
scoring function. Only paths meeting user-specified minimum
thresholds for size and sequence similarity to the haplotype are

scored. To reduce computational overhead, especially for graphs with
many nodes, kanpig introduces a user-defined parameter (-maxpaths,
default: 5000) to limit the number of paths compared against. The
search terminates when either all possible paths have been evaluated,
or the number of checked paths reaches --maxpaths.

Split-variant representations can occur when e.g. a haplotype
contains a100-bp deletion while the graph has a path with a single 100-
bp deletion and also a path with two 50-bp deletions, all describing the
same change. To handle split variants, kanpig penalizes differences
between the haplotype’s variant count and the path’s node count,
thereby preferring paths in higher agreement to the observed variant
representations from the aligned reads.

To account for potential false negatives in the variant graph (i.e. a
haplotype containing variants not present in the input VCF), kanpig
allows variants in the haplotype to be skipped during the k-mer vector
and variant size summation, at a penalty to the score. Skipping occurs
only when the haplotype’s size or sequence similarity falls below the
minimum thresholds. Skipping will temporarily replace the haplo-
type’s summed size and k-mer vector with those of each n -1 subset of
variants. The skipping process continues until a partial haplotype
meets the minimum size and sequence similarity thresholds or until a
maximum of n — 3 variants (i.e., up to three skipped variants) have been
tested.

Score (P, H)=((SS (P, H)+SZ (P,H))/2) — (g - IL(P) — L(H)|) — (A¢ - N)
©)

The kanpig scoring function for a path and haplotype is in (5)
where P and H are the path and haplotype, respectively, SS is the
sequence similarity defined in (3), SZ is the size similarity defined in (4).
The L function measures the number of nodes in a path or number of
variants which comprise a haplotype. The variable N is the number of
false-negative (i.e. skipped) variants in the haplotype. The penalty A,
for split-variant representations defaults to 0.01 while the penalty A¢for
false-negatives defaults to 0.10 and both can be set with user-defined
parameters.

Genotyping and Annotations. For each locus, the above processes
have collected the count of reads supporting a haplotype and the set of
nodes from the highest scoring path (i.e. VCF variants) the haplotype
supports. The number of reads not supporting a haplotype (either
reads supporting a second alternate allele haplotype or the reference
allele) has also been collected. Kanpig next evaluates each VCF variant
and if its corresponding node is in the optimal path for a haplotype, the
variant is considered present in that haplotype. Next, kanpig analyzes
the ratios of reads supporting the variant’s presence (variant in a
highest scoring path) and absence (variant not in a path) and deter-
mines the variant’s diploid genotype using the same Bayesian formula
as Chian et al.%, This formula leverages three priors of allele coverage
ratios for reference homozygous, heterozygous, and homozygous
alternate read proportions. Kanpig sets these priors to le-3, 0.55, and
0.95 for loci with less than 10x coverage and 1e-3, 0.50, 0.90 for loci
with at least 10x coverage. The conditional probability of each geno-
type state given the priors is then calculated and the most likely state
assigned. These derived likelihoods are then leveraged to calculate a
genotype quality score (confidence in the assigned genotype state)
and sample quality score (confidence that the alternate allele is present
in any genotype state). Genotype quality score is derived as -10 mul-
tiplied by the absolute difference of the second most likely genotype
state and most likely genotype state. Sample quality score is derived as
-10 multiplied by the absolute difference of the reference homozygous
likelihood and the loglO sum of the heterozygous and homozygous
alternate likelihoods. Both genotype and sample quality scores range
from O (lowest quality) to an artificial cap of 100 (highest quality).
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In addition to the genotype, genotype quality score, and sample
quality score, kanpig will record additional annotations to each variant.
These include two common genotyping annotations of depth (DP:
total number of reads from a locus analyzed to evaluate this variant)
and allele depth (AD: how many reads from DP support the reference
allele and alternate allele). The score described in (5) of the haplotypes
created for a locus to the final chosen paths through the variant graph
are reported as well as a phase-set (PS) unique identifier which anno-
tates the set of variants that comprise each independent variant graph.

Finally, a filter flag (FT) is populated as a bit-flag with states to
assist users in filtering genotypes. A flag of O can be considered pas-
sing. The bits are defined as: Ox 1 - The genotype observed from var-
iants matching paths is not equal to the genotype observed from
measuring the proportions of reads supporting the two alleles; 0x 2 -
the genotype quality score is less than 5; 0x4 - the observed coverage is
less than 5; Ox8 - the sample quality score is below five for a non-
reference-homozygous variants; Ox16—the alternate allele supporting
coverage is below 5; 0x32—the highest scoring path didn’t use the
entire haplotype, which may suggest a false-negative in the variant
graph relative to the read evidence. Note that kanpig’s filter flag is
available to users but was not used to alter the kanpig results
presented here.

Data collection

HPRC assemblies and PacBio CCS reads were downloaded from
the HPRC AnVIL workspace (See Data availability). Only samples
in the assembly_sample table were considered. The metadata of
samples used in this study for testing are in Supplementary
Data 8. CCS reads were downloaded from column hifi of the
sample table, after removing duplicated entries among the BAM
and FASTQ files in each cell. For each sample, reads were subset
to a desired coverage as follows. Given a list of source files, the
list was randomly permuted. For each file in the permuted order,
the file was converted to FASTQ if it was a BAM (using samtools
fastq), and it was appended to a growing FASTQ, until a desired
total number of bases was reached or exceeded (measured with
seqkit stats). Then the FASTQ was randomly permuted (using
terashuf https://github.com/alexandres/terashuf), and the prefix
that achieved the desired number of bases was kept. ONT reads
were downloaded from a CARD Google Cloud Bucket (See Data
availability). Specifically, we downloaded the fastq.gz files from
directories X/reads/ (R9 reads) and X R10/reads/ (R10 reads)
for every sample X, and we downsampled such files as
described above.

Given each high-quality assembly and the GRCh38 reference,
dipcall v0.3 was run with default parameters, and multiallelic records
were split using bcftools norm --multiallelics -. Finally, only INS and DEL
events of length at least 50 bp and with a FILTER field equal to PASS
or "' were kept. To assess the expected quality of the assembly-derived
SVs, truvari bench and then truvari refine was run to compare the
HGO002 assembly SVs to GIAB v1.1'® using default parameters and a bed
file that was the intersection of the GIAB v1.1 high-confidence regions
and the dipcall high-confidence regions. The multi-sample dipcall VCF
was created by performing a bcftools merge of all the single-sample
dipcall VCFs, followed by a final bcftools norm --multiallelics - to
remove any remaining multiallelic records.

PacBio CCS reads at each coverage were mapped to GRCh38 with
pbmm2 align --preset CCS using pbmm2 1.13.0. Single-sample dis-
covery VCFs were created by running Sniffles 2.3.3 in discovery mode
on the 32x CCS BAM of each sample, using default parameters and the
tandem repeat track from https://github.com/PacificBiosciences/
pbsv/tree/master/annotations. The resulting VCFs were then cleaned
as follows. BND and CNV records were removed, as well as symbolic
INS. The ALT sequence of every symbolic DEL and INV was filled in
using the reference, and every DUP was converted into an INS located

at the same start position. SVLEN fields were made consistent with REF
and ALT fields, and calls longer than 1 Mb were removed. The multi-
sample discovery VCF was created by running bcftools merge --merge
none over all the cleaned single-sample VCFs, followed by the follow-
ing truvari v4.2.2 command:

truvari collapse — — sizemin 0 — — sizemax 1000000 — — keep common — — gt all

ONT reads were mapped to GRCh38 using minimap2*° v2.28 with
parameters -ayYL --MD --eqx --cs, and specifying -x map-ont for R9
reads and -x Ir:hq for R10 reads.

Long-read genotypers were run as follows. Sniffles 2.3.3 was run in
genotyping mode (--genotype-vcf) with default parameters. cuteSV
2.1.1 was run with the following flags, derived from its command-line
help. For CCS reads:

— —max_cluster_ bias_INS 1000 — —diff ratiomerging_INS 0.9
— —max_-cluster_bias DEL 1000 — —diff_ratiomerging.DEL 0.5
— —merge_ins_threshold 500 — —merge_del_threshold 500

— —min_support 1

For ONT reads:

— —max_-cluster_bias INS 100 — —diff_ratio.merging_INS 0.3
— —max_cluster bias DEL 100 — —diff ratiomerging. DEL 0.3
— —merge_ins_threshold 500 — —merge_del_threshold 500

— —min_support 1

SVJedi-graph 1.2.1 was run with --minsupport 1 and all other
parameters set to default. Kanpig 0.3.1 was run with a GRCh38 ploidy
BED file and with the following parameters for single-sample VCFs:

— —sizemax 10000 — — chunksize 1000
— —gpenalty 0.02 — —hapsim 0.9999
— —maxpaths 10000

— —sizemin 20
— — sizesim 0.90

— — segsim 0.85

and with the following parameters for multi-sample VCFs:

— —sizemin 50 — — sizemax 10000 — — chunksize 500

— —gpenalty 0.04 — —hapsim 0.97

These kanpig parameters were chosen based on independent
functional testing of kanpig on the GIAB draft v1.1 SVs and sequencing
experiments not used in the testing results presented in this manu-
script. Note that we altered the ‘minsupport’ parameter for SVjedi-
graph and cuteSV as an attempt to ensure consistent comparison with
sniffles and kanpig, which analyze regions with at least one supporting
read. Furthermore, no post-processing - e.g. filtering by minimum
genotype quality - was performed on any genotyper’s result before
benchmarking. We tested LRcaller 1.0* on three pairs of 32x CCS BAM
and single-sample discovery VCFs, but it got killed by the OS on a cloud
VM with 128GB of RAM, so we excluded it from the analysis.

Measuring genotyping performance

For the single-sample benchmarking experiments on the assembly-
derived variants, SVs between 50 bp and 10,000 bp from the original
VCF and genotyped VCF were merged using bcftools merge -m none
before the baseline and predicted genotypes were compared. Phase
information was ignored e.g. 1/0 is equal to O|1. SVs on autosomes and
with start and ends within dipcall’s reported high-confidence regions
were then counted. SVs genotyped as missing (e.g../.) were counted
separately from the total number of calls and genotype concordance
was calculated as the number of matching genotypes over total
number of calls.
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For all other benchmarking experiments, the assembly-derived
single-sample variants were matched to the genotyped variants using
truvari v4.2.2 and the parameters bench --pick ac --no-ref a --sizemin 50
--sizemax 10000 along with dipcall’s high-confidence regions as the
--includebed. Truvari’s default sequence and size similarity thresholds
of >70% allow genotypers to choose ‘imperfect’, but ‘reasonable’,
variant representations to apply genotypes. The ‘pick ac’ parameter
leverages a call's genotype to determine in how many matches it is
allowed to participate. For example, if a genotyper assigns a homo-
zygous status to a variant, its allele count is two and can therefore
match up to two baseline variants. The ‘no-ref a’ parameter ignores
variants with a missing or reference homozygous status in the baseline
or comparison VCFs. Every genotyped variant with a match and a
truvari annotation of GTMatch=0 had an equal baseline genotype and
was classified as having a consistent genotype. Every matched variant
but with GTMatch!= 0 and every unmatched (i.e. false positive) gen-
otyped variant was classified as having an inconsistent genotype.
Genotyping concordance is therefore defined as the percent of pre-
sent calls (heterozygous or homozygous alternate) from the genotyper
with a matching variant and matching genotype in the assembly-
derived variants.

As an example of this process, consider a locus with two deletions
in the VCF being 105bp and 120 bp long and starting at the same
position. The expected/baseline variant at the locus is a homozygous
110 bp deletion, therefore no ‘perfect’ variant representation exists.
Truvari’'s ambiguity allowances permit the genotyper to assign a
homozygous genotype to either the 105 bp or 120 bp deletion to get
credit for correctly genotyping the variant. If, however, the genotyper
assigns a homozygous genotype to both SVs, the tool is penalized for
an incorrectly genotyped SV.

Stratification of genotyper performance by overlap with tandem
repeats was performed by subsetting the adotto TR catalog v1.2** to TR
regions contained entirely within an assembly’s dipcall autosomal high
confidence regions and only counting an SV as within TR if its start and
end boundaries occur within a single TR region. Stratification of gen-
otyper performance by number of neighbors was performed by run-
ning truvari anno numneigh which annotates an INFO field
‘NumNeighbors’ indicating the number of SVs within 1000 bp for each
variant inside the genotyped VCF.

Measuring computational performance

To measure the single-core performance of each tool, we used as
input the subset of a 12x CCS HG002 BAM and the subset of the 32x
CCS HGO0O02 sniffles discovery VCF that relates to chromosome 1 (we
used samtools view to subset the BAM, samtools fastq to get a
corresponding FASTQ for SVJedi-graph, and bcftools view to subset
the VCF). We used only chromosome 1 as the reference. We set the
number of threads to one on the command line of each tool, and we
pinned each tool to the fifth logical core of our machine with the
taskset command. We measured wall clock time and maximum
resident set size with /usr/bin/time (specifically, we timed a set of
five iterations of each program, we divided the runtime measure by
five and we used the max RSS measure as it is). For minigraph, we
used the “Real time” and “Peak RSS” measures that were printed in
output.

To measure performance under a typical workload, we ran each
tool on a 20x CCS HG002 BAM and on the 32x CCS HGOO02 sniffles
discovery VCF over the entire genome, setting the number of threads
to 16 on the command line of each tool, and pinning each tool to
logical cores 8-23 (all located on the same processor). We ran SVJedi-
graph and pbmma2 just once in this experiment.

Computational performance experiments were run on a Ubuntu
20.04.4 LTS server (kernel 5.4.0) with two AMD Epyc 7513 processors
(64 physical cores in total), 500 GB of RAM, and an NVMe SSD disk. No
other user or major task was active.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The structural variants generated in this from HPRC assemblies aligned
with dipcall on GRCh38 used to test genotypers® have been deposited on
zenodo under accession code (DOI: 10.5281/zenodo.14726292) https://
zenodo.org/records/14726292 The previously published HPRC data is
available via https://anvil.terra.bio/#workspaces/anvil-datastorage/AnVIL_
HPRC/data as well as https://github.com/human-pangenomics/HPP_Yearl_
Data_Freeze_v1.0 as well as https://github.com/human-pangenomics/HPP_
Yearl_Assemblies. The previously published CARD ONT data is available at
https://console.cloud.google.com/storage/browser/fc-46bf051e-aec3-
4adb-8178-3c¢51bcSe64ae.

Code availability

Kanpig is available under an MIT license at https:/github.com/
ACEnglish/kanpig. Analysis scripts and pipelines used to create and
summarize the results presented here are available in the github
repository https://github.com/fabio-cunial/kanpig_experiments/.
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