

K-mer analysis of long-read alignment pileups for structural variant genotyping

Received: 22 October 2024

Accepted: 25 March 2025

Published online: 04 April 2025

 Check for updates

Adam C. English ¹✉, Fabio Cunial², Ginger A. Metcalf¹, Richard A. Gibbs^{1,3} & Fritz J. Sedlazeck ^{1,3,4}

Accurately genotyping structural variant (SV) alleles is crucial to genomics research. We present a novel method (kanpig) for genotyping SVs that leverages variant graphs and k-mer vectors to rapidly generate accurate SV genotypes. Benchmarking against the latest SV datasets shows kanpig achieves a single-sample genotyping concordance of 82.1%, significantly outperforming existing tools, which average 66.3%. We explore kanpig's use for multi-sample projects by testing on 47 genetically diverse samples and find kanpig accurately genotypes complex loci (e.g. SVs neighboring other SVs), and produces higher genotyping concordance than other tools. Kanpig requires only 43 seconds to process a single sample's 20x long-reads and can be run on PacBio or Oxford Nanopore long-reads.

The ever-increasing availability of long-read sequencing has begun to enable applications in population-scale genomic studies^{1,2}. This is possible due to crucial improvements on sample requirements, error rates, and costs for running long-read sequencing instruments. Bioinformatics applications that leverage long-reads are also maturing. These innovations lead to the production of fully genotyped variant files (VCF) with information on each variant's presence across samples. This VCF then provides a foundation for subsequent analyses such as genome-wide association³ and population genomics⁴. While the process of creating fully genotyped VCFs is streamlined for smaller mutations (SNV and indels)⁵ it is not for structural variants (SVs; i.e. genomic alterations larger than 50 base pairs). The current state-of-the-art workflows involve per-sample discovery of SVs, which are then merged with methods such as truvari⁶ before subsequently reassessing each SV's presence or absence (i.e. genotyping) across all samples¹.

As discovery of SVs using long-reads has improved², genotypers have been introduced that can leverage these SVs. Genotyping is the process of determining the presence of an allele in a sample based on sequencing evidence⁷. This is separate from variant discovery which primarily aims to resolve the structure of alternate alleles. This separation is best illustrated in the case of a heterozygous SV in a diploid organism: After discovery of the alternate allele, a genotyper's task is to report that both the reference and alternate allele are

present in the sample. Therefore, genotypers rely heavily on discovery tools and must be robust to deviations between the reported allele structure and sequencing evidence supporting said allele (e.g. shifted breakpoints)⁷.

State-of-the-art genotypers employ various algorithmic approaches including simple assessments of SVs directly from mapped reads⁸, analysis of variant and read k-mers⁹, and graph-based realignment approaches^{10,11}. One thing these approaches have in common is that they have mainly been benchmarked on a single sample. The most commonly used SV benchmark is the GIAB v0.6 benchmark for HG002¹². This benchmark was built as a consolidation of short-read and noisy long-read discovered variants with Tier 1 regions defined to exclude segmental duplications and complex SVs. However, other SV studies using newer long-reads exclusively or whole-genome assemblies have shown the number and complexity of SVs is greater than the subset found in the GIAB v0.6 Tier 1 regions¹³. Furthermore, genotyping SVs across a population increases evaluation complexity by increasing the occurrences of loci containing multiple neighboring and/or overlapping SV alleles. Previous genotypers have some stratification of their benchmarking results based on the presence of neighboring SVs¹⁴, however this is only in the context of a single sample or trios. The diversity of alleles at any given locus, particularly in tandem repeat loci, is expected to grow as more samples are considered^{6,15}.

¹Baylor College of Medicine Human Genome Sequencing Center, Houston, TX, USA. ²Broad Institute of MIT and Harvard, Cambridge, MA, USA. ³Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA. ⁴Department of Computer Science, Rice University, Houston, TX, USA. e-mail: Adam.English@bcm.edu

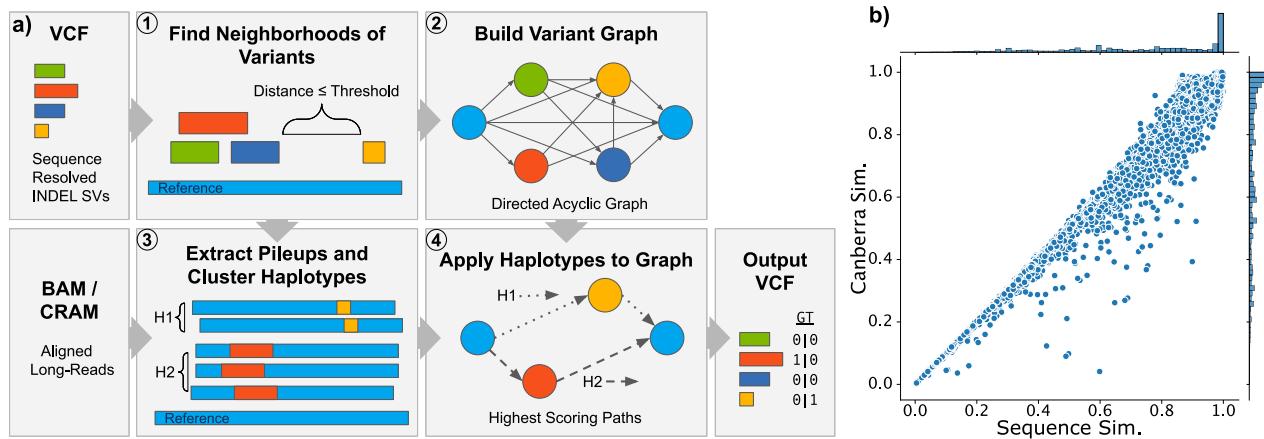


Fig. 1 | Overview of kanpig's algorithm. **a** Schematic of the main steps of kanpig's algorithm. **b** Sequence similarity vs Canberra similarity of ≥ 50 bp insertion pairs within 500 bp from GIAB v1.1 SVs.

In this work, we describe kanpig, our software for long-read SV genotyping. We showcase kanpig through a comprehensive benchmarking framework, evaluating its accuracy using a diverse set of haplotype-resolved long-read assemblies. We compare kanpig's genotype accuracy with that of other long-read SV genotypers. In addition to evaluating kanpig using high-confidence, single-sample SVs, we also benchmark against SVs discovered by the commonly used SV caller sniffles and multi-sample SV VCFs. Across all experiments, kanpig consistently produced more accurate genotypes and successfully avoided common errors seen in other genotypers, particularly for neighboring SVs within and across samples.

Results

Kanpig algorithm

The kanpig (K-mer ANalysis of Pileups for Genotyping) algorithm incorporates four major steps (Fig. 1a). First, a VCF containing SVs is parsed and SVs within a specified distance threshold of one another are identified as a “neighborhood”. Second, kanpig constructs a variant graph from a neighborhood of SVs with nodes holding SVs and directed edges connecting downstream, non-overlapping SVs. Next, a BAM file is parsed for long-read alignments that span the neighborhood of SVs and pileups within user-defined size boundaries (default 50 bp to 10 kbp) are generated before reads are clustered to identify up to two haplotypes. Finally, a breadth-first search connecting the variant graph's source and sink nodes is performed to find the path that maximizes a scoring function with respect to an applied haplotype.

A novelty of kanpig's approach is its representation of sequences in a variant graph's nodes or a read's pileups as a k-mer vector, using a small k-value, which defaults to 4 base pairs (bp). A k-mer vector contains the counts of all possible k-mers (256 for $k = 4$) and tracks how often each k-mer is observed in a sequence. These vectors are then used as part of the scoring function's measurement of sequence similarity via Canberra distance¹⁶. To calculate this similarity, kanpig uses the set of variants from the most well-covered haplotype and includes k-mers that occur a minimum number of times (default: 2) across the read's pileups and the SV sequences from a path's nodes. This filtering helps reduce the impact of artifacts, such as sequencing errors. To assess this approach's utility, we compared Canberra similarity (1 minus distance) of k-mer vectors to sequence similarity measured using edlib¹⁷ over 141,680 insertion SV pairs ≥ 50 bp and within 500 bp of one another from GIAB v1.1 SVs¹⁸. The Canberra similarity of k-mer vectors has a Pearson correlation coefficient of 0.994 ($p < 0.01$) with traditional sequence similarity (Fig. 1b) and a root mean squared error of 0.026. Of these nearby insertion pairs, 41,152 (29%) have a size

and edlib sequence similarity above 95%, which included 30,641 compound heterozygous pairs occurring at the exact same position. Of these $\geq 95\%$ similar insertion pairs, 37,918 (92%) also had a Canberra similarity above 95%. Therefore, many neighboring SVs are highly similar and the Canberra similarity metric accurately measures them.

Two crucial components of kanpig's algorithm are how reads are clustered into haplotypes before applying them to a variant graph and how variant graphs lack edges connecting overlapping SVs. K-means clustering of reads by their k-mer vectors produces up to two haplotypes. Each haplotype then only needs a single search for the optimal path through the graph to apply all its constituent reads simultaneously and to the same SVs. Furthermore, by disallowing paths through overlapping variants, kanpig prevents haplotypes from creating conflicting genotypes. For example, in the neighborhood of SVs illustrated in Fig. 1a, kanpig's graph ensures that if a haplotype supports the red SV, it cannot also support the overlapping green or blue SVs. Conversely, if either reads or SVs were evaluated independently, it is possible for reads from the same haplotype to support different, conflicting SVs or for overlapping SVs to redundantly recruit support from the same read. This could give rise to problems such as two overlapping SVs being genotyped as homozygous. Since human autosomal chromosomes are diploid, a homozygous variant that overlaps another present variant in a single sample is conflicting as it is biologically implausible to e.g. lose both copies and then additional copies of overlapped deletions at the same time. Kanpig's design prevents this type of genotyping error by correctly handling overlapping and nearby SV neighborhoods.

Establishing a baseline of structural variant genotypes

The Genome in a Bottle consortium (GIAB) has released two sets of structural variants researchers use to evaluate the performance of their SV discovery and genotyping tools. The first, GIAB v0.6¹², was constructed from a merge of multiple SV discovery tools' results and the second, draft GIAB v1.1¹⁸, derived from a single highly polished diploid telomere-to-telomere assembly. These two benchmarks of insertions and deletions greater than 50 bp have vastly different levels of completeness. GIAB v0.6 contains 9646 SVs compared to 27,560 SVs for v1.1. The ratio of heterozygous to homozygous variants (het/hom ratio) in GIAB v0.6 is 1.16 compared to 4.15 for v1.1. These benchmarks' differences are especially notable in the context of overlapping and closely adjacent SVs. While GIAB v0.6 has no Tier 1 passing SVs within 1 kbp of another SV, 15,685 (43%) of GIAB v1.1 SVs have at least one neighbor. These observations of het/hom ratio and neighboring SVs are not independent as 92.2% of draft GIAB v1.1 SVs with at least one neighbor are heterozygous compared to 65.5%

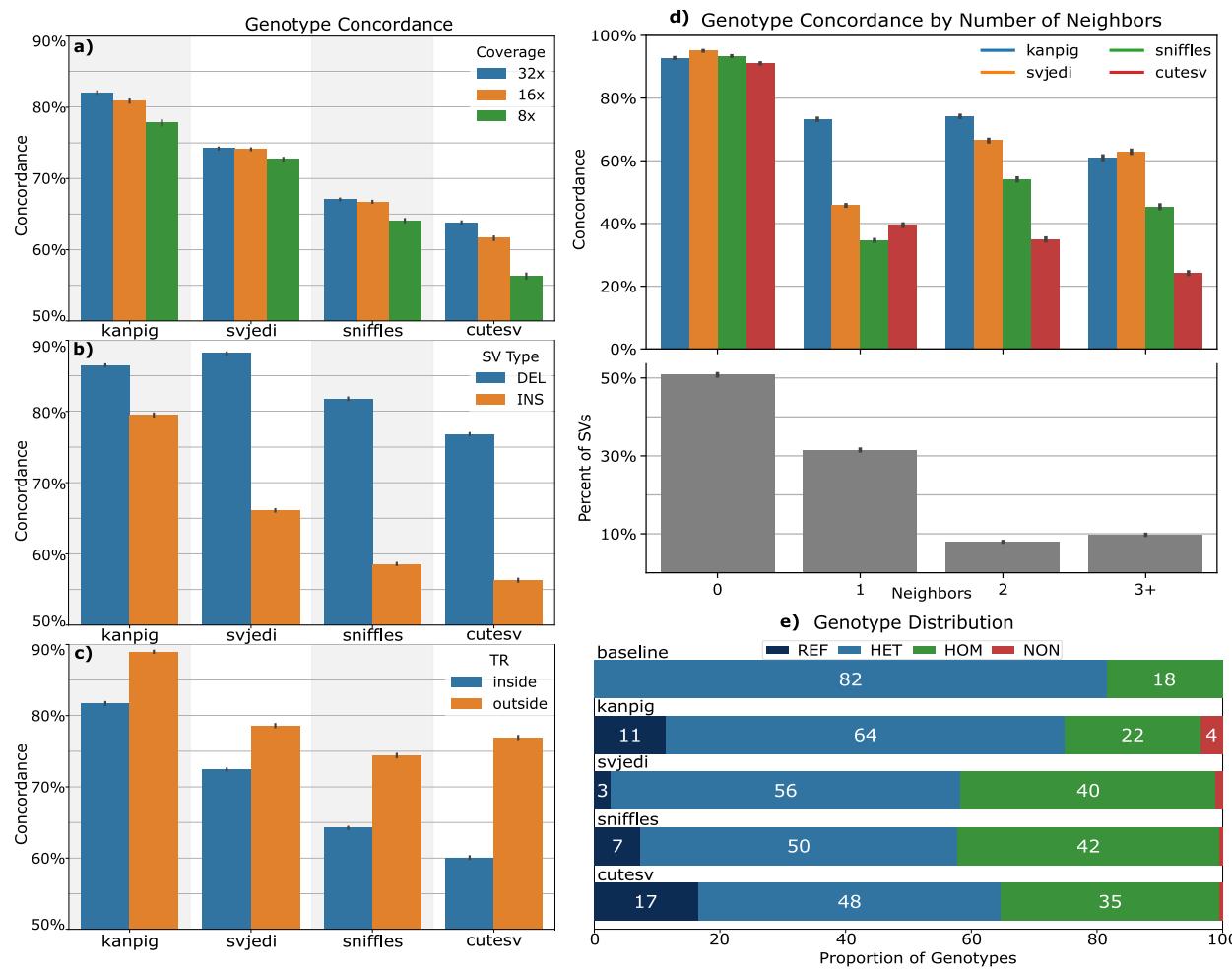


Fig. 2 | Performance of genotypers on single-sample assembly-derived SVs across 47 samples. Left side: Genotype concordance **a** for three read coverages **b** stratified by SV type of deletion (DEL) and insertion (INS) **c** stratified by SV location inside or outside tandem repeats. Note that left figures have truncated y-axes (50–90%) for readability. **d** Genotype concordance by number of

neighboring SVs within one thousand base pairs (top) and proportion of SVs by number of neighbors (bottom). **e** Average genotype distribution per sample in the baseline assembly-based variants and for each tool's result. REF = reference homozygous, HET heterozygous, HOM homozygous alternate, NON missing genotype (./). All bar plot error bars represent 95% confidence intervals of the mean.

without neighbors being heterozygous (chi-squared test $p < 0.01$). Therefore, SV genotypers benchmarked primarily against GIAB v0.6 may be biased towards a subset of homozygous SVs. For these reasons, in the development of kanpig we leveraged the draft GIAB v1.1 and in-house sequencing replicates of HG002 for training.

To comprehensively test kanpig, we leveraged high-confidence assemblies from the Human Pangenome Reference Consortium (HPRC)¹⁹ to create SVs from 47 genetically diverse genome assemblies using dipcall v0.3²⁰ and GRCh38 (see subsection “Data collection” of section “Methods”). To ensure the assembly-derived SVs are of high quality, we compared the HPRC HG002 SVs against GIAB v1.1 SVs using truvari⁶. This resulted in a 0.996 precision and 0.987 recall with a 99.3% genotype concordance. The consistency of the HG002 variants from the HPRC assembly and dipcall pipeline to GIAB v1.1 suggests the pipeline is sufficient for generating baseline VCFs across all HPRC samples for testing.

Single sample SV genotyping

To assess kanpig's performance, we collected 32x coverage of PacBio HiFi long-reads derived from the same 47 HPRC individuals which comprise the assembly-derived baseline variants described above (see subsection “Data collection” of section “Methods”). We genotyped autosomal SVs between 50 bp and 10 kbp for each sample using kanpig

and three other long-read SV genotypers: SVJedi-graph¹⁴ (heretofore referred to as SVJedi); sniffles²¹ (hereafter referred to as sniffles); cuteSV²². Note that sniffles and cuteSV are long-read SV discovery tools with genotyping-only (a.k.a. “force-calling” or ‘fc’) modes which are tested here.

The average genotyping concordance of a sample's kanpig predicted genotypes was 82.1% compared to 74.2% for SVJedi, 67.1% for sniffles-fc, and 63.8% for cuteSV-fc. Measurement of genotyper performance was repeated across two down-samplings of the reads to 16x and 8x coverage (Fig. 2a). It was observed that lower coverage causes lower genotyping concordance. Notably, kanpig's performance at 8x (77.8%) was higher than other tools' performance at 32x. A full table of tools' average genotyping concordance across samples by coverage, SV type, and overlap with TRs is available in Supplementary Data 1.

The assemblies produced an average of 9706 deletions and 16,870 insertions per sample. Stratifying genotyper performance by SV type found that all tools' deletion genotypes had higher concordance than their insertion genotypes (Fig. 2b). The best-performing genotyper on deletions was SVJedi at 88.2% average genotype concordance followed by kanpig at 86.5%. For insertions, kanpig's 79.5% genotype concordance was much higher than SVJedi's at 66.1%. Kanpig's performance between SV types had the lowest imbalance (i.e. difference

between deletion and insertion concordance) at 7.0 percentage points (p.p) compared to 20.5 p.p to 23.2 p.p for the other tools.

Another important stratification for SVs is their overlap with tandem repeats since they harbor ~70% of SVs and pose unique challenges due to their sequence context¹⁵. We found that kanpig's genotype concordance on SVs within TRs was 81.7% and 89.0% outside of TRs (Fig. 2c). SVJedi had the second highest performance at 72.4% inside and 78.6% outside of TRs.

A strong predictor of a genotyper's ability to correctly assign a genotype was the presence of neighboring variants since they increase the complexity of the locus being evaluated. We measured tools' genotyping concordance stratified by variants having neighbors within 1000 bp and those without (i.e. isolated) (Fig. 2d). In the 50.8% of isolated SVs per-sample, genotype concordance was between 95.0% (SVJedi) and 92.7% (kanpig). Over the remaining 49.2% of SVs per sample with neighbors, kanpig had the highest average genotyping concordance at 70.9%, followed by SVJedi at 52.5%, while sniffles-fc and cuteSV-fc were below 40%. This suggests that all tested genotypers perform reasonably well on isolated SVs while kanpig's ability to correctly genotype SVs in close proximity to one another differentiates it.

As observed in the GIAB v1.1 SVs described above, there are approximately four times as many heterozygous SVs as there are homozygous SVs expected in an individual, and heterozygous SVs more frequently neighbor another SV than homozygous SVs. We next explored the distributions of genotypes in the assembly-derived SVs to confirm this observation and assess each tool's ability to classify both heterozygous and homozygous SVs (Fig. 2e). We found kanpig's 3.00 average het/hom ratio per sample is closest to the assembly SVs' average het/hom ratio of 4.58. The other tools had a stronger bias towards assigning homozygous genotypes with het/hom ratios between 1.38 and 1.10. Since every variant assessed in this experiment is known to be present according to their respective assemblies, any assignment by a genotyper of a reference homozygous state is an error. Kanpig exhibits the second highest average reference homozygous error rate at 11.4% behind cuteSV-fc at 16.5%. However, the above genotype concordance measurements are already penalized for these mistakes and did not prevent kanpig from recording the highest genotyping concordance. Finally, the highest missingness rate (i.e. insufficient evidence to assign any genotype: ./), is from kanpig with an average of 3.5% of variants per sample while SVJedi is second at 1.2%.

These measures of genotype concordance, het/hom ratio, reference homozygous errors, and missingness rate suggest that in some stratifications other tools may be able to confirm the presence of alternate alleles (i.e. recall) slightly better than kanpig. However, kanpig's consistently high assignment of correct genotypes (i.e. precision) across all stratifications lead to a significantly higher overall genotyping accuracy.

Single sample discovery genotyping

Most projects generating SVs will not have access to high-quality assemblies but will instead discover SVs from raw reads' alignments using tools such as sniffles²¹. SV discovery tools are susceptible to errors in the form of imperfect variant representations, false negatives, and false positives, each of which challenges the subsequent use of SV genotypers. To test kanpig's ability to handle errors in the variant graph, we generated SVs on the 47 HPRC 32x samples using sniffles discovery, genotyped with the tools being tested, and compared results to the assembly-derived SV set.

On average, kanpig's genotype concordance on the 32x coverage experiments was 85.0% compared to 76.2% for SVJedi, and 78.1% for cuteSV-fc. Since sniffles was used to discover the SVs, we measured both its original discovery genotypes as well as its force-genotyping modes' concordance separately at 80.5% and 80.4%, respectively. In general, the same patterns of genotypers' relative performance by coverage, SV type, and TR status hold when analyzing the sniffles-

discovery VCF as was seen when analyzing the assembly-derived VCFs described above (Supplementary Data 2).

In addition to genotype concordance, we measured how the genotypers changed the precision and recall of present (heterozygous or homozygous alternate) discovered variants. A perfect genotyper would call all false positives (FP) as reference homozygous—thus 'removing' the FP—while preserving a present status on all true positives (TP). Unsurprisingly, sniffles force-genotyping on the sniffles discovery SVs created the least amount of change with only 23 FPs and 87 TPs genotyped as reference homozygous per sample. Kanpig removed an average of 52 FP variants and 206 TPs whereas cuteSV-fc removed an average of 51 FP variants and 745 TP variants. Interestingly, while SVJedi only lost an average of 50 TP variants per sample, it also found 63 additional FP variants per sample. These additional false positives were caused by discovered variants that originally had poor quality and a reference homozygous genotype but SVJedi determined the variant was present and therefore created an additional present FP. Supplementary Data 3 contains a full report of tools' impact on the average precision and recall across the 47 samples and on three read coverages of 32x, 16x, and 8x.

Multi-sample SV genotyping

The input to a genotyper analyzing SVs across multiple samples is a VCF containing SV discovery results per sample which have been consolidated to remove redundant SVs between samples. To test kanpig's ability to process a multi-sample VCF, we merged the sniffles discovery variants on the 47 HPRC samples introduced above and used truvari¹⁶ to collapse putatively redundant variant representations of the same type, within 500 bp, and $\geq 95\%$ similar in sequence and size (Methods: Data Collection). The initial set of discovered SVs had 561,735 total variants and truvari collapse left 257,323 total variants (54.1% reduction) as input for the genotypers.

Kanpig had the highest genotype concordance to the baseline SVs at 84.9% followed by SVJedi at 55.4%, cuteSV-fc at 34.1% and sniffles-fc at 33.8%. Furthermore, the programs' present SV f1 score (harmonic mean of precision and recall) was 0.948 for kanpig, 0.817 for SVJedi, 0.611 for cuteSV-fc, and 0.605 for sniffles-fc. Details of genotyper performance on multi-sample discovered SVs are available in Supplementary Data 4.

While kanpig's multi-sample performance was consistent with its single-sample SV benchmarking, the other tools had a remarkable decrease in genotyping concordance. To ensure that the processes of SV discovery and SV merging were not confounding factors to these changes in performance, we took the assembly-derived SVs per sample and consolidated them with bcftools merge²³. This multi-sample VCF therefore holds the entire set of un-manipulated high-confidence SVs. By not merging the SVs before genotyping, the VCF contains many highly similar SVs which are entirely valid representations within the context of their derived assembly but ostensibly redundant representations in the context of multiple samples²⁴. The consolidated assembly-derived SVs from the 47 HPRC samples contained 403,031 autosomal SVs between 50 bp and 10kbp. A total of 371,771 SVs (92.2%) were within 1000 bp of another SV; this included 346,843 (86.0%) within 500 bp of another SV of the same type that was also at least 95% similar in terms of size and sequence.

Kanpig had the highest genotype concordance for the assembly-derived, multi-sample SVs at an average of 86.6% across samples followed by SVJedi at 42.8% (Table 1). CuteSV-fc and sniffles-fc had an even lower average genotype concordance of 12.7% and 12.2%, respectively. The average kanpig genotyped sample had a precision of present SVs (non-reference homozygous) of 0.973 (mean 598 FPs) while SVJedi had a precision of 0.564 (19,515 FPs). Both cuteSV-fc and sniffles-fc averaged over 100,000 FP SVs per sample, dropping their precision to under 0.20. Simultaneously, kanpig maintained a reasonable recall of 0.953, which was lower than the other genotypers,

Table 1 | Multi-Sample SV Genotyping Performance

Program	GT Concordance	TP-base	TP-comp	FP	FN	Precision	Recall	f1
kanpig	86.6%	22,671	21,640	598	1129	0.973	0.953	0.963
SVJedi	42.8%	25,153	25,317	19,515	327	0.564	0.987	0.718
cuteSV-fc	12.8%	22,928	22,981	104,495	1,051	0.180	0.956	0.303
sniffles-fc	12.3%	24,886	24,986	121,394	763	0.171	0.970	0.290

Average performance of genotypers across 47 samples when given a multi-sample VCF of assembly-derived SVs and 32x long-read coverage. SV matching was performed using truvari bench and is detailed in Methods: Measuring Genotyping Performance.

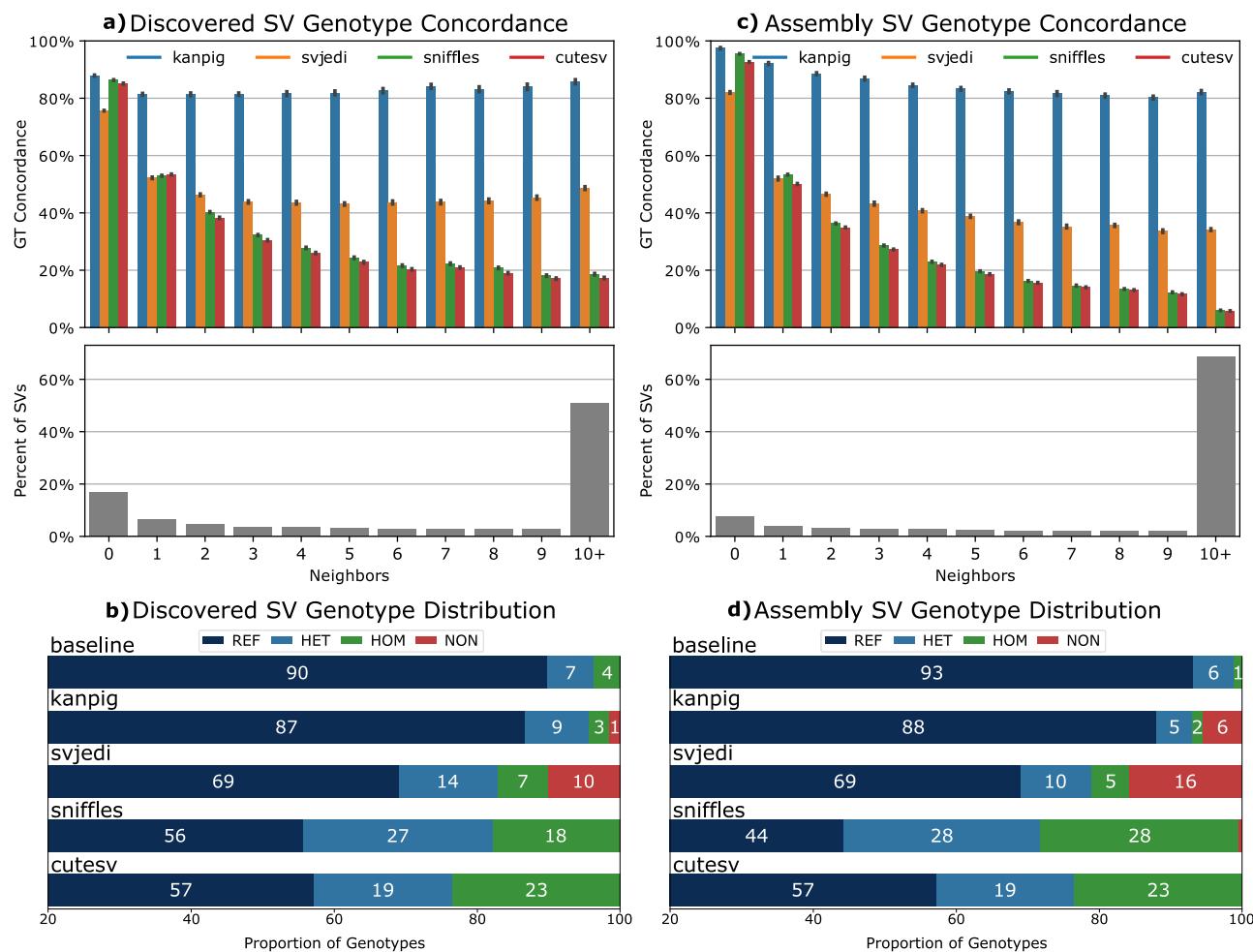


Fig. 3 | Multi-sample SV genotyping performance. Genotype concordance by number of neighbors for discovered SVs (a) and assembly-derived SVs from 47 samples (c) with the top figure representing genotype concordance per-neighbor count and bottom representing the percent of SVs in the project-level VCF having the specified number count. Genotype distribution for discovered (b) and assembly-derived SVs (d). For b, d, the x-axis has been truncated to 20–100% for

readability. For b, the baseline corresponds to the original sniffles discovery genotypes without full genotyping and all missing ('.') genotypes assumed to be reference homozygous. REF reference homozygous, HET heterozygous, HOM homozygous alternate, NON Missing genotype ('.') Bar plot error bars represent 95% confidence intervals of the mean.

which achieved a recall of at least 0.956. These observations indicated that kanpig was able to maintain a high genotyping concordance for multi-sample SV genotyping due to having high precision while the other genotypers falsely applied reads to alternate alleles not present in a sample. Details of genotyper performance on assembly-derived multi-sample SVs by coverage, SV type, and overlap with TRs are available in Supplementary Data 5.

For sniffles discovery/truvari merge SVs and assembly-derived SVs, the strongest predictor of genotyping concordance was the presence of neighboring SVs within the set of possible SVs at a locus (Fig. 3). On the 32x coverage experiments, SVs without neighbors

within 1000 bp had high genotyping concordance between 87.9% (kanpig) and 75.6% (SVJedi) on discovered SVs and between 97.5% (kanpig) and 82.0% (SVJedi) on the assembly-derived SVs. These isolated SVs account for only 16.5% of the discovered SVs and 7.8% of the assembly-derived SVs. For the remaining SVs having at least one neighbor, kanpig's genotyping concordance was 83.2% on the discovery-derived SVs and 83.8% on the assembly-derived SVs. The other tools achieved genotyping concordance below 47.2% on multi-sample SVs with neighbors.

Analysis of the kanpig results found no evidence of conflicting genotypes from homozygous SVs overlapping non-reference-

Table 2 | Computational performance

	Single-Sample VCF		Multi-Sample VCF	
	Chromosome 1	Whole genome	Chromosome 1	Whole genome
kanpig	18 s/0.02 Gb	43 s/1.7 Gb	1 m 6 s/0.41 Gb	2 m 10 s/3.42 Gb
SVJedi	7 s/0.2 Gb	1 m 35 s/1.1 Gb	–	4 m 4 s/9.61 Gb
sniffles-fc	1 m 10 s/0.2 Gb	56 s/1.3 Gb	1 m 11 s/0.44 Gb	1 m 32 s/16.25 Gb
cuteSV-fc	32 s/0.8 Gb	1 m 3 s/1.2 Gb	35 s/0.89 Gb	4 m 56 s/9.1 Gb

Each cell holds average runtime/maximum memory usage in gigabytes (Gb) for 5 runs on the test data. Runtime is in (h)ours, (m)inutes, and (s)econds. Multi-sample VCF contained SVs from 47 samples. Tests on chromosome 1 given 1-core. Whole genome tests given 16 cores. SVJedi was only tested with a single run on the data as it wraps a call to minigraph to generate alignments whereas other tools use pre-generated BAMs. Minigraph for the multi-sample chromosome 1 experiment was terminated after 12 h of runtime and therefore excluded.

homozygous SVs. However, SVJedi had conflicting genotypes from at least one sample for 29.4% of multi-sample discovery SVs, cuteSV-fc had 40.7%, and sniffles-fc had 45.7%. For the multi-sample assembly-derived SVs, the percent of variants with ≥ 1 samples having a conflicting genotype was again zero from kanpig, 40.5% from SVJedi, 59.1% from cuteSV-fc, and 66.5% from sniffles-fc. The majority of errors from the other genotypers were not from mis-assignment between heterozygous or homozygous status but instead an inability to assign a reference-homozygous status to variants which are not present in the sample. To further illustrate where these genotyping errors arise, we investigated the average genotype state distribution per sample (Fig. 3c/d). In the merged assembly-derived VCF, there are 403,031 SVs found across samples. For any one sample, an average of 7% (-28,000) of these SVs were expected to be present (heterozygous or homozygous alternate). Kanpig genotyped an average of 7% of SVs as present and 6% as missing. SVJedi genotyped 15% of SVs as present and 16% as missing while sniffles-fc and cuteSV-fc genotyped 33% and 66% of all SVs as being present per sample, respectively, with both producing missingness rates below 1%.

Performance on nanopore R9/R10 sequencing

The above experiments were all performed on PacBio HiFi sequencing, which has a reported read accuracy of -99%²⁵. Another available long-read sequencing technology is Oxford Nanopore Technologies (ONT) which recently released an update to their sequencing chemistry raising read accuracy from -96% (R9 chemistry) to -99% (R10 chemistry)²⁶. To investigate the ability of kanpig to leverage ONT reads and the impact of read accuracy on genotyping, we ran 3 whole-genome samples with publicly available R9 and R10 replicates having $>30\times$ coverage²⁷. We found that when genotyping the single-sample assembly SVs, kanpig had a mean genotyping concordance of 77.8% on R9 reads and 80.1% on R10 (Supplementary Data 6). The comparability of genotyper performance on ONT and PacBio reads suggests all tools can effectively leverage both technologies. However, kanpig's 2.3 percentage point (p.p) drop in concordance using R9 compared to R10 being higher than other tools (second sniffles-fc at 1.5p.p) indicated kanpig is more dependent on the base-pair level accuracy of reads.

The ONT samples were technical replicates of three of the same individuals in the HPRC PacBio samples. Therefore, we also checked the ability of genotypers to consistently apply genotypes to a sample's assembly-derived SVs across the replicates. The most consistent genotyper was SVJedi which assigned the correct genotype on all three replicates for 72.2% of SVs. Second was kanpig with 62.2%. When considering only the pair of technologies with higher read accuracy (PacBio HiFi and ONT R10), 72.7% of SVJedi's genotypes and 71.4% of kanpig genotypes were consistent and concordant (Supplementary Data 7).

Computational performance

Kanpig was written in Rust in order to achieve high speed and memory safety and is available under an open source MIT license. Kanpig can be

built from source or run with available statically linked binaries for POSIX-compliant systems. To test kanpig's speed and memory usage relative to other genotypers, we first tested each tool's computational performance on the chromosome 1 sniffles calls discovered from a single 32x sample, using only a single core and a 12 \times readset limited to chromosome 1. Of the tools that operate on a BAM file, kanpig was the fastest and least memory intensive (Table 2). SVJedi's process needs unaligned reads in FASTQ format as input in order to run minigraph²⁸. Therefore, for even comparison we subtracted minigraph's runtime from SVJedi's runtime (4.6 h). All tested genotypers can run using multiple threads and therefore were also tested when given 16 cores, the whole-genome 32 \times sniffles discovery calls, and a single 20 \times sample. Again, kanpig was the fastest. We repeated the chromosome 1 and whole-genome tests on the 47-sample sniffles VCF and found kanpig was the second fastest and least memory-intensive tool.

Discussion

Here we presented a detailed description and evaluation of our long-read SV genotyping tool kanpig. By leveraging high-quality SV benchmarks from multiple samples and testing under various conditions, we showed kanpig's superior accuracy to other genotypers. Our results demonstrated that kanpig consistently outperforms other long-read SV genotypers across most stratifications and use cases. Specifically, we found that kanpig more frequently assigns the correct genotype to nearby (i.e. neighboring) SVs that dominate the SV landscape, particularly when analyzing SVs across multiple samples.

An ideal genotyping method for SVs should not just try to maximize the number of SVs present in a sample. This behavior might appear successful for single-sample SV genotyping, but, as demonstrated in this work, will lead to issues such as numerous false positives and conflicting genotypes when dealing with a population set of SVs. A major flaw of many SV genotypers is the inability to handle neighboring SVs, which occurs when highly similar, but still distinct SVs are in close proximity to one another. Neighboring SVs predominantly reside within tandem repeats, which are highly polymorphic and contain around 70% of all SVs in the human genome¹⁵. If the evaluation of neighboring SVs is improper, genotypes which produce biologically implausible haplotypes per sample (e.g. three overlapping deletions in a diploid genome), can be generated, undermining downstream analyses. Kanpig is able to properly genotype neighboring SVs due to its algorithm evaluating variant graphs constructed over windows of the genome instead of independently searching for read evidence supporting each SV. Furthermore, kanpig's measurement of sequence similarity between long-reads and paths through the variant graph helps ensure that the single, highest scoring, optimal path through multiple SVs is chosen.

Part of the reason the limitations of other SV genotypers went unnoticed is due to the choice of baseline SVs against which the tools were benchmarked. The GIAB v0.6 SV benchmark has been instrumental in advancing SV discovery algorithms. However, contemporary understanding of SV prevalence and composition highlights the need for more sophisticated benchmarks such as GIAB v1.1 SVs and the

HPRC assemblies¹⁹. As we showed, the draft GIAB v1.1 benchmark has ~2.5x more SVs than its predecessor, including ~43% within 1000 bp of another SV, and a het/hom ratio of ~4. Additionally, the HPRC assemblies - which comprise 47 genetically diverse individuals - supported a variant count of ~26 thousand SVs between 50bp-10kbp and ~4 het/hom ratio per sample. Not only was kanpig able to achieve the best genotyping concordance on these high-confidence benchmarks, but we also showed kanpig's ability to accurately genotype discovered SVs from snaffles. While this manuscript primarily reports test results using dipcall and snaffles discovery VCFs, kanpig is able to process any compliant VCF with SVs having accurate breakpoints and full allele sequences (i.e. non-symbolic alleles), which are routinely produced by many long-read SV discovery tools.

We benchmarked kanpig's accuracy when given PacBio HiFi and ONT R9 and R10 reads to demonstrate its utility across multiple long-read technologies. However, SV genotypers are not only reliant on sequencing technology but also the quality of the provided input SVs' description since genotypers are designed to investigate the postulated SVs. Interestingly, kanpig's precision in applying sequencing to SVs' variant graphs was able to reduce the number of falsely discovered SVs while maintaining a high recall, thus, improving not only the calls' genotypes but also the set of SVs reported per sample. This is dependent on the information a SV caller provides in terms of accurate and complete allele descriptions.

In addition to sequencing technology and SV discovery tools, SV genotyping of multi-sample projects such as pedigrees or populations is also dependent on the SV merging strategy employed. We previously outlined the causes and consequences of inaccurate SV merging and implemented our findings in truvari⁶. Alternative methods of SV merging could be utilized to create inputs to kanpig (e.g. jasmine²⁹). More generally, researchers need to be aware that over or under merging will impact the performance of not only the SV genotyping methodology but all subsequent analysis. Future work is needed to understand exactly what combination of DNA sequencing technology, SV discovery tool(s), and SV merging approach most efficiently reports SVs whereas the work presented here serves only as a start to addressing the field's need for an accurate SV genotyper, a single step of the pipeline.

Any bioinformatics tool designed to assist genomics researchers must undergo continuous development and maintenance. While the version of kanpig presented here can immediately begin serving researchers, further improvements are possible. For example, optimized BAM/CRAM access patterns could reduce runtime and kanpig's design should be able to leverage haplotagged reads to assist read clustering as well as annotate long-range phasing information. Currently, kanpig is limited to parsing continuous alignments and does not leverage the split or clipped alignment signals that typically occur around larger SVs. As a result, kanpig is currently applicable to variants smaller than the read length. Future versions of kanpig should be able to incorporate split/clipped alignments to better genotype SVs larger than ~10 kbp. Furthermore, kanpig currently requires long-read alignments to span the neighborhood of variants in each locus's variant graph. However, a future implementation of kanpig could potentially relax this requirement by applying partial alignments to their corresponding subgraph, thereby increasing kanpig's sensitivity, particularly in low-coverage scenarios. Though this will require careful design to ensure there is no regression in kanpig's accuracy when genotyping neighboring SVs.

In conclusion, we have described kanpig, a novel SV genotyper, and the potential impacts of improved SV genotyping to SV research. The results presented here on high-confidence benchmarks and other datasets should promote rapid adoption of kanpig for at-scale SV studies, thus improving the reliability of population SV results and potentially contributing to novel findings in biological and clinical research.

Methods

Kanpig algorithm

K-mer vectors. Variant sequences are encoded as k-mer vectors. Let n be the set of nucleotides $n = \{A, G, C, T\}$ and the function E be the two-bit encoding of each element of n such that $A = 0; G = 1; C = 2; T = 3$. Let S be a string of nucleotides with length l such that $S = n_0, n_1, n_2, \dots, n_{l-1}$. A k-mer K of size k is a substring of S beginning at 0-based position i and defined as $K_{k,i}(S) = n_i, n_{i+1}, \dots, n_{i+k-1}$. K-mer vectors (\mathbf{V}) hold the counts of all k-mers inside of a string of nucleotides. Each possible k-mer combination of n can map to a unique index j of a conceptual array \mathbf{V} with size $|n|^k$. The index j of $K_{k,0}$ can be calculated using a left bitshift operation (\ll) and the formula:

$$j = \sum_{i=[0..k)} [E(S_i) \ll ((k - i - 1) \cdot 2)] \quad (1)$$

As an example, j of the first 3-mer for the sequence "CAGT" is:

$$(2 \ll (2 \cdot 2)) + (0 \ll (1 \cdot 2)) + (1 \ll (0 \cdot 2)) = \text{binary}100001 = 33$$

\mathbf{V}_j is then incremented. Next, for every n from $S_{k..l}$, we alter j via

$$j = ((m \& j) \ll 2) + E(S_i) \quad (2)$$

This operation updates j by first masking (m) the two leftmost bits, left-shifting the remaining bits twice, and adding the current nucleotide's encoding before again incrementing \mathbf{V}_j . For the example sequence "CAGT", the second 3-mer's j is 7 (binary 000111). Sequences shorter than k cannot be vectorized and therefore return a vector of all zeros.

Variant comparison. The similarity of two k-mer vectors (\mathbf{p} & \mathbf{q}) of length n can be calculated using the Canberra distance function and the absolute value function abs

$$\text{SZ}(\mathbf{p}, \mathbf{q}) = 1 - \sum_{i=[0..n)} \text{abs}(p_i - q_i) / (\text{abs}(p_i) + \text{abs}(q_i)) \quad (3)$$

To limit the impact of small sequencing errors, infrequent k-mers ($\text{abs}(p_i) + \text{abs}(q_i) < \text{minkfreq}$) are excluded from (3). By default, kanpig sets minkfreq to 2, but this threshold can be set by users via a parameter. The default k-mer size is 4 bp which was chosen from empirical testing of sequencing experiments' performance against GIAB draft v1.1 SVs. The limited impact of k-mer size and its similarity to edlib sequence similarity is described in Supplementary Data 7.

In addition to comparing variants' k-mer vectors' sequence similarity, the size similarity of two variants' sequences (a, b) can be compared. Deletions constitute a removal of sequence and are thus negative in length whereas insertions add sequence and are positive in length. Two vectors' associated lengths must be of the same sign (e.g. two deletions would both have negative size) to be compared and their size similarity is calculated as

$$\text{SS}(a, b) = \min(\text{length}(a), \text{length}(b)) / \max(\text{length}(a), \text{length}(b)) \quad (4)$$

The thresholds for minimum size and sequence similarity needed for two vectors to be considered equivalent defaults to 0.90 and can be set by users via a parameter.

This setup of k-mer vectors and comparison metrics allows multiple variants within a region to be summed in order to produce a 'net-change' over the region. For example, two 100 bp deletions have 99% size similarity with a single 198 bp deletion. Likewise, k-mer vectors can be summed to contain the total k-mer count across multiple variants.

Variant graph construction

A variant call format file (VCF) containing full alleles (REF and ALT sequence) is parsed and partitioned into chunks of variants which are

within --chunksize distance from one another. This creates sets of variants where the distance between the upstream-most variant's start position and the downstream-most variant's end position is at least --chunksize base pairs away from any other variant on the same chromosome. A directed graph is constructed with nodes representing each variant and edges linking variants to all non-overlapping downstream variants. During conversion of variants into nodes, anchor bases are trimmed and the remaining reference and alternate sequences are stored as a k-mer vector of V(ALT)-V(REF). Additionally, the length of the variant's described change is recorded as length(ALT)-length(REF). A source node upstream of all variants is added to the graph with edges to all variants as well as a sink node downstream with edges from all variants. Note that only variants are k-mer vectorized and not reference sequences (i.e. invariant bases) between them.

Pileup generation. For each independent variant graph, read alignments's CIGAR strings from a BAM file which span the graph's region are parsed to identify insertion and deletion variants and which reads support each variant is tracked. By default, only primary alignments which fully span the region and have above a minimum mapping quality (-minmapq 5) are included in the pileup and insertion and deletion variants within a parameterized size range (-sizemin 50 -sizemax 10000) are analyzed. Each variant's sequence is converted into a k-mer vector and size is recorded. Reads with identical sets of pileup variants are consolidated with constituent reads' count recorded to thus create a putative haplotype.

Haplotype clustering. We define a haplotype as a set of variants described by aligned reads over a window of the genome. A haplotype contains the set of variants' k-mer vectors and the size of variants' changes relative to the reference. The set of putative haplotypes created during pileup generation described above is grouped with k-means clustering (using $k=2$) on the sum of their variants' k-mer vectors to identify up to two alternate allele haplotypes. For each resultant cluster, the putative haplotype described by the highest number of reads is chosen as the representative for the haplotype. If only one alternate haplotype is identified, the proportions of alternate and reference homozygous read coverage are analyzed (see Methods: Genotyping and Annotation) to identify if the locus is homozygous alternate or heterozygous. If two clusters are identified, kanpig allows haplotypes above a size similarity threshold (-hpsim default: 1) to be consolidated and the locus is deemed to have a single alternate allele. Note this threshold is off by default and therefore performs no consolidation. Otherwise, the two alternate haplotypes are considered a compound heterozygous pair of alleles and returned to be applied to the variant graph.

Applying a haplotype to a variant graph. Given a haplotype and variant graph for a locus, kanpig searches for an optimal path through the variant graph that best matches the haplotype's variants by maximizing the score described in (5). The algorithm begins with a breadth-first search, starting at the source node, and explores outgoing edges to construct paths to neighboring nodes. These partial paths are added to a binary min-heap, which prioritizes paths based on their length, with paths having total nodes' variants' length more similar to the haplotype's length receiving higher priority.

At each step, kanpig pops the highest-priority path from the heap, identifies its tail node, and extends the path by visiting all outgoing edges from this node. Newly extended partial paths are pushed back onto the heap. When a path reaches the sink node, the haplotype-path pair is scored by summing the k-mer vectors and sizes of the haplotype's variants and separately the path's nodes before applying the scoring function. Only paths meeting user-specified minimum thresholds for size and sequence similarity to the haplotype are

scored. To reduce computational overhead, especially for graphs with many nodes, kanpig introduces a user-defined parameter (-maxpaths, default: 5000) to limit the number of paths compared against. The search terminates when either all possible paths have been evaluated, or the number of checked paths reaches -maxpaths.

Split-variant representations can occur when e.g. a haplotype contains a 100-bp deletion while the graph has a path with a single 100-bp deletion and also a path with two 50-bp deletions, all describing the same change. To handle split variants, kanpig penalizes differences between the haplotype's variant count and the path's node count, thereby preferring paths in higher agreement to the observed variant representations from the aligned reads.

To account for potential false negatives in the variant graph (i.e. a haplotype containing variants not present in the input VCF), kanpig allows variants in the haplotype to be skipped during the k-mer vector and variant size summation, at a penalty to the score. Skipping occurs only when the haplotype's size or sequence similarity falls below the minimum thresholds. Skipping will temporarily replace the haplotype's summed size and k-mer vector with those of each $n-1$ subset of variants. The skipping process continues until a partial haplotype meets the minimum size and sequence similarity thresholds or until a maximum of $n-3$ variants (i.e., up to three skipped variants) have been tested.

$$\text{Score}(P, H) = ((\text{SS}(P, H) + \text{SZ}(P, H))/2) - (\lambda_g \cdot |L(P) - L(H)|) - (\lambda_f \cdot N) \quad (5)$$

The kanpig scoring function for a path and haplotype is in (5) where P and H are the path and haplotype, respectively, SS is the sequence similarity defined in (3), SZ is the size similarity defined in (4). The L function measures the number of nodes in a path or number of variants which comprise a haplotype. The variable N is the number of false-negative (i.e. skipped) variants in the haplotype. The penalty λ_g for split-variant representations defaults to 0.01 while the penalty λ_f for false-negatives defaults to 0.10 and both can be set with user-defined parameters.

Genotyping and Annotations. For each locus, the above processes have collected the count of reads supporting a haplotype and the set of nodes from the highest scoring path (i.e. VCF variants) the haplotype supports. The number of reads not supporting a haplotype (either reads supporting a second alternate allele haplotype or the reference allele) has also been collected. Kanpig next evaluates each VCF variant and if its corresponding node is in the optimal path for a haplotype, the variant is considered present in that haplotype. Next, kanpig analyzes the ratios of reads supporting the variant's presence (variant in a highest scoring path) and absence (variant not in a path) and determines the variant's diploid genotype using the same Bayesian formula as Chian et al.⁸ This formula leverages three priors of allele coverage ratios for reference homozygous, heterozygous, and homozygous alternate read proportions. Kanpig sets these priors to 1e-3, 0.55, and 0.95 for loci with less than 10x coverage and 1e-3, 0.50, 0.90 for loci with at least 10x coverage. The conditional probability of each genotype state given the priors is then calculated and the most likely state assigned. These derived likelihoods are then leveraged to calculate a genotype quality score (confidence in the assigned genotype state) and sample quality score (confidence that the alternate allele is present in any genotype state). Genotype quality score is derived as -10 multiplied by the absolute difference of the second most likely genotype state and most likely genotype state. Sample quality score is derived as -10 multiplied by the absolute difference of the reference homozygous likelihood and the log10 sum of the heterozygous and homozygous alternate likelihoods. Both genotype and sample quality scores range from 0 (lowest quality) to an artificial cap of 100 (highest quality).

In addition to the genotype, genotype quality score, and sample quality score, kanpig will record additional annotations to each variant. These include two common genotyping annotations of depth (DP: total number of reads from a locus analyzed to evaluate this variant) and allele depth (AD: how many reads from DP support the reference allele and alternate allele). The score described in (5) of the haplotypes created for a locus to the final chosen paths through the variant graph are reported as well as a phase-set (PS) unique identifier which annotates the set of variants that comprise each independent variant graph.

Finally, a filter flag (FT) is populated as a bit-flag with states to assist users in filtering genotypes. A flag of 0 can be considered passing. The bits are defined as: 0x1 - The genotype observed from variants matching paths is not equal to the genotype observed from measuring the proportions of reads supporting the two alleles; 0x2 - the genotype quality score is less than 5; 0x4 - the observed coverage is less than 5; 0x8 - the sample quality score is below five for a non-reference-homozygous variants; 0x16 - the alternate allele supporting coverage is below 5; 0x32 - the highest scoring path didn't use the entire haplotype, which may suggest a false-negative in the variant graph relative to the read evidence. Note that kanpig's filter flag is available to users but was not used to alter the kanpig results presented here.

Data collection

HPRC assemblies and PacBio CCS reads were downloaded from the HPRC AnVIL workspace (See Data availability). Only samples in the assembly_sample table were considered. The metadata of samples used in this study for testing are in Supplementary Data 8. CCS reads were downloaded from column hifi of the sample table, after removing duplicated entries among the BAM and FASTQ files in each cell. For each sample, reads were subset to a desired coverage as follows. Given a list of source files, the list was randomly permuted. For each file in the permuted order, the file was converted to FASTQ if it was a BAM (using samtools fastq), and it was appended to a growing FASTQ, until a desired total number of bases was reached or exceeded (measured with seqkit stats). Then the FASTQ was randomly permuted (using terashuf <https://github.com/alexandres/terashuf>), and the prefix that achieved the desired number of bases was kept. ONT reads were downloaded from a CARD Google Cloud Bucket (See Data availability). Specifically, we downloaded the fastq.gz files from directories X/reads/ (R9 reads) and X_R10/reads/ (R10 reads) for every sample X, and we downsampled such files as described above.

Given each high-quality assembly and the GRCh38 reference, dipcall v0.3 was run with default parameters, and multiallelic records were split using bcftools norm --multiallelics. Finally, only INS and DEL events of length at least 50 bp and with a FILTER field equal to PASS or '.' were kept. To assess the expected quality of the assembly-derived SVs, truvari bench and then truvari refine was run to compare the HG002 assembly SVs to GIAB v1.1¹⁸ using default parameters and a bed file that was the intersection of the GIAB v1.1 high-confidence regions and the dipcall high-confidence regions. The multi-sample dipcall VCF was created by performing a bcftools merge of all the single-sample dipcall VCFs, followed by a final bcftools norm --multiallelics - to remove any remaining multiallelic records.

PacBio CCS reads at each coverage were mapped to GRCh38 with pbmm2 align --preset CCS using pbmm2 1.13.0. Single-sample discovery VCFs were created by running Sniffles 2.3.3 in discovery mode on the 32x CCS BAM of each sample, using default parameters and the tandem repeat track from <https://github.com/PacificBiosciences/pbsv/tree/master/annotations>. The resulting VCFs were then cleaned as follows. BND and CNV records were removed, as well as symbolic INS. The ALT sequence of every symbolic DEL and INV was filled in using the reference, and every DUP was converted into an INS located

at the same start position. SVLEN fields were made consistent with REF and ALT fields, and calls longer than 1 Mb were removed. The multi-sample discovery VCF was created by running bcftools merge --merge none over all the cleaned single-sample VCFs, followed by the following truvari v4.2.2 command:

```
truvari collapse --sizemin 0 --sizemax 1000000 --keep common --gt all
```

ONT reads were mapped to GRCh38 using minimap2³⁰ v2.28 with parameters -ayYL -MD -eqx --cs, and specifying -x map-ont for R9 reads and -x lr:hq for R10 reads.

Long-read genotypers were run as follows. Sniffles 2.3.3 was run in genotyping mode (-genotype-vcf) with default parameters. cuteSV 2.1.1 was run with the following flags, derived from its command-line help. For CCS reads:

```
--max_cluster_bias_INS 1000 --diff_ratio_merging_INS 0.9
--max_cluster_bias_DEL 1000 --diff_ratio_merging_DEL 0.5
--merge_ins_threshold 500 --merge_del_threshold 500
--min_support 1
```

For ONT reads:

```
--max_cluster_bias_INS 100 --diff_ratio_merging_INS 0.3
--max_cluster_bias_DEL 100 --diff_ratio_merging_DEL 0.3
--merge_ins_threshold 500 --merge_del_threshold 500
--min_support 1
```

SVJedi-graph 1.2.1 was run with --minsupport 1 and all other parameters set to default. Kanpig 0.3.1 was run with a GRCh38 ploidy BED file and with the following parameters for single-sample VCFs:

```
--sizemin 20 --sizemax 10000 --chunksize 1000
--gpenalty 0.02 --hapsim 0.9999 --sizesim 0.90
--seqsim 0.85 --maxpaths 10000
```

and with the following parameters for multi-sample VCFs:

```
--sizemin 50 --sizemax 10000 --chunksize 500
--gpenalty 0.04 --hapsim 0.97
```

These kanpig parameters were chosen based on independent functional testing of kanpig on the GIAB draft v1.1 SVs and sequencing experiments not used in the testing results presented in this manuscript. Note that we altered the 'minsupport' parameter for SVJedi-graph and cuteSV as an attempt to ensure consistent comparison with sniffles and kanpig, which analyze regions with at least one supporting read. Furthermore, no post-processing - e.g. filtering by minimum genotype quality - was performed on any genotyper's result before benchmarking. We tested LRcaller 1.0³¹ on three pairs of 32x CCS BAM and single-sample discovery VCFs, but it got killed by the OS on a cloud VM with 128GB of RAM, so we excluded it from the analysis.

Measuring genotyping performance

For the single-sample benchmarking experiments on the assembly-derived variants, SVs between 50 bp and 10,000 bp from the original VCF and genotyped VCF were merged using bcftools merge -m none before the baseline and predicted genotypes were compared. Phase information was ignored e.g. 1|0 is equal to 0|1. SVs on autosomes and with start and ends within dipcall's reported high-confidence regions were then counted. SVs genotyped as missing (e.g. .) were counted separately from the total number of calls and genotype concordance was calculated as the number of matching genotypes over total number of calls.

For all other benchmarking experiments, the assembly-derived single-sample variants were matched to the genotyped variants using truvari v4.2.2 and the parameters `bench -pick ac --no-ref a --sizemin 50 --sizemax 10000` along with dipcall's high-confidence regions as the `--includebed`. Truvari's default sequence and size similarity thresholds of $\geq 70\%$ allow genotypers to choose 'imperfect', but 'reasonable', variant representations to apply genotypes. The '`pick ac`' parameter leverages a call's genotype to determine in how many matches it is allowed to participate. For example, if a genotyper assigns a homozygous status to a variant, its allele count is two and can therefore match up to two baseline variants. The '`no-ref a`' parameter ignores variants with a missing or reference homozygous status in the baseline or comparison VCFs. Every genotyped variant with a match and a truvari annotation of `GTMatch=0` had an equal baseline genotype and was classified as having a consistent genotype. Every matched variant but with `GTMatch!=0` and every unmatched (i.e. false positive) genotyped variant was classified as having an inconsistent genotype. Genotyping concordance is therefore defined as the percent of present calls (heterozygous or homozygous alternate) from the genotyper with a matching variant and matching genotype in the assembly-derived variants.

As an example of this process, consider a locus with two deletions in the VCF being 105 bp and 120 bp long and starting at the same position. The expected/baseline variant at the locus is a homozygous 110 bp deletion, therefore no 'perfect' variant representation exists. Truvari's ambiguity allowances permit the genotyper to assign a homozygous genotype to either the 105 bp or 120 bp deletion to get credit for correctly genotyping the variant. If, however, the genotyper assigns a homozygous genotype to both SVs, the tool is penalized for an incorrectly genotyped SV.

Stratification of genotyper performance by overlap with tandem repeats was performed by subsetting the adotto TR catalog v1.2³² to TR regions contained entirely within an assembly's dipcall autosomal high confidence regions and only counting an SV as within TR if its start and end boundaries occur within a single TR region. Stratification of genotyper performance by number of neighbors was performed by running truvari `anno numneigh` which annotates an INFO field 'NumNeighbors' indicating the number of SVs within 1000 bp for each variant inside the genotyped VCF.

Measuring computational performance

To measure the single-core performance of each tool, we used as input the subset of a 12 \times CCS HG002 BAM and the subset of the 32 \times CCS HG002 sniffles discovery VCF that relates to chromosome 1 (we used `samtools view` to subset the BAM, `samtools fastq` to get a corresponding FASTQ for SVJedi-graph, and `bcftools view` to subset the VCF). We used only chromosome 1 as the reference. We set the number of threads to one on the command line of each tool, and we pinned each tool to the fifth logical core of our machine with the `taskset` command. We measured wall clock time and maximum resident set size with `/usr/bin/time` (specifically, we timed a set of five iterations of each program, we divided the runtime measure by five and we used the max RSS measure as it is). For minigraph, we used the "Real time" and "Peak RSS" measures that were printed in output.

To measure performance under a typical workload, we ran each tool on a 20x CCS HG002 BAM and on the 32x CCS HG002 sniffs discovery VCF over the entire genome, setting the number of threads to 16 on the command line of each tool, and pinning each tool to logical cores 8-23 (all located on the same processor). We ran SVJedi-graph and pbmm2 just once in this experiment.

Computational performance experiments were run on a Ubuntu 20.04.4 LTS server (kernel 5.4.0) with two AMD Epyc 7513 processors (64 physical cores in total), 500 GB of RAM, and an NVMe SSD disk. No other user or major task was active.

Reporting summary

Further information on research design is available in the Nature Portfolio Reporting Summary linked to this article.

Data availability

The structural variants generated in this from HPRC assemblies aligned with dipcall on GRCh38 used to test genotypers³³ have been deposited on zenodo under accession code (DOI: 10.5281/zenodo.14726292) <https://zenodo.org/records/14726292> The previously published HPRC data is available via https://anvil.terra.bio/#workspaces/anvil-datastorage/AnVIL_HPRC/data as well as https://github.com/human-pangenomics/HPP_Year1_Data_Freeze_v1.0 as well as https://github.com/human-pangenomics/HPP_Year1_Assemblies. The previously published CARD ONT data is available at <https://console.cloud.google.com/storage/browser/fc-46bf051e-aec3-4adb-8178-3c51bc5e64ae>.

Code availability

Kanpig is available under an MIT license at <https://github.com/ACEnglish/kanpig>. Analysis scripts and pipelines used to create and summarize the results presented here are available in the github repository https://github.com/fabio-cunial/kanpig_experiments/.

References

1. Coster, W. D., Weissensteiner, M. H. & Sedlazeck, F. J. Towards population-scale long-read sequencing. *Nat. Rev. Genet.* **22**, 572–587 (2021).
2. Mahmoud, M. et al. Structural variant calling: the long and the short of it. *Genome Biol.* **20**, 246 (2019).
3. Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. *PLoS Med.* **12**, e1001779 (2015).
4. Auton, A. et al. A global reference for human genetic variation. *Nature* **526**, 68–74 (2015).
5. DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. *Nat. Genet.* **43**, 491–498 (2011).
6. English, A. C., Menon, V. K., Gibbs, R. A., Metcalf, G. A. & Sedlazeck, F. J. Truvari: refined structural variant comparison preserves allelic diversity. *Genome Biol.* **23**, 271 (2022).
7. Chander, V., Gibbs, R. A. & Sedlazeck, F. J. Evaluation of computational genotyping of structural variation for clinical diagnoses. *Gigascience* **8**, giz110 (2019).
8. Chiang, C. et al. SpeedSeq: ultra-fast personal genome analysis and interpretation. *Nat. Methods* **12**, 966–968 (2015).
9. Ebler, J. et al. Pangenome-based genome inference allows efficient and accurate genotyping across a wide spectrum of variant classes. *Nat. Genet.* **54**, 518–525 (2022).
10. Garrison, E. et al. Variation graph toolkit improves read mapping by representing genetic variation in the reference. *Nat Biotechnol* **36**, 875–879 (2018).
11. Chen, S. et al. Paragraph: a graph-based structural variant genotyper for short-read sequence data. *Genome Biol.* **20**, 291 (2019).
12. Zook, J. M. et al. A robust benchmark for detection of germline large deletions and insertions. *Nat. Biotechnol.* **38**, 1347–1355 (2020).
13. Audano, P. A. et al. Characterizing the major structural variant alleles of the human genome. *Cell* **176**, 663–675.e19 (2019).
14. Romain, S. & Lemaitre, C. SVJedi-graph: improving the genotyping of close and overlapping structural variants with long reads using a variation graph. *Bioinformatics* **39**, i270–i278 (2023).
15. English, A. C. et al. Analysis and benchmarking of small and large genomic variants across tandem repeats. *Nat. Biotechnol.* 1–12. <https://doi.org/10.1038/s41587-024-02225-z> (2024).
16. Lance, G. N. & Williams, W. T. Computer programs for hierarchical polythetic classification ("Similarity Analyses"). *Comput. J.* **9**, 60–64 (1966).

17. Šošić, M. & Šikić, M. Edlib: a C/C++ library for fast, exact sequence alignment using edit distance. *Bioinformatics* **33**, btw753 (2016).
18. Zook, J. M. GIAB HG002 assembly-based small and structural variants draft benchmark sets. https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/analysis/NIST_HG002_DraftBenchmark_defrabbV0.018-20240716/NIST_HG002_DraftBenchmark_defrabbV0.018-20240716_README_update.md (2024).
19. Liao, W.-W. et al. A draft human pangenome reference. *Nature* **617**, 312–324 (2023).
20. Li, H. et al. A synthetic-diploid benchmark for accurate variant-calling evaluation. *Nat. Methods* **15**, 595–597 (2018).
21. Smolka, M. et al. Detection of mosaic and population-level structural variants with Sniffles2. *Nat. Biotechnol.* 1–10. <https://doi.org/10.1038/s41587-023-02024-y> (2024).
22. Jiang, T. et al. Regenotyping structural variants through an accurate force-calling method. Preprint at bioRxiv <https://doi.org/10.1101/2022.08.29.505534> (2023).
23. Danecek, P. et al. Twelve years of SAMtools and BCFtools. *Giga-science* **10**, giab008 (2021).
24. Audano, P. A. & Beck, C. R. Small polymorphisms are a source of ancestral bias in structural variant breakpoint placement. *Genome Res.* <https://doi.org/10.1101/gr.278203.123> (2024).
25. Wenger, A. M. et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. *Nat. Biotechnol.* **37**, 1155–1162 (2019).
26. Sereika, M. et al. Oxford Nanopore R10.4 long-read sequencing enables the generation of near-finished bacterial genomes from pure cultures and metagenomes without short-read or reference polishing. *Nat. Methods* **19**, 823–826 (2022).
27. Kolmogorov, M. et al. Scalable nanopore sequencing of human genomes provides a comprehensive view of haplotype-resolved variation and methylation. *Nat. Methods* **20**, 1483–1492 (2023).
28. Li, H., Feng, X. & Chu, C. The design and construction of reference pangenome graphs with minigraph. *Genome Biol.* **21**, 265 (2020).
29. Kirsche, M. et al. Jasmine and Iris: population-scale structural variant comparison and analysis. *Nat. Methods* **20**, 408–417 (2023).
30. Li, H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* **34**, 3094–3100 (2018).
31. Beyter, D. et al. Long-read sequencing of 3,622 Icelanders provides insight into the role of structural variants in human diseases and other traits. *Nat. Genet.* **53**, 779–786 (2021).
32. English, A. Project Adotto Tandem-Repeat Regions and Annotations. Preprint at <https://zenodo.org/records/8387564> (2022).
33. English, A. Kanpig Structural Variants Genotyping Benchmark from HPRC Dipcall. <https://zenodo.org/records/14726292> (2025).

Acknowledgements

The authors would like to thank Jason Chin for fruitful discussions on graph-based algorithms, Yulia Mostovyy for early beta-testing of kanpig, Ryan Lorig-Roach and Qiuuhui Li for input on using HPRC as a benchmark,

Michael Macias for development and support of the noodles-vcf rust crate, Xinchang Zheng for early review of the manuscript, and Nathanael Olson and Justin Zook for early access to the GIAB v1.1 benchmark. This manuscript was supported by the Baylor/JHU award (OT2 OD002751 RG), the NIH award (1U01HG011758-01 Posey), the All of Us award (OT2 OD038121 Gabreiel Stacey) and the Gabriella Miller Kids First award (5U24HD090743 Gabreiel Stacey).

Author contributions

A.E. designed the project and implemented kanpig. A.E. and F.C. conducted the analysis. A.E., F.C., G.M., R.G., and F.S. wrote the manuscript.

Competing interests

FJS receives research support from Illumina, PacBio and Oxford Nanopore. The remaining authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at <https://doi.org/10.1038/s41467-025-58577-w>.

Correspondence and requests for materials should be addressed to Adam C. English.

Peer review information *Nature Communications* thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Reprints and permissions information is available at <http://www.nature.com/reprints>

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© The Author(s) 2025