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Migratory functionalization of C-H bonds through metal migration from carbon
to carbon under transition metal catalysis is a process of significant academic
and industrial interest. Herein, a palladium-catalyzed migratory cyclization of a-
bromoalkene derivatives ArXCBr=CH,, in which X denotes a phosphorus (P(O)
R), silicon (SiR,), sulfur (SO,), carbon (C(0)), nitrogen (NTs), or oxygen-based
moiety, affording various benzoheterocyclic compounds has been developed.

M Check for updates

Mechanistic investigations have demonstrated that the cyclization reaction
proceeds through an unexpected cascade, with trans-1,2-palladium migration
between sp? carbons being a key step of catalytic cycle. To the best of our
knowledge, this type of metal migration has not been reported previously.

Migratory functionalization of C-H bonds through metal migration
from carbon to carbon under transition metal catalysis is a process of
significant academic and industrial interest'™ It provides a non-
classical means of selectively installing a functional group at a remote
C-H position using simple precursors, thus enabling the direct
synthesis of challenging structures not accessible through traditional
cross-couplings. Most notably, migratory functionalization of alkenes
or alkyl halides through a 1,2-metal shift along a sp* chain and cross-
coupling has been well developed for remote C-H bond functionali-
zation (Fig. 1)*™2. Migratory functionalization via cis-1,2-palladium
migration between sp? carbons has been rarely reported”*. Another
metal migration frequently exploited is a 1,4-metal shift in many
transition metal-catalyzed tandem reactions™*>.

Indenone and five-membered benzoheterocycles are ubiquitous
structural motifs found in a wide array of natural products, pharma-
ceuticals, and agrochemicals (Fig. 2a)***. In particular, benzophosp-
hole is widely used in developing functional materials®® %, biologically
active compounds®, and chiral ligands***’. The transition metal-
catalyzed intramolecular coupling of aryl halides or aryl metals with
alkenes has become a versatile tool in heterocycle synthesis (Fig. 2b,

top)*®**. However, this traditional strategy requires the prior intro-
duction of a halo or metal group at the ortho position of the aryl ring.
Under this premise, we wondered whether an alternative synthetic
route based on a cascade-type process involving 1,n-metal migration
from an alkenyl carbon atom to an aryl carbon atom might be
designed, thus setting the stage for carbometallation of a C=C double
bond (Fig. 2b, bottom). Hayashi reported the Rh-catalyzed cyclization
of arylpropargyl alcohols via a 1,4-Rh shift-aryl rhodation sequence,
which validates our hypothesis** . The very wide availability of mono-
substituted olefins ArX-CH=CH, and their facile conversion into
ArX-CBr=CH, by simple bromination and elimination should make
this new strategy very synthetically useful. At the outset of our inves-
tigations, however, it was unclear whether such a strategy could be
implemented as elimination from ArX-CBr=CHj to give alkynes could
be envisaged as being highly feasible.

Herein, we report the successful realization of this goal through a
palladium-catalyzed migratory cyclization of a-bromoalkene derivatives
ArXCBr=CH, 1, in which the X moiety is a phosphine oxide, silyl, sulfonyl,
carbonyl, amide, or oxygen atom/group, to give benzoheterocycles 2
(Fig. 2¢). In this process, two C-H bonds are simultaneously cleaved and
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Fig. 1| Migratory functionalization via 1,2-metal migration. 1,2-Metal migration between sp® or sp? carbons in catalytic cycles.

(a) Indenone and five-membered benzoheterocycles

o R
11 H \ _R
C, N O, Si S,

Indenone indole benzofuran benzosilole benzothiophene
benzophosphole DuanPhos ZhangPhos BIBOP
!P H P! %%8
’ Bu Tang’s work

(b) Synthesis of benzoheterocycles via carbometalation of C=C bond

traditional strategy:
- LT % ! }—'CQ
M
Y = halo or metal
X \: X=C, N, O, Si (developed) carbo-
@ S, P (undeveloped) metalation
X X
easy @/ /— TM cat ©/ /— migration @ “
™
M]
elimination X\\\

new synrhetlc strategy:

: (c) Pd-catalyzed migratory cyclization via an unexpected reaction cascade (this work)

known/expected pathway (44-49);
intramolecular

@[ “( 1.4-Pd shift @ __addiion m
[Pd]Br
[Pd]Br

Pd/DPEPhos (5 mol%)
Y

CsOPiv, DCE, 80 °C

H H C-H/C~H cross coupling 2
X = P(O)R, SiRy, SO,
‘ C(0), NTs, O
unexpected pathway: ’

[Pd]Br

X C-H X
\ remote C—H activation \\ _activation
—_— |
Br[Pd] [Pd]

trans-1,2-palladium
migration

\ asymmetric version:
1,n-metal } :

Ph

Ph g

RH (P ‘
H Y

z Z

[¢]
i Pd/L*

pe-ph _ PAL” —
©/ Br  high ee

—

o
il
Ry /Ph
/

Fig. 2 | Transition metal-catalyzed migratory cyclization. a Indenone and five-membered benzoheterocycles. b Strategies to synthesize benzocycles. ¢ This work: Pd-

catalyzed migratory cyclization via an unexpected reaction cascade.

coupled to form a new carbon-carbon bond, whereas transition metal-
catalyzed C-H/C-H coupling of arenes and alkenes always occurs via an
aryl C-H metalation followed by a Heck-type alkenylation process*’ .
However, the reaction does not proceed through an oxidative
addition-1,4-palladium migration®™ *-arylpalladation sequence as we
expected. Detailed mechanistic studies have shown that trans-1,2-metal
migration from the a-position to the trans-g-position of the C=C double
bond is a key step of the catalytic cycle. This migratory cyclization is
synthetically very useful and offers opportunities for the efficient
synthesis of indoles and their phosphorus, silicon, sulfur, carbon, and
oxygen congeners. Previously, 2,3-unsubstituted benzophosphole was
prepared by ring-closing metathesis of phenylstyrylvinylphosphine
oxide®*®, As reported herein, the present method enabled the efficient
synthesis of benzophosphole oxides, and the asymmetric version of the
cascade reaction was also achieved in the presence of a chiral palladium
catalyst to give enantio-enriched P-chiral products.

Results

Optimization of the reaction conditions

In a first set of experiments, the cyclization of (a-bromoethenyl)
diphenylphosphine oxide (1a) was performed in the presence of 5 mol
% of palladium catalysts bearing several types of bisphosphine ligands

and 2.0 equiv. of CsOPiv (OPiv = pivalate) in 1,2-dichloroethane (DCE)
at 80 °C for 12 h (Table 1). The reaction with DPEPhos as a ligand gave a
94% yield of the cyclization product 2a (entry 1). An alternative wide-
bite-angle ligand, Xantphos, was not effective for the present reaction
(entry 2). Some other bisphosphine ligands, such as dppf, dppe, dppp,
dppb, and biphep, gave 2a as the main product in somewhat lower
yields (entries 3-7). The reaction performed in toluene afforded 2a in
moderate yield, whereas in CH,Cl, it gave a mixture of 2a and 2a’ in an
85:15 ratio (entries 8 and 9). The use of other bases, such as CsOAc and
KOPiv, furnished 2a in moderate yields with medium chemoselec-
tivities (entries 10 and 11). The reaction performed at a lower tem-
perature (60 °C) gave 2a in a slightly lower yield (entry 12).

Pd-catalyzed migratory cyclization: substrate scope

Figure 3 summarizes the results obtained for the migratory cycliza-
tion of other ArXCBr=CH,, in which X denotes phosphorus or
another element, under the optimized conditions. Cyclizations of (a-
bromoethenyl)diarylphosphine oxides 1b-1g, in which the aromatic
groups are phenyl moieties substituted with methyl, t-butyl, phenyl,
methoxy, fluoro, and trifluoromethyl at the para position, proceeded
well, giving the benzophospholes 2b-2g in high yields, irrespective
of the electronic properties of the substituents (Fig. 3). (a-
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Table 1 | Optimization of the reaction conditions

2 Pd(OAc), (5 mo%) @
PPh DPEPhos (10 mol% ~Ph P.11Ph
©/ )— CsOPlv (2.0 equiv) CE> ©/ \
1 DCE, 80 °C,12h 2’ H
a
PPh, PPh,
@ ||
elimination
Pd] Br
DPEPhos
PPh, PPh,
o @I—Pth -
O O Fe Ph,P' PPh,
T —PPh dppe (n = 1) PP“Z
dppp (n =2)
XantPhos dppf dppb (n = 3) RIS

Entry Variations from standard conditions® (shown above) 2a:2a"® Yield (%)° 2a
1 None >50:1 94
2 Xantphos >50:1 4
3 Dppf >50:1 82
4 Dppe >50:1 46
5 Dppp >50:1 13
6 Dppb >50:1 23
7 Biphep - -
8 Toluene instead of DCE >50:1 47
9 CH,Cl, instead of DCE 85:15 78
10 CsOAc instead of CsOPiv 74:26 63
1 KOPiv instead of CsOPiv 89:11 72
12 At 60 °C >50:1 87

2 Reaction conditions: 1a (0.20 mmol), Pd(OAc), (5 mol% Pd), DPEPhos (10 mol%), CsOPiv (0.4 mmol), and DCE (1.0 mL) at 80 °C for 12 h.

b Ratio was determined by 'H NMR analysis of the crude reaction mixture.
¢ Isolated yield.

Bromoethenyl)diarylphosphine oxides 1h-1k, in which the aromatic
groups are phenyl moieties substituted with methyl, methoxy, and
trifluoromethyl at the meta position, all proved suitable for this
reaction, affording exclusively the benzophospholes 2h-2k in high
yields, and the new C-C bonds were formed with high regioselec-
tivity at the less hindered ortho C-H position. Moreover, ortho-sub-
stituted phenyl derivative 11 gave 70% yield of the migratory
cyclization product 2I, the yield being lower due to some generation
of the elimination by-product. The reaction of Im, bearing a benzo[b]
thiophen-5-yl group, gave 67% yield of the corresponding product
2m with high regioselectivity. The migratory cyclizations of alkyl-
substituted (a-bromoethenyl)phenylphosphine oxides 1In-1r also
proceeded, furnishing the corresponding products 2n-2r in moder-
ate yields. The yields of 2n-2r were moderate due to some genera-
tion of the elimination by-product.

The robustness of the present protocol was further demonstrated
by the synthesis of other benzoheterocyclic compounds, in which the
X moiety is an atom or group other than phosphine oxide (Fig. 3). It
was found that the migratory cyclization of a-bromovinyl ketone 1s, in
which the X moiety of the substrate is a carbonyl group, was viable,
giving the inden-1-one product 2s in a high yield under the standard
conditions. N-Tosylindoles 2t-2v, in which X is a tosyl-protected amide
group, were also efficiently obtained by using the present methodol-
ogy. When the X moiety of the substrate was an oxygen atom, the
migratory cyclization proceeded smoothly to afford benzofuran 2w in
73% yield. Moreover, unsubstituted 1-silaindene 2x was obtained in
63% yield under the present conditions. Benzo[b]thiophene 1-oxide
and 1,1-dioxides are an emerging class of heterocyclic compounds with
synthetic and medicinal chemistry applications®* S, Fortunately, the
reaction of a-bromovinylphenyl sulfoxide 1y gave the benzo[b]

thiophene 1-oxide 2y in 83% yield. The cyclizations of a-bromovinyl
aryl sulfones 1z-1ab also proceeded smoothly to afford benzo[b]
thiophene 1,1-dioxides 2z-3ab in high yields.

Asymmetric synthesis of P-chiral benzophospholes

To explore the potential of this methodology in asymmetric synthesis,
a preliminary screening of chiral bisphosphine ligands was carried out.
As shown in Fig. 4, reaction of 1a in the presence of a chiral (R)-DM-
segphos-palladium catalyst gave 2a in 31% isolated yield with a pro-
mising 86% ee, whereby the relatively low yield was due to low con-
version of l1a. The asymmetric cyclization of (a-bromoethenyl)
diarylphosphine oxide 1b, in which the aromatic group is phenyl
moiety substituted with methyl at the para position, gave the benzo-
phosphole 2b in 37% yield with 67% ee. The reaction of 1f, bearing
fluoro substitution at the para position of phenyl ring, gave the
asymmetric cyclization product 2f in 33% yield with 71% ee. The reac-
tion of 1k, bearing a 2-naphthyl group, gave 44% yield of the asym-
metric cyclization product 2k with 57% ee and high regioselectivity.
The asymmetric cyclization of 1m, bearing a benzo[b]thiophen-5-yl
group, gave 29% yield of the corresponding product 2m with 74% ee
and high regioselectivity.

Mechanistic studies

Subsequently, we conducted preliminary experiments to provide
insight into the reaction mechanism. We initially envisaged that the
cyclization might proceed via an alkenyl-to-aryl 1,4-Pd migration as a
key step. However, when the cyclization reaction of a-bromovinyl
di(pentadeuteriophenyl)phosphine oxide (la-djo) was carried out
under the standard conditions, the product was 2a-do, bearing only
nine deuterium atoms at the aryl carbon atoms (Fig. 5a, equation 1).
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Fig. 3 | Pd-catalyzed migratory cyclization: substrate scope. Reaction conditions: 1 (0.20 mmol), Pd(OAc), (5 mol% Pd), DPEPhos (10 mol%), CsOPiv (0.40 mmol), and
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Furthermore, cyclization of a-bromovinyl di(2-deuteriophenyl)phos-
phine oxide (la-d,) under our standard conditions proceeded
smoothly to give a mixture of 2a-d, and 2a-d; in a 2:1 ratio, with one or
two deuterium atoms incorporated at the aryl carbon atoms (Fig. 5a,
equation 2). No deuterium incorporation at the alkenyl carbon atoms
of 2a-dy, 2a-d,, and 2a-d; clearly demonstrated that no 1,4-palladium
migration was involved in the catalytic cycle. The fact that reaction of
1z-ds afforded benzothiophene sulfone 2z-d, with no deuterium
incorporated at the alkenyl carbon atoms further confirmed this con-
clusion (Fig. 5a, equation 3). Reaction of ethynyldiphenylphosphine
oxide (2a’) in the presence of the DPEPhos-palladium catalyst,
NEt3-HBr, and CsOPiv gave the target product 2a in 37% yield (Fig. 5b).

As shown in Fig. 5c, cyclization of Z-(f-bromoethenyl)diphenylpho-
sphine oxide (3) gave a 29% yield of 2a. This indicated that the
migratory cyclization might involve intramolecular C-H bond activa-
tion to form the C-C bond. Under the standard conditions, compound
(E)-4 afforded the elimination product 5 in high yield without forma-
tion of the cyclization product, whereas no reaction of its (2)-isomer
took place (Fig. 5d).

DFT calculations and proposed mechanism

Control experiments, in concert with DFT calculations®7'(Fig. 6), were
used to inform the development of a mechanistic model. The density
functional theory (DFT) calculations at the MO6L/6-311+G(d,p)
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(LANL2TZ for palladium atoms)/SMD(DCE)//B3LYP-D3/6-31G(d)
(LANL2DZ for palladium atoms) level was performed to gain a theo-
retical understanding of the reaction mechanisms (see Supplementary
Page S37). We chose the conversion of 1a to 2a as the model reaction,
using Pd(OAc), as the catalyst and DPEPhos as the ligand. Taking into
account the coordination capability of olefins, the free energy profile is
initiated by the Pd(0) species INT-1, wherein the ligand and the C=C
bond are coordinated to the metal center. Subsequent C-Br bond
oxidative addition to Pd center can occur via a three-membered ring-
type transition state 2-ts to form vinyl Pd(ll) intermediate INT-3 with
an energy barrier of 22.9 kcal/mol, meanwhile releasing 7.5 kcal/mol of
energy. In the presence of base, anion exchange of intermediate INT-3
with OPiv leads to the formation of the thermodynamically stable
Pd(Il)-OPiv intermediate INT-4. In the generated Pd(II)-OPiv inter-
mediate INT-4, the Pd-OPiv and Pd-ethylene bond lengths are 2.11 and
2.03 A, respectively, indicating weak Pd-O bonding. An outer-sphere
deprotonation with the assistance of base then takes place to give the
alkyne-coordinated Pd(ll) intermediate INT-6 via transition state 5-ts,
which is endergonic 5.0 kcal/mol. The energy barrier for this step is
23.7 kcal/mol. The Pd-C1 bond length and Pd-C2 bond length of Pd-
ethylene in the transition state 5-ts are 2.07 and 2.40 A, respectively,
which indicate that Pd center can activate the vinyl moiety. Sequential
protonation occurs to form cis-vinyl Pd(ll) intermediate INT-8 via
transition state 7-ts with the energy barrier of 19.9 kcal/mol. The
formed cis-vinyl Pd(ll) intermediate 8 can easily isomerize to a trans-
one INT-97>7%, The intramolecular phenylic C-H bond activation’*” of

diphenylphosphine oxide happens through a concerted metalation-
deprotonation (CMD) process via transition state 10-ts to form a six-
membered palladacycle INT-11 with 1.4 kcal/mol exergonic, over-
coming an energy barrier of 23.2 kcal/mol. Then a C-C bond reductive
elimination generates the final product and regenerates Pd(0) species
INT-1 with an energy barrier of 12.7 kcal/mol. Meanwhile, we also
explored the alternative blue and green pathways, which involves
direct B-hydride elimination and phenylic C-H bond concerted
metalation-deprotonation of intermediate INT-4. These pathways,
however, have energy barrier of 27.5 and 44.1 kcal/mol, respectively,
which are 3.8 kcal/mol and 20.4 kcal/mol higher than the pathway
involving 5-ts, indicating that these pathways are less favorable (see
Supplementary Fig. 1).

According to the DFT calculations, we propose a plausible
mechanism for the palladium-catalyzed migratory cyclization in Fig. 7.
The mechanism involves C-Br oxidative addition of vinyl bromide,
base-assisted outer-sphere deprotonation, sequential protonation,
phenylic C-H bond concerted metalation-deprotonation and C-C
bond reductive elimination. For comparative analysis, the direct S-
hydride elimination pathway and the concerted metalation-
deprotonation mechanism for the phenylic C-H bond are investi-
gated using density functional theory; however, both pathways are
determined to be energetically disfavored. The key trans-1,2-Pd
migration core is driven by the cooperative C-H activation of the
alkene coordinated to Pd. The electron-deficient Pd(ll) center polarizes
both the a- and S-carbons of the coordinated ethene, significantly
weakening the terminal C-H bond. This electronic perturbation
enables HOPiv to participate in an unconventional outer-sphere pro-
ton abstraction, bypassing the classical inner-sphere pathway. The
resulting Pd-H intermediate undergoes stereochemical reversal
migration and insertion, establishing a migration pathway distinct
from the traditional S-hydride mechanism.

Synthesis of P-chiral bisphosphine ligands

Chiral bisphosphine ligands are of key importance in transition
metal-catalyzed asymmetric  synthesis of optically active
products**”%9%3, Enantio-enriched 2a obtained above was reduced to
1-phenylphosphindane (Rp)-6 in the presence of Pd/C and H, in 94% yield
with >99.5% ee after recrystallization from methanol (Fig. 8a). Moreover,
P-chiral bisphosphine ligand L1 was easily prepared by treatment of (Rp)-
6 with the strong base lithium diisopropylamide and CuCl, in THF, fol-
lowed by reduction with HSiCls/NEt; to give the product in an overall
yield of 46%. Asymmetric addition of 4-MeOC¢H4B(OH), to 2a in the
presence of a chiral diene*-Rh catalyst proceeded smoothly to afford
3-arylated phosphindane (Sp,Rc)-7 in 42% yield with >99.5% ee after
recrystallization from methanol (Fig. 8b). Following the above steps,
P-chiral bisphosphine ligand L2 was also synthesized in an overall yield
of 32%. L1 and L2 were then successfully directly used as chiral ligands in
asymmetric hydrogenation to give compound 8 with 92% ee and 97% ee,
respectively (Fig. 8c). The Hayashi-Miyaura reaction®*! of cyclohex-
anone and PhB(OH), in the presence of the Rh/L1 or Rh/L2 catalysts also
proceeded smoothly to give the 1,4-addition product 9 with >99% ee and
98% ee, respectively (Fig. 8d).

Discussion

In summary, we have reported a Pd-catalyzed migratory cyclization of
ArXCBr=CH, to give In summary, we have reported a Pd-catalyzed
migratory cyclization of ArXCBr=CH, to give benzoheterocycles, spe-
cifically indoles and their phosphorus, silicon, sulfur, carbon, and
oxygen congeners. Detailed mechanistic studies have shown that the
trans-1,2-palladium migration from the a-position to the trans-f-posi-
tion of the C=C double bond is a key step of the catalytic cycle. The
applicability of the present method has been showcased through the
synthesis of new P-chiral bisphosphine ligands.
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Methods

A typical procedure for palladium-catalyzed migratory cycliza-
tion of ArXCBr=CH, (Table 1, entry 1)

An oven-dried sealed tube equipped with a PTFE-coated stir bar was
charged with Pd(OAc), (2.24 mg, 10 pmol, 5.0 mol% of Pd), 1a (61.2 mg,
0.20mmol), DPEPhos (10.8mg, 20 pmol), CsOPiv (93.6 mg,
0.40 mmol) under argon. DCE (1.0 mL) was added successively, and
the mixture was stirred at 80 °C for 12 h. The reaction mixture was
passed through a short column of silica gel with dichloromethane as
eluent and the water stayed in silica gel. The solvent was removed on a
rotary evaporator. After 'H NMR analysis of the residue, the crude
product was subjected to silica gel chromatography (eluent:di-
chloromethane/methanol (30/1)) as the eluent to give 2a (42.5 mg, 94%
yield, 0.19 mmol) as a green solid.

A typical procedure for palladium-catalyzed asymmetric
migratory cyclization of ArXCBr=CH, (Fig. 4)

An oven-dried sealed tube equipped with a PTFE-coated stir bar was
charged with Pd(OAc), (2.24 mg, 10 mmol, 5.0 mol% of Pd), 1a
(61.2mg, 0.20 mmol), (R)-DM-segphos (14.5mg, 20 mmol), CsOPiv
(93.6 mg, 0.40 mmol) under argon. m-Xylene (1.0 mL) was added
successively, and the mixture was stirred at 140 °C for 12 h. The reac-
tion mixture was passed through a short column of silica gel with
dichloromethane as eluent and the water stayed in silica gel. The sol-
vent was removed on a rotary evaporator. After '"H NMR analysis of the
residue, the crude product was subjected to silica gel chromatography
(eluent:dichloromethane/methanol (30/1)) as the eluent to give (R)-2a
(14.0 mg, 31% yield, 0.062 mmol) as a green solid.
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Data availability

Detailed experimental procedures, characterization data, NMR spectra
of new compounds, HPLC spectra for chiral compounds, detailed
computational results, and calculated structures are available within
Supplementary Information. Cartesian coordinates of the calculated
structures are available from Source Data, which are provided with this
paper. All the data supporting the findings of this work are available
within the article and its Supplementary Information files or from the
corresponding author upon request. Source data are provided with

this paper.
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