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Unraveling overestimated exposure risks
through hourly ozone retrievals from next-
generation geostationary satellites

Siwei Li 1,2,3,4,9 , Ge Song 1,9, Jia Xing 5, Jiaxin Dong 1, Maolin Zhang 1,
ChunyingFan 1, ShiyaoMeng 6, Jie Yang 1,3, LechaoDong7,8&WeiGong 2,6

Accurate ground-level ozone (O3) estimation is crucial for assessing health
impacts and designing control strategies. Traditional polar-orbit satellites
provide limited, one-time measurements, missing O3’s diurnal variability.
Here, we utilize a next-generation geostationary satellite with ultraviolet cap-
abilities to retrieve hourly O3 concentrations, achieving high accuracy
(R2 = 0.94) and improving daily maximum 8-hour estimates, particularly in
semi-urban areas (R2 + 0.10, error reduction >7μg/m³). Our analysis reveals a
30% drop in O3-related health risks compared to traditional polar-orbit esti-
mates, with the greatest impact in semi-urban and rural areas where satellite
data plays an important role due to the lack of ground measurements. This
suggests prior estimates may have overestimated total mortality and urban-
rural spillover effects. Our findings underscore the importance of geosta-
tionary satellites in capturingO3 diurnal variability through refinedhourly data
on photochemical precursors and radiation, providing a scientific basis for
health assessments and informing O3 pollution regulations in China.

Exposure to ozone (O3), whether short-term or long-term, significantly
increases the risk of prematuremortality1–5, resulting in approximately
423,1006 deaths globally in 2019. China ranks second globally in O3-
related mortalities, with over 50,000 deaths in 2019 amidst a recent
surge inO3 levels

7,8. To combatO3 pollution andprotect humanhealth,
ground observational networks such as the China National Environ-
mentalMonitoring Center have been established and are expanding to
monitor ambient O3 concentration. However, currentmonitoring sites
are mostly located in urban areas, which are unable to provide a
comprehensive evaluation of the entire spatial distribution, particu-
larly for downwind or rural areas, necessitating the use of satellite
measurements to retrieve spatially continuous concentrations.

Polar-orbit satellites have been extensively used to retrieve ground-
level O3 concentrations

9–16, by offering large spatial coverage measure-
ments of atmospheric chemical column density which are strongly
corelated with ground-level O3

17–19. Among these, the TROPOspheric
Monitoring Instrument (TROPOMI) has gained prominence in recent
studies due to its high spatial resolution (0.05° ×0.05°), making it a
widely utilized satellite product for atmospheric monitoring and O3

measurement14,20,21. This spatial resolution surpasses that of other polar-
orbit satellites, such as Ozone Monitoring Instrument (OMI), and Suomi
National Polar-orbiting Partnership (SNPP), which have relatively coarse
spatial resolution (0.25°), limiting their applicability for high-resolution
estimations in fine-scale environmental assessments. However, like
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other polar-orbiting satellites, TROPOMI has limited temporal resolution
(typically once per day), posing challenges in capturing the diurnal
variations of ground-level O₃22–24, which exhibit significant fluctuations
throughout the day due to its photochemical nature25,26. Low tropo-
spheric O3 primarily forms through a series of photochemical reactions
involving precursors as nitrogen dioxide (NO2) and volatile organic
compounds (VOCs)27,28 with ultraviolet (UV) irradiance playing a crucial
role in initiating the O3 catalytic cycle29,30. The lack of detailed informa-
tion to represent these photochemical reactions makes it difficult for
polar-orbit satellites to accurately capture O3 diurnal variations. Despite
ongoing efforts, achieving satisfactory O3 retrievals via polar-orbit
satellite observations remains elusive31,32.

Recent launches of geostationary environmental satellites with
hourly resolution offer significant potential for improving the O3 retrie-
vals. One advantage is its detailed representation of precursor levels
throughout theday,whicheffectively addresses the limitationsof existing
studies that have relied on satellite-observed radiances as indicators of
ground-level O3

33–35 but without incorporating information on precursor
concentrations. Another and more important advantage is the measure-
ment of UV radiance, which plays a crucial role in characterizing the
diurnal patterns of ground-level O3 more effectively than the general
radiances used previously12. Measuring UV signals has traditionally been
challenging with geostationary passive remote sensing sensors. However
the recently launched Geostationary Environment Monitoring Spectro-
meter (GEMS) in 2020 is the first geostationary sensor equipped with an
UV-visible instrument, offering significant advantages over previously
launched geostationary satellites36. With detailed information on O3 pre-
cursors and UV irradiance, thorough validation of its data quality37–39 and
previous successful applications in retrieving ground-level NO2

40–42, the
GEMS offers enhanced capabilities and high reliability for representing
diurnal variations in O₃ photochemistry. Moreover, capturing the diurnal
variation of O3 is crucial for assessing O3-related health effects. The daily
maximum8-hour average (MDA8), calculated fromhourlyO3 retrievals, is
proven to be a robust index for representing human exposure to O3 and
quantifying associated health impacts43–46. Thus, the hourly data provided
by geostationary satellites offer a unique advantage in improving the
ground-level O3 retrievals for health assessments compared to traditional
studies that rely on single-time polar-orbit satellite observations.

Here, wepresent a study for hourly ground-levelO3 retrieval using
geostationary satellite data to improve the estimation of associatedO3

exposures and health effects. Specifically, we efficiently leverage the

detailed information from geostationary satellite products, including
GEMS-based hourly precursor concentrations and UV radiation, to
accurately represent the photochemistry of O3 with time-specific
machine learning model (as illustrated in Fig. 1), which is commonly
employed to establish the relationship between ground-level O3 con-
centrations and O3 precursors47–49, enabling effective derivation of
ground-level concentrations fromcolumn information. Byovercoming
the limitations of traditional polar-orbit TROPOMI estimates, which
rely on specific-hour O3 precursor observations, the new GEMS esti-
mations benefit from multiple-hour measurement data, resulting in
more precise O3 retrievals and improved assessment of O3-related
health effects. We found that the new estimates from GEMS data sig-
nificantly improve the accuracy of both hourly and daily ground-level
O3 retrievals, with increased R² (over 0.05) and reduced root mean
squared error (about 2μg/m3). This approach effectively mitigates the
overestimation of O3 levels based on previous polar-orbit satellites,
revealing smaller O3-related health risks (by 30%) and urban-rural
spillover effects than traditionally thought.

Results
Enhanced MDA8-O3 estimates with hourly geostationary satel-
lite retrievals
The high temporal resolution of the GEMS satellite, with hourly mea-
surements, significantly improves the accuracy of surface MDA8-O3

estimation compared to polar-orbit satellites like TROPOMI across all
sites (Fig. 2a). This enhancement is evidenced by a site-based mean
increase in R² of over 0.10 and a reduction in absolute error exceeding
7μg/m³ annually, with improvements observed across all months (R2

increased by 0.06–0.17; absolute error reduced by 1.67–3.97μg/m³,
month-based) and specific hours (Supplementary Table 1). Apparently,
GEMS’s valuable hourly precursor and UV data successfully address
TROPOMI’s limitation of having only one-time-per-day measurements,
which are insufficient for representing O₃ diurnal variation.

The most significant improvements are observed in semi-urban
areas (Fig. 2b; Supplementary Fig. 1), with an enhancement of R²
exceeding 0.15 (ranging from 0.11 to 0.25 at the 25th percentile) and a
reduction in absolute error of 6.94μg/m³ (ranging from 5.18 to 8.84 at
the 25th percentile) (Supplementary Table 2). This significant
improvement is attributed to the strongdiurnal variationof precursors
in semi-urban areas (Fig. 2c), particular for NO2, whose relative stan-
dard deviation is 23% and 10% higher than in urban and rural area,
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Fig. 1 | Framework of the hourly-level O3 retrieval from the GEMS geosta-
tionary satellite data, compared to from previous TROPOMI polar-orbit data.
Hourly-level ozone concentrations retrieved from GEMS are based on the diurnal

satellite observations of NO2, HCHO and UV, while previous polar-orbit TROPOMI
estimates daily O3 with once-a-day satellite observations at approximately 2 pm.
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respectively. The areas with strong diurnal variance benefit sig-
nificantly from the GEMS hourly observations, enabling accurate esti-
mation of hourly O3 concentrations and, consequently, more precise
determination of MDA8 O3 (Supplementary Fig. 2).

A large improvement is also observed in remote regions such as
western and southern China, where over 70% of sites show R²
enhancements greater than 0.05, and over 20% exceed 0.30. This is
due to the region’s relatively sparse groundmeasurements, which rely
more on satellite data. These results indicate that GEMS’s hourly data
will significantly benefit O3 prediction in areas with limited ground
measurements that were previously difficult to predict accurately. We
also found that this improvement applies to all days across different
pollution levels, indicating an even larger reduction in absolute error
during high O3 episodes due to the high baseline concentration
(Supplementary Fig. 3). Therefore, in addition to annual averages,
GEMS hourly data will also enhance the estimation of daily variation,
which is crucial for assessing short-term O3 exposure and associated
health impacts.

New GEMS retrievals mitigate overestimation of O3 level from
polar-orbit satellite
Following the discussion on the enhanced model accuracy with GEMS
data, the discrepancy between new GEMS- and previously TROPOMI-
retrieved MDA8-O₃ can be seen as reflecting uncertainties in previous
O₃ level estimations. As shown in Fig. 3, the newGEMSpredictions lead
to a substantial reduction in MDA8-O₃ by 10μg/m³ in most regions,
particularly in Central and Northern China, where high O₃ pollution
(>120μg/m³) is prevalent (Fig. 3d). The reduction is especially pro-
nounced in rural areas (by 4μg/m³), which are far away from ground-
based measurements and thus rely heavily on satellite data. A con-
siderable reduction is also observed in semi-urban regions (by 2μg/
m³) during warm seasons when O₃ levels are consistently high. These
results suggest that previous TROPOMI estimates may have sig-
nificantly overestimated MDA8-O₃ in most of regions, particularly in
warm seasons. Urban areas show minimal impact from GEMS data,
with differences within 1μg/m³, likely due to the constraints of mon-
itoring sites being located within urban areas.

Fig. 2 | Improvement in GEMS-estimated MDA8 O3 compared to previous
TROPOMI-based estimations, as assessed against ground monitoring sites.
a Enhancement in R² across all monitoring sites, categorized into urban, semi-

urban, and rural sites; b Comparison of R² enhancement across these three cate-
gories; c Diurnal variation of O3 precursors (NO₂ column and HCHO column) and
UV in urban, semi-urban, and rural regions as measured by GEMS.
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The new GEMS-estimated MDA8-O₃ shows higher O₃ levels in
Southeast, Northwest, andNortheast China, with an increase of 9.6μg/
m³ compared to previous estimates from TROPOMI, particularly in
spring andwinter (Supplementary Fig. 4). This suggests that TROPOMI

may have underestimated O₃ levels in remote areas and during cool
season.

The discrepancy in MDA8 estimations between GEMS and
TROPOMI is largely due to their different representations of diurnal
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Fig. 3 | The discrepancy of MDA8-O3 estimation between GEMS and TROPOMI.
a Spatial distribution at annual averaged level, with brown color indicating an
increased estimation by GEMS, while the blue color indicates a reduced estimation

byGEMS;b, cAcross three regions inwarmseasons (Apr-Oct) and cool seasons (Nov-
Mar);d, e Spatial distribution ofMDA8 inwarm seasons and cool seasons. The purple
color suggests higher MDA8 values and green color represents lower MDA8 values.
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variation. More specifically, TROPOMI uses a single measurement
hour to approximate this, resulting in considerable uncertainties. In
contrast, these uncertainties can be effectively reduced with the
detailed hourly variations provided by GEMS. To illustrate this, we
introduce a deviation ratio calculated by the difference between
GEMS- and TROPOMI-estimated MDA8-O₃ to quantify the dis-
crepancy between the two. A strong spatial pattern is evident in the
deviation ratio (Fig. 4a), with more pronounced discrepancies (8%,
compared to the national average of 5%) in the southern provinces of
China, particularly in Hong Kong & Macau, Fujian, and Guangdong.
This is due to their relatively strong O₃ diurnal variance, indicated by
the ratio of daily peak-hour O₃ (i.e., MDA1) to MDA8. Strong O₃

diurnal variance leads to large discrepancies between GEMS and
TROPOMI (Fig. 4b), highlighting the greater effectiveness of using
the hourly GEMS dataset to improve O₃ estimation in regions with
significant diurnal variations.

New estimates indicate smaller O3-related health risks and
urban-rural spillover effects
From the original TROPOMI, lower MDA8-O3 estimated in new
GEMS has resulted in a substantial reduction in O3-related mor-
talities (Fig. 5a), with decreases of 29.1% and 33.0% in short-term
and long-term risks, respectively, implying considerable over-
estimation in the traditional O3-related health risks using TRO-
POMI. The changes are mostly significant in densely populated
regions of central and eastern China, with over 30,000 and 50,000
fewer total mortalities for both short-term and long-term risks,
including the provinces of Shandong, Henan, and Hebei, which
experience the highest O3-related health impacts from both short-
term and long-term exposures. A significant reduction of 55.1% is
also found in northwestern and south China where experience
large O3 estimation deviations from TROPOMI to GEMS, particu-
larly in Sichuan, where mortality rates exceed 3000 due to long-
term exposure.

Furthermore, given that MDA8-O₃ changes more in rural areas
but less in urban areas, as previously discussed due to the greater
effectiveness of GEMS in areas lacking ground measurements, O₃-
related mortality in semi-urban and rural areas is reduced more

significantly (by 26–39%) compared to urban areas (by 22–23%)
(Fig. 5b). This results in a smaller urban-rural spillover effect (i.e.,
semi-urban and rural areas suffering from pollution originating in
urban areas) from the original TROPOMI assessment50,51.

Discussion
Since ground-level O3 has been surging in China in recent years,
attention has increasingly focused on the health effects caused by
ground-level O3. Accurate and comprehensive observation of O3 is
vital for the prevention and control of O3 pollution. Although previous
studies have mapped O3 diurnal patterns to some extent, the lack of
diurnal measurements has largely limited the applicability and accu-
racy of these methods, as well as subsequent health effect assess-
ments. This study successfully leveraged the next-generation
geostationary satellite equipped with ultraviolet capacities to achieve
accurate retrieval of hourly O3 concentrations, demonstrating the
importance of implementing detailed diurnal patterns of precursors
and UV information for the O3 retrievals to address the limitation of
current estimates based on polar-orbit satellites like TROPOMI. The
refined O₃ diurnal patterns and subsequent health effect assessments
will greatly aid in the prevention and control of O₃-related hazards, as
well as the design of satellite spectra and observation patterns in
environmental studies. The methodology proposed here can be
applied to retrieve hourly O3 data worldwide, advancing air quality
monitoring. Although this study focuses on China due to the GEMS
coverage in East Asia, the approach can easily be extended to other
regions, such as North America, where the new TEMPO geostationary
satellite provides coverage52. The improvement in hourly O3 estima-
tions have greatpotential to enable the calibrationof cohort studies on
O3-related health risks, enhancing the accuracy of health risk assess-
ments. Furthermore, our findings reveal urban-rural differences in O3

diurnal patterns, highlighting the need for environmental justice
investigations and informing policies aimed at addressing disparities
in air quality and promotingmore equitable environmental outcomes.

We conductedmultiple sensitivity experiments to eliminate other
confounding factors that might influence the comparison between
GEMS and TROPOMI estimates. First, retrieving hourly-level O₃ data is
essential for optimal MDA8-O₃ estimation. The model’s accuracy in
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estimations, while orange color suggests more notable deviations; b Correlations
between the discrepancies of MDA8-O3 estimates and the diurnal O₃ variation
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directly predicting MDA8-O₃ is worse (R² is reduced by 0.02 from the
original 0.94) compared to predicting O₃ for each hour individually
and then estimatingMDA8-O₃, even using the sameGEMS dataset (see
Supplementary Fig. 5). The detailed statistics and comparisons in
terms of space and time are demonstrated in Supplementary Text 6.
This suggests that incorporating detailed constraints at the hourly
level will improve the prediction of the overall value of MDA8-O₃.
Second, diurnal features from GEMS data are crucial for MDA8-O₃
estimation. The model’s accuracy using all GEMS hourly features
throughout the day is better (R² increased by 0.007 from 0.914)
compared to using GEMS features from just one specific hour (14:00
local time), which is the single-hour measured by TROPOMI (see
Supplementary Fig. 5 compared with Supplementary Fig. 6). This
demonstrates the importanceof theGEMSdiurnal dataset even for the
direct prediction of MDA8-O₃. Third, the UV and precursor

measurements in GEMS also contribute to the improvement of GEMS
estimated O3, as the model accuracy is considerable better (R²
increased by 0.028 from 0.886) by using only GEMS 14:00 feature to
predict the MDA8-O3, as compared to that using TROPOMI (see Sup-
plementary Fig. 6 compared with Supplementary Fig. 7). This result
demonstrates the usefulness of GEMS UV measurements for O₃
retrievals, as they showa stronger associationwithO₃ compared to the
visible bands used in previous studies34,35.

The data quality of satellite observations, including NO2 column,
HCHO column, and UVI, has been thoroughly validated in previous
studies38,39,53,54. Although biases and uncertainties are present to some
extent, our experiment using a Monte Carlo-based perturbation
method indicates that these uncertainties have a negligible impact on
the accuracy of surface O3 estimation, as perturbations in satellite
products lead to less than a 2% variance in O3 concentrations across

Fig. 5 | Comparison between O₃-related risks estimated by GEMS and TRO-
POMI. aAll-causemortalities attributed toO₃ short-term and long-term exposures,
alongwith their absolute and relative differences compared to TROPOMI;b Sumof

O₃-related health effects in terms of short-term and long-term risks in urban, semi-
urban, and rural regions by GEMS and TROPOMI.
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dominant retrieved grids (detailed in Supplementary Texts 1–3). These
results highlight the capability of machine learning algorithms to
effectively process original satellite column datasets. We further
explore the impact of diurnally varying bias of the satellite observa-
tions of NO2 column by replacing the original NO2 column with a
temporally modulated dataset from Oak et al54. The results indicate a
limited impact on O3 concentration (detailed in Supplementary
Text 1), implying the machine learning model can effectively correct
certain diurnal bias in the GEMS NO2 column, to capture the diurnal
patterns of the NO2 column and generate accurate surface O3

concentrations.
Given that diurnal patterns of O₃ concentration vary sig-

nificantly from urban to rural areas55, but most ground measure-
ments are located in urban areas, the success of machine-learning-
based models in interpolating ground measurements (the labels) to
the entire space largely depends on the model’s ability to identify
urban and rural conditions. Therefore, any features used as indica-
tors for distinguishing urban from rural conditions become even
more important. NO2 concentration, a precursor mostly emitted
from urban areas with numerous anthropogenic sources such as
industrial combustion and transportation, is such one key feature. As
expected, the NO2 column density shows the greatest ability to dis-
tinguish urban patterns from rural patterns among all features (see
Supplementary Fig. 8), with urban NO2 levels at least twice as high as
those in rural areas. However, this difference varies significantly
throughout the day, ranging from 2.3 to 4.1, with the highest effec-
tiveness occurring around 11:00 am and substantially reducing
thereafter. Fortunately, GEMS data, which provide hourly NO2 col-
umn measurements, do not suffer from such impacts. In contrast,
polar-orbiting satellite sensors, such as TROPOMI, are affected,
reducing their ability to capture O3 urban-rural patterns due to their
overpass time (14:00), which usually occurs under conditions with a
lower urban-rural NO2 ratio. The ability to distinguish urban and rural
patterns by GEMS satellite data is further demonstrated by the
reduced contribution of the socio-economic features (i.e., land use,
road density and population) to model performance. Specifically,
these socio-economic features, which can significantly enhance the
model performance in the TROPOMI-based model, have limited
impact on the GEMS-based model. This is due to the advantage of
GEMS, which can, to some extent, distinguish urban and rural regions
using the hourly-level column information (Supplementary Fig. 8),
making the socio-economic features less important. These results
further demonstrate the importance of the hourly dataset provided
by GEMS for predicting diurnal O3 variations. Consequently, the
hourly-level O3 concentration can successfully depict the urban-rural
O3 diurnal variation. As demonstrated in Supplementary Fig. 10, the
diurnal patterns of O3 concentration suggest a higher deviation in
rural regions than urban regions wheremonitoring sites are sparse or
absent, implying challenge of accurate estimation in rural areas
without detailed diurnal data from GEMS satellite.

As previously discussed, GEMS data is most beneficial in regions
with the strongest diurnal variations (quantified by the ratio of MDA1/
MDA8). A single time-step measured by TROPOMI cannot accurately
represent these diurnal patterns. The seasonality of diurnal variations
indicates that the strongest diurnal variations occur in fall (see Sup-
plementary Fig. 11), leading to the largest discrepancy in MDA8-O3

estimation between GEMS and TROPOMI (see Supplementary Fig. 4).
In the summer, the discrepancy inMDA8-O3 estimation betweenGEMS
and TROPOMI is also significant due to the highest annual MDA8-O3

concentrations, although the diurnal variations are not as pronounced
as in fall. Inwinter, the diurnal variations are larger than in summer, but
this is offset by the lower absolute MDA8-O3 concentrations. In spring,
the discrepancy inMDA8-O3 estimation between GEMS and TROPOMI
is the smallest of the year due to the weakest diurnal variations across
all three types of sites.

The hourly retrieval with GEMS data plays a prominent role in
subsequent analyses of O₃-associated exposure and health effects,
showing a considerable reduction inO₃-relatedmortalities nationwide,
as previously discussed. Detailed analysis suggests more complex
transitions at the grid cell level. Although the dominant trend indicates
an overall overestimation in TROPOMI estimations, as grid cells ori-
ginally identified as heavily O₃-polluted moved to moderate and light
pollution levels (see Supplementary Fig. 12), some grid cells originally
identified as light or moderate pollution shifted to heavier pollution
levels. This implies that, in certain situations across all seasons, the
original TROPOMI estimations also underestimated O₃ exposure and
related health risks, which need to pay more attention for human
health protection. In addition, we demonstrate the importance of
using newGEMSdata to accurately represent O3 exposure by applying
the existing exposure-risk function to estimate O3 health risk. It has
great potential to refine the exposure-risk function when multiple
years of GEMS data become available, establishing more accurate
correlations between O3 exposure and associated health risks. Overall,
this study is crucial for advancing both environmental and public
health research, providing a robust framework for more accurate O3

monitoring and health risk assessment, and offering valuable insights
to guide policy and promote environmental equity globally.

Methods
Geostationary and polar-orbit satellite datasets
The Korean GEMS was launched aboard South Korea’s Geostationary
Korea Multi-Purpose Satellite 2 (GEO-KOMPSAT-2) in Feb, 2020 with
the mission to monitor the atmospheric composition in Asia-Pacific.
The satellite is playing a pivotal role in the air monitoring as the first
geostationary satellite for air quality. The satellite has the field of view
of 5000 km× 5000 kmandwith the viewing coverage of 5°S–45°N and
75°E–145°E. The spectral range of 300–500nm and high spectral
resolution of 0.6 nm facilitates the observation of multiple trace gas
species, including NO2 and HCHO. The nominal spatial resolution of
observations of trace gases is 3.5 km× 7.7 km for these gases56. In this
study, we utilize the available hourly GEMS L2 products of NO2, HCHO
and UV index to retrieve the surface O3 concentration. The products
are obtained from the Korean Environmental Satellite Center website
(https://nesc.nier.go.kr/)36. For polar-orbit satellite observations, the
Tropospheric Ozone Monitoring Instrument (TROPOMI) satellite
instrument, which is commissioned by the European Space Agency
(ESA) onboard Sentinel-5p, serves as the advanced sensor to measure
the trace gases and creates daily-level maps of atmospheric species.
We obtain the NO2 and HCHO products from Copernicus Sentinel-5P
data center57,58. TROPOMI-UV dataset is obtained from Sodankylä
National Satellite Data Centre59.

ECMWF meteorological and auxiliary datasets
The ground-levelmeteorological datasets are retrieved from the ERA5-
Land reanalysis products with spatial resolution of 0.10° × 0.10°, pro-
duced by the European Centre for Medium-range Weather Forecasts
(ECMWF). The utilized datasets include the variables of 2m surface
temperature (ST), 2m dewpoint temperature (DT), surface pressure
(SP), U-component wind speed (UW), V-component wind speed (VW),
total precipitation (TP), total evaporation (TE). ERA5 pressure-level
reanalysis product also provides variable of relative humidity and the
interpolated slice at surface pressure is denoted as RH.

Based on the empirical knowledge and previous studies, a set of
auxiliary variables are involved to demonstrate the temporal and
geological characteristics in the model, which include elevation (EL),
Normalized Difference Vegetation Index (NDVI), hour of the day (HH)
and day of the year (DOY). The Landsat Normalized Difference Vege-
tation Index (NDVI) is obtained from MODIS, which provides 16-days
global NDVI product with 250m spatial resolution (MOD13A3). This
data is then aggregated tomonthly mean values and upscaled to 0.05°
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resolution by averaging. Elevation data is obtained from the Shuttle
Radar Topography Mission (SRTM) and upscaled to 0.05° resolution
by averaging. The correlations of these variables are shown in Sup-
plementary Fig. 13. The model also incorporates socio-economic
variables including population and road density, whichhave beenused
incorporated in previous studies14. Population data with a 1 kmby 1 km
spatial resolution is obtained from Worldpop and integrated in the
GEMS grids60). The road density, obtained from the Open Street Map
(https://osm.mapplus.cn/), is employed as an indicator of the dis-
tribution of mobile pollutant emission. The road density is calculated
for each grid based on the length of the roads, without consideration
of their width, and is expressed as the ratio of the total road length in
the grid to the grid area.

The classification of urban, semi-urban and rural regions is based
on the land use cover from the Moderate Resolution Imaging Spec-
troradiometer (MCD12Q1), which observes 17 types of land use type61.
In this study, a grid (0.05° resolution) is classified as “urban” if more
than 75% of its area is covered by urban land use. Grids with less than
15% urban land use are classified as “rural”. A 50km buffer zone is
created around each urban area, and grids within this buffer are clas-
sified as “suburban”, provided they do not meet the criteria for urban
or rural classification.

Ground-level O3 from monitoring sites
The in-situ measurements of surface O3 during the study period (unit:
μg/m3) are obtained from 1672 monitoring sites operated by China
National Environmental Monitoring Center. Multiple air quality data
can be retrieved from themonitoring sites, including PM2.5, PM10, SO2,
NO2, O3, CO and AQI. In order to retrieve the hourly ground-level O3

concentration, the hourly observation corresponding to the satellite
scanning time is used as the training label of the model. For example,
the scanning period ranging from 0645UTC to 0715UTC would be
matched to the monitored O3 concentration at 3 pm Beijing Time
(UTC + 8). It is noticeable that themonitored surface O3 concentration
is higher in eastern China, and the monitoring sites are distributed
much denser in eastern China compared to western China.

Retrieval of hourly ground-level O3 concentration
All datasets are collocated into grids of 0.05° ×0.05° and matched to
the coordinates by the inverse distance weighting (IDW) interpolation.
The temporal period covers from November 2022 (when access to the
GEMS dataset became available) to December 2023. The complete
dataset has a consistent spatial resolution (0.05° ×0.05°) and temporal
resolution (hourly) with diverse spatial coverage associated with the
valid satellite scanning. The statistics of the descriptive variables used
for machine learning is given in Supplementary Table 3.

In this study, we selected the LightGBM model to retrieve the
hourly-level surface O3 concentration, which has the advantages of
excellent performance in dealing with large-volume datasets and non-
linearity associatedwith the complexO3 photochemistry. The schemeof
the surface O3 retrieval is depicted in Fig. 1 and Supplementary Fig. 14.

As a highly efficient ML-model based on the Gradient Boosting
Decision Tree, the LightGBM has been widely applied owing to its
advantages of low computation cost and high learning accuracies,
especially when processing large and complex datasets62. Given the
large volume of the hourly-level and high spatial coverage of satellite
samples for model training, LightGBM is considered the most suitable
tool due to greatly reduced computation processing time and high
accuracy. The LightGBM model can be expressed as (1).

½O3 = LGBM1ðDOY ,HH, EL,RD,POP,NDVI, ST ,DT , SP, 10U, 10V ,

TP,TE,RH,NO2,HCHO,UV Þ� ð1Þ

The hyperparameters of the LightGBM model were optimized
using a grid search strategy, where various combination of

hyperparameters were tested in batches. The best combination of
hyperparameters was selected based on the results of batch tests,
which is summarized in Supplementary Table 4. LightGBM has also
been widely acknowledged to capture the non-linear relationship
between features and labels. Thus, to forecast the hourly O3 con-
centration when no satellite observations are available (mostly, after
15:00), the satellite observations in the morning hours are used as
input features, under the assumption that there is a lag time for O3

concentrations to equilibrate with its precursors. Therefore, the fore-
cast LightGBMmodel canbe expressed as (2),where t represents hours
when satellite observations are available within the target day.

½O3 = LGBM2ðDOY ,HH,RD, POP, EL,NDVI, STt ,DTt , SPt , 10Ut ,

10Vt ,TPt ,TEt ,RHt ,NO2t
,HCHOt ,UVtÞ�

ð2Þ

The selection of the satellite products as model input features is
considered on both model evaluation and O3 photochemistry. For
instance, tropopheric NO2, though more associated with the O3 for-
mation than total NO2 column, demonstrated poorer model perfor-
mance compared with total NO2 column, likely due to uncertainties
associated with the stratosphere-troposphere separation process
(detailed in Supplementary Text 1). Similarly, tropospheric O3 profiles
from GEMS would not enhance the model accuracy (detailed in Sup-
plementary Text 4). As for UVI, the erythemal satellite product is
selected from the fourGEMS-observed types ofUVproducts because it
exclusively covers wavelengths between 340 and 400nm, which align
with the spectrum most likely to correspond to the quantum yield of
NO2 photolysis which is initiated by the UV irradiance to produce
excited oxygen atoms and thereby accelerating the catalytic cycle for
O3 formation (detailed in Supplementary Text 3).

Based on the hourly-level O3 concentration estimations, the daily-
level MDA8 O3 concentration can be calculated accordingly. To make
comparisons with estimations based on the polar-orbit sensor TROPOMI,
we have utilized daily-level MDA8-O3 estimation based on TROPOMI
observations, which have the overpass time to be around 2pm in each
day. TheTROPOMI-basedO3 concentrationmodel canbeexpresses as (3).

½O3 = LGBM3ðDOY , EL,NDVI, ST ,DT , SP, 10U, 10V ,

TP,TE,RH,NO2
2pm,HCHO2pm,UV2pmÞ�

ð3Þ

Model validation
The performance of the hourly ground-level O3 concentration is validated
under the cross-validation schemes. As conventional approach to evaluate
the model performance, 10-fold sample-based cross-validation randomly
splits the dataset into training set and the testing set with the proportion
of 90% and 10%, respectively. Then this process is repeated for 10 times
until all samples have been designated as the testing set. With different
setups of sample splitting standards, the 10-fold cross-validation are uti-
lized to evaluate themodel performance inmultiple aspects. As a baseline,
the sample based 10-fold cross-validation completely splits the datasets
randomly. The site-based cross-validation randomly chooses grids instead
of samples as training set or testing set to evaluate the spatial discrepancy
of themodel. When a grid is designated for the testing, all samples within
the grid are labeled as the testing set. It should be noted that the space-
based O3 data is averaged to the 0.05-degree grid cell to avoid overfitting
if more than one site are existing in a 0.05° grid. Similarly, we setup the
hour-based cross validation by randomly selecting samples within the
testing hour. All samples within the testing hours are used to evaluate the
model trained by datasets in the training hours.

Two common metrics are selected to evaluate the model perfor-
mance, i.e., coefficient of determinant (R2) and rootmean square error
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(RMSE), as expressed below:

R2 = 1�
Pn

i= 1ðO3,measðiÞ � O3,modðiÞÞ2
Pn

i= 1ðO3,measðiÞ � �O3,measðiÞÞ
2 ð4Þ

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
×
Xn

i= 1
ðO3,measðiÞ �O3,modðiÞÞ2

r

ð5Þ

where n is the number of samples; i represents the sample number;
O3,meas denotes the measured O3 concentration at monitoring sites,
O3,mod denotes the retrieved O3 concentration by the model.

The hourly-level O3 estimations comprise two aspects: firstly, the
hourly estimations based on the corresponding satellite observations
in the hour; and secondly, the hourly estimations inferred from satel-
lite observations previous in the day. GEMS covers only specific hours
within a day, but the O3 concentration can still be interpolated by the
delayed O3 formation from the O3 precursors. This means that it is still
possible to obtain the hourly-level O3 concentrations in the hours
when GEMS are not able to observe. Supplementary Fig. 15 compre-
hensively validates the observed (09:00–16:00) and the forecasted
(17:00–20:00) O3 concentration from the geostationary satellite, with
respect to the ground-based monitoring sites under 10-fold sample-
based validation. The model with concurrent satellite observations is
accurate throughout the day (R2 ranges from 0.84 to 0.94), with the
highest model accuracy occurring at 13:00 and 14:00. The root mean
squared error ranges from 10.64μg/m3 to 13.44μg/m3. This model
accuracy shows diurnal patterns consistent with the O3 concentration
patterns, implying the photochemical indicators would play vital roles
in estimating O3 concentration when O3 photochemistry is active. The
forecasted O3 concentrations show inferior accuracy compared with
the retrieved O3 (R2 ranges from 0.86 to 0.92, RMSE ranges from
13.06μg/m3 to 15.22μg/m3). Forecasted O3 at 20:00 shows the least
accuracy, which is attributable to the weakest relation to the model
input (temporally ranging 09:00–16:00). The validation result strong
supports that ultraviolet-channel-based GEMS shows reliable compe-
tence in retrieving the hourly-level O3 concentration.

Apparently, detailed spatiotemporal variations ofO3 hasbeenwell
captured by geostationary satellite estimated bymachine learning and
satellite-based photochemical precursors. The coverage of the surface
O3 concentration is in accordancewith the satellite sensing ranges. The
mapping indicates the hotspots of O3 pollution, whose occurrence
tends to concentrate starting from 14:00. Noticeable spatial patterns
of hotspots are demonstrated, as in eastern China rapid growth and
decline of O3 pollution can be observation, while in western China O3

pollution would be more persistent even until 20:00. MDA8-O3 is
subsequently calculated by the hourly O3maps. Supplementary Fig. 16
depicts the center hour of the maximum 8h, indicating a regional
variance of O3 diurnal patterns, which suggests that direct retrieval of
MDA8-O3 would be less reliable. Supplementary Fig. 2 also indicates a
clear diurnal pattern can be depicted from the satellite observations.
The exceedance would preserve until nighttime (20:00), when more
than 10% territory still suffers from the pollution. Further, the O3

estimation model would apparently identify the seasonal variation of
O3 and generates accurate O3 concentration despite of different pho-
tochemical regimes (Supplementary Fig. 17).

The hourly-level O3 estimations would surpass the existing O3

concentration retrievals by expanding the temporal resolutions. In
Supplementary Figs. 18 and 19 we demonstrate that the diurnal pat-
terns of O3 would show variations seasonally and regionally. O3 tends
to vary significantly in warm seasons, when high pollution events are
likely to occur. Therefore, the proposed model would provide addi-
tional details for monitoring and controlling O3 pollution. The pho-
tochemical property of O3 would not only impact the concentration
seasonally and regionally, but also affect the performance of the

retrieval of O3 concentration by GEMS and TROPOMI. The contribu-
tion of photochemical features (UVI, NO2 and HCHO) to O3 con-
centration estimation were further analyzed using the SHapley
Additive exPlanation (SHAP) method, which quantifies the importance
of features in the model63,64. As shown in Supplementary Fig. 20, UVI
ranks as the 3rdmost important O3 precursors, following temperature
and hour of the day. NO2 column and HCHO also exhibit considerable
levels of importance in estimating O3 concentration. However, socio-
economic factors such as road density and population were found to
have a limited impact on model performance, likely because this
information is already captured by the GEMS satellite observations.
The impact of the bias and uncertainty of satellite observations (NO2,
HCHO and UV) on the model performance is investigated using a
Monte-Carlo-based perturbation method by generating synthetic
satellite datasets. These datasets are derived using a correction
method that produces statistically representative samples based on
satellite-site validation results, as clarified in Supplementary Text 1–4.

Comprehensive validations, including site-based and hour-based
cross-validations, were conducted to demonstrate that the proposed
model reduced its reliance on spatial and temporal information from
monitoring sites. This enables the model to more effectively capture
the photochemical associations between O3 concentration and its
precursors (as illustrated in Supplementary Fig. 21). Furthermore,
excluding the satellite observations of UVI, NO2 and HCHO leads to a
significant reduction in model accuracy, as shown by the site-based
and hour-based validations (Supplementary Figs. 22 and 23). This
suggests that O3 characteristics cannot be accurately extracted from
time, spatial, or meteorological features alone without satellite
observations.

Assessing the O3-associated premature deaths
We estimate premature respiratory mortality attributable to short-
termand long-termO3 exposure using the following equation (Eq. (6)),
which has been widely used to estimate annual O3-related mortality44.

ER = exp c� c0
� �

×β
� �� 1

� �
× 100% ð6Þ

ΔMort =Mort ×BMRd ×pop× ð1� exp � c� c0
� �

×β
� �Þ ð7Þ

Where ER refers to the increased relative risk of cause-specific (disease
d) attributable to the change of O3 concentration, ΔMort is the excess
death due toO3 exposure, BMR is the baselinemortality rate of disease
d, pop is the resident populated in the calculated region, β is the
concentration response factor which indicates a 10μg/m3 increase in
MDA8-O3 (daily for short-term and annual average for long-term), c is
the O3 concentration in a specific metrics, c0 is the baseline
concentration that causes O3-associated health effect. As with any
study of air pollution impacts, the quantification of the premature
mortalities is sensitive to the specific choiceof concentration-response
function. To prevent systemic errors in disparate studies, cross-
sectional comparisons of data on O3-induced fatalities across different
indicators were solely made from the same study. In this study, we
obtained the β from Sun’s research (MDA8, for each season)44 for
short-termO3 risks assessment and Turner’s research for long-termO3

risk analysis5. It is important to note that, the O3-associated risks are
primarily significant during the warm seasons (April to October) as
indicated in previous studies45,65 our analysis focused exclusively on
addressing O3 risks during this period. The baseline O3 concentration
is selected to be 65μg/m3 based on health studies in China and the
WHO guideline66,67. To maintain the consistency with the health
assessment in China, selection of baseline mortality rate of specific
disease and the population distribution, are obtained in the China
National Disease Surveillance Points (DSP) and by Worldpop,
respectively.
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Both mortalities by retrievals based on GEMS and TROPOMI are
calculated based on the O3 short-term risk of mortality from random-
effects meta-analysis and large-scale prospective study5,44. Using the
proposed O3 concentration retrieval model, we generated the mor-
tality maps with a spatial resolution of 0.05° × 0.05° (as shown in
Supplementary Fig. 24) based on Eq. (7). Since mortality is typically
assessed on a provincial scale or national scale, provincial statistics
(calculated by summing all grids within each province) are provided
and compared in this study.

The contrast of O3 exceedance in rural and urban regions shows
difference trends in short-term and long term. For short-term O3

exposure, the urban-rural contrast is discovered to be less significant,
as the overestimation in urban regions (20.1%) is higher than in rural
regions (15.3%). On the contrary, for long-term O3 exposure, urban-
rural contrast is underestimated, as the overestimation level of O3

exceedance in urban regions (2.1%) is significantly lower than in rural
regions (9.1%). It should be noted that, even though the long-term O3

exceedance showsmuch less deviations in urban and rural regions, the
associated health risks are greatly extended, mainly due to the higher
response factor of long-term health risks than short-term risks.
Therefore, it suggests that, compared with long-term risks, short-term
O3 risks would be more sensitive to O3 concentration trends.

Data availability
The GEMS satellite datasets are retrieved via https://nesc.nier.go.kr/.
The site-monitored ozone concentration is obtained from https://
quotsoft.net/air/. The meteorological datasets are downloaded from
https://cds.climate.copernicus.eu/. The generated hourly-level ozone
concentration is available at: https://doi.org/10.6084/m9.figshare.
2653799868. Figures containing maps are based on the standard map
with the drawing review No. GS (2016) 1600 downloaded from the
Ministry of Natural Resources of China. The basemap is not modified.

Code availability
The data of hourly-level ozone generated based on GEMS used in this
study are available in the database under accession code at https://
zenodo.org/records/1494764069.
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