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Phenotypic changes in the morphology and internal organization of cells can

indicate perturbations in cell functions. Therefore, imaging-based high-
throughput phenotypic profiling (HTPP) applications such as Cell Painting
(CP) play an important role in basic and translational research, drug discovery,
and regulatory toxicology. Here we present the Cell Painting PLUS (CPP) assay,
an efficient, robust and broadly applicable approach that further expands the
versatility of available HTPP methods and offers additional options for
addressing mode-of-action specific research questions. An iterative staining-
elution cycle allows multiplexing of at least seven fluorescent dyes that label
nine different subcellular compartments and organelles including the plasma
membrane, actin cytoskeleton, cytoplasmic RNA, nucleoli, lysosomes, nuclear
DNA, endoplasmic reticulum, mitochondria, and Golgi apparatus. In this way,
CPP significantly expands the flexibility, customizability, and multiplexing
capacity of the original CP method and, importantly, also improves the
organelle-specificity and diversity of the phenotypic profiles due to the sepa-
rate imaging and analysis of single dyes in individual channels.

M Check for updates

Phenotypic screening using imaging-based high-throughput pheno-
typic profiling (HTPP) facilitates the efficient extraction and analysis of
a broad range of cellular phenotypes induced by compounds or
genetic perturbations in basic and translational research, drug dis-
covery, and regulatory toxicology'>. The HTPP concept is essentially
based on the assumptions that changes in morphology and organiza-
tion of sub-/cellular structures can indicate perturbations in cell
functions and that compounds with similar mode-of-action (MoA)
deliver similar phenotypic profiles.

Cell Painting (CP) is a widely utilized HTPP method for muilti-
plexed staining and analysis of subcellular compartments and orga-
nelles including nuclear DNA, cytoplasmic RNA, nucleoli, endoplasmic
reticulum (ER), actin cytoskeleton (Actin), Golgi apparatus (Golgi),
plasma membrane, and mitochondria (Mito)*’. The CP method
involves staining of cells with fluorescent dyes and subsequent high-
content imaging to generate multidimensional image datasets. Those
images are fed into automated image and data analysis routines that
extract quantitative information about sub-/cellular morphological
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features for generation of morphological profiles barcoding com-
pound activities or genetic perturbations®. Thus, unlike many other
targeted bioassays that measure specific, expected phenotypic
responses of cells to perturbations in cellular functions®'®, CP enables
the generation of broad phenotypic profiles at single-cell resolution in
an untargeted manner. This way, CP supports the identification of
compounds or genetic perturbations with similar MoA in a predefined
cellular context as well as the identification of distinct cell type-specific
activities.

Leveraging its high-throughput screening (HTS) capacity, CP has
already been used in the context of hazard assessment of industrial
chemicals to generate bioactivity profiles for more than 1,000 indus-
trial chemicals in human U20S osteosarcoma cells, which have been
taken up into the public U.S. EPA CompTox Chemicals Dashboard"*%
Moreover, the Joint Undertaking for Morphological Profiling (JUMP)-
Cell Painting Consortium® generated the currently largest dataset of
images and phenotypic profiles for more than 135,000 (pharmaceu-
tical) compounds and genetic perturbations including over-expression
and knockout of genes using CRISPR-Cas9 in U20S cells'**, which are
publicly available through the Cell Painting Gallery. This work is now
being followed up by the OASIS Consortium'®, which uses hepato-
toxicity as a use-case for combining and benchmarking phenomics,
transcriptomics, and proteomics data obtained from U20S or primary
human HepaRG liver cells against existing rat and human in vivo data
to increase confidence in the physiological relevance of the cellular
responses measured by CP.

The standardization of CP needed for those large-scale HTS pro-
jects is, however, also accompanied by a strong tendency to examine
only a scarce number of different cell types under sub-confluent
conditions, which arguably represents advantageous conditions for
robust spatial imaging. However, this also limits the physiological
relevance and mechanistic diversity of available phenotypic profiling
datasets, with biologically more diverse cell culture conditions being
mainly applied only in more specialized, smaller-scale screening
studies”, thereby leaving cell type-specific (e.g., nuclear hormone
receptor pathway-mediated) responses rather unattended. Moreover,
CP was designed for cost- and time-efficient HTPP using a fixed set of
dyes for selected subcellular compartments and organelles acquired in
typically four to five imaging channels with the commonly used high-
content imaging systems**°, To maximize HTPP capacity while
maintaining a very high information density, signals from two CP dyes
are often intentionally merged in the same imaging channel (i.e.,
RNA +ER and/or Actin+Golgi)**"**7-2 accepting the trade-off that
this optimization may compromise the organelle-specificity of the
phenotypic profiles.

To complement the versatile HTPP methods with additional
options for addressing more MoA-specific research questions, we
therefore developed the Cell Painting PLUS (CPP) assay. CPP sig-
nificantly expands the flexibility, customizability, and multiplexing
capacity of the original CP method, and, importantly, also improves
the organelle-specificity and diversity of the phenotypic profiles. In
CPP, an optimized elution buffer enables the iterative staining, elution,
and re-staining of single cells, thereby providing more flexibility in
selecting and combing various fluorescent dyes for diverse subcellular
compartments and organelles to customize the method according to
the specific research questions. CPP also enables fully sequential
imaging of each dye in a separate channel, thereby achieving spectral
signal separation and generation of more specific phenotypic profiles
to gain more precise insights into cellular processes and functional
perturbations. One additional advantage of CPP over CP is, that it can
be adapted to individual needs (e.g., using set of dyes or even anti-
bodies specific to a certain research question). Thus, CPP can indeed
be used as a very specific, customizable screening method that
expands the repertoire of the already existing, valuable HTPP methods
such as CP.

Results

CPP expands the multiplexing capacity of the CP method

Using the hormone-responsive MCF-7/vBOS (abbreviated as MCF-7)
breast cancer cell line, we further developed the original Cell Painting
(CP) method*’ into the Cell Painting PLUS (CPP) assay. When con-
ducting CP in this comparative study, we followed a typical imaging
set-up using four laser lines and captured dyes with largely overlapping
spectral ranges, i.e., RNA/ER and Actin/Golgi (AGP), in the same ima-
ging channel (Fig. 1A). In contrast, in the CPP assay, all dyes were
captured in separate imaging channels, providing more specific
information for these organelles (Fig. 1B). Notably, CPP also included
the additional staining of lysosomes.

With regard to the selection and evaluation of suitable dyes for
CPP, we systematically investigated spectral crosstalk (emission
bleed-through and cross-excitation) and the signal stability of dyes
over time. Emission bleed-through was observed for the RNA dye
and, to a weaker extent, for the DNA dye when excited with the
488nm or 405nm imaging lasers, respectively (Supplementary
Fig.1A). Therefore, each dye was sequentially imaged in the CPP assay
to avoid effects of emission-bleed-through on staining specificity.
The RNA dye also showed some cross-excitation when excited with
the Mito channel laser at 561nm (Supplementary Fig. 1A). This
property of the RNA dye leading to weak emission in the Mito
channel, could not be fully mitigated by adapting imaging routines
but was considered to be minor due to the high signal-to-noise ratio
of the specific Mito signal. However, as a precautionary measure, the
Mito signal was only analyzed in the staining second cycle as sum-
marized below.

All CPP dyes were well detectable over the course of 4 weeks after
staining, but the staining intensities of all dyes remained sufficiently
stable only until day 1 (deviation of less than + 10% compared to day 0)
(Supplementary Fig. 1A). Prominent differences in the relative signal
intensities over time were observed for the Lyso dye (decreasing) and
the ER dye (increasing) already from day 2 after staining. This may be
related to pH-dependent changes in the fluorescence properties of the
dye itself, or due to changes in the binding of the organelle-targeting
moiety. The LysoTracker™ dye accumulates in lysosomes due to their
acidic pH (-4.5-5.0) and is therefore being applied to live cells. In turn,
concanavalin A is used in fixed cells and binds to specific carbohydrate
structures, such as mannose and glucose residues, that are enriched at
the ER. After cell fixation by cross-linking proteins and other cellular
components with paraformaldehyde (PFA), the cellular morphology is
preserved, and the ability of fluorescent dyes to diffuse within the cell
should be significantly limited, but is not fully inhibited. Under the
staining conditions used in this study, the Lyso and ER dyes may take
longer (up to day 2) to fully reach equilibrium. Whereas the signal
intensity of the ER dye is maintained at this plateau, the intensity of
Lyso may have quickly dropped again to lower levels after day 2. This
emphasizes that thoroughly characterizing the fluorescence proper-
ties of the dyes used in the specific experimental setting is crucial for
interpreting the results, especially when using dyes in different cellular
compartments with distinct pH levels, such as in the highly acidic
environment of lysosomes. For that reason, imaging was conducted in
the CPP assay within 24 h after staining to ensure robustness of phe-
notypic profiling data. The concentrations of the CPP dyes and cor-
responding exposure times were chosen to achieve a balanced
compromise between dye cost and total imaging time, while main-
taining an optimal signal intensity range (Supplementary Fig. 1B,
Supplementary Data 1). The dye concentrations used in CPP and in the
original' or recently updated® CP method were similar indicating
comparable screening costs in CPP and CP per single dye used (Sup-
plementary Data 1). Thus, the additional reagent costs of the CPP assay
are mainly due to the inclusion of the Lyso dye (Supplementary Data1),
but may decrease if alternative Lyso dyes compatible with fixed cell
staining become available in the future.

Nature Communications | (2025)16:3857


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-58765-8

A The original Cell Painting method

DNA RNA/ER

~

[T

@]

=

Hoechst 33342 S M 14 Concanav A

Green Fluorescent  Alexa Fluor™ 488
Nucleic Acid Stain

B The novel Cell Painting PLUS assay
Actin

MCF-7

SYTO™ 14
Green Fluorescent
Nucleic Acid Stain

Cell Navigator™ Hoechst 33342
Lysosome Staining

Kit NIR

C Development of the Cell Painting PLUS dye elution buffer
Lyso

150-2,000 2,500-15,000 2,000-12,000

150-2,000

D Cellular morphologies after elution and re-staining

Actin RNA Lyso*

Re-staining

A9

5,000-15,000

150-2,000 2,000-12,000

E CPP iterative staining-elution workflow

Cell Compound  Staining cycle 1

seeding  exposure Live » Cell » Fixed cell dyes

@ @ cell dyes fixation + Permeabilization
| Lyso Actin | RNA
30 min 20 min 30 min

F Application of Cell Painting PLUS staining to various cell lines

Actin

RPTEC

Fig. 1| CPP assay enables multiplexed imaging of cellular structures based on
iterative staining-elution cycles. A, B Representative images and schematic
illustration comparing the original Cell Painting (CP) method to the Cell Painting
PLUS (CPP) assay conducted in MCF-7 cells. Ng;o = 4. Scale bars = 50 um.

C Representative images and corresponding histograms showing single dye stain-
ings before and after elution using the CPP dye elution buffer in MCF-7 cells. Signal
intensity ranges of displayed images are indicated enabling comparison between
channels and to data shown in Fig. 2C. Ng;o = 1. Scale bars = 20 um. D Representative
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images and corresponding histograms showing cellular morphologies after elution
and re-staining of MCF-7 cells shown in (C) using the same dyes (* except for live-
cell dyes). Signal intensity ranges of displayed images are indicated enabling
comparison between channels and to data shown in (C). Ng;, = 1. Scale bars =

20 um. E Schematic workflow outlining the CPP staining and elution procedure.

F Representative images showcasing the application of CPP staining to U20S,
HepG2, and RPTEC cells. Ng;, = 4. Scale bars = 50 um.
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CPP enables iterative staining-elution cycles using an efficient
dye elution buffer

To allow iterative staining of cells, we developed a dye elution buffer
that efficiently removed the staining signals but preserved sub-
cellular compartment and organelle morphologies (Fig. 1C, D). The
development and optimization of suitable elution buffers for each
dye involved extensive testing of various buffer components and
parameters in combination including different pH, reducing agents,
chaotropic agents (ionic strength), temperatures, and elution times.
The optimal elution buffer compositions for each dye are summar-
ized in Supplementary Data 1 to guide other laboratories in imple-
menting and customizing their own CPP assay depending on their
specific needs. Notably, the CPP elution buffer (0.5M L-Glycine, 1%
SDS, pH 2.5), which was used in this study for all phenotypic profiling
screens, was designed to efficiently remove the signals of all dyes
except for the Mito dye (Fig. 1C). This was intended to be able to use
the Mito channel in the image analysis workflow as a reference
channel for combination (registration) of individual image stacks
from multiple staining cycles into a single multi-channel image stack
(Fig. 2B). Notably, the final CPP elution buffer demonstrated superior
efficacy for dye elution in comparison to other published buffers?*~°
that were used for antibody elution (Supplementary Fig. 1C). Thus,
the CPP elution buffer provided not only an efficient, but also a time-
and cost-effective elution procedure in the CPP protocol (Supple-
mentary Data 1).

To investigate whether the CPP elution step may influence
subcellular compartment and organelle morphologies or interfere
with dye binding, we re-stained the fixed cells of staining cycle 1 after
elution with exactly the same dye in a staining cycle 2, except for the
live-cell Lyso and Mito dyes. All dyes but not the Actin dye could be
re-stained and the respective morphologies of subcellular compart-
ments and organelles were preserved (Fig. 1D). The Mito dye was not
eluted and showed very comparable signal intensities in staining
cycles 1 and 2. Overall signal intensities of some re-stained dyes
slightly differed between the two staining cycles. Regarding the
absence of Actin dye signals after re-staining, testing of other Phal-
loidin dyes and an anti-Actin antibody revealed that the CPP elution
step might generally inhibit the binding of Phalloidin-based dyes to
actin fibers rather than disrupting the actin cytoskeleton (Supple-
mentary Fig. 1D). Thus, in the final CPP staining-elution workflow
used in this study (Fig. 1E), the two live-cell Lyso and Mito dyes were
included in staining cycle 1 along with the Actin dye (to avoid re-
staining issues after elution) and the RNA dye (slightly higher elution
efficiency than the Golgi dye). Accordingly, the DNA, Golgi, and ER
dyes were assigned to staining cycle 2 and analyzed together with the
remaining Mito signal (to avoid cross-excitation of the RNA dye)
from cycle 1.

To demonstrate transferability of this staining-elution approach
and the broad applicability of the CPP assay, we tested three addi-
tional human cell lines that are widely used as surrogate models for
relevant target organs including the U20S (bone) and HepG2 (liver)
cancer cell lines as well as post-mitotic, differentiated RPTEC-TERT1
(abbreviated as RPTEC) primary kidney cells (Fig. 1F). For each cell
line, the seeding density was optimized to achieve ~-80% confluency
for HepG2 and U20S cells or full confluency for MCF-7 and RPTEC at
the time of imaging. For the epithelial cell lines MCF-7 and RPTEC,
cells were imaged at full confluency to more closely reflect
physiologically-relevant conditions resulting in a smaller size and
more compact cytoplasm as compared to HepG2 and U20S cells,
which were less densely seeded and grew more flatly to maintain
comparability to publicly available CP data. The adaptation of CPP to
different cell lines did not need any further modifications to the
staining protocol or the image/data analysis pipelines, indicating the
versatile applicability of CPP to diverse cellular and biological
contexts.

Barcoding compound effects using CPP expands the diversity of
phenotypic profiles

In order to compare CPP with the original CP method, we established a
reference compound plate comprising 13 diverse compounds (drugs,
biotoxins, plant alkaloids, and industrial chemicals) that target rele-
vant organelles and cell functions”*"*, as well as two compounds
(saccharin and sorbitol) serving as negative controls along with the
DMSO solvent control (Fig. 2A). Eight concentrations (at half-log
dilution) of each reference compound were distributed across the
reference compound plate in three blocks of technical replicates and
alternating order to evaluate potential plate position effects (Supple-
mentary Data 2).

Using this reference compound plate, we conducted small-scale
CPP screens with 48 h exposure time in MCF-7, HepG2, U20S, and
RPTEC cells. For direct comparison of the CPP profiling data with CP,
we also conducted the reference compound screen using the CP
method in MCF-7 cells to explore its specific added value for phe-
notypic profiling. The data was analyzed using customized image and
data analysis workflows as outlined for CPP in Fig. 2B. The CPP and CP
image analysis procedures included the registration and segmenta-
tion of images (Supplementary Fig. 2A), followed by the extraction of
cell features using the commercial Harmony software (Revvity Inc.)
(CPP/Harmony: 894 features, CP/Harmony: 558 features), repre-
senting the primary image analysis software that was applied to all
cell lines in this study. For comparison, we additionally analyzed CPP
images in MCF-7 cells in an analogous way using the open-source Cell
Profiler software* (CPP/Cell Profiler: 3648 features) as an alternative
image analysis method. The extracted cell features were subse-
quently fed into the data analysis procedure, which included the
standardization and visualization of the cell feature data using the
open-source KNIME process automation software*® to generate
compound activity profiles (see Fig. 2) and conduct benchmark
concentration (BMC) modeling (see Fig. 3). For CPP/Cell Profiler,
standardization of cell features was followed by an additional step of
feature selection/reduction to align with common practice*’ (CPP/
Cell Profiler: 345 selected features).

The compound activity profiles of the CPP reference compound
screen revealed distinct concentration-dependent activity patterns for
the four cell lines (Fig. 2C, Supplementary Fig. 2B, Supplementary
Data 3, Supplementary Data 12-18). Very strong cellular responses
spanning multiple channels often correlated with cytotoxic con-
centration ranges, i.e., compound concentrations that led to a reduc-
tion of the relative cell number below 53% compared to the DMSO
solvent control (Fig. 2C, Supplementary Data 8-11). This 53% threshold
for cytotoxicity was set to ensure that the maximum non-cytotoxic
concentrations of the reference compounds were identical between
CPP and CP in order to enable direct comparisons of the two methods
in MCF-7 cells. The four cell lines showed different cytotoxicities for
the reference compounds, with post-mitotic RPTEC cells being the
least sensitive. As expected, the activity profiles of the negative control
compounds saccharin and sorbitol did not indicate relevant activities
across all cell lines in CPP and CP (Fig. 2C, D, Supplementary Fig. 2B).
Notably, the activity profiles of fluphenazine, siramesine as well as
tetrandrine displayed prominent effects in the Lyso channel at non-
cytotoxic concentrations across all cell lines. Further, the weaker
activity profile of tetrandrine at the highest tested concentration
indicated potential compound solubility issues across all cell lines. The
resulting lower exposure levels were also reflected in the corre-
sponding relative cell number plots (Supplementary Data 3-6), con-
sequently leading to the exclusion of this concentration from
subsequent analysis. The profile of cytochalasin D was pronounced in
the Actin channel and the profile of berberine chloride in the Mito
channel, particularly in HepG2, U20S, and RPTEC cells. Overall, CPP
and CP showed largely consistent compound activity profiles for the
DNA and Mito channels common to both methods (Supplementary
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A Reference compounds used to benchmark the CPP assay

Compound C;,']f,; Compound type | Mode-of-action Registration
Berberine 100 Plant alkaloid | DNA topoisom. | & Il inh. | G1/S & G2/M cell cylce arrest g Combination I;Cb'";
chloride | Mitoch. complex 1 inhibitor | dysfunction D ofcycle 142 Lyso
Brefeldin A 0.1 Fungal toxin | ER/Golgi protein trafficking disruptor g imagesintoa DNA
CytochalasinD 70 Fungal toxin | Actin ization inhibitor & disruptor = single multi-  Golgi
Etoposide 10 Cytotstatic drug | DNA topoisomerase Il inhibitor | G2/M cell cylce arrest channel stack
Fluphenazine 10  Antipsychotic drug | Acid sphingomyelinase inhibitor | Lyso dysfunction
Fulvestrant 0.1 Cytotstatic drug | Estrogen receptor inhibitor | G1/S cell cylce arrest
Latrunculin B 10 Marine toxin | Actin polymerization inhibitor & microfilament disruptor Standardization
Nocodazole 1 Anti-mitotic drug | Microtubule inhibitor | G2/M cell cylce arrest
pamyci 10 ive drug | mTOR inhibitor | ER/Golgi/Mito dysfunction Calculation of
Rotenone 10 Insecticidal chemical | Mitoch. complex 1 inhibitor | dysfunction «g robust z-scores
Saccharin 100 Artificial sweetener | Negative control compound QO foreach feature
Siramesine 10 Anxiolytic drug | Sigma-2 receptor agonist | Lyso dysfunction atall tested 5 ~
Sorbitol 100 Sugar alcohol | Negative control compound ;:or;_csn-
itinib malate 70 iangiogenic drug | Multi-targeted tyrosine kinase inhibitor rations  features
Tetrandrine 30 Plant alkaloid | Calcium channel blocker | Lyso/Golgi dysfunction

B CPP image and data analysis workflow

Segmentation Feature extraction

Cell Number
Identifi- Nucleus Determination Morphology

. . Intensity

cation Nucleoli of organelle/ Symmet
of cell Cytoplasm compartment ccm;m"esrsy
regions Membrane features Distribution

Ring Texture
Profile generation ~ BMC modeling
,Barcode-like“ Determination of
visualization of robust benchmark

z-scores in compound
activity profiles for

concentrations (BMCs)
for each feature

each feature at all and feature 2
tested concentrations category categories
> Figure 2 > Figure 3

C Compound activity profiles (robust z-scores, feature-level) of all reference compounds at eight tested concentrations in MCF-7 cells

CPP | MCF-7

Lyso DNA

Go@

Actin

Berberine chloride
Brefeldin A
Cytochalasin D
Etoposide
Fluphenazine
ulvestrant
Latrunculin B
Nocodazole
Rapamycin
Rotenone
Saccharin
Siramesine
Sorbitol
Sunitinib malate
Tetrandrine

e

CP | MCF-7

! TR

1w

RNA/ER
s

RNA

T

Fwwn B L wew .... x

LR LT TR T TEWT NG

Berberine chloride
Brefeldin A
Cytochalasin D
Etoposide
Fluphenazine
Fulvestrant

R

i R
Latrunculin B v

Rapamycin 1|
0o

PPSEPRII | A AT

S e T

Rotenone

i

Saccharin
Siramesine
Sorbitol
Sunitinib malate
Tetrandrine

Al
|
|
|
|
|
|
Nocodazole }
|
|
|
|
|
1

AR IR R

PRI w LLLLL Ll

—— - em—
-4 -2.77-154-0.31 0.92 2.15 3.38 4
Robust z-score

LRI

TRV e e

L WIS

e e -

L O T ]

Cxtotoxicitx

Berberine chloride 7 ¢ A A Al
Brefeldin A Y Y | Al 1
CytochalasinD ¥ Y Al Al Al
Etoposide 1 1 | | Al
Fluphenazine 1 1 | Al Al
ulvestrant 1 Y | | Al
LatrunculinB 7 ¥ Al Al Al
Nocodazole Y 1 A A Al
Rapamycin 1 Y Al Al M
Rotenone Y Y A| A| Al
Saccharin 1 | Al Al
Siramesine 7 1 A| A| Al
Sorbitol - 1 Y | Al 1
Sunitinib malate 1 Y Al A| Al
Tetrandrine 1 1 Al Al 1
CPPCP CPP CPP CPP

MCF-7 HepG2 U20S RPTEC

D Violin plots (robust z-scores, feature-level) of selected reference compounds at eight tested concentrations in different cell lines

Actin RNA Lyso DNA Golgi ER
- o — = == = - = — ——
CPP | MCF-7 £ : b 3 3 3 i K3
Sorbitol E= i = £ : = £ =
CPP | MCF-7 I = = = = = =
Tetrandrine 1: ;‘ ? ’:‘ § ? -E
E i 1 3 $ =
CPP | HepG2 ‘
Cytochalasin D T R = = =
: = E3 F =
CPP | U20S = 3 = = =
Berberine chloride 22 £ ‘ T 5 b
LSz $ $ 3 = b
DNA Mito
- e
CP | MCF-7 = = ————
Tetrandrine ‘ * H 4 277154031 0.92 2.15 3.38 4
3 1 Robust z-score
E Evaluation of CPP assay robustness F Reproducibility of robust z-scores in MCF-7 cells
Intra-plate/technical variability CPP | MCF-7 CP | MCF-7
osz asa [am o asa] 1 [ o5 o [os oai[os] AllRep
| Jos BRep1
05001 o BRep2 >
2> o BRep3
= BRep1 va ase] a2 o o] BRep4 |8
o 03|03 TRep1
g ase| 0 08 0ss o TRep2
> 0509 0ot o TRep3
3 BRep2 AllRep
2 BRep1
3 o704 03 032 02| BREp2
2 BRep3 | X
3 BRep3 o | BRep4 |2
% 207036 oson| TRepT
2 200 ol TRep2
2 BRep4 TRep3
£ ep >POODWAAADDLO LSS
0 02 04 06 08 1 ?@555555?5@5@??@
Pearson correlation TRV ORINGT ARG RIS
TRep1 TRep2 TRep3 score 20X 40X

Fig. 2C), with the Mito activity profiles of fluphenazine and tetrandrine
showing higher robust z-score magnitudes in CP than in CPP
(Fig. 2C, D, Supplementary Fig. 2C). In addition to the observed Lyso-
related MoA of the two compounds (see Fig. 2A), those Mito activities
were also consistent with published CP profiles of MCF-7 cells"”.
Notably, tetrandrine also induced prominent responses in the RNA/ER
and AGP channels in CP, which could be more specifically allocated to

the ER and Golgi channels, respectively, when using CPP (Fig. 2D). This
observation is one example of the usefulness of separating the ER and
RNA channels, which provides qualitatively different information. This
is further supported by the direct comparison of the features extracted
for all compounds from only the cytoplasmic region of the RNA and ER
channels (CPP) with the merged RNA/ER channel (CP) (Supplementary
Fig. 2C). Together, these examples illustrate that CPP expands the
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Fig. 2 | Barcoding compound effects across different cell lines using CPP.

A Reference compounds to benchmark CPP including maximum exposure con-
centrations and available information on compound type and MoA”7>""*,

B Schematic workflow outlining the CPP image and data analysis procedures.
Details about the CP and CPP image analysis pipelines (Harmony) are included in
the Supplementary Data 6, 7. C Compound activity profiles showing activities of all
reference compounds at eight tested concentrations in MCF-7 cells. Heatmaps
visualize robust z-scores (median of all Nree, =3 and Npio = 4) for each feature
(feature-level) extracted from CPP and CP images captured at 20x magnification.
Features are ordered from left to right according to imaging channels (colored
bars), with generic (general morphology not related to a specific channel) features
(grey bar) shown first. Grey triangles indicate exposure concentration ranges in
decreasing order from top (high) to bottom (low), with magenta part of triangles
indicating cytotoxic ranges. Detailed plots showing relative cell numbers and
cytotoxic concentration ranges observed for each reference compound and cell

line are included in the Supplementary Data 8-11. Note that the compound activity
profile of tetrandrine indicated insufficient exposure levels at the highest com-
pound concentration. High-resolution versions of the heatmaps are included in the
Supplementary Data 12-15. D Violin plots showing activities (distribution of robust
z-scores of all features per imaging channel) of selected reference compounds at
eight tested concentrations in selected cell lines. E Layout of technical (TRep) and
biological (BRep) replicate plates used in the small-scale reference compound
screen for CPP and CP across all cell lines. F Pearson correlation matrices for MCF-7
cells comparing intra-plate/technical and inter-plate/biological variability of robust
z-score data (at non-cytotoxic concentrations) for CPP and CP images taken at 20x
and 40x magpnification. The non-cytotoxic concentrations identified for 20x mag-
nification were also applied to the 40x magnification for direct comparisons of the
data. AllRep median of all Nyec, =3 and N, =4; BRep median of all N, =3 for
each biological replicate, TRep Median of all Np;, =4 for each technical replicate.

multiplexing capacity of the original CP method and, importantly,
expands the diversity of the phenotypic profiles.

CPP is a robust assay for generating reproducible phenotypic
profiles

To assess the robustness of the CPP assay, we analyzed the repro-
ducibility of the robust z-scores that were determined for the three
intra-plate/technical (TRep) and the four inter-plate/biological
(BRep) replicates in the CPP reference compound screen (Fig. 2E). All
cell lines generally showed high Pearson correlation scores in the CPP
assay for 20x or 40x magnification, which were similar to the Pearson
correlation scores obtained when using the CP method in MCF-7 cells
(Fig. 2F; Supplementary Fig. 3A). To directly compare the total vari-
abilities of CPP across the four cell lines and between CPP and CP in
MCF-7 cells, we further summed up the relative differences of the
robust z-scores of all features for each individual TRep, BRep, and
AllRep (Supplementary Data 4). The total variabilities between all
replicate experiments of each cell line were similar. Those results
were consistent with published CP performance metrics'. Notably, in
MCEF-7 cells, the CPP assay showed overall smaller total variabilities
compared to the CP method. Our CP and CPP analyses further show
that the coefficient of variation of feature data between cells depends
mainly on the number of cells being imaged but not on the number of
imaging fields per se, indicating that capturing ~ 2500 cells is a suf-
ficient number to ensure statistical robustness of the data (Supple-
mentary Fig. 1F). In conclusion, running the assay in single technical
but at least four biological replicates using 20x magnification was
also preferred in CPP to ensure its robustness, reproducibility, and
applicability to HTPP platforms.

BMC modeling enables investigation of concentration-
dependent phenotypic responses

To determine the specific concentrations at which the reference
compounds elicited phenotypic responses, we used the benchmark
concentration (BMC) modeling approach as previously described for
CP3M217_For each feature, the individual BMC corresponded to the
concentration at which the phenotypic response exceeded the defined
benchmark response (BMR) cutoff as described before*s, For example,
fulvestrant treatment induced clear concentration-dependent effects
for specific Mito channel features (Fig. 3A). Again, the Pearson corre-
lation scores of the BMC values obtained for CPP and CP in MCF-7 cells
were very similar, with all cell lines generally showing lower Pearson
correlation scores for the BMC values than the robust z-scores (Fig. 2F;
Fig. 3C; Supplementary Fig. 3A, B), indicating that the BMC curve fit-
ting increased data variability to some extent. To facilitate analysis of
the BMC modeling data, we further assigned the individual features to
biologically meaningful feature categories representing specific com-
binations of channels, cell regions, and analysis modules (Supple-
mentary Data 5) in a similar way as previously described for CP31>17,

Using the BMC data and the feature category assignments, we
visualized the relative number (proportion) of features that showed
significant responses in each feature category. Those Proportion BMC
profiles enabled direct comparison of the relative compound activities
within and between the four cell lines (Fig. 3B, Supplementary Fig. 3C).
Just as described for the compound activity profiles (Supplementary
Fig. 2C), the Proportion BMC profiles were generally similar between
CPP and CP (Fig. 3B). Notably, this comparison at the feature category
level was hampered due to the differences in the number of imaging
channels and number/type of extracted features. Several compounds
such as rotenone showed broad activities across all feature categories
and cell lines, with a large number of single features showing a sig-
nificant response particularly in MCF-7 and RPTEC cells. Other com-
pounds also showed broad but more cell-line specific activities. For
example, the cytostatic drug etoposide showed activities only in pro-
liferating HepG2, U20S, and MCF-7 cancer cell lines but not in the post-
mitotic, differentiated RPTEC primary kidney cells, which is in line with
studies showing that etoposide sensitivity decreases with cellular
differentiation*’. Notably, treatment with the cytostatic drug fulves-
trant resulted in phenotypic responses exclusively in MCF-7 cells
reflecting its function as a specific inhibitor of the estrogen receptor
alpha signaling pathway, which is a specific trait of the MCF-7 breast
cancer cell line*. In addition to the described broad activities, the
Proportion BMC profiles also enabled the identification of compounds
showing activities that were more specific to different feature cate-
gories. For example, treatment with siramesine and tetrandrine caused
pronounced responses in Lyso-related feature categories in MCF-7,
HepG2, and U20S cells, consistent with the activities described for
these compounds**2, These data illustrate that the visualization of
relative compound activity profiles using biologically meaningful fea-
ture categories can support the characterization of the specific MoA of
compounds.

To further distinguish between low-concentration (most sensi-
tive, potentially primary) and high-concentration (less sensitive,
potentially secondary) compound effects, we further investigated the
specific sequence of feature category responses as well as the max-
imum sizes of those effects for CPP (Fig. 3D; Supplementary Fig. 4A-0)
and CP (Supplementary Fig. 5A-0) using accumulation and magnitude
plots as previously described for CP*'"'*7, As illustrated by the exam-
ple of fulvestrant (Fig. 3D), each data point in the BMC accumulation
plot represents a different feature category in a ranked manner to
enable the straightforward identification of sensitive feature cate-
gories that showed responses at lower concentrations. The corre-
sponding BMC magnitude plot provides more detailed information
about the BMCs and the effect sizes for all individual features of those
feature categories that were displayed in the accumulation plot. For
fulvestrant-treated MCF-7 cells, the BMC accumulation plot of CPP
revealed concentration-dependent responses for 56 of the 62 feature
categories, concordant with its broad activity shown in the Proportion
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A Representative images of phenotypes
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BMC profile (Fig. 3B). In particular, CPP was able to distinguish
between RNA and ER features showing maximum effect sizes, high-
lighting the advantage of separating RNA and ER channels to more
precisely determine different MoA. The following three use cases
describe some examples of applying the CPP assay and the described
data analysis, visualization, and interpretation approaches to investi-
gate specific research questions, thereby illustrating its added value.

Use case 1: Identifying changes in number and morphology of
nucleoli

Nucleoli are dynamic nuclear condensates that play a pivotal role in
ribosome biogenesis and serve as important stress sensors that, when
disrupted, trigger pS53-dependent cell cycle arrest. Changes in
nucleoli number and/or morphology are associated with cancer, neu-
rodegenerative disorders, and aging, thereby providing a relevant
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Fig. 3 | Investigating substance specific effects using benchmark concentration
(BMC) modeling. A Representative images and BMC fitting curves showing ful-
vestrant effects on exemplary Mito features in MCF-7 cells. Each data point

(Ngiol = 4) represents a median of robust z-scores from Nrecn = 3. The light grey area
shows the baseline activity (DMSO) + SD. The horizontal solid black lines show the
benchmark response (BMR) cutoff, with BMR =1.349*SD (according to**) and
SD=1.4826*MAD of the corresponding DMSO solvent control wells. The feature
BMC is the concentration at which the fitted curve intersects the specific BMR. The
light green area indicates the uncertainty range of the determined BMC value. Scale
bars = 20 um. B Proportion BMC profiles showing relative activities of all reference
compounds in MCF-7 cells. Heatmaps visualize the proportion of single features
(from CPP and CP, 20x magnification) of a specific feature category that show
significant (p < 0.05, one-sided Student’s t-test) responses (i.e., low feature BMCs)
to treatment with a particular reference compound compared to all compounds

that were tested. The regions + modules panel of CPP is shown in Fig. 4B. Deter-
mination of single feature BMCs from Nrech =3 and Ng;o; =4 as described in (A).
C Pearson correlation matrices for MCF-7 cells comparing intra-plate/technical and
inter-plate/biological variability of BMC data as described in Fig. 2F. Note, BMC™
values were set to the specific maximum non-toxic concentration of each com-
pound. D Representative BMC accumulation plot and magnitude plots showing the
concentration-dependent sequence (rank) and maximum effect size (normalized
magnitude, i.e., the maximum robust z-score) of fulvestrant effects on feature
categories and single features (from CPP and CP, 20x maghnification) in MCF-7 cells,
respectively. Each feature category BMC in the BMC accumulation plot is the
median of all single feature BMCs of the same category. Determination of single
feature BMCs from Nrech, = 3 and Np;o = 4 as described in (A). Feature categories for
which less than 30% of the included features show a response are excluded from
the plots.

biomarker and therapeutic target™. Although being visualized by CP in
the RNA channel, nucleoli have not yet been directly analyzed as a
distinct cellular compartment in CP. Therefore, nucleoli were added in
this study to the CPP and CP image and data analysis pipelines to
profile potential compound effects on nucleoli-related features (Sup-
plementary Data 3, Supplementary Data 5) such as changes in nucleoli
numbers, which already served in genetic screens as a readout to
identify regulators of ribosome biogenesis and cell cycle
progression®>*,

In CPP, nucleoli were clearly detectable in the RNA channel based
on their spot-like structure in the nucleus region (Fig. 4A), with MCF-7
and RPTEC exhibiting ~ 2 +1, HepG2~3+2, and U20S ~ 4 + 2 nucleoli
on average per cell. Rapamycin, a highly specific mTOR inhibitor,
caused a strong effect on the number of nucleoli per cell (Fig. 4A;
Supplementary Fig. 41), consistent with the role of the mTOR pathway
in controlling cell cycle progression through regulating ribosome
biogenesis and nucleoli numbers®>. The compound activity plots
(Fig. 4A) and BMC accumulation plots (Fig. 4C) revealed that rapa-
mycin showed activities already at lowest concentrations (3 nM)
among the tested reference compounds in MCF-7, HepG2, and U20S
cells, but interestingly no relevant responses in RPTEC cells. As the
lowest tested concentration of rapamycin was still too high for calcu-
lating a reliable BMC for the nucleoli number feature category, it was
set to the next lower concentration (as described in the methods
section). In fact, this suggests that nucleoli responses to rapamycin will
be observed even in the sub-nanomolar range, corresponding to the
published range of the IC50 value.

Furthermore, several perturbations in cell functions, such as
impairment of the actin cytoskeleton or generation of reactive oxy-
gen species (ROS), can cause changes in nucleolar number or
morphologies and thus alter nucleolar function or trigger nucleolar
stress response mechanisms>~¢, Indeed, treatment with latrunculin
B, a disruptor of the actin cytoskeleton, led to a clear increase of
nucleoli numbers in MCF-7 cells but to a decrease in RPTEC cells
(Fig. 4A-C, Supplementary Fig. 4G). Other compounds such as the
Mito inhibitor rotenone, which led to mitochondria-mediated ROS
generation in cell culture models*’*®%, caused prominent responses in
both number and morphology of nucleoli (Fig. 4A-C, Supplementary
Fig. 4)). Particularly in RPTEC and MCF-7 cells, rotenone treatment
led to the observation of enlarged nucleoli signals at high but non-
cytotoxic concentrations, which actually matched the signals in the
DNA channel, indicating a severe disruption of the nucleolus
structure.

In summary, addition of nucleoli as a distinct cellular compart-
ment to the CPP and CP image and data analysis pipelines enabled
comprehensive phenotypic profiling of compound effects on nucleoli
and, thus, may provide relevant insights when studying mechanisms of
ribosome biogenesis and the nucleolar stress response in basic
research. Considering that increased number and size of nucleoli has
been shown to correlate with elevated cancer cell proliferation and

poor prognosis*’, this may further support development of biomarkers
and therapeutic intervention in a clinical context.

Use case 2: Differentiating between Actin and Golgi responses at
different effective compound concentrations

The actin cytoskeleton is a dynamic network of bundles of actin fila-
ments (F-actin) that controls the shape and motility of cells but also
determines the morphology of cellular organelles such as the Golgi
apparatus and mitochondria®® 2, Cytochalasin D (fugal biotoxin) and
latrunculin B (marine biotoxin) both inhibit actin polymerization and
disrupt actin filament organization, but act through different specific
mechanisms®>®*,

In contrast to the CP method, Actin and Golgi signals were cap-
tured in separate channels in CPP, which enabled the differentiation
between Actin and Golgi responses of cells to compound treatment. In
untreated cells, phalloidin staining revealed the characteristic network
of actin filaments, e.g., with prominent cortical F-actin portions at the
plasma membrane in MCF-7 cells or F-actin bundles forming stress
fibers in U20S and RPTEC cells (Fig. 5A). The corresponding Golgi
staining showed the typical compact Golgi structures in close proxi-
mity to the nucleus in all cell lines, with some weaker signals at the
plasma membrane. Upon exposure to cytochalasin D (Fig. 5A) and
latrunculin B (Supplementary Fig. 6A), the actin cytoskeleton col-
lapsed into intensely stained clumps and aggregates, which was
accompanied by dispersed fragmentation and clumping of Golgi
structures. Notably, these phenotypic changes occurred at different
concentrations in cytochalasin D treated cells, with Actin features
showing responses at lower concentrations than Golgi features, which
was particularly evident in U20S cells (Fig. 5B, Supplementary Data 23).
In cells treated with latrunculin B, separation of Actin and Golgi effects
were not that pronounced and generally occurred at higher con-
centrations (around 1uM) as compared to cytochalasin D (around
0.1-0.3uM) (Supplementary Fig. 6B, Supplementary Data 23). The
BMC accumulation and magnitude plots further indicated a higher
potency of cytochalasin D than latrunculin B with regard to the onset
and the maximum effect size of the observed phenotypic changes of
Actin and Golgi. Concordant with the essential role of the actin
cytoskeleton in mitochondrial fusion and fission®, the BMC plots also
revealed clear effects of cytochalasin D and latrunculin B on Mito
features in both CPP (Fig. 5B; Supplementary Fig. 6B) and CP (Sup-
plementary Fig. 5C, G). Importantly, when using the CP method, the
BMC plots confirmed the effects of cytochalasin D and latrunculin B on
the AGP channel (Fig. 5B, Supplementary Fig. 5G), with the caveat that
differentiation between Actin and Golgi responses at different con-
centrations was not possible. This caveat was also evident when
comparing the total number of BMC features responding to cytocha-
lasin D and latrunculin B treatment in either the AGP channel (CP) or
Actin and Golgi (CPP) in the BMC bar plots (Supplementary Data 23).
Therefore, the specific sequence of these concentration-dependent
responses to compound treatment that can be distinguished with the
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A Representative images of substance effects on Nucleoli (RNA channel) phenotypes and corresponding compound activity profiles
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CPP assay suggest that perturbation of the actin cytoskeleton, e.g.,
caused by cytochalasin D, represents an event at lower concentrations

leading to subsequent secondary effects on other subcellular com-
partments and organelles such as Golgi and Mito.

In order to identify reference compounds with activity profiles
similar to cytochalasin D and latrunculin B, we used Spearman corre-
lation and hierarchical clustering to generate profile similarity plots for

each cell line (Fig. 5C, Supplementary Fig. 6C). These plots show the

1
Median category BMC [uM]

overall similarity of compound effects (robust z-score, feature level,
see Fig. 2C, Supplementary Fig. 2B) at each highest non-cytotoxic
concentration. To enable direct comparison of the compound activity
profiles of CPP/Harmony, CP/Harmony, and CPP/Cell Profiler in MCF-7
cells, the Lyso features were excluded from this analysis as Lyso was
not part of the CP dye set. In MCF-7 cells, the active reference
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Fig. 4 | Identifying changes in number and morphology of nucleoli.

A Representative images (RNA channel) and corresponding compound activity
profiles for nucleoli-related features (part of profiles described in Fig. 2C and Fig.
S2B) showing activities of four exemplary reference compounds on the two feature
categories RNA Nucleoli Number (comprising three features) and RNA Nucleoli
Morphology (comprising five features) at eight tested concentrations (increasing
from left to right, dashed outlines indicating cytotoxic ranges) across four different
cell lines. Representative images for highest non-cytotoxic concentrations (as
indicated by an asterisk below the corresponding concentration under each

heatmap profile) are shown and compared to the DMSO solvent control. Ngjo = 4.
Scale bars = 20 um. B Proportion BMC profiles showing relative activities of all
reference compounds for regions + modules feature categories across four dif-
ferent cell lines as described in Fig. 3B. C Projection of all BMC accumulation plots
using Median category BMC and ranks from 15 reference compounds (Supple-
mentary Fig. 4A-0) showing activities on the RNA Nucleoli Number (green triangles)
and RNA Nucleoli Morphology (grey triangles) feature categories across four dif-
ferent cell lines. Color-coding of reference compounds according to the Proportion
BMC profiles shown in (B).

compounds grouped into three major clusters (#4-6) comprising
compounds with annotated Mito-, Lyso-, and Actin-related MoAs (see
Fig. 2A, Fig. 5C). The “Mito cluster” (#5) comprised three compounds
with the Mito inhibitors berberine chloride and rotenone showing the
highest profile similarity in this group (dashed orange squares), which
was concordant between CPP/Harmony, CP/Harmony, and CPP/Cell
Profiler. In the other cell lines, the two compounds grouped into larger
clusters (Supplementary Fig. 6C). The size of the “Lyso cluster” (#6) in
MCF-7 cells varied more between CPP/Harmony, CP/Harmony and
CPP/Cell Profiler but concordantly included the Lyso modulators flu-
phenazine and tetrandrine, which showed high profile similarities
(dashed red squares). Since Lyso features were excluded from those
plots, the clustering of the fluphenazine and tetrandrine was essen-
tially based on their additional activities on ER and Golgi in CPP or
RNA/ER and AGP in CP, as detailed in case study 3.

Interestingly, despite their common Actin-related MoA, no clear
“Actin cluster” comprising cytochalasin D and latrunculin B was con-
sistently observed in the profile similarity plots of the different cell
lines (Fig. 5C, Supplementary Fig. 6C). This indicates that their overall
compound activity profiles were rather distinct from each other, which
was probably also due to the more pronounced Actin-related
responses of cytochalasin D compared to latrunculin B, as shown in
the corresponding BMC plots (Supplementary Fig. 5C, G) and the BMC
bar plots (Supplementary Data 23). In fact, latrunculin B was part of a
major cluster (#4) along with nocodazole and etoposide in both CPP/
Harmony and CP/Harmony, and showed a higher correlation to the
microtubule inhibitor nocodazole than to cytochalasin D in MCF-7,
HepG2 and U20S cells (dashed cyan squares). In contrast, the clus-
tering of cytochalasin D clearly differed between CPP/Harmony and
CP/Harmony in MCF-7 cells. In CP/Harmony, cytochalasin D was part of
the “Lyso cluster” (#6), with a high correlation to fluphenazine and
tetrandrine that both exerted AGP and prominent RNA/ER responses
as shown by the corresponding BMC bar plots (Supplementary
Data 23, 24). Similarly, cytochalasin D also showed considerable
responses in those two CP channels, which contributed to the
observed clustering. When using CPP/Harmony, those responses of
fluphenazine and tetrandrine could be more clearly separated into
stronger Golgi than Actin and stronger ER than RNA responses (Sup-
plemental material 18 and 19). Importantly, in CPP/Harmony, cyto-
chalasin D showed much stronger Actin than Golgi responses, which
contributed to its clear separation from the other compounds in the
profile similarity plots line (Fig. 5C), which was also the case in HepG2
and U20S cells (Supplementary Fig. 6C).

In conclusion, this case study suggests that separating Actin and
Golgi channels can be beneficial to enhance the organelle-specificity
and diversity of phenotypic profiles for comparative MoA analyses.
The example of cytochalasin D and latrunculin B highlights the need
for generating phenotypic profiling data across a concentration range
and using different analysis methods for detailed MoA analyses. BMC
modeling helps to distinguish low-concentration (primary) from
higher-concentration (secondary) effects. Investigating maximum
effect levels at the highest non-cytotoxic concentrations using profile
similarity plots supports clustering of compounds according to overall
profile similarities but may miss important responses at different
concentrations that contribute to distinct phenotypic profiles.

Use case 3: Elucidating compound effects on lysosomes
Lysosomes are essential cellular organelles responsible for degrada-
tion and recycling of macromolecules and autophagy. They are typi-
cally broadly distributed within cells and can form direct contact sites
with the ER and mitochondria. The morphology, positioning, motility,
and function of lysosomes are closely linked, making them an intensely
studied cellular organelle®. We therefore included lysosomes as rele-
vant organelles in the CPP assay to enable assessment of compound-
induced Lyso phenotypes. We further evaluated the use of siramesine
(accumulating in lysosomes leading to lysosome leakage and altera-
tions in lysosomal pH)*, fluphenazine (involved in hypoxia-induced
cell death leading to lysosome aggregation functional impairment)®,
and tetrandrine (lysosomal deacidification agent perturbing autopha-
gic flux)** as suitable reference compounds for Lyso phenotypes,
which were selected based on their published MoA.

Including Lyso features into the profile similarity plots (Fig. 6A,
Supplementary Fig. 7C) further increased the correlation of the three
“Lyso cluster” compounds tetrandrine, fluphenazine, and siramesine in
all four cell lines as expected. However, in contrast to CPP/Harmony,
those three compounds with annotated Lyso-related MoA (see Fig. 2A)
did not form a separate “Lyso cluster” in the profile similarity plots of
CPP/Cell Profiler, neither for the reduced set of features nor for the
complete set (without feature selection applied) (Supplementary
Fig. 8C). Interestingly, a high profile similarity to the three compounds
was also observed for the multi-targeted tyrosine kinase inhibitor
sunitinib malate and particularly evident in MCF-7 and U20S cells,
where only the addition of Lyso features led to the inclusion of suni-
tinib malate into the “Lyso cluster” in CPP/Harmony but not CPP/Cell
Profiler, indicating a similar Lyso-related MoA. Indeed, exposure of
MCF-7 cells to sunitinib malate, tetrandrine, fluphenazine, and sir-
amesine led to intensely stained clumps and aggregates in the Lyso
channel, accompanied by Golgi and ER disruption (Fig. 6B), which was
also observed for the other cell lines (Supplementary Figs. 7A-10A).
These pronounced Lyso responses were also evident in the corre-
sponding BMC accumulation and magnitude plots, with primarily
texture-related features accompanied with less strong phenotypic
responses across different other organelles (Fig. 6C; Supplementary
Figs. 7B-10B). Lyso responses to tetrandrine, fluphenazine, and sir-
amesine generally occurred at lower concentrations compared to
responses of the other organelles. Notably, this was the opposite in
cells exposed to sunitinib malate, indicating that Lyso responses might
occur as secondary effects. Moreover, the BMC plots further revealed
differences in the magnitude of responses of the four cell lines to
compound treatment, with particularly pronounced effects on ER and
Golgi (Fig. 6C, Supplementary Figs. 7B-10B). However, when using the
CP method, distinction of ER and Golgi responses was not possible
from the combined RNA/ER and AGP channels (Fig. 6C, Supplementary
Fig. 5E, L, N, O, Supplementary Data 23, 24).

Together, these data demonstrate the capacity of the CPP assay to
elucidate compound effects on lysosomes and to differentiate
between ER and RNA or Actin and Golgi effects, thereby providing
valuable insights into the MoA of compounds. Furthermore, despite
their diverse MoA, tetrandrine, fluphenazine, and siramesine induced
Lyso phenotypes across all cell lines. Those compounds supported the
identification of a Lyso activity of sunitinib malate, which is concordant
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A Representative images of Actin and Golgi phenotypes showing cytochalasin D effects in different cell lines
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with studies describing its sequestration and accumulation to lyso-
somes in cancer cells®®*’, indicating their usability as suitable reference
compounds in the CPP assay.

Discussion
In this proof-of-concept study, we established a customizable, robust,
and broadly applicable phenotypic screening assay for multiplexed,

1 Actin-relatec ILyso-related Spearman correlation score

iterative staining of single cells with at least seven fluorescent dyes
labelling at least nine different subcellular compartments and orga-
nelles. The CPP method thus complements the versatile HTPP meth-
ods and offers additional options for addressing MoA-specific research
questions. The conceptual design of the CPP assay was essentially
inspired by two well-established approaches enabling multiplexed and
spatially resolved phenotypic profiling of single cells - the dye-based
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Fig. 5 | Differentiating between Actin and Golgi responses at different effective
compound concentrations using cytochalasin D. A Representative images (Actin
and Golgi channels) showing activities of cytochalasin D on Actin- and Golgi-related
features at two non-cytotoxic concentrations compared to the DMSO solvent
control across four different cell lines. Ng;o = 4. Scale bars = 20 um.

B Corresponding BMC accumulation and magnitude plots showing cytochalasin D
effects on feature categories and single features across four different cell lines in
CPP, and MCF7 in CP as described in Fig. 3D. C Profile similarity plots showing the
correlation of the phenotypic profiles (Spearman correlation of robust z-scores at
the feature level, excluding Lyso features) of all reference compounds at each

highest non-cytotoxic concentration in MCF-7 cells. Compounds are assigned to
one of six clusters (grey-shaded boxes) based on hierarchical clustering. Com-
pounds are color-coded (cyan, orange, red) according to their annotated Actin-,
Mito-, or Lyso-related MoA (see Fig. 2A). Colored, dashed boxes highlight correla-
tion scores of compounds with the same annotated MoA. Input feature data
(median of all Nyec, =3 and Ngio = 4 for each feature) are extracted from CPP (CPP/
Harmony, CPP/Cell Profiler) or CP (CP/Harmony) images using Harmony or Cell
Profiler image analysis software. Correlation scores of negative control compounds
(i.e., saccharine, sorbitol) are shown slightly transparent.

CP method*® and the antibody-based iterative indirect immuno-
fluorescence imaging (4i) method”. CPP now combines the advan-
tages of both approaches, i.e., the very efficient staining and analysis of
single cells using dyes and standardized feature sets, and the iterative
staining and signal removal process allowing multiple rounds of
staining on the same sample. In a comparative study using 15 diverse
reference compounds targeting relevant organelles and cell functions,
we compared the CPP assay with the original CP method using MCF-7
cells to explore its potential to expand the available HTPP methods.
Moreover, we investigated cell type- and organelle-specific compound
effects using three additional cell lines.

We showed that CPP expands the flexibility, customizability, and
multiplexing capacity of the original CP method regarding selection
and combination of relevant dyes for the specific research questions
and tremendously enriches the information content of morphological
profiles. The optimized elution buffer enables the staining, elution, and
re-staining of single cells and avoids the current need to swop in, e.g.,
dyes for lysosomes instead of mitochondria or staining lipid droplets
rather than ER®*°, or to use special synthesized de-stainable pheno-
typing probes based on with click chemistry reactions’. Importantly,
subcellular compartment and organelle morphologies were preserved
after the elution step reinsuring the reliability of morphological pro-
files from subsequent staining cycles. Therefore, we assume that the
CPP assay can also be performed with multiple rounds of iterative
staining-elution cycles, which remains to be experimentally confirmed
in follow-up studies.

The phenotypic profiles of CPP and CP and the conclusions drawn
were largely consistent with published CP data for MCF-7 cells”.
However, in contrast to the MitoTracker Deep Red dye used in CP, the
MitoTracker Orange dye used in CPP also stained nuclear structures
(probably nucleoli) to some extent (Supplementary Fig. 1E). This effect
was neither related to the cross excitation of the SYTO 14 dye when
using the Mito channel lase line nor a consequence of the elution step
as it could also be observed when cells were stained exclusively with
the MitoTracker Orange dye. This effect may be attributed to the dif-
ferent properties of the two dyes™ but did overall not affect the Mito
profiles as the nucleus region was not analyzed in the Mito channel in
CPP. To mitigate the observed cross excitation of the SYTO 14 dye,
which is also still an issue in the current version of the CP assay’, we
tested the usability of the SYTO 9 and SYTO 13 dyes for CPP, which,
however, showed too high staining variability.

We further showed that CPP expands the diversity of the pheno-
typic profiles compared to the original CP method due to the com-
pletely separate imaging and analysis of single dyes in individual
channels. Although a recently updated version of CP and current
technical advancements of high-content imaging systems improve
separate imaging of dyes™, the overlapping spectral ranges of co-
stained dyes leading to cross-excitation and/or emission bleed-
through (at simultaneous excitation) still remain an issue and can
affect morphological profile specificity. Therefore, CPP has the capa-
city to generate more organelle-specific and detailed morphological
profiles for more precise determination of different MoA of com-
pounds or genetic perturbations. The case studies indeed suggested
that separating Actin and Golgi as well as ER and RNA channels and, in

particular, addition of the Lyso channels may be beneficial to enhance
the organelle-specificity and diversity of phenotypic profiles for com-
parative MoA analyses. However, the number of compounds for dif-
ferent MoA provided in this study was yet limited and the first
indications regarding a potential higher phenotypic profile-specificity
of CPP over CP will need to be strengthened by comparing the refer-
ence compound profiles against a larger set of compounds with
known MoA.

Previous reports from several laboratories have also noted the
need to perform more extensive filtering of unreliable features when
using Cell Profiler>**, From our analysis of CPP data, we concur with
this observation, because from the large number of features that were
initially extracted using Cell Profiler, ~25% of all features had to be
immediately filtered out during the data cleaning procedure due to a
high number of missing or identical values. The subsequent feature
selection process, which is commonly applied to Cell Profiler data*’,
further led to the additional filtering of many features with high
redundancy or low informative value. Although both CPP/Cell Profiler
and CPP/Harmony showed the formation of a “Mito cluster”, the three
reference compounds with annotated Lyso-related MoA did not forma
separate “Lyso cluster” in the profile similarity plots of CPP/Cell Pro-
filer, neither for the reduced set of features nor for the complete set. In
that regard, Harmony provided a better separation of the reference
compounds. In addition, the required extensive filtering of features
made the use of Cell Profiler somewhat less practical overall and may
consequently produce different feature lists, which is not optimal
when replicate experiments are to be evaluated individually or com-
pared across different screening sites. In turn, when using Harmony,
the pre-selected features proved reliable for downstream analysis
without the need for additional filtering or feature selection.

In this study, we obtained comprehensive and robust phenotypic
profiles when conducting CPP in highly confluent MCF-7 and RPTEC
cells as well as sub-confluent U20S and HepG2 cells (commonly used in
CP), which in most cases aligned well with the known MoA of the 15
diverse reference compounds. Therefore, we strongly encourage sci-
entists to perform CP-based methods under more physiologically
relevant cell culture conditions, utilizing a greater variety of cell cul-
ture conditions, while at the same time accepting potentially less
favorable conditions for spatial imaging. This will ultimately improve
the physiological relevance of the cellular models and expand the
diversity of public phenotypic profiling datasets for the benefit of basic
and translational research, drug discovery, and regulatory toxicology.

The high robustness and reproducibility of the CPP assay and its
quantitative image as well as data analysis workflows make it readily
applicable to automated liquid handling platforms and high-content
imaging systems that are available in many academic laboratories or
high-throughput screening facilities. Practical considerations for rapid
implementation and seamless integration of the CPP assay into exist-
ing phenotypic screening routines should include careful optimization
and fine-tuning of the assay parameters as exemplified in this study.
Even though, we did not observe prominent plate effects influencing
the robustness of the CPP assay, fully randomized plate layouts would
be generally preferable, but require adequate, automated liquid
handling routines™>". It is further important to consider that, in
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A Profile similarity plot (robust z-score, feature-

level) including Lyso features in MCF-7 cells
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Fig. 6 | Elucidating compound effects on lysosomes. A Profile similarity plots as
described in Fig. 5C but including Lyso features. B Representative images (Lyso,

Golgi, and ER channels) showing activities of four ex

emplary reference compounds

on Lyso-, Golgi-, and ER-related features at a non-cytotoxic concentration

compared to the DMSO solvent control across four different cell lines. Npjo = 4.
Scale bars =20 pm. C Corresponding BMC accumulation and magnitude plots

showing the effect of the four exemplary reference compound effects on feature
categories and single features in MCF7 cells in CPP and CP as described in Fig. 3D.
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comparison to CP, the CPP assay necessitates (at least) one additional
elution, staining, and imaging cycle, thereby demanding larger data
storage and high-performance computing capacity. However, working
with cells at higher confluency would reduce the number of imaging
fields, without obvious confounding effects on the statistical robust-
ness of the feature data (Supplementary Fig. 1F), and thus also the
required amount of imaging data.

Nevertheless, although CPP offers additional options for more
detailed MoA dissection, it has certain limitations compared to CP.
With developing the CPP method, we aimed to provide the growing
Cell Painting community with a more customizable version of the very
successful CP approach with increased organelle-specificity of the
phenotypic profiles, accepting the trade-off that this optimization
reduces the HTPP capacity of CPP in direct comparison with CP. Since
not every research question may require the separation of the AGP and
RNA/ER channel or addition of the Lyso channel, it will be up to the
individual scientist to decide, if the advantages of CPP serve their
specific research needs and outweigh a higher investment in cost, time,
and resources compared to CP. In particular, using CPP to extract a
greater phenotypic profile diversity from a single cell using iterative
staining-elution cycles can be very relevant for research projects using
cellular models that are more expensive and laborious than the cancer
cell lines commonly used in HTPP. Examples include cellular models
that require greater effort for maintenance and differentiation (e.g.,
iPSC-derived cellular models or neuronal cell lines) or in cases where
availability of raw material is limited (e.g., primary cell lines, patient-
derived cells). Although such more complex cellular models, and in
particular 3D models, have not yet been widely used in the conven-
tional HTPP studies, they become increasingly important for genera-
tion of human-relevant phenotypic profiling data in both
pharmaceutical industry and toxicology.

The main scope of this study is to introduce the CPP method using
a smaller set of reference compounds with defined MoA, including
compounds that were already used before to evaluate the CP method
in different cell types”. Therefore, the biological insights provided in
this study are still very limited but the already ongoing application of
CPP in phenotypic profiling consortia, e.g., to identify the biological
mechanisms leading to compound-induced cell toxicities and poten-
tial hazards of chemicals to human health, will further demonstrate its
added value. In addition, the approach taken in this study to evaluate
the CPP method using reference compounds at multiple, partially
cytotoxic, concentrations aimed at comparing CPP against published
CP data. Although this approach can enable the evaluation of the
transferability of CPP within and between labs, it was not intended to
be transferred to large-scale HTPP of hundreds of thousands of com-
pounds. In fact, depending on the site- and screen-specific require-
ments, unnecessary costs can be avoided by considering already
available compound- and cell type-specific cytotoxicity information or
conducting cytotoxicity pre-screens to identify effective but not overly
cytotoxic concentration ranges to be used for subsequent phenotypic
profiling using CPP. In this way, CPP can be used cost- and time-
efficiently for both primary and secondary screening applications.

Future perspectives include the application of the CPP assay for
phenotypic screening of larger compound libraries of toxicological
and pharmaceutical relevance®’>”*, allowing the further evaluation of
the ability of the CPP assay to generate more comprehensive and MoA-
specific morphological profiles as input for virtual screens and com-
pound bioactivity predictions using machine-learning or deep-learning
approaches”. Practical examples for these computational approaches
include matching morphological profiles from compounds to those of
genetic perturbations to better understand the genetic pathways
affected by the compound at study, relating morphological profiles
with structural properties of compounds to predict structure-activity-
relationships, or even matching the morphological profiles to entirely
orthogonal data from biochemical assays and transcriptomic,

metabolomic, and lipidomic studies to better understand the function
of the compounds?***%?77¢_ Those data will also provide further
mechanistic insights useful for enriching toxicological Adverse Out-
come Pathway (AOP) networks for human diseases”, and enable
assessment of the potential use of CPP as a New Approach Methodology
(NAM), e.g., to predict endocrine active substances (EAS) or specific
target organ toxicities (STOT)’®, while avoiding unnecessary animal
testing.

Methods

Cell lines and routine cell culture

The MCF-7/vBOS (Michigan Cancer Foundation-7/variantBOS) cell line
was described before'*°. The U20S (HTB-96) and HepG2 (ACC 180)
cell lines were obtained from ATCC and DSMZ, respectively. The
RPTEC-TERTI cell line was obtained from Bob van de Water (Leiden
University, The Netherlands)®. The identities of all cell lines were
verified using the Eurofins Genomics Cell Line Authentication service
(Eurofins Genomics, Ebersberg, Germany). Cells were routinely main-
tained at 37 °C and 5% CO, over a maximum of 10 passages, and reg-
ularly tested using the Eurofins Genomics mycoplasma test service
(Eurofins Genomics, Ebersberg, Germany).

MCF-7/vBOS cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM, 1.0 g/l glucose, sodium pyruvate, no glutamine, no
phenol red) (No.11880-028, Lot.2579330, Gibco/Thermo Fisher Scien-
tific, Waltham, MA, USA) supplemented with 5% (v/v) fetal bovine
serum (FBS) (N0.S0615, Lot.0167 F (estradiol levels: 22.3 pg/ml), Bio-
chrom/Merck, Darmstadt, Germany), 2 mM GlutaMAX (No0.35050-061,
Lot.2523107, Gibco/Thermo Fisher Scientific), and 100 ug/ml strepto-
mycin / 100 U/ml penicillin (Biochrom/Merck). HepG2 cells were cul-
tured in the same DMEM as MCF-7 cells supplemented with 5% (v/v)
FBS (No.BCBQ7890V, Sigma), 2mM GlutaMAX (N0.35050-061,
Lot.2523107, Gibco/Thermo Fisher Scientific), and 100 pug/ml strepto-
mycin / 100 U/ml penicillin (Biochrom/Merck). U20S cells were cul-
tured in DMEM (4.5g/l glucose, sodium pyruvate, glutamine, no
phenol red) (No.P04-03588; Lot.6111121, Gibco/Thermo Fisher Scien-
tific) supplemented with 5% (v/v) FBS (same as for HepG2) and
100 pg/ml streptomycin/100 U/ml penicillin (Biochrom/Merck).
RPTEC-TERTI1 cells were cultured in DMEM (no glucose, sodium pyr-
uvate, no glutamine) (N0.11966025, Gibco/Thermo Fisher Scientific)
supplemented with 50% (v/v) Ham’s F-12 Nutrient Mix (No.21765029,
Gibco/Thermo Fisher Scientific), 2mM GlutaMAX (No0.35050-061,
Lot.2523107, Gibco/Thermo Fisher Scientific), 5 ug/ml Insulin, 5 pg/ml
Transferrin, 5ng/ml sodium selenite (No.I11884-1VL, Sigma-Aldrich/
Merck), 0.5% (v/v) FBS (No.FBSEU500, Tico Europe, Amstelveen, NL),
10 ng/ml hEGF (No.E9644-2MG, Sigma-Aldrich/Merck), 36 ng/ml
Hydrocortisone (No.HO135-IMG, Sigma-Aldrich/Merck), 100 pg/ml
streptomycin / 100 U/ml penicillin, and 0.1 mg/ml geneticin (G418)
(N0.04727894001, Roche, Basel, CH).

The same cell culture conditions were also used in the screening
of reference compounds described below. The generation of the
reference compound plate, preparation and application of exposure
media to cells as well as all staining and elution procedures were per-
formed using a JANUS Automated Liquid Handling Workstation
(Revvity Inc., Waltham, MA, USA) and customized protocols written in
WiInPREP (Revvity Inc.).

Reference compound plate

All 15 reference compounds (supplier as outlined in Supplementary
Data 1, 2) were dissolved in DMSO (Sigma-Aldrich/Merck) at initial
stock concentrations (1000X of highest concentration tested) close to
the respective solubility limits (<100 mM). Using an Echo 650 acoustic
liquid handler (Beckman Coulter, Brea, CA, USA), eight serial dilutions
were generated for each replicate compound at a half-log ratio and
added to the 384-well reference compound plate along with 24 DMSO
solvent control wells used for definition of baseline activities
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(Supplementary Data 2). The individual concentration ranges were
defined based on published and internal historical data to achieve
relevant exposure conditions leading to detectable changes in phe-
notypic profiles, while avoiding excessive cytotoxicity at multiple
concentrations. This way, the selected concentration ranges included
sufficiently high exposure levels to ensure confidence in inactive
classifications, but also sufficiently low exposure levels to allow dif-
ferentiation of early (most sensitive, potentially primary) and later (less
sensitive, potentially secondary) responses in cells.

Cell seeding and compound exposure

For screening of reference compounds, cells from passages 2-4 were
seeded in 45 pl culture medium at a density of 7000 MCF-7 cells/well,
5500 HepG2 cells/well, 3000 U20S cells/well in 384-well PhenoPlates
(Rewvity Inc.), or 6000 RPTEC cells/well in 384-well Screenstar plates
(Greiner Bio-One, Frickenhausen, Germany). For HepG2 and RPTEC
cells, 384-well plates were pre-coated with 40 ul/well of 0.1 mg/ml
collagen type I (No.C3867-1VL; Lot.SLCN8778, Sigma-Aldrich/Merck)
in water for 1 h and then washed once with 40 ul PBS. Cells were grown
for 24 h (MCF-7, HepG2, U20S) or 10 days (RPTEC), with culture
medium exchange for RPTEC cells every 2-3 days, followed by com-
pound treatment. At this step, 10 ul of exposure medium containing
the reference compounds (each at 5X concentration) was added to the
40l culture medium. Cells were then exposed to reference com-
pounds for 48 h with a maximum background DMSO concentration in
both compound-treated and solvent control wells of 0.1%.

Staining procedures

Before preparation of staining solutions, fluorescent dyes or anti-
bodies were thawed at room temperature for 1h in the dark, then
mixed, and briefly (-5-10 sec) centrifuged at maximal speed with a
table centrifuge. All aspiration and washing steps described below
were performed using a plate washer ELx405 Select CW Microplate
Washer (BioTek Instruments, Winooski, VT, USA). If not otherwise
stated, media were gently aspirated leaving a minimal residual liquid
volume of ~ 15 ul in each well to avoid drying and disruption of cells.
Dyes were obtained from different suppliers as outlined in Supple-
mentary Data 1.

Cell Painting
The Cell Painting method was generally performed as described in the
original or recently updated CP papers®®, with adjustments, e.g., of
optimal dye concentrations, required to meet lab-specific imaging
requirements.

Live-cell staining included aspiration of exposure medium to
~15ul, addition of 30ul 1.5X live-cell staining solution containing
MitoTracker Deep Red FM in cell culture medium (500.0 nM in stain-
ing solution; 333.3 nM in well), and incubation for 30 min at 37 °C and
5% CO,.

Fixation of cells included aspiration of the staining solution to -~
15 ul, addition of 30 ul fixation solution containing 4% paraformalde-
hyde (PFA, in PBS; ~2.7% in well), and incubation for 20 min at room
temperature (RT) protected from light.

Permeabilization of cells included complete aspiration of the
fixation solution, washing once with 100 ul PBS, addition of 30 ul per-
meabilization solution containing 0.1% Triton X-100 (in PBS; 0.07% in
well), and incubation for 20 min at RT protected from light.

Fixed-cell staining included complete aspiration of the permea-
bilization solution, washing three times with 100 ul PBS, aspiration to ~
15l, addition of 30ul 1.5X fixed cell staining solution containing
Hoechst 33342 (4.0 uM in staining solution; 2.7 uM in well), Con-
canavalin A Alexa Fluor 488 Conjugate (10.0 ug/ml in staining solution;
6.7 ug/ml in well), Wheat Germ Agglutinin Alexa Fluor 555 Conjugate
(1.5ug/ml in staining solution; 1.0 uyg/ml in well), Alexa Fluor 568
Phalloidin (33.0 nM in staining solution; 22.0 nM in well), and SYTO 14

Green Fluorescent Nucleic Acid Stain (3.0uM in staining solution;
2.0 uM in well) (each in PBS containing 1% BSA), and incubation for
30 min at RT protected from light. Finally, plates were washed three
times with 100 pl PBS without final aspiration.

Cell Painting PLUS

Staining Cycle 1. Live-cell staining included aspiration of exposure
medium to ~15ul, addition of 15 ul 2X live-cell staining solution con-
taining LysoBrite NIR Fluorescence (1:250 in staining solution (buffer A
containing dye); 1:500 in well) and MitoTracker Orange CMTMROS
(1.0uM in staining solution; 0.5uM in well) (both in LysoBrite NIR
Fluorescence buffer B containing 1% BSA; 1:2 in well), and incubation
for 30 min at 37 °C and 5% CO,.

Fixation of cells included no aspiration of the staining solution but
direct addition of 30 ul 2X fixation solution containing 8% PFA (in PBS;
4% in well), and incubation for 20 min at RT protected from light.

Permeabilization and fixed-cell staining of cells was performed
simultaneously and included the complete aspiration of the fixation
solution, washing three times with 100 ul PBS, aspiration to ~15pl,
addition of 15 ul 2X permeabilization and fixed-cell staining solution
containing Triton X-100 (0.2% in staining solution; 0.1% in well), Alexa
Fluor Plus 405 Phalloidin (66.0nM in staining solution; 33.0 nM
in well), and SYTO 14 Green Fluorescent Nucleic Acid Stain (0.6 uM in
staining solution; 0.3 uM in well) (in PBS containing 1% BSA; 0.5% in
well), and incubation for 30 min at RT protected from light. Finally,
plates were washed three times with 100ul PBS without final
aspiration.

Dye elution. After imaging, elution of cycle 1 dyes included washing
three times with 100 pl deionized water, aspiration to ~15 pl, addition of
40 pl 1.375X elution buffer containing 0.5 M L-Glycine and 1% SDS (pH
2.5) (in deionized water), and incubation for 10 min at RT. The elution
buffer was stored at RT and used within one month. Finally, plates were
washed three times with 100 ul deionized water and three times with
100 ul PBS without final aspiration. To check for successful elution of
cycle 1 dyes, nine random control wells were imaged with identical
setting as used in cycle 1.

Staining cycle 2. Immediately after elution, the second fixed-cell
staining included aspiration of PBS to ~15 ul, addition of 15 ul 2X fixed-
cell staining solution containing Hoechst 33342 (8.0 uM in staining
solution; 4.0 uM in well), Wheat Germ Agglutinin Alexa Fluor 488
Conjugate (2.5 ug/ml in staining solution; 1.3 uyg/ml in well), and Con-
canavalin A Alexa Fluor 647 Conjugate (20.0 pg/ml in staining solution;
10.0 pg/ml in well) (in PBS containing 1% BSA; 0.5% in well), and incu-
bation for 30 min at RT protected from light. Finally, plates were
washed three times with 100 ul PBS without final aspiration.

Actin staining

Fixation of cells included aspiration of the staining solution to ~ 15 l,
addition of 15 pl fixation solution containing 8% PFA (in PBS, 4% in well),
and incubation for 20 min at RT.

Permeabilization of cells included complete aspiration of the
fixation solution, washing three times with 100 ul PBS, aspiration to
~15 ul, addition of 15 ul permeabilization solution containing 0.2% Tri-
ton X-100 (in PBS, 0.1% in well), and incubation for 20 min at RT.

Blocking of cells included complete aspiration of the permeabi-
lization solution, washing three times with 100 ul PBS, aspiration to
~15 pl, addition of 15 pl blocking solution containing 2% BSA (in PBS, 1%
in well), and incubation for 1h at RT.

Antibody staining included aspiration of the blocking solution to ~
15ul, addition of 15ul 2X antibody staining solution containing
rabbit anti-Actin [EPR16769] directly-conjugated to Alexa Fluor 555
(N0.ab208080, Abcam, Cambridge, UK) (0.5 ug/mlin staining solution;
0.25 pg/ml in well) (in PBS containing 1% BSA in well; 0.5% in well), and
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incubation over night at 4 °C protected from light, and washing three
times with 100 ul PBS without final aspiration.

Subsequent dye staining included aspiration of PBS to ~15ul,
addition of 15ul 2X fixed-cell staining solution containing Hoechst
33342 (2.8 uM in staining solution; 1.4 uM in well), Alexa Fluor Plus 405
Phalloidin (66.0 nM in staining solution; 33.0 nM in well), Phalloidin-
FITC (No.P5282, Sigma-Aldrich/Merck) (0.25pg/ml; 0.125pug/ml in
well), Phalloidin-iFluor647 (No.ab176759, Abcam, Cambridge, UK)
(0.1X; 0.05X in well), and Phalloidin-AlexaFluor647 (No.A22287,
Thermo Fisher Scientific) (82.5 nM; 41.25 nM in well) (in PBS containing
1% BSA; 0.5% in well), and incubation for 10 min at RT protected from
light. Finally, plates were washed three times with 100 ul PBS without
final aspiration.

Imaging

If not otherwise stated, all dyes were sequentially imaged at an Opera
Phenix High-Content Screening System (Revvity Inc.) (4 excitation
laser, 4 emission filters) in confocal mode and 2 x 2 pixel binning using
a 20x water objective (NA 1.0) or 40x water objective (NA 1.1). Images
were taken at two (MCF7), three (RPTEC), or five (HepG2/U20S)
standardized fields/well for 20x or 5 fields/well (MCF-7) for 40x mag-
nification and two (20x) or three (40x) optical sections with 2-4 um
(20x) or 2 um (40x) spacing between imaging planes, if not otherwise
stated. Further details about the microscope setup and imaging set-
tings are summarized in Supplementary Data 1.

Image analysis and feature extraction

Harmony. Image analysis was performed on single image planes using
the integrated Harmony software [v4.8] (Revvity Inc.) and customized
image analysis sequences for CPP and CP (Supplementary Data 6, 7).
Illumination correction preprocessing of raw images was performed in
Harmony using the advanced flatfield correction mode. For analysis of
CPP data, an application-specific building block (ABB), Add Channels 4i,
was developed in co-operation with Revvity Inc., which combined cycle 1
and cycle 2 images into a single multi-channel stack based on the Mito
signal that is present in both cycles. The ABB calculated a cross corre-
lation between the two Mito images to determine the lateral shifts
between the two measurements of cycle 1 and 2. The lateral shift was
then applied to all images from the cycle 2 measurement. The correction
model that was used in Add Channels 4i has a narrow acceptance range
for parameters. A maximum shift of 50 pixel in x and y direction (<5% of
image width) is assumed, and no scaling nor rotations are expected. In
performance tests, the correlation was always sufficiently good that no
manual check was deemed necessary. To retain the same image size, the
not covered area was filled with zero value pixels. The ABB also shifted a
provided mask of the whole valid area from the cycle 1 measurement to
determine the area in the image, where all measurements had valid
image data, which was then used for further image analysis.

The subsequent steps of the image analysis sequence were similar
for both CPP and CP, with some necessary modifications made to the
previously published image analysis sequence for CP". Briefly, nuclei
were segmented using the Hoechst 33342 channel to define each
object. Next, cell outlines were identified using the RNA/ER channel
images (CP) or a merged RNA+Mito®“*+Mito®“2 channel image (CPP).
Border cells touching the edge of the image were excluded from fur-
ther analysis. From these nuclei and cell segmentation masks, addi-
tional cell regions were defined: cytoplasm, nucleoli, ring, membrane
(Supplementary Fig. 2A). For all relevant combinations of channels and
cell regions, morphological (Standard, STAR), texture (SER, Haralick,
Gabor), intensity, shape, and position features were extracted. Instead
of Mito®®, the Mito®*? staining was chosen for feature extraction to
avoid potential cross-excitation from the RNA channel (SYTO 14).
Finally, single-cell data were exported and fed into downstream
data analysis workflows using the KNIME software. The individual
Harmony sequences for CP and CPP image analysis are available as

Supplementary Data 19 and publicly available on Zenodo (https://doi.
0rg/10.5281/zen0do0.14982928). The Add Channels 4i ABB [v1.0.4] is
available on Zenodo (https://doi.org/10.5281/zenodo.15119993).

Cell profiler. To enable analysis of CPP image data using the widely
used open-source Cell Profiler image analysis software [v4.2.4]%, all raw
images from the two staining cycles were first exported from Harmony
and then subjected to illumination correction preprocessing using the
Cell Profiler illumination correction pipeline modified from the pre-
viously published pipeline for CP*. For subsequent combination of
cycle 1 and cycle 2 image stacks (as described for the Harmony ABB),
we developed the customized Python software 4i stitcher, which
employed a template-matching algorithm based on a normalized cross-
correlation coefficient, permitting translational shifts up to 50% of the
image width, + 5% scaling, and + 5 degrees rotation. Registrations with a
cross-correlation coefficient below 0.8 underwent manual verification
for accuracy, and those below 0.5 were excluded. Following registra-
tion, images from all channels and runs were trimmed to align with the
overlapping regions. To enhance throughput, the 4i stitcher processed
images in parallel. In addition to image registration, the 4i stitcher
further generated a merged channel image overlaying all available
channels in pseudo-color. For future development, this python-based
code can be easily adopted for different microscope systems and/or
extended for more advanced (pre-)processing steps. To enable adop-
tion of the methodology, the 4i stitcher software [v1] is publicly avail-
able on Zenodo (https://doi.org/10.5281/zenod0.13784742).

CPP image analysis was performed using a modified CP pipeline
previously published*. The illumination corrected and registered CPP
images, were imported into Cell Profiler for segmentation of nuclei
(Hoechst 33342 channel), cell outlines (merged channel) and definition
of the other cell regions as described for the Harmony software.

Nucleoli were defined using a speckles module, and features
encompassing morphological, distribution, texture, intensity, and
granularity were extracted from relevant combinations of channels
and cell regions. Due to the multiple image export/import steps
required for illumination correction, image registration, and the final
image analysis, using Cell Profiler for analysis of CPP images is more
time-consuming than using Harmony in our hands. Therefore, Cell
Profiler was only used for the analysis of CPP images from MCF-7 cells
at 20x magnification to enable comparison of image analysis results
with Harmony and evaluate cross-platform compatibility of CPP. The
individual Cell Profiler sequences, e.g., for illumination correction and
image analysis, are available as Supplementary Data 20 and publicly
available on Zenodo (https://doi.org/10.5281/zenod0.14982928).

Data analysis

The open-source process automation software KNIME [v4.7.1]*® was
used to build multiple customized pipelines for image data processing,
evaluation and visualization, which generally followed the procedures
previously described for CP data analysis using the R software
[v4.2.2]*2, with some adjustments as indicated below. Although
imaging-based profiling data comprises features that are inherently
correlated, available feature reduction and feature selection strategies
have not been conducted (except for Cell Profiler data) in this study to
maintain full comparability of the data generated between different
screening sites in the context of transferability studies. The individual
KNIME pipelines, e.g., for data standardization, generation of com-
pound activity profiles, evaluation of phenotypic profile variabilities,
BMC modeling, generation of accumulation and magnitude plots, are
available as Supplementary Data 21 and publicly available on Zenodo
(https://doi.org/10.5281/zenod0.14982928). Using the unprocessed
CP/Harmony and CPP/Harmony features, the influence of the number
of analyzed cells and imaging fields on the variance of feature data was
evaluated using the coefficient of variation (CV). For this, the pre-
defined number of cells were randomly chosen with repetition for the
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field/s of view considering each well and plate independently. Next, the
median of each feature among the chosen cells and their CV was cal-
culated per well across plates. The median of those CVs was plotted
depending on the pre-defined number of cells used in Supplemen-
tary Fig. 1F.

Standardization. After data cleaning and assignment of wells to
treatment conditions, all extracted features of each individual cell
were standardized to the median and median absolute deviation
(MAD) of the pooled DMSO solvent control cell population from the
corresponding plate (24 wells/plate) to derive for each feature a robust

z-score per cell (Robust z — score%""®) according to Eq. 1.

feature Medi nfeature
— Media
_ eature _ “" exp /ctrl cell ctrl cells
Robust z scoreﬁe” = i @
1.4826 * MAD‘ml cells
Xﬁi‘gt/“;ﬁ, ey = Value of a given feature from a single experimental

(exp) or solvent control (ctrl) cell;

Median/¢™¢  and MAD/®™"¢ = Median and MAD of a given fea-
ture from all pooled solvent control (ctrl) cells (24 solvent control wells
per plate);

1.4826 = Constant scaling factor used as approximation for 1 SD of a
Gaussian distributed data set

Features with a DMSO MAD of zero were removed from the final
feature list (this was only necessary for Cell Profiler data). Next, those
cell-level feature data were aggregated to the well-level by calculating
for each feature the median of cell-level robust z-scores per well
(Median robust z — scorel®""®, equation 2), without further standar-
dization (e.g., scaling to the SD or MAD of solvent control wells).
Specifically, for CPP/Cell Profiler, standardization of cell features was
followed by an additional step of feature selection/reduction using
Pycytominer to align with common practice when using the Cell Pro-
filer software for image analysis*’. For generation of the compound
similarity plots shown in Supplementary Fig. 8C, this feature selection/
reduction step was performed for the Cell Profiler feature lists either
including or excluding Lyso features.

Importantly, all features characterizing cell populations (wells)
but no single cells were only standardized at the well-level according to
Eq. 3. This applied to the total number of cells per well (Absolute-
CellNumber) and the three nucleoli-related RNA features Relative-
CellNumber(1-2Nucleol), RelativeCellNumber(3-4Nucleoli), and
RelativeCellNumber(5+Nucleoli) of the RNA Nucleoli Number feature
category. Moreover, those three nucleoli-related RNA features were
calculated using an unmodified z-score due to their discrete values.

feature . eature
Robust Z_Scorefeature _ "Vexp /ctrlwell — Medlanitr[ wells
-
e 1.4826 « MAD/¢%re
ctrl wells (3)
feature — Mea nf eature
eature __ °exp /ctrl well ctrl wells
OR z-score’ =
well S, Df eature
ctrl wells

feature _ . . .
exp /ctrl well = Value of a given feature from a single experimental

(exp) or solvent control (ctrl) well;

. L ti ti
Median s, OR Mean(yius,  and — MADLTYL, OR
SDﬁff;’, s = Median OR Mean and MAD OR SD of a given feature from all

pooled solvent control (ctrl) wells (24 solvent control wells per plate);

1.4826 = Constant scaling factor used as approximation for 1 SD of a
Gaussian distributed data set

Those well-level robust z-scores (from equation 2 and Eq. 3) were
finally aggregated as median over technical and then biological repli-
cates and plotted as heatmaps to generate compound activity profiles
of all features per compound and concentration (Supplementary
Data 3) for all replicate (Al[Rep) replicate experiments conducted for
CPP and CP at 20x and 40x maghnification.

Identification of cytotoxic concentration ranges. The standardiza-
tion workflow also included the identification of cytotoxic con-
centration ranges. Cytotoxic concentrations were defined as those that
led to a reduction of the relative number of cells per well and biological
replicate (PercentCells) below 53% compared to the DMSO solvent
control, resulting in a cytotoxicity threshold of 53% for CP/Harmony
and CPP/Harmony at 20x magnification. The non-cytotoxic con-
centrations that were identified for the reference compounds at 20x
magnification (based on the 53% threshold), were also applied to the
40x magnification in order to enable direct comparisons of the CPP/
Harmony data obtained at different magnifications. Cytotoxic con-
centrations of compounds from the CPP/Cell Profiler analysis were
also aligned to CPP/Harmony to support their direct comparison.

Evaluation of phenotypic profile variability. The CPP data analysis
workflow included a quality control step, in which the intra-and inter-
plate phenotypic profile variabilities were determined for each repli-
cate experiment. For each feature, the differences of the well-level
robust z-scores (from equation 2 and Eq. 3) between a single replicate
well and the corresponding median of all replicate wells
(Diffrobust z7scorey were calculated according to Eq. 4.

- ¢ crobustz-score _ ysrobust z-score . robustz-score
D!ff well =X single well M edlanAllRep wells “)

;’,f’é‘fet 2’ = Well-level robust z-score of a given feature from a
single well;

Medianjjpe: 55" = Median of the well-level robust z-scores of a
given feature from AllRep wells (Ntec, =3 and Npijp;=4)

To visualize the intra-/inter-plate variabilities for each feature and
replicate experiment, the differences of the well-level robust z-scores
(from Eq. 4) were aggregated to the replicate-level by calculating
for each feature the median of well-level differences
(MedianDif foye%5**", equation S) for each technical (TRep), biolo-
gical (BRep), or all (AllRep) replicate experiment. Those median
replicate-level differences (from equation 5) were plotted as heatmaps
to generate compound activity profiles showing the intra-/inter-plate
variabilities of all features per compound and concentration for the
technical (TRep) or biological (BRep) replicate experiments conducted
for CPP and CP at 20x and 40x magnification.

To quantify the total intra-/inter-plate variabilities of all features
for each replicate experiment, the absolute values of the differences of
the well-level robust z-scores (from Eq. 4) were first summed up for
each well and then aggregated to the replicate-level to calculate the
sum replicate-level differences (SumDiff opjicare) fOr €ach technical
(TRep), biological (BRep), or all (AllRep) replicate experiment
according to Eq. 6.

n m
i . bust z-
SumDiff epticate = Z Z | lefu:;z;”ustz score ©)

well robust z-score

robust z-score = single feature; m = number of features

well = single replicate well; n = number of replicate wells;

|Dif f’ ’w‘;’;;‘“ Z7¢0r¢| = Absolute value of the difference of the well-level
robust z-score of a given feature from a single (technical or biological)
replicate well

Since the calculated sum of replicate-level differences was directly
related to the number of replicate experiments conducted and the
number and effect sizes of features included in CPP and CP, normal-
ization to the sum of replicate-level responses was required. Therefore,
the absolute values of the well-level robust z-scores (from Egs. 2 and 3)
were first summed up for each well and then aggregated to the
replicate-level (analogous to Eq. 6) to calculate the sum replicate-level
responses (SumResp,epicqare) for each technical (TRep), biological
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(BRep), or all (AllRep) replicate experiment according to Eq. 7.

n m
— robust z-score
SumReSpreplicate - Z Z IX well ‘ ()

well robust z-score

robust z-score = single feature; m = number of features

well = single replicate well; n = number of replicate wells;

|xrabust z=score| = Apsolute value of the well-level robust z-score of a
given feature from a single (technical or biological) replicate well

The sum replicate-level responses were finally used for normal-
ization of the sum replicate-level differences to calculate the relative
sum of replicate-level differences (RelSumbDiff pjicqee) according to

Eq. 8.

SumDYF repicare

RelSumDiff opjicate = SumResp,
replicate

)

SumDiff vepiicare = Sum replicate-level differences of the well-level
robust z-scores of all features from all related (technical or biological or
all) replicate wells (3 or 4 or 12 replicate wells per screen)

SumRespepjicare = Sum replicate-level differences of the well-level
robust z-scores of all features from all related (technical or biological or
all) replicate wells (3 or 4 or 12 replicate wells per screen)

As a measure for the total intra-/inter-plate variabilities, those
relative sum replicate-level differences (from Eq. 8) were finally
reported in table format for the technical (TRep), biological (BRep), or
all (AllRep) replicate experiments conducted for CPP and CP at 20x
and 40x magnification.

Benchmark concentration (BMC) modeling. For each feature, the
well-level robust z-scores (from equation 2 and Eq. 3) were also used for
benchmark concentration (BMC) modeling using the curve-fitting R
package tpclfit2*° as previously described®”. BMCs were only deter-
mined from at least four non-cytotoxic concentrations of at least three
biological replicates to ensure high quality BMC curve fitting in
accordance with published guidance on benchmark dose modeling in
toxicology®. Curve-fitting was performed on four biological replicates
(median of well-level robust z-scores from each three technical repli-
cates) using five different curve-fitting models (cnst, hill, polyl, poly2,
pow). The best-fitting curve was selected to calculate the BMC of each
individual feature, which corresponded to the concentration at which
the phenotypic response exceeded the defined benchmark response
(BMR) cutoff. The BMR was specifically calculated for each feature
from the corresponding well-level MAD of the DMSO solvent control
and was set at BMR=1.349*SD (corresponding to approximately 1
interquartile range (IQR) for normal distributed data) as described
before’, with SD=1.4826*MAD/%""¢ . Features for which no BMC
could be determined (BMC™) or with estimated BMCs greater than the
highest tested non-cytotoxic concentration (BMC"'°") were con-
sidered inactive. Conversely, in cases where the estimated BMC was
smaller than the lowest tested concentration (BMC'%), the BMC was
adjusted to a modified lowest concentration (half-log smaller than the
lowest tested concentration) according to Eq. 9.

log 10(BMC'°") = logl0(lowesttested conc.) — 0.5 9)

To support BMC data analysis, each of the CPP/Harmony, CP/
Harmony, CPP/Cell Profiler features were assigned to 62 (CPP/Har-
mony), 41 (CP/ Harmony), or 68 (CPP/Cell Profiler) biologically
meaningful feature categories, respectively, representing specific
combinations of channels, cell regions, and analysis modules (Sup-
plementary Data 5) in a similar way as previously described for
CPS'H'IZ'U.

These BMC data were visualized using Proportion BMC profiles
(category-level), accumulation plots (category-level), and

magnitude plots (feature-level). The Proportion BMC profiles were
plotted using the R software [v4.2.2] and display the proportion of
single features per feature category showing significant (p < 0.05,
one-sided Student’s t-test) responses (logl0 BMC) to treatment with
a particular reference compound compared to all tested com-
pounds. For generation of Proportion BMC profiles, features for
which no BMC could be determined (BMC™) were adjusted to a
modified BMC corresponding to the maximal tested compound
concentration (100 uM) to enable comparison between all com-
pounds. Accumulation and magnitude plots were generated as
previously described for CP*"'>", Each data point in the accumu-
lation plot is a different feature category represented by a ranked
median category BMC (median of all feature BMCs constituting a
feature category, with at least 30% of features showing a response to
compound treatment). In the corresponding magnitude plot, each
data point is a different feature represented by the BMC and the
normalized magnitude (i.e., the maximum robust z-score in the
tested concentration range).

Data visualization and statistical analyses

All quantitative data were exported into Excel (Microsoft, Redmond,
WA, USA)-readable (.csv) files. Harmony analysis sequences were
exported into web archive (mht) files. Compound activity profiles,
BMC accumulation plots, and BMC magnitude plots were exported
into vector graphic (.svg) files. Proportion BMC plots were exported
into portable document format (,pdf) files. Quantitative data were
plotted using Prism 10 (GraphPad Software, San Diego, CA, USA) or
using the R software [v4.2.2]. Statistical analyses (Pearson/Spearman
correlation, hierarchical clustering) of robust z-score and BMC (logl0
BMC) data were performed using the R software [v4.2.2]. The indivi-
dual R scripts are available as Supplementary Data 22 and publicly
available on Zenodo (https://doi.org/10.5281/zenodo.14982928). Fig-
ures were generated using Illustrator CC 2024 (Adobe, San
Jose, CA, USA).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The processed data (aggregated and processed profiles and BMC data)
generated in this study are provided in the Supplementary Data/
Source Data files and are publicly available in the Zenodo repository
under accession code 14982928, Due to their large size (25-50 GB per
plate), the raw data (images and unprocessed profiles at the single-cell
level) are available upon request directed to the corresponding
authors.

Code availability

The image analysis pipelines (Harmony and Cell Profiler software) as
well as KNIME pipelines and R code for data analysis and generation of
plots for figures in this study are provided in the Supplementary Data
file and are publicly available in the Zenodo repository under accession
code 14982928%, The individual Harmony sequences for CP and CPP
image analysis are available as Supplementary Data 19. The individual
Cell Profiler sequences for CPP image analysis, e.g., for illumination
correction and image analysis, are available as Supplementary Data 20.
The individual KNIME pipelines, e.g., for data standardization, gen-
eration of compound activity profiles, evaluation of phenotypic profile
variabilities, BMC modeling, generation of accumulation and magni-
tude plots, are available as Supplementary Data 21. The individual R
scripts are available as Supplementary Data 22. The 4i stitcher soft-
ware [v1] is publicly available in the Zenodo repository under accession
code 13784742%. The Add Channels 4i ABB [v1.0.4] is publicly available
in the Zenodo repository under accession code 15119993%¢,
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