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Recent breakthroughs in artificial intelligence (AI) algorithms have highlighted
the need for alternative computing hardware in order to truly unlock the
potential for AI. Physics-based hardware, such as thermodynamic computing,
has the potential to provide a fast, low-power means to accelerate AI primi-
tives, especially generative AI and probabilistic AI. In this work, we present a
small-scale thermodynamic computer, which we call the stochastic processing
unit. This device is composed of RLC circuits, as unit cells, on a printed circuit
board, with 8 unit cells that are all-to-all coupled via switched capacitances. It
can be used for either sampling or linear algebra primitives, and we demon-
strate Gaussian sampling and matrix inversion on our hardware. The latter
represents a thermodynamic linear algebra experiment. We envision that this
hardware, when scaled up in size, will have significant impact on accelerating
various probabilistic AI applications.

The AI revolution has highlighted the shortcomings of today’s com-
puting hardware. AI leaders have argued1,2 that machine learning is
currently stuck in a local optimum, and if the field could move away
from current digital hardware, then a global optimum could be
reached. Analog computing offers an appealing alternative to today’s
digital computers, both in terms of energy efficiency, and also
potentially in terms of processing speed, if one can match the physics
of the analog hardware to the mathematics of the AI algorithms. Sev-
eral analog, physics-based computing demonstrations have focused
on optimization3–11.

Probabilistic AI is an especially compelling use case for analog
hardware. This branch of AI deals with Bayesian inference, uncertainty
quantification, and sampling tasks andhas led to recent breakthroughs
in generative AI like diffusion models. However, it has been noted to
struggle with computational difficulty on current digital hardware12,13.
Interestingly, the mathematics of probabilistic AI happens to match
that of thermodynamics14, which is the branch of classical physics that
involves stochastic dynamics.

The relevance of thermodynamics to solving mathematical pro-
blems has recently spawned the field of thermodynamic computing15,
leading to several hardware proposals14,16–25 including some with
application to accelerating probabilistic AI14,16,17,21–27. Thermodynamic

computing is based on the stochastic dynamics of a physical system
acted onby a combination of conservative, dissipative, and fluctuating
forces14,16,17. (In this article, we consider the case where the dynamical
variables are continuous since continuous variables are relevant to
generative AI methods such as diffusion models, Bayesian inference,
which typically involves continuous probability distributions, and lin-
ear algebra.) These dynamics, called Langevin dynamics, can be
modeled by the stochastic differential equations (SDEs):

dx=M�1pdt ð1Þ

dp= � ∇Udt � γM�1pdt +N ½0, 2γβ�1Idt�, ð2Þ

where γ and β are positive real constants, and M may be either a
positive real scalar or a positive definitematrix. (The noise termhere is
assumed to have a covariance matrix proportional to identity, i.e., the
noise is uncorrelated, but in general, we may also replace the identity
matrixwith another positive definitematrix tomodel a systemcoupled
to a correlated noise source16,17.) The vectors x and p represent
(respectively) generalized coordinates describing the system’s state
and their canonically conjugate momenta, and the function U(x) is the
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potential energy, which is responsible for conservative forces. The
stationary distribution for x is called the Gibbs distribution

f ðxÞ= 1
Z
e�βUðxÞ, ð3Þ

where the partition function Z is determined by normalization28.
Thermodynamic computers allow U(x) to be (at least partially) pro-
grammable, which in turn allows the user to specify the distribution
f(x) from which samples are drawn. Since noise is actually a desirable
feature of the hardware, thermodynamic computers may have inher-
ent robustness to noise14. Note that, since this approach relies on the
Gibbs distribution, the system must be allowed to equilibrate before
useful samples can be obtained. This time period is called the equili-
bration (or burn-in) time. Also, if two samples are drawn within a very
small time interval, the values will be correlated. If uncorrelated sam-
ples are desired, the timescale one must wait is approximately set by
the correlation time of the system. The equilibration and correlation
times place important constraints on the performance of thermo-
dynamic algorithms.

In this work, we present an experimental demonstration of ther-
modynamic computing. Our device is fabricated as a printed circuit
board,with 8 fully connected unit cells.Weemploy this computer both
as a sampling device, to sample from user-specified Gaussian dis-
tributions, and as a linear algebra device, to invert user-specified
matrices. The latter represents an implementation of a thermo-
dynamic linear algebra experiment. In the Supplementary Information,
we also perform demonstrations on our hardware of important pri-
mitives in machine learning, including Spectral Normalized Neural
Gaussian Processes29 for uncertainty quantification in neural networks
(a method popular in Probabilistic AI30), linear regression, and Gaus-
sian process regression31.

Our proof-of-principle demonstration highlights a future where
thermodynamic advantage may be a reality, i.e., where thermo-
dynamic computers outperform digital ones in either speed or energy
efficiency. Indeed, asymptotic speedups have been theoretically
predicted16,17, implying that there exists a threshold scale (or problem
size) beyond which thermodynamic computers will outperform com-
petition. Our numerical simulations presented herein suggest that this
threshold scale is practically achievable. In order to maximize this
advantage, it is necessary to investigate the space of possible designs
and refine the architecture to facilitate large-scale CMOS

implementation. Through our experiments, we have learned that our
device’s specific architecture has scalability limitations, largely due to
the useof inductors and transformers. These limitations are discussed,
as well as possible refinements to our circuit design that will improve
performance and ease of fabrication at scale. This work, therefore,
represents material progress towards identifying an efficient and
scalable silicon architecture for thermodynamic computing.

Results
The Stochastic Processing Unit
We now introduce our stochastic processing unit (SPU), which is
depicted in the left panel of Fig. 1. The SPU is constructed on a Printed
Circuit Board. From the lower left corner to the upper right corner, one
can see the line of components corresponding to eight unit cells (LC
circuits), while the components arranged in the triangle on the upper
left correspond to the controllable couplings that couple the unit cells.
We remark that we constructed three nominally identical copies of our
SPU circuit, to test the scientific reproducibility of our experimental
results.

The SPU can be mathematically modeled as a set of capacitively
coupled ideal RLC circuits with noisy current driving. The diagram for
this model is shown in the right panel of Fig. 1. Doing a simple circuit
analysis reveals that the equations of motion for this circuit are

di=L�1vdt ð4Þ

dv= � C�1R�1vdt � C�1idt +
ffiffiffiffiffiffiffiffi
2κ0

p
C�1N ½0, Idt�, ð5Þ

where i= IL1, . . . ILd
� �T is the vector of inductor currents and

v= VC1, . . .VCd

� �T is the vector of capacitor voltages. In the above,C is
the Maxwell capacitance matrix, whose diagonal elements are
Cii =Cii +

Pd
j = 1 Cij , and whose off-diagonal elements are Cij = −Cij. The

values of resistors and inductors in each cell are represented by the
matrices R =RI and L= LI respectively. Finally, N ½0, Idt� represents a
mean-zeronormally distributed randomdisplacementwith covariance
matrix Idt and κ0 is the power spectral density of the current noise
source. In this implementation, in order for the noise amplitude to be
of sufficient magnitude, the noise source is a controllable random bit
stream generated by a digital controller (see Supplementary Informa-
tion for more details). If the magnitude of the noisy driving current is
larger than the intrinsic noise in the system, then κ0 can be thought of
as an effective temperature control for thermodynamic computation.

Fig. 1 | The stochastic processing unit (SPU). (Left panel) The Printed Circuit
Board for our 8-cell SPU. (Right panel) Illustration of eight unit cells that are all-to-
all coupled to each other, as in our SPU. Each cell contains an LC resonator and a

Gaussian current noise source, as shown in the circuit diagramon the top right. The
circuit diagram on the bottom depicts two capacitively coupled unit cells.
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Equations (4) and (5) can bemapped to the Langevin equations (1)
and (2) by making a change of coordinates. Specifically, we introduce
themagnetic flux vectorϕ and theMaxwell charge vectorq, defined as

ϕ= Li, q=Cv: ð6Þ

As shown in the Supplementary Information, ϕ and q are canonically
conjugate coordinates, with ϕ playing the role of position and q
playing the role of momentum. We also introduce an effective inverse
temperature parameter β= γκ�1

0 . In terms of these variables, Eqs. (4)
and (5) become

dϕ=C�1qdt ð7Þ

dq= � L�1ϕdt � R�1C�1qdt +N ½0, 2R�1β�1Idt�: ð8Þ

It is clear that Eqs. (7) and (8) are equivalent to (1) and (2)
when we make the identifications x =ϕ, p =q, M =C, γ = R−1, and
UðxÞ=U ϕð Þ= 1

2ϕ
TL�1ϕ. In these coordinates, the Hamiltonian, with-

out noise or dissipation, of the system is expressed as

H ϕ,qð Þ= 1
2
ϕTL�1ϕ+

1
2
qTC�1q, ð9Þ

and consequently, the stationary distribution of Eqs. (7) and (8) is the
Gibbs distribution given by

ϕ � N ½0,β�1L�, q � N ½0,β�1C�, ð10Þ

where ϕ and q are independent of each other.
The time to reach the Gibbs distribution, the equilibration time, is

closely related to the correlation time τcorr, since equilibration can be
interpreted as the decorrelation of the system from its initial state. So
the two timescales are essentially the same. While sampling at a rate
given by the inverse correlation time of the system is a guarantee of
uncorrelated samples, in practice, one can sample much faster and
retain good performance, see Supplementary Information for details.
For our SPU, the correlation function decays exponentially with a time
constant of approximately

τcorr � Rcmax, ð11Þ

where cmax is the largest eigenvalue of C (see, e.g., ref. 16). (There are
some minor corrections involving the other circuit parameters, but
these have relatively little effect.) In order for the correlation function
to decay to less than one percent of its original magnitude, we may
wait for an interval of at least 5τcorr, for example. If one periodically
measures the voltages, v, across the capacitors after the device has
reached equilibrium, one finds that the voltage samples will have a
covariance matrix of

Σv =Rκ0C
�1: ð12Þ

We now describe how this computing system can be used for various
mathematical primitives.

Gaussian sampling
Let us describe how to perform Gaussian sampling with our thermo-
dynamic computer. Consider a zero mean multivariate Gaussian dis-
tribution (since we can always translate the samples by a constant

vector to generate a non-zero mean):

N ðxjΣÞ= 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞN jΣj

q exp � 1
2
xTΣ�1x

� �
, ð13Þ

where Σ is the covariancematrix. Here, we consider the casewhere the
user provides the precision matrix P = Σ−1 associated with the desired
Gaussian distribution (See Supplementary Information for the alter-
native case where the user provides the covariance matrix Σ.)

Asdescribed above, the stationarydistributionof the voltages and
currents in the SPU is dependent on the noise- and dissipation-free
Hamiltonian of the circuit. The Hamiltonian for the coupled oscillator
system (see Supplementary Information for details) is given by:

H i, vð Þ= 1
2
vTCv+

1
2
iTLi, ð14Þ

where i is the vector of currents through the inductors in each unit cell,
v is the vector of voltages across the capacitors in each unit cell, C is
the Maxwell capacitance matrix, and L is the inductance matrix.

At thermal equilibrium, the dynamical variables are distributed
according to a Boltzmann distribution, proportional to expð�H=kTÞ,
and hence v is normally distributed according to:

v � N ½0, kTC�1� ð15Þ

Thus, if the user specifies the precision matrix P, then we can obtain
the correct distribution for v by choosing the Maxwell capacitance
matrix to be:

C= kTP ð16Þ

Hence, this describes howwe canmap the user-specifiedmatrix to the
matrix of electrical component values, to obtain the desired
distribution.

Figure 2 is a visualization of a Gaussian sampling experiment
performed on our SPU (here, the data from two unit cells is reported,
see the Supplementary Information for the rest of the results). One can
see good agreementwith the theoretical distribution and itsmarginals.
One can also see that the the error associated with themoments of the
distribution goes down over time as more samples are gathered.

Matrix inversion
The second primitive we will consider is matrix inversion, which was
discussed in the context of thermodynamic computing in ref. 16. Fol-
lowing that reference, we envision the user encoding their matrix A in
the precision matrix P of the associated Gaussian distribution that will
be sampled. Hence from Eq. (16), the Maxwell capacitance matrix of
the hardware is given by C = kTA. Choosing this Maxwell capacitance
matrix, we find from Eq. (15) that at thermal equilibrium, the voltage
vector is distributed according to

v � N ½0,A�1� ð17Þ

Therefore, we can invertmatrixA simply by collecting voltage samples
at thermal equilibrium and computing the sample covariance matrix.
(This assumes thatA is a positive semi-definite (PSD) matrix, although
the extension to non-PSD matrices is possible with a pre-processing
step16).

Figure 3 shows the 8 × 8 matrix inversion results. We perform the
algorithm on three distinct copies of the SPU, which are nominally
identical (although may slightly differ due to component tolerances).
The fact that similar results are obtained on all three SPUs, as shown in
Fig. 3A, is useful for demonstrating scientific reproducibility. Indeed,
one can see the error (i.e., the relative Frobenius error between the SPU
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inverse and the target inverse) goes down as the number of samples
increases. The SPU inverse, after gathering several thousand samples,
looks visually similar to the target inverse.Moreover, Fig. 3B shows the
time evolution of the SPU inverse. One can see in Fig. 3B that the SPU

inverse gradually looks more-and-more like the true inverse as more
samples are gathered.

The fact that the error does not go exactly to zero indicates that
experimental imperfections are present. This likely includes capaci-
tance tolerances (i.e., nominal capacitance values being off from
their true values) and imprecision.We recently showed that the latter
can be addressed with a judicious averaging protocol, and the
experimental error for matrix inversion can be significantly
reduced32. Thus, imprecision-based errors can be mitigated for this
system.

In the Supplementary Information,we show someadditional plots
formatrix inversion onour SPU, including the dependence of the error
on the condition number of A and on the smallest eigenvalue of A.

Performance advantage at scale
We now focus on the potential advantage that one could obtain from
scaling up our SPU. Specifically, we compare the expected runtime and
energy consumption of our SPU to that of state-of-the-art GPUs. Our
mathematical model for runtime and energy consumption involves
considering the effect of three key stages:
1. Calculating the component values of the capacitor array from the

input covariance matrix (digital calculation, on a GPU)
2. Loading the component values to the device (digital transfer)
3. Waiting for the integration time of the physical dynamics needed

to generate the samples (analog runtime).
4. Sending the samples back to the digital device through an ADC.

We assume the SPU is constructed from standard electrical
components operating at room temperature and the ideal case of
electrical components with 16 bits of precision, as well as that the SPU
units are fully connected (This analysis is valid whether the user pro-
vides the covariance matrix or the precision matrix, where details of
sampling when the covariance matrix is provided is discussed in Sup-
plementary Information.) We assume the following:

• The physical time constant of the system is 1μs.
• The number of ADC channels scales with dimension, with a sam-
pling rate of 10 Megasamples per second.

• The power per cell is 0.005 mW, dominated by ADC power
consumption.

Fig. 3 | Thermodynamic inversion of an 8 × 8 matrix. This experiment was per-
formed independently on three distinct (but nominally identical) copies of the SPU.
A The inputmatrix A and its true inverse A−1 are shown, respectively, in the first and
second panel. The relative Frobenius error versus the number of samples is plotted
in the thirdpanel, for each of the three SPUs. The three panels on the right show the
experimentally determined inverses after gathering 12,000 samples on each of the

three SPUs. B The time progression of thermodynamic matrix inversion is shown.
From left to right, more samples are gathered from the SPU to compute the matrix
inversion. The number of samples and the inversion error are stated below each
panel. One can visually see the resulting inverse lookmore like the target inverse as
more samples are obtained. Source data are provided as a Source Data file.

Fig. 2 | Sampling a two-dimensional Gaussian distribution on the SPU.Mea-
surements of the voltages of two coupled cells of the SPU were taken at a rate of
12MHz. Top Left: histogram of the marginal of cell i. Top right: Absolute error
between the target covariance matrix and the device covariance matrix (abbre-
viated as Cov.), similarly for the skewness and kurtosis (respectively abbreviated as
Skew. and Kurt.), all calculated using the Frobenius norm. Bottom Left: Scatter plot
of voltage samples from both cells. BottomRight: Histogramof themarginal of cell
j. For the marginal plots, the theoretical target marginal is overlaid as a solid red
curve. Similarly, for the two-dimensional plot, the theoretical curve corresponding
to two standard deviations from the mean is overlaid as a solid red curve. Source
data are provided as a Source Data file.
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For comparison with digital state-of-the-art, we obtain digital
timing and energy consumption results using a JAX implementation of
Cholesky sampling on an NVIDIA RTX A6000 GPU using the package
zeus - ml33.

Figure 4a shows how the time taken to produce samples from a
multivariate Gaussian scales with dimension, for the cases of drawing
1 sample and drawing 10,000 samples.We emphasize that thisfigure is
relevant to both Gaussian sampling andmatrix inversion, because one
can always use the obtained samples to estimate the matrix inverse.
Hence, the timing results shown in this figure apply to both Gaussian
sampling and matrix inversion.

One can see that for 10,000 samples, the GPU is faster for low
dimensions, but the SPU performance is expected to outperform the
GPU for high dimensions. The cross-over point, whichwe call the point
of “thermodynamic advantage”, occurs around d = 3000 for the
assumptions we made. The asymptotic scaling for high dimensions is
expected to go as O(d2) for the SPU, as opposed to O(d3) for Cholesky
sampling on theGPU. At d = 10,000, anorder-of-magnitude speedup is
predicted, and larger speedups could be unlocked by scaling up the
system to larger sizes.

For the case of drawing a single sample, we once again predict
roughly an order-of-magnitude speedup for the SPU over GPUs at
d = 10,000.However,what is different about this case is that a speedup
is predicted over the entire range of dimensions considered, with a
small speedup even being predicted at low dimensions (e.g., d = 100).
The large difference in SPU runtime (between the single sample and
10,000 sample cases) is because the runtime is dominated by the ADC
conversion, which is greatly reduced in the case of a single sample.

It is also of interest to consider energy, since it is well known that
GPUs consume large amounts of energy. In contrast, the natural
dynamics of a physical system are energy-frugal and could reduce the
expected energy requirements. Figure 4b shows how the energy of
generating Gaussian samples is expected to scale with dimension for
both the SPU and GPU. (Note that a large variance is observed for
energy because of the directmeasurement of GPU operations for both
the GPU and SPU benchmarks.) One can see that our model predicts
the exciting prospect that the SPU provides energy savings for all
dimensions, even for low dimensions. Moreover, the energy savings is
an order of magnitude at d = 10,000 and is expected to continue to
grow for larger dimensions.

It is encouraging that a simple model of the SPU, the timings
involved in its end-to-end operation, and the energy cost during these
processes lead to a potential speedup and energy savings ofmore than

an order-of-magnitude relative to state-of-the-art GPUs with relatively
conservative assumptions. Nevertheless, these results represent a
mathematical model, and the true evidence of thermodynamic
advantage will only be obtained by directly scaling up the SPU
hardware.

A scalable architecture
An important lesson learned from the small-scale proof-of-concept
experiments reported above is that the architecture we employed
would not be the best choice for a large-scale implementation that
would require miniaturization as an integrated circuit (IC). Firstly, the
presence of inductors and transformers makes an IC implementation
very difficult due to, e.g., the physical size of the inductors and their
relatively strong parasitic coupling and crosstalk at those scales34,35.
Secondly, area constraints on an IC would likely require the capaci-
tances to be very small (particularly for high dimensions), leading to a
very short RC time constant. Therefore, the noise must have a very
large bandwidth to match the timescale of the system’s dynamics.

We propose here an alternative architecture that is better suited
to overcome these issues of large-scale implementation. The proposed
architecture uses RC unit cells and resistive coupling and is shown as a
2-dimensional example in Fig. 5a. A detailed analysis of the dynamical
equation for this circuit is given in the Supplementary Information.
Clearly, this architecture eliminates scaling issues related to inductors.
Moreover, our numerical benchmarks of this architecture (provided in
the Supplementary Information) involving a mathematical model for
runtime and energy consumption show a similar speedup and energy
advantage as that shown in Fig. 4. Hence, the advantage can be pre-
served while switching to a more scalable architecture.

We further confirm the performance of this circuit by running
SPICE simulations shown in Fig. 5b. In this simulation, 25 unit cells are
densely connected by an array of resistors to calculate the inverse of a
25 × 25 matrix. Figure 5c shows the relative error of the inverse matrix
calculated by the circuit simulation and the target inverse as a function
of the number of voltage measurements. We can see that this circuit
behaves as expected, and the stationary distribution is indeed anormal
distribution with covariance equal to the inverse of the conductance
matrix.

To account for the impact of non-idealities, we ran Cadence
simulations, shown in Fig. 5d. This simulation, for d = 20 unit cells, fully
accounts for realistic hardware components using component models
from the fabrication foundry as well as quantization error by imple-
menting the tunable resistances (conductances) as banks of multiple

Fig. 4 | Comparison of GPU and estimated SPU performance. a Time to solution
to obtain Gaussian samples for dimensions ranging from 100 to 10,000 for an
A6000 GPU (black squares) and estimated for the SPU (red dots), for both a single

sample (dashed lines) and 10,000 samples (solid lines). bCorresponding energy to
solution, directlymeasured for the GPU and estimated for the SPU. Source data are
provided as a Source Data file.
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resistors that can be individually addressed. The green curve in this
plot represents the most realistic case where all the components have
real models and all coupling elements are implemented using 8-bit
resistor banks. The asymptotic error is still reasonable (~2%) despite
accounting for non-idealities, suggesting that this architecture has the
potential to performwell in a realistic setting. This studyof fabrication-
based non-idealities reveals that fabrication defects are not dominant
compared to the quantization error. We remark that this provides
hope for employing quantization-based error mitigation methods32 to
reduce overall error. Finally, in the Methods section, we provide
detailed timing and energy benchmarks fromour Cadence simulations
as a function of dimension, showing how the energy costs, runtime,
and area on chip increase with dimension.

Discussion
In this work, we presented a thermodynamic computing prototype
that we used to demonstrate a thermodynamic linear algebra experi-
ment (among other experiments). We identified key challenges in
scaling up this hardware, motivating us to propose a slightly modified
architecture thatdoes not employ inductors anduses resistive (instead
of capacitive) coupling. Nevertheless, there still remain some addi-
tional challenges in scaling this hardware. For example, the accuracy of
thermodynamic computation is limited by the precision with which
physical parameters are specified, and inevitably there is a tradeoff
between precision and scalability. In recent work, we have proposed
(and experimentally implemented) a strategy to increase the accuracy
that can be achieved on a low-precision device32, and this method
effectively boosts the precision of the hardware by several bits. Given
that imprecision-based error appears todominate in our simulations in
Fig. 5 (e.g., relative to error associated with component tolerance), the
error mitigation strategy of ref. 32 looks promising.

Another challenge for thermodynamic computing at a large scale
is producing a device with the necessary connectivity requirements.
In this work, we presented a fully connected design, and it will be
more difficult to build a circuit with O(1000) or greater nodes while
being fully connected. Fortunately, full connectivity is not needed
for all applications, for example, ref. 36 presents an algorithm that
relies on a low-rank factorization allowing for reduced connectivity
requirements.

In addition to the challenges above, this work also brings into
focus several opportunities. While we have only discussed Gaussian
sampling and matrix inversion in this work, it has been shown that
hardware similar to the device presented here can be used to accel-
erate other tasks such as solving a linear system16, computing a matrix
exponential17, and second-order optimization36. Further modification
of the device would allow for sampling from non-Gaussian
distributions14, and it has been shown that using transistors to intro-
duce non-linearities would allow for efficiently sampling the Bayesian
posterior of a logistic regression model37. Having performed an
experimental demonstration of thermodynamic computing in the
Gaussian case, we have provided guidance for future experimental
work in the non-Gaussian case, which could unlock generative AI
applications like diffusion models38.

The field of thermodynamic computing is in its early days, ana-
logous to when small-scale quantum computers were built in the
1990’s39. Just as quantum computing was driven by the promise of
accelerating a key application, namely factoring40, thermodynamic
computing may be driven by its promise to make AI more efficient.
However, while thermodynamic computing has the challenges noted
above (precision and connectivity), it does not share the more severe
scalability issues of quantum computing like isolation from the envir-
onment (i.e., decoherence), cryogenic temperatures, thermal noise,
unconventional fabrication, and non-CMOS materials engineering41.
Thus, the lack of technological barriers for thermodynamic computing
can potentially make it a more near-term alternative to quantum
computing for primitives like linear algebra and sampling from user-
specified distributions.

Theseprimitives often appear inprobabilistic AI algorithms, and it
is well known that probabilistic AI is computationally challenging on
current digital hardware12. Yet probabilistic AI is crucial to unlocking
reliable AI for high-stakes (i.e., risk-averse) applications since standard
(non-probabilistic) AI technology is not proficient at essential tasks
suchasquantifying uncertainty of predictions42. Thus, thermodynamic
computing may play a key role in enabling AI systems that can reason
in uncertain, high-stakes situations.

Methods
Here we provide additional details on the design of our
hardware, including the coupled resonator structure, the interface to
digital hardware, and the readout process. Further details (e.g., dis-
cussion of the noise source) can be found in the Supplementary
Information.

Coupled resonators structure
While Fig. 1 shows a high-level view of the circuit structure, we give a
more precise depiction in Fig. 6A. (For simplicity, we only show two
unit cells in Fig. 6, even though our SPU has 8 cells.) Each cell consists
of an inductor, a tunable capacitor, and a current noise source that is
uncorrelated to other noise sources in the SPU. While ideally, a con-
tinuously tunable capacitor is desired, available technologies (e.g.,
varactor diodes or BST-based varactors) typically suffer from non-
linearity or complexity of integration. Consequently, we use switched
capacitors in a capacitor bank. Simulations show that, with as little as
three capacitors, the quality of operation is nearly unaffected. The
exact values of the capacitors were chosen with numerical optimiza-
tion to obtain the best performance.

Fig. 5 | Architecturewith resistive coupling. aCircuit diagram for twounit cells of
the proposed architecture with resistive coupling. b SPICE simulations of matrix
inversion for d = 25 with this architecture, showing qualitative agreement between
the target and the experimentally determined inverse. c For this SPICE simulation,
the relative error is plotted versus the number of samples. d CADENCE simulations
ford = 20 unit cells with the resistively coupled architecture are shown, plotting the
relative error versus time. The three curves correspond to the case where all
components are ideal and have the exact value needed (orange), the case where all
components are ideal, but where the resistances are composed of 8-bit banks of
resistors (red), and the case where all the components are simulated with non-
idealities givenby the fabricationmodels (green) and the resistances are composed
of 8-bit banks. Source data are provided as a Source Data file.
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The coupling between the resonators is implemented capaci-
tively. Similar to the capacitors in the cells, the coupling capacitors
should ideally be continuously controlled, but a switched capacitor is
used due to the limitations of tunable capacitors. A center-tapped
transformer is used to switch between positive and negative polarity
coupling, which allows one to achieve bipolar coupling. The nominal
capacitances for the in-cell capacitors are chosen from the following
set of values:

In� cell capacitances 2 f1:0nF, 3:2nF, 4:3nF, 6:5nFg:

The nominal coupling capacitance is 0.47 nF through a center-tapped
transformer, making the available coupling values:

Coupling values 2 f-x, 0, xg:

where x = 0.47 × 10−9. The inductors used in each unit cell have values
of 2.2μH (part num. XAL7020-222), while the transformers used in the
couplings are the WBC2-1TL.

Interface to digital hardware
Figure 6 also shows the interface between the analog and digital
hardware for our thermodynamic computing system. Broadly speak-
ing, our SPU functions as a co-processor to adigital device.Namely, the
operation of the SPU is controlled by a Central Processing Unit (CPU)
and a Field-Programmable Gate Array (FPGA). Figure 6B shows the
back of the circuit board for the SPU.One can see the FPGA attached to
the board as well as the Universal Serial Bus (USB) that leads to the
CPU. The CPU compiles the requested covariance matrix into FPGA
code, while the FPGA opens and closes the switches controlling the
capacitance values and the coupling branches and also starts the noise
sources, as shown in Fig. 6C. The FPGA then starts the measurement
phase where voltage measurements are taken at a given rate, then
digitized by an onboard analog-to-digital converter (ADC) and sent to
the CPU.

Readout of samples
Reading the voltage across each cell occurs after the capacitance
values are set, and the noise source is initiated. In order to collect a
sufficiently large number of samples to be statistically significant, the
sampling rate is expected to be relatively high. On the other hand, a
high sampling rate might result in a non-zero correlation between a
sample and a subsequent one. The time until samples become
uncorrelated is inversely proportional to the quality factor (Q) of the
LC resonators. For this implementation, the optimal sampling rate was
found to be 12MHz, using an eight-channel 10-bit ADS5292 ADC.

Predicted IC scaling
Simulations were performed using CADENCE for the architecture with
resistive coupling shown in Fig. 5 applied to the matrix inversion task.

Table 1 | Simulated integrated circuit parameters and perfor-
mance as a function of dimension

Parameter d = 4 d = 10 d = 20

Area (μm2) 3.7 × 103 4.8 × 104 2.5 × 105

Asymptotic relative error 6% 4% 4%

Power consumption (nW) 224 720 3000

Power consumption with
ADCs (μW)

40.2 100.7 203.0

Energy consumption to
10% error (pJ)

61 1700 1.1 × 105

Energy consumption with
ADCs (nJ)

10.98 242 7105

Time to 10% error (ms) 0.27 2.4 35

The parameters shown here were extracted from CADENCE simulations of the resistive archi-
tecture given in Fig. 5 applied to the matrix inversion task. Non-idealities (i.e., realistic compo-
nents) were accounted for in these simulations.

CPU

Fig. 6 | Structure of the thermodynamic computing system.A simplified version
of the SPU, containing two cells with a single coupling branch, is shown in (A). In-
cell capacitances arise from a bank of three capacitors, as shown. The coupling
capacitance arises from a single-switched capacitor. A transformer appears in the
coupling circuit, for the purpose of achieving bipolar coupling. The interface of the
SPU with digital hardware is shown in (B) and (C). The SPU is controlled by a digital

device as a co-processor.B shows the back of the circuit board, displaying both the
FPGA and the USB that leads to the CPU.C Shows schematically how the data flows
between the analog and the digital devices. The data that determines the circuit
parameters is downloaded from the CPU to the SPU, and the sampling data is
uploaded from the SPU to theCPU. The FPGAacts as an intermediary in this process
and also provides the noise source.
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Non-idealities were accounted for in these simulations by using the
realistic device models provided by fabricators and by implementing
tunable components as 8-bit banks of components. Performance
predictions were extracted from these simulations and are reported in
Table 1. The first row shows the predicted area occupied on a silicon
chip, the second row shows the final relative error achieved, the third
and fourth rows show the power consumption without and with
accounting for ADCs (respectively), the fifth and sixth rows show the
energy required to reach 10% error without and with accounting for
ADCs (respectively), and the final row shows the runtime required to
reach 10% error.

Data availability
Source data are provided with this paper.

Code availability
A selection of our code, specifically the code used for our simulations
in studying the performance advantage at scale, is available upon
request from the corresponding author P. J. C. Other code is not
available due to proprietary nature. We have open-sourced code that
could be used for simulating our hardware in the Thermox package43.
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