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The treatment selection for recurrent hepatocellular carcinoma (rHCC) within
Milan criteria after hepatectomy remains challenging. Here, we present HER-
OVision, a Vision Transformer-based model designed for personalized prog-
nosis prediction and treatment optimization between thermal ablation (TA)
and surgical resection (SR). HEROVision is trained on initial HCC cohorts (8492
images; 772 patients) and independently tested on rHCC cohorts (9163 images;
833 patients) from five centers. Propensity score matching (PSM) forms two
groups of rHCC patients underwent TA and SR to fairly evaluate whether
optimized treatment selection by HEROVision have clinical benefits. HEROVi-
sion significantly outperforms all six guideline staging systems in the external
testing cohort, both in time-dependent concordance index and area under the
curve (all P <0.002). After PSM, 35.9% (23/64) and 6.6% (6/91) high-risk rHCC
patients are identified, who could achieve improved prognosis by changing
their treatments. HEROVision shows promise in optimizing individualized
treatment between TA and SR for early-stage rHCC, complementing current
clinical guidelines.

Hepatocellular carcinoma (HCC) stands as the predominant primary
hepatic malignancy, presently ranking as the sixth most prevalent type
of cancer and third principal cause of cancer-related mortality
globally™’. According to the Barcelona Clinic Liver Cancer (BCLC) sta-
ging classification system, patients with very early (BCLC O stage) or
early (BCLC A stage) HCC are recommended curative modalities,
including local ablation, hepatic resection, and liver transplantation’.
However, >60% of patients with early-stage HCC develop recurrent
HCC (rHCC) within 5 years of initial curative hepatic resection or
percutaneous ablation therapy*”.

In real-world clinical practice, the treatment alternatives for
rHCC after hepatic resection remain identical to the initial ther-
apeutic choices. Thus, repeat hepatic resection (RHR) and ther-
mal ablation (TA) are frequently employed in the management of
rHCC owing to the shortage of available organs for transplanta-
tion, especially in China. Surgical resection (SR) is predominantly
employed in patients with HCC exhibiting a favorable perfor-
mance status, sufficient functional liver remnants, and the
absence of vascular invasion®. Conversely, patients with dimin-
ished performance, progressing liver disease, restricted residual
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liver, and potential technical challenges arising from abdominal
adhesions have been shown to benefit from TA, particularly
through radiofrequency ablation (RFA) or microwave ablation®.
There are currently no definitive classification systems or clinical
practice guidelines advocating an individual preference for
treatment options for these patients’'°. Several previous studies
have compared the safety and long-term outcomes of RHR and
RFA in patients with rHCC" ™. However, the findings of these
studies have some disparities. Notably, a randomized clinical trial
indicated that RHR may be associated with superior local disease
control and long-term survival among patients with rHCC mea-
suring greater than 3 cm®. To our knowledge, the optimal treat-
ment regimens for rHCC remain undefined in both guidelines and
literature compared to those established for initial HCC (iHCC).

Noninvasive imaging surveillance is warranted after curative-
intent therapy, with both contrast-enhanced ultrasound (CEUS) and
magnetic resonance imaging (MRI) being employed to detect rHCCs'.
Multimodal imaging, owing to its specific advantages, plays a pivotal
role in the detection of smaller and earlier lesions in rHCC. However,
these methods do not assist physicians in recommending the most
beneficial strategy for treating rHCC. Deep learning (DL), an emerging
technology based on data-driven learning, has recently emerged as a
promising strategy for guiding clinical decision-making"”. The Vision
Transformer (ViT) is a groundbreaking architecture, representing the
first fully Transformer-based model adapted for image tasks. Networks
that leverage the Transformer’s self-attention mechanism have
demonstrated greater efficiency in training and inference, particularly
for capturing long-range dependencies and relationships within ima-
ges compared to convolutional neural networks (CNNs)'8, Additionally,
Transformers can significantly outperform CNNs in generalization on
out-of-distribution samples”. Although DL analysis has shown promise
as a technology for treatment selection in patients with primary HCC,
currently, there are no reports facilitating the optimized selection of
treatment between RHR and TA for patients with rHCC using multi-
modal imaging. The biggest challenge with this issue is the lack of
sufficient rHCC patient data to train and validate a DL model. Previous
studies demonstrated that the treatment prognosis of patients with
early-stage iHCC closely resembled that of patients undergoing sec-
ondary treatment for early-stage rHCC (within Milan criteria after
hepatectomy)>**,

In this work, a DL model, trained on data from iHCC, achieves
effective prognosis prediction in patients with rHCC. We develop
a ViT-based strategy, named HEROVision (HCC optimizing treat-
ments with Vision Transformer network), to assist clinical
decision-making by learning prognosis-related features from
CEUS and MRI. This approach aims to develop and validate a ViT-
based model designed for optimizing individual treatment
selection between RHR and TA for patients with early-stage rHCC
in real-world scenarios.

Results

Patient characteristics

The clinico-radiological characteristics of the training, internal vali-
dation and external testing datasets are shown in Table 1. In the TA
dataset, 1002 patients were enrolled, median age was 58 years (IQR,
51-65 years), and the median follow-up duration was 3.09 years (range,
1.98-4.61 years). In the SR dataset, 603 patients were enrolled, median
age was 58 years (IQR, 50-66 years), and the median follow-up
duration was 2.90 years (range, 1.79-4.01 years).

Development and validation of the HEROVision in iHCC dataset
We trained the HEROVision-TA and -SR models to predict the hazards
of progression-free survival (PFS) using the 1stTA and 1stSR datasets,
respectively (Fig. 1). These models combined a ViT network with key
clinical factors described above to formulate a multimodal imaging-

based PFS hazard model (Fig. 2). The selection of key clinical factors is
presented Supplementary Note 8 and Supplementary Table 2. The cor-
responding nomograms based on HEROVision-TA and -SR are shown in
Supplementary Fig. 2, which can be used to visualize the individual
PFS risk.

Supplementary Figs. 3a, b and 4a, b show Harrell's concordance
index (C-index) and time-dependent area under the curve (AUC) at
different points in the TA and SR datasets. The 2-year C-indexes for the
training and internal validation cohorts of the HEROVision-TA model
were 0.95 (95% confidence intervals [CI]: 0.93-0.97) and 0.87 (95% CI:
0.80-0.94), respectively. Correspondingly, the 2-year AUCs were 1.00
(95% CI: 0.99-1.00) and 0.90 (95% CI: 0.81-1.00), respectively (Sup-
plementary Fig. 3c). Supplementary Fig. 4a-c show similar perfor-
mances of HEROVision-SR. It achieved high levels of 2-year C-indexes,
with values of 0.92 (95% Cl: 0.90-0.95) and 0.83 (95% Cl: 0.73-0.92) in
the training and internal validation cohorts, respectively. It provided
2-year AUCs of 0.95 (95% CI: 0.93-0.98) and 0.92 (95% Cl: 0.79-1.00) in
these two cohorts.

As expected, the performance of the HEROVision model sur-
passed that of the clinical model, as evidenced by significantly higher
C-indices and time-dependent AUCs in all training and internal vali-
dation cohorts for TA and SR (P=5.320 x10"%-0.003). Additional
performance metrics of the 2-year PFS, including accuracy, sensitivity,
specificity, and F1 score, are shown in Supplementary Table 3.

Based on the optimum cutoff in the training cohort, patients were
divided into low- and high-risk subgroups. In the training cohort, the
2-year PFS rates were 99.4% (1stTA dataset) and 98.0% (1stSR dataset)
for the low-risk group, in contrast to 19.6% and 23.9% for the high-risk
group (Fig. 3a, d). Similarly, in the internal validation cohort, the 2-year
PFS rates were 95.5% and 96.4% in the low-risk group and 59.7% and
42.7% in the high-risk group (Fig. 3b, e).

HEROVision for individualized prognostic prediction in rHCC
dataset

HEROVision was directly applied to 2ndTA and 2ndSR datasets from
five centers for independent external tests. As expected, HEROVision
models did not perform as well as they did on the training and internal
validation cohorts (Supplementary Figs. 3 and 4). However, the 2-year
C-indexes of HEROVision-TA and -SR still reached 0.72 (95% CI:
0.69-0.76) and 0.71 (95% CI: 0.65-0.77) in the external testing cohorts,
respectively. Corresponding 2-year AUCs were 0.78 (95% CI:
0.74-0.82) and 0.81 (95% CI: 0.75-0.88). All these values significantly
surpassed those of the clinical models using the Delong test
(P=2.186 x107-6.377 x10™). All detailed quantitative measures are
presented in Supplementary Table 3. Comparisons of C-index, time-
dependent AUC, and 2-year AUC between HEROVision and clinical
models in each center cohort are shown in Supplementary Figs. 5-7.

Furthermore, we confirmed a significantly different prognosis
between high- and low-risk patients stratified by HEROVision in the
external testing cohort for both TA and SR (Fig. 3c, f). The 2-year PFS
rates for the low-risk group were 72.6% (2ndTA dataset) and 75.0%
(2ndSR dataset), whereas those for the high-risk group were 40.8% and
29.9%, respectively. Hazard ratios of HEROVision-TA and HEROVision-
SR were 2.88 (95% CI: 2.31-3.60; Log-rank test: P= 3.30 x 10%?) and 2.69
(95% Cl: 1.77-4.08; Log-rank test: P=1.72 x 10~®) between the low- and
high-risk groups.

To assess the clinical benefit value, we used decision curve ana-
lysis to determine the model score interval that could potentially
benefit patients based on the HEROVision model recommendations at
1,2, and 3-years. In the external testing cohort, for the 2ndTA dataset,
clinical net benefits were observed to be higher than zero at two years,
when the threshold was set within the range of 0.29-0.68; For the
2ndSR dataset, clinical net benefits exceeded 0, when the threshold
was set within the interval of 0.25-0.72. Supplementary Fig. 8 depicts
the decision curves of all models for each interval.
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Center A

HCC patients who underwent HCC patients who underwent
curative ablation were enrolled SR were enrolled from January
from January 2015 to 2015 to December 2022

September 2022 (n=2185) (n=4194)

Inclusion criteria:
(1) Either a solitary tumor with a diameter less than 5 cm or 2-3 tumors
each with a maximum diameter less than 3 cm;
(2) Initial treatment with either TA or hepatectom
@
“
144

) A follow-up period 6 months post-initial
) Acquisition of contrast-enhanced US and MRI data within a
month interval.

Enrolled iHCC patients
(n=705)

Envrolled iHCC patients
(n=897)

Exclusion criteria:

(1) Evidence of vascular invasion or extrahepatic metastasis prior to
initial treatments (1stTA: 147;1stSR: 265); (2) Manifestation of intractable
ascites or hepatic encephalopathy (1stTA: 31; 1stSR: 58); (3) Severe
hepatic and renal dysfunction or other substantial organ disorders
(1stTA: 15; 1stSR: 19); (4) Presence of active infections before or after
treatments (1stTA: 12; 1stSR: 37); (5) History of other malignancies
(1stTA: 87; 1stSR: 102); (6) With unqualified image artifacts (1stTA: 22;

1stSR: 35).
1stTA dataset 1stSR dataset
(n=391) (n=381)
Training cohort  Internal validation Training cohort  Internal validation
(80%) cohort (20%) (80%) cohort (20%)

Center A*

HCC patients who underwent
SR were enrolled from January
2015 to December 2022
(n=4194)

Center B

HCC patients who underwent
SR were enrolled from January
2012 to August 2023
(n=1336)

Center C
HCC patients who underwent
SR were enrolled from January
2015 to September 2021
(n=1231)

Inclusion criteria:

(1) Hepatectomy as initial curative treatment;
(2) Confirmation of HCC diagnosed through pathology on initially resected tissue;

HCC patients who underwent
SR were enrolled from May
2010 to July 2019

Center D Center E

HCC patients who underwent
SR were enrolled from July
2015 to March 2021

(n=1420) (n=1025)

(3) rHCC meeting the criteria of either a solitary tumor with a diameter less than 5 cm or 2-3 tumors each with a maximum diameter less than 3 cm;

(4) Acquisition of contrast-enhanced US and MRI data within a 1-month interval.

rHCC patients after SR
(n=1016)

rHCC patients after SR
(n=401)

rHCC patients after SR
(n=321)

Exclusion criteria:

rHCC patients after SR

rHCC patients after SR

(n=402) (n=244)

(1) Clinical diagnosis of rHCC subsequent to initial resection, followed by other treatments for rHCC prior to RHR or TA (Center A: 354; Center B: 116;

Center C: 81; Center D: 169; Center E: 108);

(2) Occurrence of HCC recurrence within 1 month of the initial hepanc resection (Center A: 21; Center B: 8; Center C: 9; Center D: 13; Center E: 11);

(3) Presence of invasion or
(4) Severe hepatic and renal dysfunction or other substantial organ dlsorders (Center A: 69; Center B:
(5) Absence of follow-up data (Center A: 59; Center B: 19; Center C: 7; Center D: 13; Center E: 10);

(6) With unqualified image artifacts (Center A: 50; Center B: 25; Center C: 8; Center D: 16; Center E: 5).

Enrolled rHCC patients Enrolled rHCC patients Enrolled rHCC patients

(Center A: 112; Center B: 59; Center C: 40;

Enrolled rHCC patients

Center D: 71; Center E: 31);
; Center C: 15; CenlerD 20; Center E: 8);

Enrolled rHCC patients

(n=351) (n=150) (n=161) (n=100) (n=71)
2ndTA dataset 2ndSR dataset| 2ndTA dataset 2ndSR dataset 2ndTA dataset 2ndTA dataset 2ndSR dataset 2ndTA dataset
(n=231) (n=1I 20) (n=102) (n='48) (n=161) (n=46) (n='54) (n=71)

' ' '
O : ... 0
l T
v
2ndTA dataset 2ndSR dataset
(n=611) (n=222)

*Note: Patients from 2ndTA and 2ndSR datasets did not overlap with each other from 1stTA and 1stSR datasets.

External testing External testing

cohort cohort
l Propensity score matching l
2ndTA dataset ) 2ndSR dataset
(n=214) (n=214)

Fig. 1| Flowchart of patient inclusion and exclusion. iHCC initial hepatocellular carcinoma, rHCC recurrent hepatocellular carcinoma, TA thermal ablation, SR surgical

resection.
a b c
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X € RHXxWx3xN systems = | T2-WI DWI Gray-scale CEUS | T2-WI  DWI Gray-scale CEUS systems
Embedding s AJCC HEROVision model AJcc
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CAD %
Cox Regression
35

7 Eclinical variables
Risk Score of HEROVision

Fig. 2 | Workflow of development and clinical application of HEROVision. a A
real-world clinical decision-making scenario for rHCC. b Construction of HEROVi-
sion models for TA and SR using the 1stTA and 1stSR datasets, respectively.

c Clinical application of HEROVision-TA and -SR models. Cross-stratifications were
executed by employing HEROVision-TA and -SR models on CEUS and MRI from
exchanged patient cohorts, respectively. Subsequently, individualized prediction
of PFS was compared between the original and re-stratified patient subgroups for

d

Stratification Stratification

[original fow risk] - [original high risk] (original high risk| - [Origina tow risk]

T ——— T § T
y Re-stratification y y Re-stratification y

‘ New high risk ‘ ‘ New low risk ‘ ‘ New low risk ‘ ‘ New high risk ‘

each of the 2ndTA and 2ndSR datasets. iHCC initial hepatocellular carcinoma, rHCC
recurrent hepatocellular carcinoma, CEUS contrast-enhanced ultrasound, MRI
magnetic resonance imaging, TA thermal ablation, RHR repeat hepatic resection,
SR surgical resection, CAD computer-aided diagnosis, T2WI T2-weighted imaging,
DWI diffusion-weighted imaging, PFS progression-free survival, HEROVision
hepatocellular carcinoma optimizing treatments with Vision Transformer network.

Comparisons with major guideline methods

HEROVision consistently performed better than all six major staging
systems proposed by different guidelines, whether for the training,
internal validation, or external testing cohorts, and regardless of TA

and SR, in terms of C-index values and time-dependent AUCs
(Fig. 4a-d). In the external testing cohort, Table 2 shows that the 2-year
C-index of HEROVision (0.72 for the 2ndTA and 0.71 for the 2ndSR
datasets) was significantly higher than those of the six staging systems
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Fig. 3 | Kaplan-Meier analysis of PFS stratified by the HEROVision-TA and -SR
models into low- and high-risk groups. a-c TA dataset in the training, internal

validation, and external testing cohorts, respectively. d-f SR dataset across all three
cohorts. The error bands (dashed lines) represent the 95% confidence intervals, and

2
Time (Momhs)

n.censor

Time (Months)

the P values were calculated using the two-sided Log-rank test. Source data are
provided as a Source Data file. TA thermal ablation, SR surgical resection, PFS
progression-free survival, HR hazard ratio.

(0.51-0.58 for the 2ndTA and 0.53-0.57 for the 2ndSR datasets,
P=2.665x10"-0.002); Moreover, 2-year AUCs also exhibited sig-
nificant differences between HEROVision and the six staging systems
(0.78 vs. 0.51-0.61 for the 2ndTA dataset, 0.81 vs. 0.55-0.61 for the
2ndSR dataset, P=1.210 x 105-1.200 x 10°®).

Furthermore, the 2-year C-index and AUC of the six staging sys-
tems were significantly enhanced (all P values <0.001), after incor-
porating HEROVision into the analysis for both 2ndTA and 2ndSR
datasets (Fig. 4e-h and Supplementary Fig. 9). This revealed that
HEROVision could improve the 2-year PFS prediction accuracy of
major guideline methods for patients with rHCC in clinical practice.

Ablation studies

To understand the impact of training data size on the model’s per-
formance, we examined the C-index and time-dependent AUC with
different proportions of the TA and SR datasets, as shown in Supple-
mentary Fig. 10. In the internal validation cohort, varying the dataset
partitioning ratios had minimal effect on model performance (Sup-
plementary Table 4). To validate the effectiveness of using fusion
modalities, we analyzed the impact of solitary modalities on the ViT
model’s performance. The fusion modality (CEUS+MRI) demon-
strated superior performance compared to solitary modalities in both
C-index and time-dependent AUC (Supplementary Fig. 11). In the
internal validation cohort of the TA dataset, the fusion modality’s
2-year C-index was 4-7% higher, and the 2-year AUC was 0-6% higher
than those of solitary modalities (Supplementary Table 5). For the SR

dataset, the fusion modality showed a 4-14% increase in the 2-year
C-index and a 6-14% increase in the 2-year AUC (Supplementary
Table 5). These results suggest that incorporating information from
multiple modalities enhances the prediction of PFS. We also compared
several DL models against our ViT model for predicting PFS in rHCC.
The results are presented in Supplementary Figs. 12 and 13 and Sup-
plementary Table 6. In the external testing cohort of the TA dataset,
our ViT model outperformed other methods on most evaluation
metrics, achieving a 2-year C-index of 0.72 compared to 0.68-0.71
for other models (P=0.073-0.633), and a 2-year AUC of 0.78
compared to 0.72-0.77 (P=0.019-0.744). Similarly, in the external
testing cohort of the SR dataset, our model achieved a 2-year C-index
of 0.72 versus 0.63-0.68 for other models (P=0.064-0.381), and a
2-year AUC of 0.81 compared to 0.72-0.79 (P=0.022-0.647).
These results indicate the superior performance of our ViT model in
predicting PFS for rHCC.

Subgroup analyses

We next considered subgroups based on sex, age, tumor size, the
number of tumors, manufacturers, and centers in the 2ndTA and
2ndSR datasets. The C-index, time-dependent AUC, and other metrics
for these subgroup analyses are presented in Supplementary
Figs. 14 and 15 and Supplementary Table 7. The 2-year C-index showed
no significant statistical differences among subgroups in both the
2ndTA dataset (0.68-0.76, P=0.307-0.996) and the 2ndSR dataset
(0.68-0.76, P=0.238-0.892). In the 2ndTA dataset, the 2-year AUC for
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Fig. 4 | Comparisons between HEROVision and six major guideline methods.
For TA (a, b) and SR (c, d) datasets, the C-index values in the training, internal
validation, and external testing cohorts (a, c), along with the time-dependent AUCs
in all three cohorts (b, d), shows that HEROVision consistently outperformed all six
major staging systems proposed by different guidelines for prognostic prediction.
Furthermore, there were noticeable enhancements in 2-year C-index and AUC for
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the six staging systems, after they were supplemented with HEROVision for both
2ndTA (e, f) and 2ndSR (g, h) datasets. Source data are provided as a Source Data
file. TA thermal ablation, SR surgical resection, C-index concordance index, AUC
area under the curve, AJCC American Joint Committee on Cancer, BCLC Barcelona
Clinic Liver Cancer, CNLC China Liver Cancer, HKLC Hong Kong Liver Cancer,
ITA.LL.CA Italian Liver Cancer, UICC Union for International Cancer Control.

Center D showed a significant difference compared to Center A (0.90
versus 0.75, P=0.005). However, there were no significant statistical
differences in other subgroups within the 2ndTA dataset (0.75-0.87,
P=0.077-0.951) or across all subgroups in the 2ndSR dataset
(0.72-0.88, P=0.167-0.942). Furthermore, the subgroup analyses
demonstrated that HEROVision’s performance remained consistent
regardless of sex, age, tumor size, the number of tumors, manu-
facturers, and centers.

Optimize treatment selection in real-world rHCC
After propensity score matching (PSM), 214 patients (35.0%; 214/611)
from the 2ndTA dataset and 214 patients (96.4%; 214/222) from the
2ndSR dataset were matched, demonstrating balanced baseline char-
acteristics for the real-world study (all standardized mean differences
[SMDs] <0.200; Supplementary Table 8). Then, HEROVision-TA and
-SR were successively applied to the matched 2ndTA group for prog-
nostic stratification and re-stratification. Similarly, HEROVision-SR and
-TA were successively applied to the matched 2ndSR group. Supple-
mentary Fig. 16 presents the individual clinical variables and risk scores
of these patients.

In the 2ndTA group, 23 out of 214 rHCC patients changed their risk
categories after re-stratification by HEROVision-SR. Among them, 23
original high-risk patients could be downgraded to low-risk, if they

switched from TA to RHR (Fig. 5a, displayed by the orange to blue
branch), constituting 35.9% of the original high-risk patients. Accord-
ing to HEROVision-TA, the median risk score of the original high-risk
subgroup (n = 64) was 8.65 (IQR: [5.32, 12.88]). In contrast, the median
risk score of the 23 selected patients was reduced to 1.71 (IQR: [1.04,
2.04]) based on HEROVision-SR, which was a significant reduction
comparing with their original subgroup (P=1.400x10% Fig. 5b).
Supplementary Fig. 17a shows that their median risk score decreased
from 3.86 (IQR: [1.90, 5.74]) to 1.71 (IQR: [1.04, 2.04]) (P=0.0023) by
changing the treatment, which indicated a significant improvement in
the expectation of achieving 2-year PFS. Baseline characteristics
(Supplementary Table 9) between the subgroup downgraded from
high-risk to low-risk (n=23) and the subgroup remaining high-risk
after re-stratification (n=41) showed no significant differences
(P=0.101-1.000), except for AFP levels (P< 0.001).

After applying HEROVision-TA in the 2ndTA group for prognostic
stratification (Fig. 5¢), the post-recurrence survival (PRS) significantly
differed between the low- and high-risk subgroups (median PRS, 90.8
months vs. 38.3 months; P=0.00012). However, if remove the 23
identified patients from the original high-risk subgroup, the median
PRS of the rest 41 patients was improved to 45.5 months, suggesting an
overall improvement of prognosis may be obtained for the high-risk
patients (Fig. 5d).
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*P values were calculated using the two-sided DeLong test. P values were computed by comparing with the HEROVision model. P < 0.05 indicated a significant difference.

TA thermal ablation, SR surgical resection, AJCC American Joint Committee on Cancer, BCLC Barcelona Clinic Liver Cancer, CNLC China Liver Cancer, HKLC Hong Kong Liver Cancer, ITA.LI.CA Italian Liver Cancer, UICC Union for International Cancer Control, AUC

area under the curve, ref. reference.

In the 2ndSR group, 10 out of 214 rHCC patients changed their risk
categories after re-stratification by HEROVision-TA. Among them, six
original high-risk patients could be downgraded to low-risk if they
switched from RHR to TA (Fig. Se, displayed by the orange to blue
branch). According to HEROVision-SR, the median risk score of the
original high-risk subgroup (n=91) was 1.67 (IQR: [1.05, 2.67]). In
contrast, the median risk score of the six identified patients was
reduced to —2.95 (IQR: [-4.01, -2.69]) based on HEROVision-TA, which
was a significant reduction comparing with their original subgroup
(P=0.00077; Fig. 5f). Supplementary Fig. 17b shows that their median
risk score decreased from 0.71 (IQR: [0.63, 0.76]) to —2.95 (IQR: [-4.01,
-2.69]) (P=0.0043), if they underwent TA instead of RHR. Baseline
characteristics (Supplementary Table 9) between the subgroup
downgraded from high-risk to low-risk (n=6) and the subgroup
remaining high-risk after re-stratification (n=285) revealed no sig-
nificant differences (P=0.055-1.000), except for DWI sig-
nal (P=0.001).

After applying HEROVision-SR in the 2ndSR group for prognostic
stratification (Fig. 5g), the PRS significantly differed between the low-
and high-risk subgroups (median PRS, >72 months vs. >72 months;
P=0.0028). But unfortunately, because only six potentially profitable
patients were identified, after removing them from the original high-
risk subgroup, changes in the median PRS of the rest 85 patients can be
ignored (Fig. 5h).

Discussion

Optimizing curative-intent treatment for patients with rHCC who are at
high risk of postoperative early-stage progression is essential for per-
sonalized decision-making and improved survival outcomes®. The
implementation of risk stratification for rHCC undergoing TA or RHR is
likely to be promoted using ensemble learning on multimodal imaging
data, such as US and MRI. However, this has not been explored by DL
approaches for rHCC in previous studies. Therefore, our study aimed
to develop a multimodal-based DL model, named HEROVision, that
can optimize the personalized curative-intent treatment selection
between TA and RHR for rHCC patients who initially underwent SR as
their first treatment. The multimodal images (US and MRI), clinical
characteristics, and postoperative follow-up data of 1605 patients with
iHCC and rHCC, who underwent curative-intent TA and SR within the
Milan criteria in five centers located in different geographical regions
of China, were used to train and validate the HEROVision model.

To achieve our goal, HEROVision must first be able to stratify the
prognosis of rHCC patients receiving TA and RHR, respectively. As a
result, it achieved a 2-year C-index of 0.72 and 0.71, and a 2-year AUC of
0.78 and 0.81 in the independent 2ndTA and 2ndSR datasets, respec-
tively. It consistently and significantly outperformed six major staging
systems proposed in various guidelines by comparing C-index and
AUC (regardless of time-dependent or 2-year), whether in training,
internal validation, or external testing cohorts (all P<0.002). Fur-
thermore, we found that the 2-year PFS prediction accuracy of the six
guideline methods could all be improved after using HEROVision as
assistance for rHCC patients. While current staging systems were not
specifically designed for recurrent disease and there are no rHCC-
specific guidelines, this comparison was intended to validate the
effectiveness and potential clinical utility of HEROVision in addressing
this critical gap.

After HEROVision-TA and SR were validated independently for
their prognosis prediction capabilities in the multicenter external
testing cohort, they were applied to conduct personalized treatment
selection between TA and RHR for rHCC by prioritizing treatment
outcomes. Although we successfully enrolled 833 patients with rHCC
in the external testing cohort (2ndTA dataset n = 611 vs. 2ndSR dataset
n=222), only 428 of them were selected for the real-world study by
applying 1:1 PSM (214 vs. 214), so that the negative impacts of selec-
tion bias and confounding factors between two treatments were
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risk patients and the six of them who required a change of treatment in the 2ndSR
group. g Kaplan-Meier curves of PRS stratified by HEROVision-SR in the matched
2ndSR group. h The same analysis as (g) in the matched 2ndSR group after
removing the six identified patients. P values were computed using the two-sided
Mann-Whitney U test (b, f). Boxes indicate the upper and lower quartiles (Q3 and
Q1), with a line at the median. Whiskers extend to the maximum and minimum
values within 1.5 times the interquartile range. Outliers are shown as circles and
identified via the interquartile range rule. The error bands (dashed lines) represent
the 95% confidence intervals, and the P values were calculated using the two-sided
Log-rank test (c, d, g, h). Source data are provided as a Source Data file. TA thermal
ablation, SR surgical resection, RHR repeat hepatic resection, PFS progression-free
survival, PRS post-recurrence survival.

minimized. To assess the contribution and importance of various
components in the model, we conducted three ablation studies. First,
varying the dataset partitioning ratios had minimal effect on model
performance, and we aimed for the model to have as much training
data as possible, while ensuring the validation set was sufficiently
large to effectively reflect the model’s generalization performance.
Consequently, the final ratio was chosen as 4:1, which aligns with most
literature reports***. Second, the performance of the solitary mod-
alities was inferior to that of the fusion modality in both the TA and SR
datasets, demonstrating the effectiveness of multimodal fusion.
Third, we compared several DL algorithms, with our constructed ViT
model outperforming others in the external testing cohort on both
the TA and SR datasets. The performance of Convolution-based
models was lower than that of Transformer-based models. GC-ViT, an
improved variant of the ViT model, did not outperform the original
VIT on the TA and SR datasets, likely because it was not specifically
designed for medical imaging. Geographic and demographic varia-
bility in our retrospective datasets may introduce potential informa-
tion biases, possibly impacting the model’s generalizability. To
address this, we conducted comprehensive subgroup analyses to
evaluate HEROVision’s consistent performance across the 2ndSR and
2ndTA datasets. In addition to performing well on datasets from
different geographical regions of China, HEROVision’s performance
was also assessed across subjects with varying demographics,

including age and sex, as well as tumor characteristics such as tumor
size and the number of tumors, and across different manufacturers.
The model’s performance remained consistent across these sub-
groups, confirming its robustness and generalizability. However, our
dataset lacks racial diversity and international data, which will be
incorporated in future research to further minimize potential biases.

In the matched 2ndTA group, 23 out of 64 high-risk patients who
underwent TA were identified, and they should receive RHR instead of
TA. If this actually happened, their risk scores will be significantly
reduced, indicating an effective improvement in the expectation of
achieving 2-year PFS. We can question whether this result is only based
on model calculations and lacks direct evidence. However,
Kaplan-Meier analyses of the real prognostic data also demonstrated
that HEROVision-TA achieved accurate stratification in PRS. Moreover,
after removing the 23 identified patients from the high-risk group, the
median PRS of the rest 41 patients reached 45.5 months, which was
much closer to the low-risk group (median PRS: 90.8 months). These
results reveal that applying HEROVision-TA and -SR preoperatively for
rHCC patients scheduled to undergo TA, is likely to identify a con-
siderable proportion of them who may significantly benefit from
switching TA to RHR, resulting in an overall improvement in PRS for
the high-risk patients (Fig. 5c, d).

Unfortunately, in the matched 2ndSR group, HEROVision-SR and
-TA were not equally effective. After applying the same strategy, only
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six high-risk patients were identified, whose prognosis may benefit
from switching RHR to TA. Because the proportion is very low, the
overall impact on the high-risk subgroup is basically negligible. How-
ever, these results do not mean that RHR is a priority treatment over
TA. We believe it shows that HEROVision can serve as a preoperative
decision-maker to objectively and quantitatively guide personalized
selection between TA and RHR for rHCC patients.

Currently, there are no established guidelines or definitive clas-
sification systems for the management of rHCC"'°, with most con-
sensus recommendations still following the staging and treatment
guidelines for iHCC. The HEROVision model offers an approach to
individualized preferences in optimizing treatment for rHCC within
the Milan criteria. By accurately re-stratifying patients into good and
poor prognosis groups based on their specific clinical and imaging
profiles, HEROVision facilitates more personalized treatment decisions
with significant clinical implications (Supplementary Fig. 18). For TA,
35.9% of patients initially categorized as high-risk could be down-
graded to low-risk after re-stratification, and switching from TA to RHR
could probably improve their prognosis and extend survival time,
despite the higher average cost associated with surgery”>”. Con-
versely, for RHR, although only 6.6% of high-risk patients who could
benefit from switching RHR to TA, they would have a higher prob-
ability of better prognosis, less invasive procedure with lower com-
plication rates, reduced economic burden, and better preservation of
liver function®*?. Obviously, the above personalized treatment chan-
ges are of great clinical significance. For patients initially categorized
as low-risk but upgraded to high-risk following re-stratification, any
change in treatment strategy would be unnecessary and might make
outcomes worse. For patients who remain low-risk after re-stratifica-
tion, both treatment options could be effective, and the decision
should be made collaboratively by doctors and patients. For those who
remained high-risk after re-stratification, more aggressive sequential
treatment strategies (such as combining with transarterial che-
moembolization [TACE] or systemic therapies) along with imple-
menting closer monitoring might be warranted. Ultimately, the
integration of HEROVision into clinical practice has the potential to
enhance treatment outcomes, improve hospital efficiency, and con-
tribute to more personalized patient management. By tailoring treat-
ment strategies to the individual risk profiles of rHCC patients,
HEROVision could play a critical role in advancing the standard of care
and optimizing resource allocation in clinical settings.

In our study, we developed HEROVision using iHCC data and vali-
dated it with rHCC data for several reasons. On one hand, the strategy to
use iHCC for model development and rHCC for validation was primarily
driven by practical constraints. Despite our collaboration with hospitals
across northern, central, southern, and western China, assembling a
large rHCC dataset for training was challenging due to difficulties in
collecting a sufficient number of rHCC patients with comprehensive
follow-up data and no additional treatments between interventions. On
the other hand, from a pathological and tumor microenvironment
(TME) perspective, the biological behavior of rHCC closely mirrors that
of iHCC. Time to recurrence has been widely recognized as a biological
surrogate marker: early recurrence, typically within 2 years post-sur-
gery, is believed to share the same clonal origin as the iHCC, while late
recurrence, occurring after more than 2 years, is thought to arise from a
de novo origin, driven by underlying liver damage that persists despite
tumor resection’*%, Furthermore, Ding et al.”’ compared genetic fea-
tures and found that 52% of rHCCs share the clonal lineage of the initial
tumor. Both conditions are characterized by a similar liver environment
due to underlying cirrhosis. This biological similarity supports our
decision to use iHCC data for model development, offering a practical
solution to the challenge of obtaining sufficient rHCC data. Although
this approach may not be perfect, it effectively addresses data scarcity
and enables meaningful model development. HEROVision demon-
strated effectiveness in rHCC patients, as evidenced by our study: the

2-year AUC was 0.90 for the internal validation cohort and 0.78 for the
external testing cohort in the TA dataset, and 0.92 and 0.81, respec-
tively, in the SR dataset. Besides that, HEROVision is effective for several
other reasons. First, it efficiently integrated US and MRI images by
applying the specially designed ViT model with bi-direction feature
extraction and non-uniformly scaled tokens”**, Second, it leveraged
the strength of DL in feature extraction, while accommodating the
complexity of survival data and individual differences, by integrating
the ViT model with the Cox regression®. Third, it integrated image DL
features with important clinico-radiological variables as independent
risk factors to construct nomograms for individual prediction. There-
fore, HEROVision integrated preoperative information as much as
possible and correlated them with prognostic information as accurate
as possible by using smart algorithms.

The lack of interpretability in DL presents challenges, particularly
in supervising systems based on complex neural networks*. While
HEROVision model generates a risk score to classify patients into high-
or low-risk groups, the computational process remains a “black box”
due to the inherent complexity of neural networks. Gradient-weighted
Class Activation Mapping (Grad-CAM), a visualization technique,
identifies critical regions in the input image by calculating the gradient
of the target class with respect to a specific convolutional layer®.
However, the patch-based structure of VIiT models often results in
heatmaps with scattered distributions across the image, which may
lack correlation with clinically relevant features and may not always
provide a meaningful understanding of the decision-making®-¢. Con-
sequently, these heatmaps may fail to provide concentrated or clini-
cally meaningful visualizations. To address this, we used nomograms
to provide a clear and clinically applicable visualization of how indi-
vidual variables contribute to risk predictions. In the future, integrat-
ing molecular data such as genomic markers with DL features holds
great potential for improving interpretability, and we plan to explore
this avenue in subsequent studies.

Our multivariate Cox regression analysis indicates that tumor
imaging characteristics, postoperative adjuvant therapies, and coa-
gulation status are key factors for both TA and SR, which is consistent
with the results of previous studies*’*°. Both coagulation and tumor
markers play significant roles in the TME in HCC. Activation of the
coagulation system influences the TME by recruiting and activating
immune cells, potentially affecting HCC development and immune
evasion, thus impacting prognosis*’. Although the mechanism of how
elevated carbohydrate antigen 19-9 (CA19-9) levels contribute to poor
prognosis remains unclear in HCC patients, previous study indicated
CA19-9 might impact the TME by influencing various physiological
processes, potentially promoting tumor progression*.

Our study has several limitations. First, it was a retrospective
multicenter study. Even though we minimized bias through the real-
world study design based on PSM, whether HEROVision can provide
benefit for rHCC patients through personalized treatment decision-
making or not still needs to be verified in high-level prospective stu-
dies, which is what we are conducting in the next step. Second,
because the number of patients with rHCC who underwent RHR is
limited in clinical practice, we were forced to train HEROVision by
employing iHCC data. Although the results proved that our strategy
was correct, the performance of HEROVision is likely to be enhanced if
it is sufficiently trained by real rHCC data. Third, HEROVision was
developed specifically for patients experiencing early-stage recurrence
after SR. As such, it may not be applicable to patients with advanced-
stage recurrence or those who received non-surgical or non-ablative
treatments, such as TACE or systemic therapies, between initial
resection and subsequent recurrences. Fourth, for patients who
remain high-risk after re-stratification, HEROVision does not recom-
mend a specific next-step treatment. However, more aggressive
sequential treatment and closer monitoring strategies may potentially
improve outcomes. Further studies are needed to validate their
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efficacy. Finally, as more cases are accumulated, the use of CT-a
commonly employed imaging modality for surveillance in clinical
practice—will enhance HEROVision’s accuracy and generalizability.

In summary, by analyzing 1605 patients with HCC who underwent
curative-intent TA and SR, we developed and validated a DL based
HEROVision model. It integrates preoperative US and MRI, as well as
clinical variables, to predict tumor progression and optimize perso-
nalized curative-intent treatment for early-stage rHCC. HEROVision
holds promise to complement the existing clinical guidelines and
enhance patient care in the management of early-stage rHCC.

Methods

Patient population

This multicenter retrospective study adhered to the principles out-
lined in the Declaration of Helsinki and was approved by the Ethics
Review Board of The First Affiliated Hospital, Zhejiang University
School of Medicine. Due to the retrospective nature of the study, the
requirement for written informed consent was waived. In compliance
with data privacy, ethical standards, and institutional policies, patient
imaging data is used exclusively for model development and valida-
tion. This process requires no additional tests or patient involvement,
and therefore, no extra compensation is generally necessary.

We enrolled 11,409 patients with HCC who underwent either
ultrasound-guided local ablation or hepatectomy at five centers:
Center A (The First Affiliated Hospital, Zhejiang University School of
Medicine) located in central China, Center B (Peking University Cancer
Hospital) situated in northern China, Center C (The Third Affiliated
Hospital of Sun Yat-Sen University) positioned in southern China,
Center D (West China Hospital, Sichuan University) located in western
China, and Center E (Fifth Medical Center of Chinese PLA General
Hospital) situated in northern China. These centers are geographically
distant from each other and collectively cover the HCC patient
population from different regions across China. Details of patient
participation are shown in Fig. 1 and Supplementary Note 1.

Finally, the study comprised 1605 patients with HCC. Among the
patients with iHCC, 772 underwent first-line treatment between Jan-
uary 2015 and December 2022 at Center A, including 391 cases of TA
(1stTA dataset) and 381 cases of SR (I1stSR dataset). The 1stTA and 1stSR
datasets were divided into a training cohort (n=311 and n=322,
respectively) and an internal validation cohort (n=80 and n=59,
respectively) in a 4:1 ratio, based on chronological order. Among the
patients with rHCC, 833 received second-line therapies between May
2010 and August 2023 from five centers, including 611 cases of TA
(2ndTA dataset) and 222 cases of SR (2ndSR dataset), which were
designated as the external testing cohorts. PSM (1:1) was performed
using binary logistic regression to reduce the effects of selection bias
and confounding factors between the 2ndTA and 2ndSR datasets*.
After PSM, 214 patients from the 2ndTA dataset and 214 patients from
the 2ndSR dataset were successfully matched. Sex and age were
determined based on the government-issued IDs. The sex and age
distributions for the training, internal validation, and external testing
cohorts are provided. Sex was not relevant to the model’s develop-
ment or validation. Gender analysis was not conducted primarily
because the objective of this study was to evaluate the performance of
HEROVision, rather than investigate potential differences between sex
and gender. Additionally, self-identified gender information was not
collected from the patients.

Clinical and imaging data acquisition and preparation

Demographic and clinico-radiological characteristics were collected
from electronic medical records system (Supplementary Note 2).
Multimodal images, including T2-weighted imaging (T2WI), diffusion-
weighted imaging (DWI; b-value = 800 s/mm?), grayscale ultrasound,
and dynamic CEUS (Supplementary Table 1) were acquired from the
five institutions. Detailed procedural information is depicted in

Fig. 2a, b, and comprehensive treatment and imaging protocols can be
found in Supplementary Note 3-5 and Table SI.

Study endpoints

The primary study endpoint was PFS, with secondary endpoints
including overall survival (OS) and PRS. PFS was defined as the dura-
tion between initial treatment (for iHCC) or second treatment (for
rHCC) and tumor progression (including local tumor progression,
intrahepatic distance recurrence, or extrahepatic metastasis) or until
the last follow-up®. OS was defined as the time between the initial TA
or SR and death or last follow-up, whereas PRS was defined as the
period from the first diagnosis of recurrence to death or last follow-
up**. The final follow-up dates were 15 July 2023 (Center A), 25 January
2024 (Center B), 30 September 2023 (Center C), 15 May 2024 (Center
D), and 1 January 2024 (Center E).

Development and validation of HEROVision-TA and -SR models
The HEROVision-TA and -SR models, based on the 1stTA and 1stSR
datasets, were developed using a ViT Cox proportional hazard
regression algorithm to predict the probability of PFS. For each
patient, this algorithm automatically integrated images of T2WI (n = 3),
DWI (n=3), grayscale US (n=2), and CEUS (n=3). For each image, it
learned attention-weighted features horizontally and vertically,
respectively (Fig. 2b). Subsequently, convolutional layers were
employed for feature fusion, followed by Cox regression to derive the
risk score. The model extracted a total of 1408 features from anno-
tated regions of interest across all modalities, intelligently learning key
features specific for predicting PFS in the 1stTA and 1stSR datasets,
respectively. A comprehensive analysis of the HEROVision-TA and -SR
models is presented in Supplementary Fig. 1 and Supplemen-
tary Note 6.

To consistently improve the performance of both models and
facilitate comprehensive utilization, we developed nomograms that
combined risk scores from the clinical and ViT models through mul-
tivariable Cox proportional hazards regression. This approach enabled
personalized predictions in the TA and SR groups. Clinical factors with
a significance level of P<0.20 in the univariate analysis underwent a
stepwise multivariable analysis using the Akaike information criterion
and previous studies to determine their inclusion in the clinical
model***,

Transfer HEROVision model to rHCC for PFS prediction

To predict the PFS in patients with rHCC, the 2ndTA and 2ndSR
datasets served as external testing cohorts (Figs. 1 and 2c). Patients
undergoing TA or SR were categorized into high- and low-risk sub-
groups based on cutoff values determined by the “survminer 0.5.0”
package in R software (version 4.2.2; https://www.rproject.org) from
the training cohorts. Subsequently, the internal validation and external
testing cohorts were stratified into two risk subgroups according to
the optimal thresholds derived from the training cohorts.

The performances of the HEROVision-TA and -SR models in all
cohorts were assessed using metrics such as C-index and the time-
dependent AUC. Additionally, the performance of the HEROVision
model in quantitatively predicting 2-year PFS across all cohorts was
evaluated using measures such as AUC, accuracy, sensitivity, specifi-
city, and F1 score. A decision curve analysis was conducted to evaluate
clinical utility.

Comparisons with major guideline methods

The HEROVision model was compared to different prognostic meth-
ods proposed in major guidelines for predicting the 2-year PFS in
patients with rHCC (Fig. 2¢). Six major staging systems were evaluated
in this study, including the eighth American Joint Committee on Can-
cer (AJCC) staging system*®, Barcelona Clinic Liver Cancer (BCLC)
staging system*’, Chinese Liver Cancer (CNLC) staging system*®, Hong
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Kong Liver Cancer (HKLC) staging system*’, Italian Liver Cancer
(ITA.LL.CA) system’®, and the fifth modified Union for International
Cancer Control (UICC) staging system®.

Ablation studies

We performed three ablation studies, investigating different training
and internal validation cohort splitting ratios, various modality mod-
els, and different DL models. For the splitting ratios of the TA and SR
datasets, based on chronological order, we retrained our ViT model
under three settings, using 3/4, 4/5, and 5/6 of the training cohort,
respectively, and then validated the model in each setting on the
internal validation cohort. In exploring different modality models, we
assessed the contributions of CEUS and MRI modalities to the final
performance of our ViT model on both the training and internal vali-
dation cohorts. Lastly, for different DL models, we compared our ViT
model with other DL models on both TA and SR datasets using the
same experimental setup. This included two CNN models: ResNet50%
and ConvNext*, and two Transformer-based models: original ViT" and
GC-ViT*,

Subgroup analyses

To address potential variability and ensure the robustness of the
findings, we conducted subgroup analyses in the 2ndTA and 2ndSR
datasets, including sex (female and male), age (<60 years and >60
years), tumor size (<3 cm and >3 cm), the number of tumors (solitary
and multiple), manufacturers (MyLab90 Xvision, Logiq E9, Siemens
Acuson Sequoia, and Resona 7), and centers (Centers A, B, C, D, and E).

Real-world study of cross-stratification and treatment optimi-
zation for rHCC
PSM is a widely used method in medical research to balance covariates
between treatment groups™. However, the validity of inferences
regarding treatment effects based on PSM depends on whether the
matched groups have comparable distributions of the measured
baseline covariates. To reduce potential confounding effects arising
from variations in baseline characteristics in our real-world study, the
efficacy of the models in guiding cross-stratification was assessed
using PSM at a 1:1 ratio for 2-year PFS*°. Further details on the PSM
methodology are provided in Supplementary Note 7.

To optimize curative-intent treatment strategy selection between
TA and RHR for rHCC, a stratification approach was applied to the
external testing cohort. The original low-risk and high-risk stratifica-
tions in the 2ndTA dataset (2ndTA-oriLR and 2ndTA-oriHR) given by
the HEROVision-TA model, were re-stratified into the low-risk and high-
risk groups (2ndTA-newLR and 2ndTA-newHR) by applying the
HEROVision-SR model. Similarly, the original low-risk and high-risk
stratifications in the 2ndSR dataset (2ndSR-oriLR and 2ndSR-oriHR)
given by the HEROVision-SR model, were re-stratified into the low-risk
and high-risk groups (2ndSR-newLR and 2ndSR-newHR) by applying
the HEROVision-TA model. Sankey diagrams were constructed,
focusing specifically on patients with rHCC who were initially classified
as high-risk 2ndTA-oriHR and 2ndSR-oriHR) by one treatment, but
were re-categorized as low-risk (2ndTA-newLR and 2ndSR-newLR)
after re-stratification using the other treatment. Moreover, we com-
pared the PRS before and after re-stratification in the 2ndTA and
2ndSR datasets.

Statistical analysis

Data analysis was conducted using R software and Python (version
3.7; http://www.python.org). Categorical variables were compared
between the two groups using either the x* or Fisher’s exact test.
Continuous data were evaluated using either the two-sample ¢ test or
the Wilcoxon rank-sum test, as appropriate. Clinical data are
expressed as mean + standard deviation or median (25 quantile, 75
quantile). The performance of models was assessed using the

C-index and time-dependent AUC, and comparisons were made
using the Delong test. Survival curves were estimated using
Kaplan-Meier analysis with the Log-rank test. Univariate and multi-
variate analyses using Cox proportional hazards regression models
were conducted to identify clinical factors associated with PFS. The
optimal cutoff values for the prognostic nutritional index were
determined using the maximum Youden index. The analyses pro-
vided P values, hazard ratio, and 95% CI. All statistical tests were two-
sided. The threshold for statistical significance was set at P<0.05.
Balance in baseline characteristics between 2ndTA and 2ndSR data-
sets was evaluated by the SMD.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The original images and clinical data used in this study are subject to
access restrictions due to patient privacy and data protection laws.
These datasets contain medical imaging data, which are governed by
the hospital’s strict data management policies to ensure patient con-
fidentiality and compliance. Access to the data is restricted to non-
commercial, academic research purposes only. Interested parties may
request access by contacting the corresponding authors at tia-
nanjiang@zju.edu.cn or kun.wang@ia.ac.cn. All requests will be
reviewed promptly, and access will be granted within 20 working days,
subject to institutional approval. Access will be provided for a period
of 12 months following approval, and any additional extensions will be
reviewed on a case-by-case basis. Please note that the data will only be
made available to researchers affiliated with recognized academic
institutions, and use will be limited to academic research and non-
commercial purposes. Data cannot be shared with external parties or
used for commercial purposes without prior written approval from the
corresponding author and the institution. Source data are provided
with this paper.

Code availability

All code related to this study was developed in Python and is publicly
available under the MIT License, an open-source license approved by
the Open Source Initiative. The full source code, including modules for
image extraction, preprocessing, and deep learning model construc-
tion, has been deposited in the following GitHub repository*’: https://
github.com/Rujinyu/HEROVision/tree/main. The code is freely avail-
able for non-commercial research use. For any commercial or clinical
use, please contact the corresponding author for permission.
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