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The powerbend distribution provides a
unified model for the species abundance
distribution across animals, plants and
microbes

Yingnan Gao 1,2, Ahmed Abdullah 1 & Martin Wu 1

Remarkably, almost every ecological community investigated to date is com-
posed of many rare species and a few abundant species. While the precise
nature of this species abundance distribution is believed to reflect funda-
mental ecological principles underlying community assembly, ecologists have
yet to identify a single model that comprehensively explains all species
abundance distributions. Recent studies using large datasets have suggested
that the logseries distribution best describes animal and plant communities,
while the Poisson lognormal distribution is the best model for microbes,
thereby challenging the notion of a unifying species abundance distribution
model across the tree of life. Here, using a large dataset of ~30,000 globally
distributed communities spanning animals, plants and microbes from diverse
environments, we show that the powerbend distribution, predicted by a
maximum information entropy-based theory of ecology, emerges as a unifying
model that accurately captures species abundance distributions of all life
forms, habitats and abundance scales. Our findings challenge the notion of
pure neutrality, suggesting instead that community assembly is driven by a
combination of random fluctuations and deterministicmechanisms shaped by
interspecific trait variation.

The species abundance distribution (SAD) follows one of ecology’s
oldest andmostuniversal laws. It describes the commonness and rarity
in ecosystems, namely, the abundance (number of individuals) of each
species in a community. Remarkably, almost every animal or plant
community investigated to date is dominated by a few species, and
most species in the communities are rare1. This universal hollow curve
of SAD holds true in communities of different spatial scales, habitat
types, and taxonomic groups. In recent years, such a hollow-curve
pattern, known as ‘rare biosphere’ to microbiologists2, has also been
found to be universal in microbial communities.

The universality of the hollow curve SADs is both surprising and
informative. It suggests that there might be universal principles

operating across habitats, taxonomic groups, and spatial scales. In
particular, the shape of SAD is thought to reflect key ecological
processes involved in community assembly. If we can explain this
high degree of unevenness, then we can gain insight into the
mechanisms that structure communities, whether they involve
stochastic processes, deterministic processes (e.g., species traits
and niche partitioning), or a combination of both. As a result,
SAD has been extensively studied in animals and plants, and dozens
of models have been proposed to explain the shape of the SAD (see
ref. 1 for a review). Among them, the best-known models are
logseries3, lognormal4, broken-stick5, geometric series6, and Zipf
power law7.
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These models range from purely statistical ones selected for
optimal data fitting3 to those explicitly incorporating ecological
processes8–10. For example, while logseries was initially developed by
Fisher to fit empirical data3, it has subsequently been predicted by
Hubbell’s neutral theory11 and Harte’s maximum entropy theory of
ecology (METE)12,13. Hubbell’s Neutral Theory proposes that species
abundances anddistributions are shaped by randomprocesses such as
birth, death, dispersal, and speciation rather than ecological differ-
ences. It assumes all species are functionally equivalent, ignoring trait
differences. Similarly, METE, based on the maximum information
entropy principle (MaxEnt), also assumes no prior trait differences
among species. It posits that the most likely form of an ecological
pattern is the one that represents the most unbiased or least-
informative distribution given a set of ecological constraints (e.g.,
the average species abundance). These constraints represent the
deterministic factors that are believed to be imposed on an ecosystem.
This MaxEnt framework therefore offers a platform for investigating
and assessing factors that underlie the universal hollow-curve nature
of SADs. For example, using MaxEnt and modeling intrinsic species
trait differences, a new SADmodel has been proposed14,15. This model,
termed ‘powerbend’ in theRpackage ‘sads’, is amodified versionof the
power law, distinguished by its establishment of an upper limit on the
abundances of the most dominant species within a community16. This
model, exceptionally versatile in nature, encompasses all aforemen-
tioned SAD models, with the exception of the Poisson lognormal
model (Supplementary Note 1). Nonetheless, powerbend remains
relatively obscure compared to other models and has not been widely
tested.

Due to the fundamental importance of SAD in biodiversity stu-
dies, therehas been a long-standing quest for a unifying SADmodel for
all life forms1. The Poisson lognormal and logseries distributions are
the two most successful SAD models, and they are often used as
benchmarks to test other models. For example, White et al. and Bal-
dridge et al. tested several commonly used SAD models in about
16,000 animal and plant communities from terrestrial, aquatic, and
marine environments17,18. They found that logseries is the overall best
SADmodel based on the Akaike Information Criterion (AIC). However,
previous studies have also indicated that the Poisson lognormal
model19–21, as well as the less commonly used gambin22,23 and Weibull
models24, are preferred in some animal and plant communities. In
another large-scale study of over 20,000 bacterial and archaeal com-
munities, Shoemaker et al. found that Poisson lognormal, not log-
series, best describes microbial SADs25. In contrast to animals and
plants, bacteria and archaea reproduce asexually and have relatively
large population sizes, high dispersal rates, and short generation
times. Given these key differences, the finding that microorganisms
andmacroorganismsmay have distinct SADs raises a key question: are
there unifying macroecological rules and ecological theories that can
explain SADs across the tree of life?

To address this question, we test whether a universal SAD model
unites all types of organisms, large and small. Using a large dataset
encompassing animals, plants, and microbes, we establish the emer-
gence of powerbend as a unifying SAD model across communities of
broad scales, habitats and taxonomic groups. Our findings support the
existence of universal ecological principles governing the assembly of
animal, plant, and microbial communities, driven by both determi-
nistic and neutral processes.

Results
Powerbend accurately captures SADs of animal and plant
communities
In this study, we focused on four SAD models—Poisson lognormal,
logseries, power law, and powerbend (Supplementary Table S1). The
selection of the Poisson lognormal, logseries, and power law models
was based on their widespread use and extensive testing in large-scale

studies of animal, plant, and microbial communities17,18,25. In contrast,
the more flexible powerbend model has received little attention
previously26. To enable direct comparisons with previous findings, we
utilized the datasets compiled by Baldridge et al.18 and Shoemaker
et al.25 in our study. In terms of the goodness of fit, as measured by the
modified coefficient of determination r2m

17,25,27, powerbend explains an
average of 93.2% of the variation (weighted by the size of datasets
representing different taxonomic groups, Fig. 1a) in 13,819 animal and
plant SADs (Supplementary Table S2). In comparison, Poisson log-
normal explains 94.7% of the variation, while logseries explains 73.2%
(Fig. 1a). Using Monte-Carlo simulations, we found that powerbend,
Poisson lognormal and logseries have r2m values not significantly dif-
ferent from 1.0 (r2m = 1.0 indicates a perfect fit) in 99.5%, 100% and
88.7% of SADs, respectively. Furthermore, compared to the other
models, powerbend produces unbiased predictions regardless of the
scale of species abundance (Fig. 1a). Poisson lognormal, while equal to
powerbend in terms of the overall predictive power, tends to over-
estimate the abundance of the most abundant taxa (Fig. 1a, b), and
performs poorly in predicting the evenness and rareness of the SAD
(see below). In contrast to the other models, power law fits the data
poorly (r2m = −0.079). r2m calculated using unweighted samples showed
similar results (Supplementary Table S3).

In addition to evaluating goodness of fit (r2m), we also compared
models using AIC, an approach strongly recommended for SADmodel
testing28 and employed in the Shoemaker et al. study25. Our simulations
show that when the number of observed species in a SAD is less than
40, AIC-based model selection does not have enough power to dis-
tinguish between SADmodels, often favoring the simplermodels even
when the simplermodel is incorrect (Supplementary Fig. S1). The small
number of species in the Baldridge et al. dataset18 (weighted mean:
36.8 species per SAD) limited the power of AIC-based model selection
in animal and plant communities. According to AIC, powerbend is
significantly better than logseries in 20.88% of animal and plant SADs
(ΔAIC≥ 2),while logseries is significantly better only in 0.04%of animal
and plant communities. Similarly, powerbend is significantly better
than Poisson lognormal in 16.44% of SADs, while Poisson lognormal is
significantly better in 11.17%. Moreover, powerbend significantly out-
performs the Weibull model in 84.27% of SADs, while the Weibull
model is significantly better in only 1.33% of cases.

Our results are consistent with previous findings that distin-
guishing between some SADmodels is challenging in animal and plant
communities1,18,28. Next, we test the models in microbial communities,
which have substantially greater species richness.

Powerbend provides the best fit to microbial communities
Although 16S rRNA sequencing iswidely employed for determining the
microbial species abundance, there are certain challenges when using
16S rRNA sequence data to test SAD models. One key challenge arises
from the fact that we only count the number of reads from a species
(commonly defined as an operational taxonomic unit, or OTU, at 97%
sequence identity threshold), rather than the actual number of indi-
vidual cells present. To establish a connection between 16S rRNA read
numbers and absolute species abundances, it is essential to account
for the sampling effort within the 16S rRNA sequencing pipeline by
incorporating a sampling error such as the Poisson distribution.

Shoemaker et al. have shown that the Poisson lognormal model
appears to be the best SAD model for microbial communities25. How-
ever, it is important to note that the Poisson lognormal model was the
only model in that study to incorporate a Poisson sampling error. This
could confer an inherent advantage to the Poisson lognormal model
over the other SAD models because 16S rRNA sequencing inherently
involves multiple sampling processes. To select the best SADmodel in
microbial communities, we fitted Poisson lognormal and threemodels
(logseries, power law, and powerbend) with and without a Poisson
sampling error to 15,329 microbial SADs (Supplementary Table S2).
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Incorporating a Poisson sampling error substantially improves the fit
of power law and powerbend (Table 1). The powerbend model out-
performs all other models in 67.0% of communities tested, while the
next best model, Poisson lognormal, is superior in 18.3% of the com-
munities (Table 1). In stark contrast, logseries, though a decent model

for animal and plant SADs, is the best model in only 0.2% of microbial
communities. In a direct comparison of the two best models, the
Poisson powerbendmodel outperforms the Poisson lognormal model
in 76.1% of communities, 87.0% of which are statistically significant
(ΔAIC≥ 2). This finding remained consistent regardless of the
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Fig. 1 | Goodness of fit of SADmodels in 13,819 animal and plant communities.
Thepredicted values are plotted against observed values for (a) species abundance.
b SADdominance. c SAD evenness, andd SAD rareness. Eachdot in (a) represents a
species, and each dot in (b–d) represents a community. The color represents the
density of the dots: red represents the densest dots, and dark blue represents the
least dense ones. The black diagonal line is the 1:1 line that represents a perfect fit.

Goodness of fit for each SAD model is determined by the modified coefficient of
determination against the 1:1 line (r2m) and its mean value, weighted by the sample
sizes of the datasets is shown. Because r2m is calculated against the 1:1 line with a
fixed intercept of 0, it is possible that its value drops below zero, which indicates a
poor fit. Source data is provided as a Source Data file.
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sequence similarity thresholds used to define microbial species (Sup-
plementary Table S4), whether 16S rRNA copy number variation was
taken into account in determining the species abundance (Supple-
mentary Table S5), and when using Bayesian Information Criterion
(BIC) that applies greater penalty to more complex models (Supple-
mentary Table S6).

Poisson powerbend exhibits an excellent overall fit to the
observed SAD data, on average explaining 99.3% of the variation
(Fig. 2a). The excellent fit is consistent throughout the entire range of
species abundance spanning 7 orders of magnitude. In contrast,
although Poisson lognormal and Poisson power law also provide great
overall fits, they substantially overestimate the abundance of the
abundant species in the communities (Fig. 2a). Using Monte-Carlo
simulations, we found that Poisson powerbend exhibits r2m values not
significantly different from 1.0 in 90.1% of SADs. This suggests that
powerbend accurately describes the vast majority of microbial SADs.
In contrast, Poisson lognormal and Poisson power lawmodels have r2m
values not significantly different from 1.0 only in 67.3% and 43.0% of
SADs, respectively. Poisson logseries fits the data poorly, only
explaining 12.9% of variation (Fig. 2a).

We noted that Fig. 2 of the study by Shoemaker et al. did not seem
to show the overprediction of species abundance by the Poisson log-
normal model25, as we have demonstrated here. This discrepancy
arises because the overprediction is most apparent in SADs with 16S
rRNA reads exceeding 105, and these SADs were excluded from Shoe-
maker et al.’s Fig. 225 (Supplementary Note 1, Supplementary Fig. S2).

We were interested in the performance of the gambin model—a
simple, one-parameter model—relative to the other more complex
SAD models. Because the Gambin model requires species abundance
data to be binned into log2 octaves, resulting in a substantial loss of
information, we did not test it in animal and plant communities, which
have limited data points. In microbial communities, however, the
Gambinmodelwas significantly inferior to the Poisson powerbend and
lognormal models (Supplementary Table S7).

Powerbend accurately captures SAD skewness, evenness, and
dominance while other models fail
SAD is often considered a weak test due to its limited ability to dis-
tinguishbetween ecologicalmodels using benchmarks such asAICand
R2 that measure the overall fit to the species abundance data1. One
issue with the overall fit measurements is that they are heavily
weighted by rare species that make up most of the data points. To
overcome this problem, additional SAD metrics can be used to eval-
uate SAD models25,29. They encompass various features of the SAD
including rareness (the asymmetry in the distribution of species
abundance as a measure of rarity), evenness (the level of uniformity in
species abundance), and dominance (Nmax, the abundance of themost

abundant species). A good SAD model should not only capture the
overall species abundance distribution in the raw data but also accu-
rately reflect key scalar metrics such as evenness, rareness, and rich-
ness. Figures 1b–d and 2b-d show that the powerbendmodel performs
very well in capturing these additional SAD metrics of animal, plant,
andmicrobial communities, while theothermodels all performpoorly.
For example, althoughPoisson lognormal provides a goodoverallfit to
the species abundance data in microbial communities (Fig. 2a), it fits
poorly to the SAD dominance (r2m = −1.122, Fig. 2b), evenness
(r2m = −1.519, Fig. 2c) and rareness (r2m =0.600, Fig. 2d). This result
demonstrates again that the powerbend model is overwhelmingly
superior to the other SAD models.

Discussion
The distribution of species abundance stands as one of the oldest,
most universal, and fundamental laws in ecology. Despite decades of
research and the development of numerous models, a universally
accepted SADmodel applicable across the tree of life remains elusive.
Consistent with previous findings1,18,28, we found it challenging to
identify a single best model for animal and plant communities based
on the AIC and r2m criteria. The Poisson lognormal and powerbend
models are essentially tied, although the powerbendmodel is superior
when evaluated with additional SAD metrics such as dominance,
evenness, and rareness. This difficulty in distinguishing among SAD
models is partly due to the relatively low number of species within
animal and plant communities, which limits the statistical power for
model comparison. This challenge can be mitigated by testing SAD
models within microbial communities, which typically exhibit sig-
nificantly greater species richness. In this study, for instance,microbial
communities have amedian value of 3,246 species per SAD, facilitating
more robust model testing. We boosted the power of SAD testing by
concurrently evaluating models across animal, plant, and microbial
communities, covering a range of abundance scales spanning 7 orders
of magnitude. Incorporating additional SAD metrics, including even-
ness, dominance, and rareness, enabled us to identify a superiormodel
that would otherwise be indistinguishable from others using only AIC
and r2m. Moreover, we explicitly modeled the sampling effort of sur-
veys, an important but often overlooked factor in SAD model testing1.
As a result, we demonstrated that, among the models tested in this
study, powerbend is the only one that provides a good fit for both
microorganism and macroorganism communities, establishing it as a
promising unifying SAD model. Our simulations show that when
sampling or species number is sufficient, SADdata have enough power
todistinguishSADmodels and recover the truemodel (Supplementary
Fig. S1). Conversely, poor sampling or the small number of species
tends to favor simpler models such as the logseries and Poisson log-
normal over the powerbend (Supplementary Fig. S1). Therefore, we
concluded that the superiority of the powerbend model is unlikely to
be a result of poor sampling. While the success of the powerbend
model does not by itself prove the existence of universal ecological
principles, it provides key evidence supporting this hypothesis.

It is important to point out that powerbend is in essence a “bent”
power law16. While the abundance distribution ofmost species within
a community follows a power law, the bending in the powerbend
model imposes an upper limit on the abundance of dominant spe-
cies. This bending reflects the inherent constraint on the population
size of a community12,13 and is a key feature that distinguishes pow-
erbend as a superior model to the power law. In contrast, the power
law fits SADs poorly because it consistently overestimates the
abundance of dominant species within a community (Figs. 1a, b, 2a
and b).

The existence of a unifying SADmodel suggests some common
mechanisms at work. Although a-mechanistic models such as the
powerbend model do not explicitly incorporate the underlying
mechanisms or processes, they can still be useful for discerning and

Table 1 | Frequencies of each SAD model and model family
being selected as the best model by AIC in 15,329 microbial
communities

SAD model Sampling
error structure

Best model (statis-
tically significant)

Best model family
(statistically
significant)

Lognormal Poisson 18.3% (12.7%) 18.3% (12.7%)

Logseries None 0.2% (0.0%) 0.2% (0.0%)

Poisson 0.0% (0.0%)

Power Law None 1.7% (0.0%) 14.5% (0.5%)

Poisson 12.8% (0.5%)

Powerbend None 6.7% (2.0%) 67.0% (56.1%)

Poisson 60.3% (49.4%)

A best model is considered statistically significant when its AIC difference to the second-best
model is greater than 2.
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revealing dominant mechanistic drivers of the ecosystem12,13,30. For
example, because the powerbend model was derived by modeling
interspecific trait variation14,15, it supports the idea that determi-
nistic mechanisms are important in driving the community

assembly. Therefore, our result challenges purely neutral models
such as Hubbell’s neutral theory, which predicts logseries SAD. On
the other hand, the fact that the powerbend model is derived using

Fig. 2 | Goodness of fit of SAD models in 15,329 microbial communities. The
predicted values are plotted against observed values for (a) species abundance.
b SAD dominance. c SAD evenness, and d SAD rareness. Each dot in a represents a
species, and each dot in (b–d) represents a community. The color represents the
density of the dots: red represents the densest dots and dark blue represents the
least dense ones. The black diagonal line is the 1:1 line that represents a perfect fit.
Goodness of fit for each SAD model is determined by the modified coefficient of

determination against the 1:1 line (r2m) and its mean value, weighted by the sample
sizes of the datasets is shown. Because r2m is calculated against the 1:1 line with a
fixed intercept of 0, it is possible that its value drops below zero, which indicates a
poor fit. For illustrative purposes, the x-axis is truncated to 109 in (a) and (b)
because the power law overpredicts the abundance of the most abundant species.
Source data are provided as a Source Data file.
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a MaxEnt framework implies that stochasticity also plays an
important role in shaping macroecological patterns.

The s parameter in the powerbend model can be conceptualized
as representing the number of limiting resources driving the com-
munity assembly30. Alternatively, it could be seen as analogous to theα
parameter in the Gambin model, representing the ‘dimensionality’ of
the community’s realized niche space. Our study indicates that in
animal and plant communities, the weighted mean of the s parameter
is 0.9, close to 1.0 when the powerbend model degenerates into the
logseries model. In this scenario, total available energy can be con-
sidered the limiting resource30 or as one dimension of niche space
driving the macroecological patterns. In contrast, the mean s para-
meter of microbial communities is 1.6. This suggests that microbe
communities are constrained by a greater number of limiting resour-
ces or occupy a higher-dimensional ‘realized’ niche space, likely
because microbial surveys typically span a much broader taxonomic
range than animal and plant surveys. A greater number of limiting
resources or an expanded niche dimensionality provides more spe-
cialized opportunities for rare species to survive, resulting in more
uneven SADs or a more pronounced ‘rare biosphere’ in microbial
communities. The fractional natureof the sparameter also implies that
the limiting resource or niche space is hierarchically partitioned
among community members. This aligns with findings showing that
cross-feeding between species in amicrobial community is a key driver
of community assembly31.

The prediction of the powerbend SAD model is rooted in a
maximum entropy-based framework. The success of the powerbend
SAD model provides evidence that the assembly of both micro-
organism and macroorganism communities adheres to the same
governing principles. This study should stimulate additional testing
of maximum entropy-based theories as potential unifying frame-
works for understanding other macroecological patterns, including
the species-area relationship and the metabolic rate-abundance
relationship12,30,32.

Methods
SAD data
To test the universality of SAD models in animals and plants, the
species abundance data were downloaded from Baldridge et al.
study18, which includes the Breeding Bird Survey (BBS)33, Alwyn H.
Gentry’s Forest Transect Data Set (GENTRY)34, the Mammal Com-
munity Database (MCDB)35, the Forest Inventory and Analysis (FIA)36

and SAD data compiled from literature for an assortment of taxa37. To
test microbial SADs, the bacterial and archaeal species abundance
data were downloaded from Shoemaker et al. study25, which includes
data from the Earth Microbiome Project (EMP)38, the first phase of
Human Microbiome Project (HMP1)39, and the MG-RAST repository
(MGRAST)40. Because the rare tail of the SAD contains critical infor-
mation for model fitting, we included species with a single read,
known as singletons, in our analysis to avoid potential bias in model
selection, consistent with the practice of Shoemaker et al.25 Our
simulations showed that when the number of observed species in a
SAD is small or when the sampling effort is low, model selection
using AIC does not have sufficient power to distinguish SAD models,
often favoring the simpler models even when the simpler model is
incorrect (Supplementary Fig. S1). The more complex the model is,
the more data points (i.e., species) are required to recover the true
model. To strike a balance between the number of SADs we can
analyze and the power of model selection, and following the practice
of the previous studies17,18, we filtered out SADs with less than
10 species to test base SAD models for animal and plant SAD data,
and SADs with less than 100 Operational Taxonomic Units (OTUs) to
test compound SAD models for microbial SAD data. In addition, in
the microbial SAD data, we identified 687 outlier SADs where the
number of doubleton species exceeded the number of singleton

species by more than 10-fold (Supplementary Fig. S3). These outliers
all originated from the EMP dataset compiled by Shoemaker et al.25

but are no longer present in the current EMP dataset (year 2017
version). Consequently, we excluded these outliers from our ana-
lyses. This resulted in a total of 13,819 animal and plant SADs and
15,329 microbial SADs (see Supplementary Table S2).

The animal and plant dataset encompasses diverse taxonomic
groups (see Supplementary Table S2). To ensure equitable repre-
sentation across these groups, we applied weighting to each SAD
based on the size of the dataset it originated from when assessing the
frequency of a model being the best by AIC or its goodness of fit. For
instance, a SAD within the Mammal Community Database (MCDB,
103 samples) carried 26.9 times the weight of a SAD from the Breeding
Bird Survey (BBS, 2,769 samples).

SAD models
The lognormal SAD model has the probability density function:

Φlognorm n;μ,σð Þ= 1

nσ
ffiffiffiffiffiffi
2π

p e�
log nð Þ�μð Þ2

2σ2 n 2 R+� � ð1Þ

where n represents the species abundance, and μ and σ are the mean
and standard deviation of log-transformed n, respectively. The
logarithm is calculated with the natural base e. Given that the
lognormal distribution is continuous while the SAD is inherently
discrete, it is necessary to convolute it with a sampling error when
fitting it to SAD data.

The logseries distribution has the probability mass function:

Φls n;λð Þ= � 1
log 1� e�λ

� � � e�λn

n
n 2 Z +� � ð2Þ

where λ is the exponential rate at which the numerator decays.
The power law distribution has the probability mass function:

Φpower n; sð Þ= n�s

ζ sð Þ n 2 Z+� � ð3Þ

where s > 1 is the scaling parameter that controls the distribution’s
decay rate, and ζ sð Þ is the Riemann zeta function, serving as a nor-
malization factor to ensure the sum of the probabilities over all pos-
sible values of n equals 1.

The powerbend distribution takes amore general formcompared
to the logseries and power law distributions. It is a hybrid of a power
law and an exponential function, in which the exponential function
bends the power law by setting an upper bound to the power law16. It
has the probability mass function:

Φpowbend n; s, λð Þ= 1
Z
� e

�λn

ns n 2 Z+� � ð4Þ

where s is the order of the denominator, λ is the exponential rate at
which the numerator decays, and Z is the probability normalizer. It
should be noted that the powerbend distribution is a generalized
distribution that can degenerate into the logseries, geometric, broken-
stick, and power law distributions by setting its parameters to certain
fixed values (Supplementary Note 1).

Modeling sampling effort in 16S rRNA survey
To relate the number of observed reads in 16S rRNA profiling data to
thenumber of individual cells in the community, we explicitlymodeled
the sampling effort by convoluting a sampling error to the base SAD
models. The 16S rRNA profile of a community typically comprises
thousands of reads. Assuming no bias, the sampling error can be
approximated by a Poisson distribution whose mean represents the
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expected number of reads given the number of individual cells. We
used parameter η to denote the expected number of reads per indi-
vidual cell, which represents the sampling effort. By convoluting the
sampling error to the base SAD models, we derived the sampling-
explicit SAD models defined on non-negative integers k 2 0∪Z+ :

Φpoils k; λ,ηð Þ=
X1
n= 1

ηnð Þke�ηn

k!
�Φls n; λð Þ ð5Þ

Φpoipower k; s,ηð Þ=
X1
n= 1

ηnð Þke�ηn

k!
�Φpower n; sð Þ ð6Þ

Φpoipowbend k; s, λ,ηð Þ=
X1
n= 1

ηnð Þke�ηn

k!
�Φpowbend n; s, λð Þ ð7Þ

It should be noted that for Poisson lognormal distribution,
because the number of individuals n and the sampling effort η always
appear together in the formula as their product, there is no way to
disentangle the two parameters. Therefore, the sampling effort η is
fixed to 1, and the probability mass function of the Poisson lognormal
distribution has the same number of parameters as the base distribu-
tion:

Φpoilog k;μ,σð Þ=
Z 1

0

nke�n

k!
�Φlognorm n;μ,σð Þ � dn ð8Þ

In practice, there may be bias in 16S rRNA sequencing resulting
from biases in DNA extraction and PCR amplification. Thus, a Poisson
sampling error may not be sufficient to accurately relate the sequence
reads to the number of individual cells. Because the direction and
magnitude of such bias are often unknown, its effect on the distribu-
tion of sequence reads can be seen as an inflation of the variance or
over-dispersion without changing the mean. As a result, we used the
negative binomial distribution to model such bias41, and derived the
corresponding probability mass function for SAD models:

Φnblog k;μ,σ, rð Þ=
Z 1

0

Γ r + kð Þ � rk � nr

Γ rð Þ � k! � r +nð Þr + k
�Φlognorm n;μ,σð Þ � dn ð9Þ

Φnbls k; λ,η, rð Þ=
X1
n= 1

Γ r + kð Þ � rk � ηnð Þr
Γ rð Þ � k! � r +ηnð Þr + k

�Φls n; λð Þ ð10Þ

Φnbpowber k; s,η, rð Þ=
X1
n= 1

Γ r + kð Þ � rk � ηnð Þr
Γ rð Þ � k! � r +ηnð Þr + k

�Φpowber n; sð Þ ð11Þ

Φnbpowbend k; s, λ,η, rð Þ=
X1
n= 1

Γ r + kð Þ � rk � ηnð Þr
Γ rð Þ � k! � r +ηnð Þr + k

�Φpowbend n; s, λð Þ

ð12Þ

In the above equations, rmeasures the degree of over-dispersion
or bias in the negative binomial distribution and Γ is the gamma
function.

Using 200 randomly selected microbial SADs, we compared the
use of Poisson and negative binomial distributions to model the
sampling effort in the 16S rRNA sequencing pipeline. Our result indi-
cated that SADmodels with the Poisson error structure are superior to
those with the negative binomial error structure (Supplementary
Table S8). Therefore, we used the Poisson error structure for testing
the full microbial SAD dataset.

Supplementary Table S1 lists the models tested in this study and
their free parameters.

Fitting SAD models to empirical data
Because all SADmodels (both basemodels and their sampling-explicit
counterparts) are formulated as probability distributions, we fitted
them to the observed abundances in empirical data using the max-
imum likelihood (ML) framework. Because species with zero obser-
vations are not recorded in empirical data, the likelihood of a single
specieswith kobservations (denoted as L(k)) for sampling-explicit SAD
models is normalized by the cumulative probability of any positive
observation:

L kð Þ= P kð ÞP1
m= 1P mð Þ ð13Þ

In the above formula, P(k) is the probabilitymass function for one
of the sampling-explicit SADmodels described in the previous section.
We compared the performance of SAD models using AIC.

We fitted all models with a Poisson or negative binomial error
structure using the R package ‘microSAD’. Additionally, we fitted the
logseries, power law, powerbend, and Weibull models using the R
package ‘sads’. For the gambin model, we used the R package
‘gambin’23.

Evaluating the goodness of fit of SAD models
The goodness of fit of SAD models was evaluated by comparing pre-
dicted and observed species abundances in the rank-abundance dis-
tribution (RAD). Briefly, to generate the expected RAD for a SADwith S
observed species, weplaced S quantiles on the cumulative distribution
function (CDF) of the fitted SADmodel, evenly dividing the cumulative
probability (the y-axis of the CDF curve). For comparison between the
expected and the observed RADs, we used the modified coefficient of
determination around the 1:1 line r2m as described in previous
studies17,25,27 to quantify the goodness of fit:

r2m = 1�
PS

i = 1 log xi
� �� log yi

� �� �2
PS

i = 1 log xi

� �� 1
S

PS
j = 1log xj

� �� �2 ð14Þ

In the above formula, x and y are the observed and the predicted
abundances (e.g., number of reads in 16S rRNA profiling data),
respectively. The subscripts denote the rank of species, and S is the
total number of observed species in the SAD. Because the coefficient of
determination here is calculated against the 1:1 line with a fixed inter-
cept of 0, it is possible that its value drops below zero, which indicates
a poor fit.

The value of r2m reaches 1 if and only if the observed and the
predicted abundances match perfectly, indicating a perfect fit of SAD.
To determine if the r2m of a model fitted to a SAD (observed r2m) is
significantly lower than 1, we established a baseline distribution of r2m
values from 1000 iterations of Monte-Carlo simulation. In each itera-
tion, we simulated aRADbasedon thefitted SADmodel and calculated
r2m between the simulated RAD and the expected RAD. We then
employed a one-sided test to assess the lack-of-fit by calculating the
empirical frequency at which the baseline r2m values were smaller than
the observed r2m.

In addition, the goodness of fit of SAD models was evaluated by
comparing observed and predicted SAD evenness, rareness, and
dominance. Evenness of a SAD was measured using Shannon’s even-
ness EH, also known as Pielou’s evenness J42. Rareness wasmeasured by
the log-modulo of skewness of a SAD, as described in refs. 25,29, with
log-transformed species abundances utilized for the skewness calcu-
lation. Dominance is measured simply as the abundance of the most
abundant species (Nmax) in the SAD, also as described in25,29.
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Evaluating the effects of observed species number and sampling
effort on SAD model selection
We investigated the influence of the number of observed species on
the efficacy of model selection by AIC. We generated simulated com-
munities employing either a logseries (λ = 10−2) or powerbend
(s = 1:5, λ = 10−2) SADmodel. The simulated communities varied in the
observed species number, ranging from 10 to 100 species per com-
munity. For each level of species count,we simulated 100communities
under each SAD model. Subsequently, we fitted the logseries and
powerbend models to the simulated data and recorded the frequency
at which each model emerged as the best-fit model by AIC.

Likewise, weexamined the effect of sampling effort on SADmodel
selection. We conducted simulations using communities generated
according to either a powerbend (s = 1.5 and λ = 10−5) or lognormal
(μ =0 and σ = 3.25) SADmodel. For each SADmodel, we simulated 100
communities, each consisting of 104 species, by randomly drawing
species abundances from the respective SAD distribution. Next, we
simulated the sampling process by randomly drawing the number of
observations for each species fromaPoisson distribution,whosemean
was set to be the product of the species abundance and the sampling
effort. We simulated 9 levels of sampling effort, evenly spaced from
10−1 to 10−5 on a log-scale. Subsequently, we fitted the Poisson power-
bend and Poisson lognormal models to the simulated data and
recorded the frequency at which each model appeared as the best
model at each level of sampling effort.

Evaluating the effect ofOTU sequence identity thresholdonSAD
model selection
To investigate the effect of OTU sequence identity threshold on
SAD model selection, we clustered OTU at different identity
thresholds for the 565 SADs from the HMP1 dataset using Mothur
(version 1.48)43. Specifically, we extracted all aligned 16S rRNA gene
sequences in the HMP1 dataset from the summary table of the
Mothur pipeline. We calculated the pairwise distance between
unique sequences using the function “dist.seqs” (with arguments
cutoff=0.20 and output=lt) and clustered the unique sequences
with the average neighbor algorithm using the function “cluster”
(with arguments: method=average and cutoff=0.20). OTU tables
were generated at the sequence identity threshold of 95% and 99%
using the function “make.shared” (with argument: label=0.01-0.05).
We fitted SAD models to these two datasets, conducted model
selection through AIC, and compared the outcome with that of the
original HMP1 dataset.

Evaluating the effect of 16S rRNA gene copy number (GCN)
correction on SAD model selection
Because 16S rRNA GCN variation can bias the species composition
estimated using 16S rRNA read counts44, we assessed its impact on the
outcome of SAD model selection by performing model selection on
the 565 SADs from the HMP1 dataset. We predicted GCN for each OTU
and then fitted models on the species abundance data corrected for
GCN variation. Specifically, we selected the most abundant sequence
in eachOTU as its representative sequence. We then predicted the 16S
GCN of each OTU using RasperGade16S45, an R package that predicts
16S GCN based on phylogenetic relatedness. In SAD model fitting, we
modeled 16S GCN as an OTU-specific multiplier to the sampling effort
η. Consequently, only SAD models with a Poisson sampling
error structure were included in this analysis. Model selection was
performed through AIC, and the outcomes were compared with those
obtained without 16S GCN correction.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The SAD data that support the findings of this study are available at
figshare https://doi.org/10.6084/m9.figshare.25711257. Source data
are provided with this paper.

Code availability
The code and instructions (a Readme file) for replicating the analyses
in this study are available at figshare https://doi.org/10.6084/m9.
figshare.25711257. The R package ‘microSAD’ can be downloaded from
Github: https://github.com/wu-lab-uva/microSAD or https://doi.org/
10.5281/zenodo.14845910.
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