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Epigenome-wide DNA methylation
association study of CHIP provides insight
into perturbed gene regulation
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With age, hematopoietic stem cells can acquire somatic mutations in leuke-
mogenic genes that confer a proliferative advantage in a phenomenon termed
CHIP. How these mutations result in increased risk for numerous age-related
diseases remains poorly understood. We conduct a multiracial meta-analysis
of EWAS of CHIP in the Framingham Heart Study, Jackson Heart Study, Car-
diovascular Health Study, and Atherosclerosis Risk in Communities cohorts
(N = 8196) to elucidate the molecular mechanisms underlying CHIP and illu-
minate how these changes influence cardiovascular disease risk. We func-
tionally validate the EWAS findings using human hematopoietic stem cell
models of CHIP.We then use expression quantitative traitmethylation analysis
to identify transcriptomic changes associated with CHIP-associated CpGs.
Causal inference analyses reveal 261 CHIP-associated CpGs associated with
cardiovascular traits and all-cause mortality (FDR adjusted p-value < 0.05).
Taken together, our study reports the epigenetic changes impacted by CHIP
and their associations with age-related disease outcomes.

A hallmark of aging is the accumulation of somatic mutations in
dividing cells. The vast majority of these mutations do not affect cell
fitness. In rare circumstances, however, a mutation can arise in a pro-
genitor cell that confers a selectivefitness advantage, culminating in its
expansion relative to other cells. In the hematopoietic system, this
process is termed clonal hematopoiesis (CH). Individuals with CH are
at increased risk for the development of hematologic malignancies1. A
subset of CH is driven by pathogenic mutations in myeloid
malignancy-associated genes, which is termed CH of indeterminate
potential (CHIP) and has been shown to be associated with

hematologic cancers, cardiovascular disease (CVD), chronic obstruc-
tive pulmonary disease, and mortality, among other conditions2–4.

The prevalence of CHIP increases with advancing age2,5–7. In a
whole genome sequencing (WGS) study from the NHLBI Trans-Omics
for Precision Medicine (TOPMed) program that included ~100,000
individuals across 51 separate studies, large CHIP clones were found
to be uncommon (<1%) in individuals younger than 40 years of age
and increased to 12% in those aged 70–89 and 20% in those aged
90 years and older5. This age-dependent pattern was consistent
across CHIP driver genes5 and has been observed in other studies2,6,7.
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DNA methylation (DNAm), the addition of a methyl group to a
cytosine followed by a guanosine (CpG) in DNA, is an epigenetic
modification that reflects age and environmental exposures. The gene
products of the three most frequently mutated CHIP driver genes,
DNMT3A, TET2, and ASXL1, are epigenetic regulators5. DNMT3A (DNA-
methyltransferase 3A) is amethyltransferase that catalyzes the transfer
of methyl groups to CpG sites and catalyzes de novo DNA
methylation8. Conversely, TET2 (ten-eleven translocation-2) is a DNA
demethylase that catalyzes the conversion of 5-methylcytosine to 5-
hydroxymethylcytosine, one of the steps leading to eventual deme-
thylation of CpG sites9. ASXL1 (ASXL transcriptional regulator 1) is
involved in histone modification10. Its function in CHIP remains rela-
tively unknown11.

CHIPhas been shown to be associatedwith global DNAmchanges,
particularly for the DNMT3A and TET2 CHIP driver gene mutations12. A
previous epigenome-wide association study (EWAS) of CHIP in 582
Cardiovascular Health Study (CHS) participants, with replication in
2655 Atherosclerosis Risk in Communities (ARIC) participants,
revealed several thousand CpG sites associated with CHIP and its two
major CHIP driver genes, DNMT3A and TET212.DNMT3A and TET2 CHIP
were also found to have directionally opposing DNAm signatures:
DNMT3A CHIP mutations were associated with hypomethylation of
CpGs, whereas TET2 CHIP was associated with hypermethylation of
CpGs, consistent with the canonical regulatory functions of DNMT3A
and TET2 elucidated in murine and human model systems13–15.

Despite the wealth of information from the previous EWAS of
CHIP12, several limitations and knowledge gaps remain. These include
the need to use larger sample sizes to enable analyses of less prevalent
CHIP driver gene mutations such as ASXL1, explore downstream
functions and pathways influenced by mRNA expression for any CHIP
and CHIP subtypes, and identify underlying molecular mechanisms
linking CHIP to CVD.

To address these knowledge gaps, we conduct a multiracial meta-
analysis of separate EWAS of CHIP in four independent cohort studies
(N = 8196; 462 with any CHIP, 261 DNMT3A, 84 TET2, and 21 with ASXL1
CHIP) alongwith analysis of the associations of CHIP-relatedCpGswith
downstream gene expression. We expand upon the previous EWAS of
CHIP study12 by adding two cohorts—the Framingham Heart Study
(FHS) and theAfrican-American JacksonHeart Study (JHS)– in addition
to the ARIC and CHS cohorts. The EWAS findings are functionally
validated using human hematopoietic stem cell (HSC)models of CHIP.

Expression quantitative trait methylation (eQTM) analysis identifies
gene expression changes associated with CHIP-associated CpGs. Cau-
sal inference analysis using two-sample Mendelian randomization
(MR) is performed to gain insight into the molecular mechanisms
linking CHIP to CVD. A flowchart of the study design is shown in Fig. 1.

Results
Clinical characteristics of study participants
The baseline characteristics of FHS, JHS, CHS, and ARIC participants
included in this investigation are presented in Table 1. Themean age at
the time of blood draw for whole-genome sequencing (WGS) was 57,
56, and 58 for FHS, JHS, and ARIC, respectively. Participants from CHS
were considerably older, with a mean age of 74 years. All four cohorts
hadmorewomen thanmen (54–63%women). Overall, CHIPmutations
with a variant allele frequency (VAF) ≥ 2%werepresent in 5% (166/3295)
of participants in FHS, 4% (68/1664) in JHS, 5% (142/2655) in ARIC, and
15% (86/582) in CHS. Consistent with previous reports5, the threemost
frequently mutated CHIP driver genes across all cohorts were
DNMT3A, TET2, and ASXL1. Eighty percent of individuals with CHIP
demonstrated expanded CHIP clones with VAF > 10%.

Epigenome-wide association analysis
Race was classified based on self-report. In the race-stratified analysis,
we identified 2843 CpGs associated with any CHIP, 758 with DNMT3A,
4735 with TET2 CHIP in White participants and 5498 with any CHIP,
5065 with DNMT3A, and 290 with TET2 CHIP in Black participants at
Bonferroni-corrected P < 1× 10�7 (SupplementaryData 1–6). 1290, 675,
and 254 CHIP-associated CpG sites were shared between White and
Black participants at the Bonferroni-corrected threshold, with con-
cordant directions of effect for any CHIP, DNMT3A, and TET2 CHIP,
respectively.

In a multiracial, meta-EWAS of CHIP, 9615 CpGs were associated
with any CHIP, and 5990, 5633, and 6078 CpGs were associated with
DNMT3A CHIP, TET2 CHIP, and ASXL1 CHIP, respectively (at
Bonferroni-corrected P < 1× 10�7). The top ten CpGs for any CHIP and
for each of the three CHIP driver genes are shown in Table 2. A full list
of CpG signatures and their directions of effect are reported in Sup-
plementary Data 7-10. Therewasminimal tomoderate overlap of CpGs
associated with DNMT3A, TET2, and ASXL1; 429, 904, and 1088 CpG
sites were shared betweenDNMT3A and TET2,DNMT3A andASXL1, and
TET2 and ASXL1, respectively.

Fig. 1 | Overview of Study Design. This flowchart outlines the sequential steps of
the study, from data collection to downstream analyses. CHIP Clonal Hematopoi-
esis of Indeterminate Potential, WGS Whole Genome Sequencing,WES Whole

Exome Sequencing, TOPMed Trans-Omics for Precision Medicine program, eQTM
Expression Quantitative Trait Methylation.
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We identified 5987 CpGs (~100%) associated with DNMT3A CHIP
and 4607 CpGs (~76%) associated with ASXL1 CHIP that showed
decreasedmethylation (β<0) (Fig. 2b, d). In contrast, 5079 CpGs (~90%)
associated with TET2 CHIP showed increased methylation (β>0)
(Fig. 2c). Out of the 554 TET2-associated CpGs that showed decreased
methylation, 171 (~31%) CpGs were found to overlap with DNMT3A CpG
sites. The vast majority of CpGs associated with CHIP were remote
(>1Mb) from the driver gene including 5969/5990 (99.6%) for DNMT3A,
5632/5633 (~100%) for TET2, and 6070/6078 (99.9%) for ASXL1.

Although age was included as a covariate, there remains a possi-
bility that common CpG sites across all three CHIP driver genes may be
related to age rather than CHIP mutation. To assess this, we compared
the 19 CpGs that are common among all three CHIP driver gene muta-
tions fromourmeta-EWASof CHIPwith theCpGs froma recent EWASof
chronological age in the Generation Scotland cohort16 (N= 18,413). No
CpGs overlapped, suggesting that common CpGs across all CHIP driver
genes are related to CHIP mutation rather than age.

A sensitivity analysis was performed by excluding CHIP cases with
VAF < 10%. The results are similar to the multiracial meta-EWAS of any
CHIP and are provided in Supplementary Fig. 4 and Supplementary
Data 11-13. Approximately 78% of CpGs (7460/9615) in the meta-EWAS
of anyCHIPwere re-identified in the sensitivity analysis, while 312CpGs
were newly identified.

Human hematopoietic stem cell models of CHIP validate EWAS
We sought to experimentally validate our multiracial meta-EWAS
methylation findings with an in vitro model of CHIP. CHIP was mod-
eled by introducing loss-of-function mutations in DNMT3A, TET2, and
ASXL1 in mobilized peripheral blood CD34+ hematopoietic cells, using
CRISPR-Cas917. After sevendays in culture, these cells were flow sorted
to isolate a purified population of CD34+CD38-Lin- cells. Following
fluorescence-activated cell sorting, genomic DNA (gDNA) was extracted,
andmethylationwas assayedusing biomodal duet evoC (seeMethods)18.

The analysis focused on the subset of CpG sites that were sig-
nificantly associated with CHIP in the EWAS data and nominally dif-
ferentially methylated (P <0.05) in the in vitro model of CHIP. When
comparing CpG site subsets with their respective engineered cells,
DNMT3A-associated CpG sites showed significant enrichment in
DNMT3A-engineered cells (P < 2.88 × 10-239) (Fig. 3A), while TET2-asso-
ciated CpG sites were significantly enriched in TET2-engineered cells
(P < 8.39 × 10-56) (Fig. 3B), and ASXL1-engineered cells (P < 1.65 × 10-14)
(Supplementary Fig. 5). ASXL1-associated CpG sites showed no sig-
nificant hits in ASXL1-engineered cells (Fig. 3C), but a slight trend in
TET2-engineered cells (Supplementary Fig. 5). The anyCHIP-associated
CpG sites were significantly enriched in DNMT3A-engineered primary
cells only (P < 9.29 × 10-121), unlike TET2 and ASXL1 (Supplemen-
tary Fig. 5).

CpG association with gene expression and pathway analyses
To investigate the functional consequences of CHIP-associated CpGs,
we performed gene ontology (GO) and pathway enrichment analysis

for genes harboring CHIP-associated CpGs. For any CHIP, DNMT3A
CHIP, and ASXL1CHIP, the enriched GO terms related to broad cellular
developmental and organismal processes, while for TET2 CHIP the top
GO terms related to cellular regulation and cell signaling (Supple-
mentary Data 14–17). For example, for any CHIP, DNMT3A CHIP, and
ASXL1 CHIP, the top ten most significant ontologies included multi-
cellular organism development, anatomical structure development,
system development, and developmental process. For TET2 CHIP, the
most significant ontology terms related to a cellular response to sti-
mulus, regulation of cellular processes, and cell signaling. Notably, for
the genes annotated to the 554 TET2-associated CpGs that were found
to be demethylated, the top GO terms were enriched for cellular
developmental and organismal processes such as multicellular
organism development and system development—similar to the enri-
ched GO terms for genes annotated toDNMT3ACHIP-associated CpGs
(Supplementary Data 29).

To understand how differentially methylated CpGs associated
with CHIP might alter cellular function, we identified gene expres-
sion changes associated with CHIP-linked CpGs. We analyzed the
associations of CHIP-associated CpGs with changes in cis gene
expression (expressed gene [eGene] within 100 kB of CpG) in 2115
FHS participants whose DNA methylation data and whole-blood
RNA-seq data were available. At P < 1 × 10�7, we identified 467 sig-
nificant cis CpG-transcript pairs for any CHIP, 258 for DNMT3A CHIP,
293 for TET2 CHIP, and 234 for ASXL1 CHIP (Supplementary
Data 18–21 provide the full expression quantitative trait methylation
(eQTM) results)19. The vast majority of the associations between
methylation and gene expression changes were negative, where
decreased methylation changes were associated with increased
gene expression changes or increased methylation changes were
associated with decreased gene expression changes. For any CHIP,
DNMT3A, TET2, and ASXL1 CHIP, ~68% (317/467), ~71% (184/258),
~77% (224/293), and ~72% (168/234) of CpGs had a negative asso-
ciation between methylation and gene expression changes, respec-
tively. For any CHIP, the top enriched GO terms related to lipid
metabolism. eGenes associated with DNMT3A CHIP were enriched in
cell motility and adhesion processes. For TET2 CHIP, the top enri-
ched terms related to immune processes, such as leukocyte differ-
entiation. ASXL1 CHIP eGenes were enriched in cellular and immune
processes, including cell importation and antigen processing and
presentation (Supplementary Data 22–25).

Association of methylation with variants and MR analysis
Cis-methylation quantitative trait loci (cis-mQTL)—genetic loci that
are significantly associated with CpG methylation levels and located
within 1Mb of their associated CpG—linked 8642 CpGs associated
with any CHIP and CHIP subtypes to GWAS Catalog traits/
diseases19,20. Of the cis-mQTL variants, a subset were associated with
clonal hematopoiesis traits, particularly myeloid clonal hematopoi-
esis and the number of clonal hematopoiesis mutations (Supple-
mentary Data 26).

Table 1 | Baseline Characteristics of Cohorts

Study N CHIP
cases, N

CHIP cases
at VAF > 10%

DNMT3A
CHIP

TET2
CHIP

ASXL1
CHIP

White partici-
pants, N

Black partici-
pants, N

Age,
mean (range)

Sex,
Female
(%)

Smoking,
N

FHS 3295 166 145 (87%) 77 (46%) 38
(23%)

21 (13%) 3295 0 57 (24–92) 54 343

JHS 1664 68 63 (93%) 44 (65%) 14 (21%) N/A* 0 1664 56 (22–93) 63 236

CHS 582 86 76 (88%) 35 (41%) 18 (21%) N/A* 302 280 74 (64–91) 61 320

ARIC 2655 142 86 (61%) 105 (74%) 14 (10%) N/A* 758 1897 58 (47–72) 61 1486

*Less than 5 ASXL1 CHIP cases for indicated cohorts.
FHS Framingham Heart Study, JHS Jackson Heart Study, CHS Cardiovascular Health Study, ARIC Atherosclerosis Risk in Communities, CHIP Clonal Hematopoiesis of Indeterminate Potential, VAF
Variant Allele Fraction.
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Additionally, enrichment tests of CHIP-associated CpG sites with
EWAS catalog traits21 were performed across 4023 traits using a sig-
nificance threshold of 1:24× 10�5 (0.05/4023) (Supplementary
Data 27). For any CHIP,DNMT3ACHIP, TET2CHIP, and ASXL1CHIP, the
top outcomes reflected CpG sites related to age/aging, alcohol con-
sumption, smoking, and multiple CVD-related traits including body
mass index (BMI), type II diabetes, and fasting insulin. In support of
previous studies reporting ASXL1 CHIP enrichment among
smokers22,23, 24% (1462/6078) of ASXL1 CHIP-associated CpGs over-
lapped with smoking-associated CpGs.

Two-sample MR analysis of CHIP-associated CpGs (as exposures)
with cis-mQTLs as the instrumental variables in relation to CVD-related
traits and mortality (as outcomes) was performed to infer whether
differential methylation at CHIP-associated CpGs may causally influ-
ence the outcomes. The significantly associated CpGs for any CHIP
and for the three CHIP driver genes were tested for causal associations
with 22 traits, including all-cause mortality, BMI, LDL cholesterol,
hypertension, diabetes, CVD, and smoking. The top 20 CpGs and
annotated genes for each trait are reported in Table 3 (Supplementary
Data 28 displays the fullMR results). 261 CHIP-associated, differentially

Table 2 | Top 10 CHIP-associated CpGs

CHIP Subtype CpG CHR Position Gene β SE P-value Association with
CHIP (Black participants)*

Association with CHIP
(White participants)**

Any CHIP cg23014425 17 46648525 HOXB3 −0.016 8.7E-04 6.60E-79 --- ---

cg04800503 17 46648533 HOXB3 −0.028 1.5E-03 8.10E-76 --- ---

cg07727170 15 70458214 −0.016 9.1E-04 5.30E-69 --- ---

cg01966117 3 52528714 STAB1 −0.034 1.9E-03 1.20E-68 --- ---

cg19825437 3 1.69E +08 −0.038 2.2E-03 3.60E-68 --- ---

cg25113462 2 2.39E +08 TRAF3IP1 −0.023 1.3E-03 1.40E-64 --- ---

cg08343644 16 57662060 GPR56 −0.021 1.3E-03 1.10E-57 --- ---

cg01521274 14 71822452 −0.025 1.5E-03 7.00E-57 --- ---

cg21517792 14 1.06E +08 MTA1 −0.024 1.5E-03 1.20E-55 --- ---

cg15059065 19 17354961 NR2F6 −0.04 2.6E-03 1.60E-53 --- ---

DNMT3A CHIP cg04800503 17 46648533 HOXB3 −0.048 1.8E-03 7.10E-150 --- ---

cg23014425 17 46648525 HOXB3 −0.026 1.0E-03 2.00E-143 --- ---

cg25113462 2 2.39E +08 TRAF3IP1 −0.038 1.7E-03 6.20E-112 --- ---

cg03785076 2 2.42E + 08 SNED1 −0.052 2.5E-03 6.20E-95 --- ---

cg23551720 17 46633726 HOXB3 −0.038 1.9E-03 8.70E-91 --- ---

cg07727170 15 70458214 −0.023 1.2E-03 4.70E-90 --- ---

cg09749364 15 40384779 BMF −0.046 2.3E-03 5.10E-87 --- ---

cg16937168 2 2.42E + 08 SNED1 −0.059 3.1E-03 9.20E-82 --- ---

cg23146197 12 66271002 HMGA2 −0.041 2.2E-03 5.00E-80 --- ---

cg24400630 1 89728035 GBP5 −0.046 2.5E-03 1.90E-78 --- ---

TET2 CHIP cg13742400 2 2.26E + 08 DOCK10 0.086 4.5E-03 1.90E-82 +++ +++

cg19695507 10 13526193 BEND7 0.097 5.2E-03 3.30E-76 +++ +++

cg22562591 8 82002977 PAG1 0.057 3.4E-03 6.20E-65 N/A +++

cg07905808 6 30297389 TRIM39 0.068 4.0E-03 1.30E-64 +++ +++

cg00116699 2 2.40E +08 HDAC4 0.082 4.9E-03 3.70E-63 +++ +-+

cg06043201 8 28974428 KIF13B 0.085 5.1E-03 2.20E-62 +++ +++

cg09667606 6 1.59E +08 SYNJ2 0.077 4.6E-03 7.10E-62 +++ +++

cg17607231 2 2.31E + 08 SP140 0.12 7.3E-03 1.70E-60 +++ +++

cg01133215 6 45399681 RUNX2 0.085 5.2E-03 1.70E-59 +++ +++

cg25463483 6 30530544 PRR3 0.064 4.0E-03 1.70E-58 +++ +++

ASXL1 CHIP cg07262247 5 1.32E + 08 PDLIM4 −0.2 7.8E-03 2.10E-133 -

cg17543112 5 1.32E + 08 PDLIM4 −0.14 5.9E-03 1.20E-117 -

cg01305625 5 1.32E + 08 PDLIM4 −0.11 5.8E-03 2.70E-80 -

cg17412560 2 95963403 KCNIP3 −0.16 8.5E-03 3.90E-72 -

cg00443981 17 58499679 C17orf64 −0.17 9.7E-03 6.10E-64 -

cg02544002 3 1.29E +08 PLXND1 −0.14 8.6E-03 3.40E-57 -

cg19529621 12 2045722 −0.15 9.3E-03 7.80E-54 -

cg02341556 11 1.19E + 08 BCL9L −0.14 9.2E-03 3.40E-53 -

cg06124793 11 1939725 TNNT3 −0.11 6.8E-03 5.60E-52 -

cg10558233 8 94892613 −0.16 1.0E-02 1.40E-51 -

The effect size (β), standard error (SE), and P-values for any CHIP, DNMT3A CHIP, and TET2 CHIP were derived from fixed-effect meta-analysis. Because ASXL1 CHIP was only available in the
Framingham Heart Study (FHS) cohort, the β, SE, and P-values were derived from linear regression models. Two-sided tests were used for all analyses. P-values were adjusted for multiple
comparisons using the Benjamini-Hochberg FDR method.
* “Association with CHIP”: “+” or “-” represent the directions of effect for any CHIP, DNMT3A, or TET2 CHIP in CHS, ARIC, and JHS, respectively; **“Association with CHIP”: “+” or “-” represent the
directions of effect for any CHIP, DNMT3A, or TET2 CHIP in CHS, ARIC, and FHS, respectively; “N/A”: CpG was not found in association with CHIP.
CHIP Clonal Hematopoiesis of Indeterminate Potential, CHR Chromosome.
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methylated CpG sites were identified that were putatively causally
associatedwith CVD-related traits and/or all-causemortality, including
eight CpGs for myocardial infarction (MI) (e.g., cg11879188 (ABO),
βMR = −0.99, PMR = 4:8× 10�18), 108 CpGs for blood pressure (e.g.,
cg20305489 (SEPT9), βMR = 10, PMR = 1:7 × 10�31), 86 CpGs for lipid
traits (e.g., cg11250194 (FADS2), βMR = −0.89, PMR = 2:0× 10�33), and
two CpGs for mortality (e.g., cg08756033 (C13orf33), βMR =0.016,
PMR = 1:3 × 10�4). 53CpGswere associatedwithmore thanone trait. For
example, cg11879188 is annotated to the ABO gene and was associated
with seven traits, including diastolic blood pressure (βMR = 2.7,
PMR = 1:9× 10�23), MI (βMR = −0.99, PMR = 4:8× 10�18), and triglycerides
(βMR = 0.20, PMR = 2:0× 10�9).

Discussion
We report the results of a multiracial meta-EWAS of CHIP and identi-
fied thousands of CpG sites across the genome that are significantly

associated with any CHIP and with DNMT3A, TET2, and ASXL1 CHIP. Of
note, the vast majority of the CpGs were trans- relative to the CHIP
driver gene. This appears to be consistent with the functions of
DNMT3A, TET2, and ASXL1 in globally altering DNA methylation levels
of CpG sites genome wide, as seen in the EWAS of each of the three
CHIP driver genes, where the significantly associated CpGs were
numerous and located diffusely across the genome. The methylomic
signatures of CHIP and CHIP driver genes were experimentally vali-
dated with human-engineered CHIP cells. Downstream analyses were
conducted to assess whether these alterations in DNA methylation
levels may be causally associated with CVD-related outcomes and all-
cause mortality. Causal inference analyses using two-sample MR
revealed evidence of a possible causal role of CHIP-associated CpGs in
various CVD-related traits and all-cause mortality.

For the experimental validation of our meta-EWAS results, any
CHIP-associated CpG sites were significantly enriched in DNMT3A-

Any CHIP 

ASXL1 CHIP 

a. b. 

c. d. 

DNMT3A CHIP  

TET2 CHIP  

Fig. 2 | Genome-wide Directions of Effect of Any CHIP and CHIP Subtypes.
Volcano plots showing the effect size (β) and -log10(P-value) from the multiracial
meta-analysis of epigenome-wide association studies (EWAS) for (a) any CHIP
(Clonal Hematopoiesis of Indeterminate Potential), (b) DNMT3A CHIP, (c) TET2
CHIP, and the EWAS in the Framingham Heart Study (FHS) for (d) ASXL1 CHIP.
Genes annotated to theCpGsites are shown. For panels (a–c), the effect size (β) and
P-valueswerederived from fixed-effectmeta-analysis ofmultiple cohorts. For panel
(d), becauseASXL1CHIPwas only available in the FHS cohort, the effect size (β) and
P-values were derived from linear regression models. The color green indicates a

significant negative association between CHIP and DNA methylation while purple
indicates a positive association between the two variables. Yellow signifies non-
significant associations between CHIP and DNAmethylation. Two-sided tests were
used for all analyses. P-values were adjusted for multiple comparisons using the
Benjamini-Hochberg false discovery rate (FDR) method. Significant associations
were defined as FDR <0.05. Exact P-values, standard errors for the β, and 95%
confidence intervals for significant results are provided in Supplementary Data 7-
10. Source data are provided as a Source Data file.
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engineered cells, which was expected given the overwhelming pre-
dominance of DNMT3A CHIP among total CHIP cases reported in our
study and several others2,5,12. Interestingly, TET2-associated CpG sites
were enriched inASXL1-engineered cells. Thisfinding is consistentwith
the substantial CpG overlap ( ~ 1000 shared CpGs) between TET2 and
ASXL1 CHIP from the meta-EWAS and suggests that the epigenetic
regulators TET2 and ASXL1 impact several of the same genome regions
and may lead to similar downstream consequences. Notably, ASXL1-
associated CpGs showed no significant enrichment in the ASXL1-

engineered cells. The lack of enrichment of ASXL1-associated CpGs in
the ASXL1-engineered cells may limit the validity of the study’s down-
stream analyses with ASXL1 CHIP. This observation may be due to the
limited number of ASXL1 CHIP cases in the EWAS as well as several
biological factors. ASXL1 mutations primarily affect histone modifica-
tions, particularly H2AK119 ubiquitination, which indirectly influences
chromatin accessibility24. Recent studies have shown that ASXL1 loss-
of-function mutations increase chromatin accessibility, potentially
resulting in individualistic methylation changes influenced by other

ASXL1 KO- 

associated CpGs

c.

EWAS Test Estimate 

TET2 KO- 

associated CpGs 

b.

EWAS Test Estimate 

DNMT3A KO-

associated CpGs

a.

EWAS Test Estimate 

Fig. 3 | Functional Validation in CRISPR/Cas9-edited Hematopoietic StemCells
Modeling CHIP.Dot plots ofmethylation change from −1.0 (nomethylation) to 1.0
(complete methylation) seen in engineered primary cell cultures compared to
correlation of EWAS results ranging from −0.1 to 0.1. Following an initial CpG
filtering using an uncorrected Student’s t-test (p <0.05), significance was deter-
mined with a two-sided binomial test. aDNMT3A-associated CpG sites (n = 855 CpG

sites) compared to DNMT3A engineered human stem cells (n = 4). b TET2-asso-
ciated CpG sites (n = 312) compared to TET2-engineered human stem cells (n = 4).
c ASXL1-associated CpG Sites (n = 139) compared to ASXL1-engineered human stem
cells (n = 3). Source data are provided as a Source Data file. KO Knockout, mC
methylcytosine.
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genetic and environmental factors25. Furthermore, the effects ofASXL1
mutations on methylation might be temporally dynamic or cell-type
specific, aspects not fully captured in our current experimental design.
Future studies with larger sample sizes, particularly for ASXL1 CHIP,
and longer observation periods may help elucidate the relationship
between ASXL1 mutations and DNA methylation patterns in CHIP and
determinewith greater certainty the epigenetic signatures of this CHIP
driver mutation.

By incorporating an engineered reductionist system, we provide
an orthogonal approach to confirm that the patterns observed in CHIP
donors result directly from the somatic mutation. By engineering
DNMT3A, TET2, and ASXL1 mutations into healthy CD34+ cells and
performing DNA methylation profiling, we can recapitulate the DNA
methylation patterns seen in CHIP donors. Our study also establishes
this reductionist system as a robust representation of the methylation
phenotype. Future studies leveraging this system will enable more
precise dissection of the causal relations between thesemutations and
changes in DNAmethylation than would be possible from population-
scale epidemiology data alone.

In the in vitro validation analysis, we focused on the subset of CpG
sites that were significantly associated with CHIP in the EWAS and
nominally differentially methylated in the in vitro CHIP model to
improve the validity of our findings and reduce the likelihood of false
positives. By concentrating on overlapping CpG sites, we prioritized
CpGs with a stronger potential biological relevance, as they were
consistent across population-level and experimental settings. Impor-
tantly, despite the strong directional concordance in the subset of

overlapping CpG sites, a small proportion of the CpGs identified from
the meta-EWAS were captured in the in vitro model: ~14% (855/5990)
for DNMT3A, ~6% (312/5633) for TET2, and ~2% (139/6078) for ASXL1
CHIP. This may be because the in vitro system does not fully capture
the complex in vivo environment in which CHIP is influenced by var-
ious cell types, environmental factors, and systemic interactions, such
as immune system interactions.

Two-sample MR analysis identified 261 differentially methylated
CpG sites that were putatively causally related to one or more CVD
traits and/or all-cause mortality. For example, cg11250194 was puta-
tively causally associatedwith four CVD-related cardiometabolic traits:
LDL cholesterol, HDL cholesterol, triglycerides, and fasting glucose.
Cg11250194 resides in the FADS2 gene. It is hypomethylated, asso-
ciated with DNMT3A CHIP (β = −0.022, P = 1.6E-13), and replicated in
the DNMT3A CHIP-engineered cells. The FADS2 gene encodes the
enzyme fatty acid desaturase 2 – the first rate-limiting enzyme for the
biosynthesis of polyunsaturated fatty acids26. A recent study found
that cg11250194 (FADS2) was associated with Alternative Healthy Eat-
ing Index and that hypermethylation of this CpG was associated with
lower triglyceride levels27. Moreover, cg11250194 was previously
identified in an EWAS of lipid-related metabolic measures28. Based on
our findings, hypomethylation of this diet-associated CpG may be
linked to higher triglyceride levels, putatively increasing the risk for
CVD. FADS2 overexpression has also been found to promote clonal
formation26. Thus, FADS2 may be an important gene connecting CHIP
with diet. Of note, of the 30 CpGs associated with either
Mediterranean-style Diet Score or Alternative Healthy Eating Index or

Table 3 | Mendelian Randomization of CHIP-associated CpGs and CVD-related Outcomes

CHIP Category Exposure Outcome β SE P-value FDR Nearby Gene Association
with CHIP*

DNMT3A cg11250194 LDL cholesterol −0.89 0.074 2.0E-33 1.1E-28 FADS2 -

TET2 cg20305489 Diastolic blood
pressure

10 0.89 1.7E-31 6.7E-27 SEPT9 +

TET2 cg20305489 Systolic blood
pressure

16 1.5 3.6E-26 1.3E-21 SEPT9 +

Any CHIP/
DNMT3A/ASXL1

cg00776080 Diastolic blood
pressure

−28 2.7 2.6E-24 7.9E-20 TENC1 -

Any CHIP/ASXL1 cg11879188 Diastolic blood
pressure

2.7 0.27 1.9E-23 4.7E-19 ABO -

Any CHIP cg24530246 HDL cholesterol 0.46 0.047 1.2E-22 2.7E-18 -

DNMT3A cg11250194 HDL cholesterol −1.5 0.16 1.3E-22 2.7E-18 FADS2 -

DNMT3A cg11250194 Triglycerides 1.4 0.14 1.8E-22 3.6E-18 FADS2 -

DNMT3A cg16517298 HDL cholesterol 0.56 0.062 1.1E-19 1.6E-15 GALNT2 -

Any CHIP/DNMT3A cg17892169 Diastolic blood
pressure

8.9 0.99 2.2E-19 3.2E-15 TNFSF12 -

TET2 cg01687878 Diastolic blood
pressure

−6.7 0.75 3.8E-19 5.2E-15 +

TET2 cg10632966 Systolic blood
pressure

25 2.8 3.3E-18 3.8E-14 +

Any CHIP/ASXL1 cg11879188 Myocardial infarction −0.99 0.11 4.8E-18 5.3E-14 ABO -

DNMT3A cg16517298 Triglycerides −0.55 0.064 8.0E-18 7.9E-14 GALNT2 -

Any CHIP cg00417151 HDL cholesterol 0.85 0.10 2.7E-17 2.6E-13 RRBP1 -

TET2 cg16060189 Type 2 diabetes 2.4 0.29 1.1E-16 9.4E-13 +

TET2 cg14016363 Diastolic blood
pressure

−21 2.5 1.3E-16 1.0E-12 +

Any CHIP cg00526336 Triglycerides −2.1 0.28 2.5E-14 1.4E-10 GALNT2 -

Any CHIP/DNMT3A cg06346307 Systolic blood
pressure

−11 1.5 2.7E-14 1.5E-10 COMT -

Any CHIP cg19758448 HDL cholesterol −0.54 0.073 1.0E-13 5.5E-10 PGAP3 -

The effect size (β), standard error (SE), and P-values were derived from two-sampleMendelian randomization (MR) tests. Two-sided testswere used for all analyses. FDR valueswere calculated using
the Benjamini-Hochberg FDR method.
*“Association with CHIP”: “+” or “-” represent the directions of effect for any CHIP, DNMT3A, TET2, or ASXL1 CHIP in meta-EWAS.
CHIP Clonal Hematopoiesis of Indeterminate Potential.
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both in a 2020 study by Ma et al.27, 17 were CHIP-associated CpGs
(~57%) identified from our multiracial meta-EWAS of CHIP. The sub-
stantial overlap between diet- and CHIP-associated CpGs is consistent
with the hypothesis that an unhealthy diet may be associated with
CHIP through epigenetic mechanisms. Despite including smoking
status as a covariate in the models for all participating cohorts in both
studies28, we recognize that our ability to fully separate the effects of
diet from smoking on CHIP risk may be limited due to our cross-
sectional study design. As a result, some of the observed association
betweenunhealthy diet andCHIP throughepigeneticmechanismsmay
reflect residual smoking effects.

Compared to a previously published EWAS of CHIP12 (N = 3273,
228 CHIP cases), the present study has a substantially larger sample
size (N = 8196, 462 CHIP cases), including all the samples from the
previous study. With the larger sample size of the present study, we
identified 6687, 3524, and 4678 novel CpGs significantly associated
with any CHIP and with the top two CHIP driver genes DNMT3A and
TET2. Of the CpG sites identified from the previous EWAS study at
P < 1× 10�7, a large proportion overlapped and have concordant
directions of effect with CpGs from themultiracialmeta-EWAS of CHIP
at P < 1× 10�7: 91% (2928/3217) for any CHIP, 89% (2466/2769) for
DNMT3A CHIP, and 90% (955/1059) for TET2 CHIP. This is expected, as
almost half of the CHIP cases in our meta-EWAS of CHIP are from the
previous EWAS of CHIP12. Additionally, we report thousands of ASXL1
CHIP-associated CpGs from an EWAS of ASXL1 CHIP. Through eQTM
analysis that identified CpG-transcript pairs, the top eGenes in ASXL1
CHIP relate to various immune processes, suggesting that dysregu-
lated immune function may contribute to ASXL1 CHIP-related disease
outcomes. This putative role of ASXL1 CHIP in perturbing immune
function, specifically T cell function, has been recently reported using
anASXL1CHIPconditional knock-inmousemodel29. Notably, several of
the ASXL1 CHIP-associated CpGs displayed putatively causal relations
to CVD-related traits in MR analysis, including cg11879188 (in ABO).

While there are several strengths of our study, some limitations
should be noted. Although smoking status was included as a covariate
in the statistical models for all study cohorts, there could be residual
confounding as smoking behavior may not be fully adjusted for in the
analysis. Thus, smoking could still be driving the association between
CHIP andCVD, aswas reported in a recent study of CH30. Of note, there
are several studies across diverse populations and in different settings
that controlled for smoking as a covariate and also found an associa-
tion of CHIP (a specific form of CH) with CVD. For instance, in a recent
study, Diez-Diez et al.31 clarified the directionality of the CHIP-CVD
relationship with adjustment for smoking and concluded that CH
confers an increased risk of developing atherosclerosis.

Additionally, the way that the DeCODE30 investigators ascertained
“CH”may have contributed to their finding that CHwas not associated
with CVD, as it is distinct from the definition of “CHIP.” CH includes
clonal events with known leukemic driver gene mutations, such as
CHIP and mosaic chromosomal alterations (mCAs), and clonal events
without clear driver genes. Given recent findings that each of these
distinct classes of CHhasunique phenotypic consequences2,32, the lack
of association between CH and CHIP reported by Stacey et al. may be
due to the grouping of heterogenous CH subtypes.

Moreover, it has been previously demonstrated that small chan-
ges in the stringency with which CHIP is ascertained can have an out-
size effect on downstream analyses. For example, Vlasschaert et al.33

reported the importance of CHIP detection stringency in relation to
CHIP-associated CVD risk. Specifically, more stringent criteria
(≥5 supporting reads) were associated with CVD risk, while less strin-
gent criteria (≥3 supporting reads) attenuated the association of CHIP
withCVD. Their studyprovides an up-to-date andnuanced explanation
of the CHIP-CVD relationship.

Driverless CH is the occurrence of clonal expansions in blood
without a known CHIP driver mutation and is estimated to drive the

majority of clonal expansions in the elderly34. Bernstein et al.34 identified
regions within exome sequences that are under positive selection to
identify additional driver mutations in whole blood (large clones >0.1)
together with validation of positive selection in single cell-derived
hematopoietic myeloid and lymphoid colonies. The inclusion of muta-
tions in these fitness-inferred CH genes increases prevalence of CH by
18% in the UK Biobank cohort. In our study, CHIP was defined when an
individual harbored at least one deleterious insertion/deletion or single
nucleotide variant in any of the 74 genes that have been previously
linked to myeloid malignancy at a variant allele frequency of at least 2%.
Given the study’s scope, we did not include driverless CH in our CHIP
definition. Thus, CHIP prevalence in our study may be underestimated
relative to studies that account for driverless clonal expansion.

A larger sample size is needed to examine less frequentlymutated
CHIP driver genes, such as TP53, JAK2, and PPM1D. Moreover, the
reported putatively causal associations of CpGs with CVD outcomes
and mortality were based on two-sample MR analysis. Despite our
attempt to minimize horizontal pleiotropy by excluding cis-mQTLs
that also serve as trans-mQTLs and excluding CpGs with three ormore
independent instrumental variables through MR-Egger using a
threshold of P-value < 0.05, the two-sample MR approach has known
limitations35. Methods for detecting and addressing pleiotropymay be
ineffective36 and, thus, longitudinal and functional studies are needed
to reinforce causal findings.

To account for the possibility that the VAF of CHIP driver gene
mutation may influence DNA methylation, we used a threshold of
FDR <0.05 to detect associations between CpGs and VAF. There were
no significant associations between CpG sites and VAF. Based on these
results, we do not believe that VAF significantly influenced our DNA
methylation findings. Notably, the sample size with available VAF
information is limited. For example, in the FHS cohort, we have only
166 CHIP cases and cannot completely rule out the possibility that VAF
may still have a modest impact on DNA methylation. Experimental
studies or studieswith larger sample sizesmay be necessary to address
the effect of VAF of mutation on DNA methylation.

While this studybenefits froma large sample size,which allows for
robust statistical comparisons, we acknowledge the distinction
between statistical significance and biological significance. The statis-
tical significance observed in this study does not necessarily equate to
meaningful biological effects. The impact of cell type correction on
downstream analyses, particularly in heterogeneous patient popula-
tions, has not been fully validated. Further research is needed to
determine how this adjustment translates into biological outcomes.
Additionally, our study evaluated individual CpG sites, however, dif-
ferentially methylated regions consisting of several consecutive
methylated CpGs have been shown to have important implications for
disease pathogenesis37. Thus, studies exploring these broader methy-
lation patterns are warranted to better capture the functional rele-
vance of epigenetic signatures of CHIP.

Last, although cell-type proportions were included as covariates
for all cohorts, we cannot exclude the possibility that subtle uncor-
rected effects in cell-type proportions due to clonal selection in
immune cells may contribute to the enrichment of immune function
observed for TET2 and ASXL1 CHIP eGenes. While cell-type adjust-
ments reduceconfounding effects, residual contributions fromaltered
immune cell proportions remain possible. Future studies investigating
cell-type specific DNA methylation and gene expression may provide
additional clarity on the impact of CHIP on immune gene expression.

Overall, our study sheds light on the epigenetic changes linked to
CHIP and CHIP subtypes and their associations with CVD-related out-
comes. The differentially expressed genes and pathways linked to the
epigenetic features of CHIPmay serve as therapeutic targets for CHIP-
related diseases. For example, Fc receptor-like protein 3 (FCRL3)
(cg17134153, Fx = -5.5, P = 1E-113) is the top differentially expressed
gene for TET2 CHIP. FCRL3 encodes a type I transmembrane
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glycoprotein that is expressed by lymphocytes and plays a role in
modulating immune responses38. Polymorphisms in this gene have
been implicated in the pathogenesis of autoimmune diseases38,39. A
recent study demonstrated that FCRL3 stimulation of regulatory
T cells induced production of pro-inflammatory cytokines, including
IL-17 and IL-2638. This finding suggests that FCRL3 may play a critical
role in mediating the transition of regulatory T cells to a pro-
inflammatory phenotype and could potentially contribute to the
increased inflammation observed among TET2 CHIP carriers40,41.
Additionally, Clark et al. identified FCRL3 as a gene for which DNA
methylation at the CpG site cg17134153 in CD4+ T cells likely mediates
the genetic risk for rheumatoid arthritis42. Given that CHIP, including
TET2 CHIP, has been associated with rheumatoid arthritis (RA)43, the
regulation of FCRL3 expression by methylation changes at cg17134153
may, in part, serve as the functional basis of the observed association
between CHIP and RA. Further experimental studies are warranted to
better understand how differential expression of FCRL3 may impact
TET2 CHIP development and the pathogenesis of RA. Taken together,
our results provide insight into the molecular mechanisms underlying
age-related diseases, namely cardiovascular disease.

Methods
Ethics
All participants provided written, informed consent. The study pro-
tocol was approved by the following institutional review boards at
each collaborating institution: Institutional Review Board at Boston
Medical Center (FHS); University of Washington Institutional Review
Board (CHS); University of Mississippi Medical Center Institutional
Review Board (ARIC: Jackson Field Center); Wake Forest University
Health Sciences Institutional Review Board (ARIC: Forsyth County
Field Center); University of Minnesota Institutional Review Board
(ARIC: Minnesota Field Center); Johns Hopkins University School of
Public Health Institutional Review Board (ARIC: Washington County
Field Center); University of Mississippi Medical Center (JHS); Jackson
State University (JHS); and Tougaloo College (JHS). All research was
performed in accordance with relevant ethical guidelines and regula-
tions. The studydesign and conduct adhered to all relevant regulations
regarding the use of human study participants and was conducted in
accordance to the criteria set by the Declaration of Helsinki.

Study cohorts
The Framingham Heart Study (FHS) is a prospective, observational
community-based cohort investigating risk factors for CVD. For our
discovery sample, DNAm was measured from FHS participants
(N = 3295) in the Offspring cohort (N = 1860; Exam 8; years 2005-
2008)37 and in the Third Generation cohort (N = 1435; Exam 2; years
2008-2011)44. CHIP calls were based on whole-genome sequencing of
whole blood DNA samples, the majority of which were from FHS Off-
spring participants at Exam 8 and Gen 3 participants at Exam 2 and
temporally concordant with the time of DNAm profiling. All FHS par-
ticipants self-identified as White at the time of recruitment.

The Jackson Heart Study (JHS) is an observational community-
based cohort studying the environmental and genetic factors asso-
ciated with CVD in African Americans. For our discovery sample, data
were collected from1664 JHSparticipants12. DNAmwasmeasured from
the majority of JHS participants at visit 1, with a small subset at visit 2.
CHIP calls were concurrent with DNAm profiling and based on whole-
genome sequencing of whole blood DNA samples, where the majority
were from visit 1 (years 2000–2004) and a subset from visit 2 (years
2005-2008)12. All JHS participants self-identified as Black or African
American at the time of recruitment. No ancestry outliers were
excluded, as inferred based on genetic similarity to reference panels.
Similarity to the 1000G AFR reference panel varied by individual
(study q1, median, q3 77.9% 84.3% 89.0%) in the methylation and WGS
overlap dataset, using estimates from RFMix.

The Cardiovascular Health Study (CHS) is a population-based
cohort study of risk factors for CVD in adults aged 65 or older45.
DNAmwasmeasured from blood samples from participants in years 5
and 9, year 5, or year 9 only. CHIP calls were based on whole-genome
sequencing of blood samples, where the majority were taken 3 years
before or concurrently with the first DNAm measurement12. CHS
participants self-reported their race at the time of recruitment.

The Atherosclerosis Risk in Communities (ARIC) is a prospective,
multiracial cohort study of risk factor and clinical outcomes of
atherosclerosis38. DNAmwasmeasured from 2655 ARIC participants at
visit 2 (1990-1992) or visit 3 (1993-1995). CHIP calls were based on
whole exome sequencing of blood samples from visit 2 and visit 312,39.
ARIC participants self-identified their race at the time of recruitment.
There is a subset of participants included in both ARIC and JHS. These
overlapping participants were not excluded.

DNA methylation profiling
All the DNA samples were from whole blood. The four cohorts
including FHS, JHS, CHS and ARIC, conducted independent laboratory
DNAm measurements, quality control (including sample-wise and
probe-wide filtering and probe intensity background correction; see
Supplementary Information File). DNA methylation was measured in
FHS, CHS, and ARIC participants using Illumina Infinium Human
Methylation-450 Beadchip (450K array) and in JHS participants using
the Ilumina EPIC array40,41.

CHIP calling
For the purposes of this investigation, CHIP was defined as a candidate
driver genemutation in genes that have been reported to be associated
with hematologic malignancy, is present at a variant allele frequency
(VAF) of at least 2% in peripheral blood, and is present in the absence of
hematologic malignancy42. CHIP was detected in FHS, JHS, and CHS
fromWGS bloodDNA in the NHLBI Trans-Omics for PrecisionMedicine
(TOPMed) consortium using the Mutect2 software5. In ARIC, CHIP calls
were based on whole exome sequencing of blood DNA using the same
procedure5. CHIP is defined as when an individual harbors at least one
pre-specified deleterious insertion/deletion or single nucleotide variant
in any of the 74 genes linked to myeloid malignancy at a variant allele
frequency (VAF)≥ 2%5. TOPMed WGS samples were sequenced to a
median depth of 40x, with the sequencing depth ranging from 30x-50x
for a specific region. At this sequencing depth, CHIP can be reliably
ascertained with a VAF > 10% but CHIP variants with a VAF≤ 10% are
unable to be robustly captured5. For a sensitivity analysis, race-stratified
and multiracial meta-EWAS of any CHIP was performed using a more
restrictive CHIP clone size of VAF > 10% (See Supplementary Fig. 4 and
Supplementary Data 11-13).

Cohort-specific EWAS
The correction ofmethylation data for technical covariates was cohort
specific. Each cohortperformed an independent investigation to select
an optimized set of technical covariates (e.g., batch, plate, chip, row,
and column), using measured or imputed blood cell type fractions,
surrogate variables, and/or principal components. Most cohorts had
previous publications using the same dataset for EWAS of different
traits, such as EWAS of alcohol drinking and smoking. In this study,
those cohorts used the same strategies as they did previously for
correcting for technical variables, including batch effects. Linear
mixed models were used to test the associations between CHIP status
as the predictor variable and DNAm β values as the outcome variable.
Information about cohort-specific models is available in the Supple-
mentary Information File.

Meta-analysis
All analyses were contingent on self-reported Black or White race.
Previous ancestry inference in these cohort studies43 suggests high
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genetic similarity of nearly all self-identifiedWhite participants to EUR
reference panels (including 1000 Genomes). Self-identified Black
participants have high but variable (average ~80% but may vary based
on study and by study participant) genetic similarity to AFR reference
panels and have some similarity to EUR reference panels as well. In
some cases, extreme ancestry outliers may have been removed during
study-specificQC.However, this hasnot been thoroughly documented
in the data we received from participating studies. Importantly, we do
not mean to imply that socially constructed racial identities reported
by study participants are synonymous with genetic ancestry. Stratifi-
cation by race may, however, capture differential social and environ-
mental exposures within the US, which may impact the epigenome.

The meta-analysis was performed for any CHIP, DNMT3A, and
TET2 in White participants from FHS, CHS, and ARIC (n = 4355) and
Black participants from JHS, CHS, and ARIC (n = 3841) participants,
respectively, using inverse variance-weighted fixed-effects models
implemented inmetagen() function in R packages (https://rdrr.io/cran/
meta/man/metagen.html). The summary statistics were used from the
previous EWAS of CHIP for the ARIC and CHS cohorts12. Then, multi-
racial meta-analysis was performed for White and Black participants
(n = 8,196). The meta-analysis was constrained to methylation probes
passing filtering criteria in all cohorts.

Supplementary Fig. 1 presentsQQplots with genomic control (GC)
inflation factor (λ) to illustrate the EWAS results in each cohort and in
the meta-analysis. Our observations reveal a prevalence of high infla-
tion factors (λ> 1.1) across nearly all studies. Such elevated inflation
factors typically signal potential bias in the analysis process. However,
it’s important to note that in cases where a significant portion of CpG
sites exhibit differential methylation associated with the outcome (e.g.,
age and CHIP), this can contribute to the observed high λ values.
Moreover, adjusting for additional PCs moderately associated with the
outcomemay alleviate lambda values, albeit at the expense of reduced
power to detect CpGs related to the outcome. To address this, we
adopted strategies consistent with those employed by the respective
cohorts in previous analyses, focusing on correcting for technical
variables and latent factors identified in prior studies across multiple
outcomes46–48. Furthermore, prior to meta-analysis, we implemented
additional corrections for individual study results exhibiting λ > 1.5,
ensuring the integrity of our findings. The statistical significance
threshold was P <0.05/400,000≈ 1 × 10−7. A less stringent threshold,
the Benjamini-corrected FDR adjusted p-value <0.05, was also used.

Expression quantitative trait methylation analysis
Association tests of DNAm and gene expression were previously per-
formed in 2115 FHS participants in the Offspring (n=686) and Third
Generation (n = 1429) cohorts with available whole blood DNA methy-
lation and RNA-seq gene expression data to identify CpG sites at which
differential methylation is associated with gene expression49. Approxi-
mately 70,000 significant cis CpG-transcript pairs were identified at
P< 1 × 10-7. Cis is defined as CpGs located within 100 kB of the tran-
scription start site of amRNA.When calculating the association between
CpG sites and gene-level transcripts, linear regressionmodelswere used.
Residualized gene expression served as the outcome and residualized
DNA methylation β value as the primary explanatory variable, with
adjustment for age, sex, white blood cell count, blood cell fraction,
platelet count, five gene expression PCs, and ten DNA methylation PCs.
Through integration of CpGs and gene-level transcripts (mRNAs) from
RNA-seq, mRNAs were identified that were significantly associated with
each of the CpGs in cis for any CHIP and the CHIP subtypes49,50.

Pathway enrichment analysis
Enrichment analysis for CHIP EWAS signatures with a significance
threshold of P < 1 × 10-7 was conducted on gene sets comprising genes
annotated to CpGs associated with CHIP and major CHIP subtypes
using missMethyl R package. This package adjusts for known DNAm

arraybias51. For the enrichment analysis for eQTMgene sets, theDAVID
Bioinformatics online tool was used (https://david.ncifcrf.gov/home.
jsp). To improve the focus of this study, only the results of Gene
Ontology (GO) terms related to biological process and KEGGpathways
were used. Over-representation enrichment tests, specifically one-
sided Fisher’s exact tests, were used to assess whether a GO/KEGG
term is significantly enriched compared to the background. The sig-
nificant threshold of FDR adjusted p-value < 0.05 was used, corrected
by multiple tested terms5.

Cell culture of mPB CD34+ cells
Patients were given G-CSF ≤ 10mcg/kg/day for up to 5 days. Periph-
eral blood mononuclear cells were collected and CD34+ cells were
isolated using a MACs sorter. Samples were then counted and frozen
down for future use. This research is funded from NIDDK. Mobilized
peripheral blood (mPB) CD34+ cells were bought from StemCell
technologies or the Cooperative Center of Excellence in Hematology
(CCEH) at the Fred Hutch Cancer Research Center, Seattle, USA. The
name and source of all cell lines used are the following: mPB-001:
Sex: Female, Supplier Fred Hutchinson;mPB-002: Sex:Male, Supplier
Fred Hutchinson; mPB-003: Sex: Female, Supplier StemCell Tech-
nologies; mPB-004: Sex: Male, Supplier: StemCell Technologies;
mPB-005: Sex: Male, Supplier: StemCell Technologies. CD34+ cells
were thawed and cultured in CD34+ expansion medium (StemSpan II
(StemCell Technologies) + 10% CD34+ expansion supplement
(Stemcell Technologies) + 20U/mL penicillin-streptomycin (Gibco)
+ 500 nM UM729 (StemCell Technologies) + 750 nM Stemreginin-1
(StemCell Technologies)) for 48 h prior to editing with CRISPR-Cas9.
After 48 h, samples were electroporated with RNP complexes and
seeded at 400k cells per mL. Cells were maintained between 200k -
1M cells per mL.

CRISPR-Cas9 of mPB CD34+ cells
Ribonucleoprotein (RNP) complexes targeting scramble, AAVS, TET2,
ASXL-1, and DNMT3Aweremade by incubating Cas9 (IDT Alt-R HiFi sp
Cas9Nuclease V3) and sgRNA (IDT Alt-R Cas9 sgRNAs) at a 1:3.26 ratio.
Guides for each gene are present in Supplementary Table 1. On day 2
post thaw, mPB CD34 cells were counted and resuspended in Buffer R
or GE Buffer. RNP complexes and cells weremixed and electroporated
using Neon Pipette (Thermo Scientific Inc.) with the following settings:
1650 V 10ms pulses 3 times. Samples were seeded in expansion media
at 400k/mL.

Assessment of indel formation
Genomic DNA (gDNA) was isolated and amplified with the following
conditions: 95 °C for 2min followed by 35 cycles of 95 °C for 45 s, 61-
62 °C for 1min, 72 °C for 2min with a final extension at 72 °C for 5min
using primers towards TET2, ASXL-1, and DNMT3A (Supplementary
Table 2). PCR products were sent to GeneWiz (Azenta Life Sciences)
where PCR cleanup and Sanger sequencing was performed. Indel for-
mation was assessed using TIDE (Supplementary Table 3)52.

FACS sorting of mPB CD34+ cells
Edited CD34+ cells were sorted at day 7 post CRISPR-Cas9 using a
FACSymphony™ S6 Cell Sorter or a BD FACS Aria II to remove differ-
entiated cells. Briefly, CD34+ cells were washed in cell staining buffer
(Biolegend) once and stained with antibodies targeting CD34 (Biole-
gend: 343614; dilution: 1:50), CD38 (Biolegend: 303532; dilution:
1:100), and Lineage Markers (Biolegend: 348805; dilution: 1:10) for
30min at 4 °C in the dark (Supplementary Fig. 6). The antibodies are
present in Supplementary Table 4.

Duet evoC library generation and primary methylation analysis
DNA was extracted using Micro kits (Qiagen) from flow sorted cells
from 3–5 donors. EvoC libraries were created following manufacturer
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instructions (Biomodal). Briefly, DNA was sheared using a Covaris
LE220 and assessment of inputDNAwas performedusingBioanalayzer
instrument (Agilent) and Qbit (ThermoFisher). Library generation was
performed according to the duet evoC library generation protocol
(biomodal).

Sequencing of duet evoC libraries
Capture of CpG sites was performed using Twist Human Methylome
Panel (Twist Biosciences) and next generation sequencing was com-
pleted by using theNovaSeq 6000 (150 bp paired-end reads) targeting
160M reads per sample. Biomodal pipeline version 1.1.1 was used to
analyze the raw FASTQswith default settings. Briefly adapter trimming
was performed with cutadapt, resolution of R1 and R2 to generate
single-end reads with epigenetic information, mapping onto the
human genome (GRCh38), and quantification of themodification state
of each CpG site.

Comparisons between EWAS and biomodal data
For each sample and for each CpG, read counts from the forward and
reverse strand were summed and the mC fraction calculated as the
number of reads supporting mC divided by the total number of reads
with modified or unmodified C (excluding reads with A, T or G). The
dataset was reduced to the CpGs with significant levels of association
from each EWAS analysis. For each of these CpGs, methylation differ-
encewas calculated as the difference between the averagemC fraction
ofmultiple replicates of differentKOprimarycells (“DNMT3A”, “TET2”,
“ASXL-1”) and the averagemC fraction ofmultiple replicates of control
cells (“Scramble” or “AAVS”). Only CpGs with uncorrected p-values <
0.05 (t-test)were carried forward. For eachEWASanalysis (“any-CHIP”,
“DNMT3A_chip”, “TET2_chip”, “ASXL1_chip”) and for each gene-KO
(“DNMT3A”, “TET2”, “ASXL-1”), the mC fraction of these CpGs was
plotted against the EWAS TE, and a binomial test was used to check for
enrichment in the top-right and bottom-left quadrant indicating a sign
correlation between the mC fraction change induced by the KO and
the EWAS TE.

Cis-mQTLs
Methylation quantitative trait loci (mQTLs) – SNPs associated with
DNA methylation – were identified from 4,170 FHS participants as
previously reported40, including 4.7million cis-mQTLs at P < 2 × 10−11.
Genotypeswere imputedusing the 1000Genomes Projectpanel phase
3 using MACH / Minimac software. SNPs with MAF >0.01 and impu-
tation quality ratio >0.3 were retained. Cis-mQTLs were defined as
SNPs residing within 1Mb upstream or downstream of a CpG site.

Association of methylation with complex diseases and traits
To annotate CHIP-associated CpGs and cis-mQTLs, we utilized both the
EWAS Catalog (https://www.ewascatalog.org/)22 and the GWAS Catalog
(https://www.ebi.ac.uk/gwas/)20. The EWAS Catalog collected published
CpG signatures for about 4000 traits and/or diseases. GWAS Catalog
collected significant SNPs associated with thousands of traits and/or
diseases. For the identified CHIP-associated CpGs, we matched these
CpGs with reported trait-associated CpGs in the EWAS Catalog. To
evaluate the enrichment of CHIP-associated CpGs for traits listed in the
EWASCatalog,weperformedone-sided Fisher’s exact tests.We applied a
Bonferroni-corrected significance threshold of P= 1.24E-05 (0.05/4023,
accounting for 4023 traits in the EWAS Catalog). Additionally, to assess
whether any cis-mQTLs of CHIP-associated CpGs demonstrated strong
associations with human complex traits, we matched the cis-mQTLs
against SNPs in the GWAS Catalog that were reported with P< 5E-8.

Mendelian randomization analysis
In order to investigate whether differentiation methylation at CHIP-
associated CpGs causally influences risk of CVD and mortality, two-
sample Mendelian randomization (MR) was performed between

exposures (CHIP-associated CpGs) and a list of CVD- and mortality-
related traits as outcomes. We utilized our in-house developed analy-
tical pipeline called MR-Seek (https://github.com/OpenOmics/mr-
seek.git) to perform the analysis. The full summary statistics of dif-
ferent GWAS datasets were downloaded from NHGRI-EBI. The list of
CVD- andmortality- related traits and list of references of those GWAS
results are included in Supplementary Data 28. Previously identified
cis-methylation quantitative trait loci (cis-mQTL) were utilized as
instrumental variables (IVs) in the MR analysis20. The cis-mQTLs that
were also identified as trans-mQTLs were excluded to avoid potential
pleiotropic effects. For each CpG site, the IVs comprised independent
cis-mQTLs pruned for linkage disequilibrium (LD) with an r2 <0.01.
Only one cis-mQTL variant with the lowest SNP-CpG p-value was
retained in each LD block. For CpGs with more than one IV, Inverse-
variance weighted (IVW) MR tests were conducted. Heterogeneity and
MR-EGGERpleiotropy testswere employed to assess the validity of IVs.
Results with a significance level of P <0.05 were excluded. If a CpG has
only one instrumental variable (IV), the Wald MRmethod was applied.
Significance levels of MR results were determined based on the
Benjamini-Hochberg corrected FDR adjusted p-value with a threshold
of <0.05.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The whole genome sequencing (WGS), DNA methylation, RNA
sequencing data, and phenotypic data from the Framingham Heart
Study (FHS), the Jackson Heart Study (JHS), the Cardiovascular
Health Study (CHS), and the Atherosclerosis Risk in Communities
(ARIC) study have been deposited in the dbGaP database under
accession codes, phs000007 (FHS) [https://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/study.cgi?study_id=phs000007.v34.p15], phs
000964 (JHS) [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs000964.v5.p1], phs001368 (CHS) [https://
www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=
phs001368.v4.p2], phs000668 (ARIC) [https://www.ncbi.nlm.nih.
gov/projects/gap/cgi-bin/study.cgi?study_id=phs000668.v6.p2].
The WGS, DNA methylation, and phenotypic data from all cohorts
used in this study are available under restricted access to protect
participant privacy and ensure confidentiality. Access can be
obtained by submitting an ancillary study proposal and obtaining IRB
approval. Timelines for the approval process range from 4–9weeks
for CHS and 3–6weeks for ARIC ancillary studies, with specific cri-
teria and proposal forms for the respective studies available at
https://chs-nhlbi.org/node/6222 and https://sites.cscc.unc.edu/aric/
ancillary-studies-pfg. Full summary statistics for several figures are
available in two Zenodo repositories: Fig. 2, Supplementary Figs. 1–3,
and Fig. 1 from Responses to Reviewers’ Comments File [https://doi.
org/10.5281/zenodo.14712757]53 and Supplementary Fig. 4 [https://
doi.org/10.5281/zenodo.14712522]54. Source data are provided with
this paper.
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