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3D-printed spines for programmable liquid
topographies and micromanipulation

Megan Delens 1,3 , Axel Franckart1,3, Daniel M. Harris 2 &
Nicolas Vandewalle1

Manipulating floating objects, whether solid or liquid, from microscopic to
mesoscopic sizes, is crucial in various microfluidics and microfabrication
applications. While capillary menisci naturally self-assemble and transport
floating particles, their shapes and sizes are limited by the properties of the
fluid and theobjects involved.Weherein harness the superpositionof capillary
menisci to curve liquid interfaces controllably. By using 3D-printed spines
piercing the interface, we can finely adjust height gradients across the liquid
surface to create specific liquid topographies. Thus, our method becomes a
powerful tool for manipulating floating objects into programmable paths.
Combining experimental demonstrations, numerical simulations, and theo-
retical modeling, we study the liquid elevation created by specific spine dis-
positions and the three-dimensional manipulation of submillimetric particles.
Multiple examples showcase the method’s potential applications, including
sorting and capturing particles, which could pave the way for cleaning fluid
interfaces.

In nature, capillary menisci serve various purposes. They enhance the
aggregation of objects at liquid interfaces, like mosquito eggs1,
bubbles2, or cereals3. Water-walking insects use menisci to reach the
shore4, while surface-piercing vegetation captures particles on water
surfaces5,6. Such natural phenomena have long inspired scientists to
exploit menisci or curved interfaces to self-assemble7–19, transport20–22,
ormanipulate23–25

floating objects. Pillars, in particular, have been used
to curve the interface by pinning it to the pillar cross-section, enabling
particle transport26–28. However, these pillar-based strategies typically
focus on single pillars, resulting in axisymmetric deformations limited
by the capillary length λ, around 2.7 mm for the water-air interface.
Peng et al. notably created a meniscus gradient for bubble transport
using multiple slippery oil-infused pillars with height gradients20.

In this study, we extend these concepts by exploring the super-
position of capillary menisci generated by regularly arranged 3D-printed
conical spines. By leveraging the interplay between spine geometry and
spacing, we demonstrate control of liquid interface topographies over
larger scales than the capillary length. Experimental results, supportedby
theoreticalmodeling andnumerical simulations, show that specific liquid

landscapes and artistic topographies can be programmed by tuning
spine parameters. These tailored liquid interfaces enable precise
manipulation of floating particles. For instance, we illustrate how objects
of different sizes can be directed along programmable paths or trapped
at predetermined locations. Additionally, weprovide an example of time-
dependent manipulation by incorporating structural subfeatures on the
spines, where the interface is dynamically pinned as the liquid level
decreases. Finally, we highlight the broad range of applications for this
work, including particle sorting, micromanipulation, and interface
cleaning. This offers a versatile and scalable platform for future
advancements in microfluidic systems.

Results
Single spine
Let us consider a conical spine crossing the water-air interface. Fig-
ure 1a presents a sketch of the conical spine defining its geometrical
characteristics: the radius of its base R and its height H. A meniscus
forms around such a spine, and the contact line height from the base is
given by h + h0, where h0 is the height of the undisturbed surface.
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Figure 1b presents a picture of the typical meniscus forming around a
3Dprinted spinewith a half opening angleα = arctanðR=HÞ beingα=3°.
The shape of the meniscus z(x, y) is determined by the condition that
the surface overpressure, which arises from surface tension and is
directly related to the curvature of the interface, matches the hydro-
static pressure difference caused by the interface’s deformation29. In
an approach where interface slopes are considered small enough, this
condition is mathematically written as the linearized Laplace-Young
equation

ρgz = γ∇2z, ð1Þ

defining the capillary length

λ=
ffiffiffiffiffiffi
γ
ρg

r
, ð2Þ

which is the characteristic length scale at which gravitational forces
and surface tension forces are balanced. Several research studies,
including those conducted by Lo30, Kralchevsky31, and Cooray32,
among others, have been undertaken to investigate the formation of
the meniscus around a vertical cylinder. Eq. (1) can be rewritten in
cylindrical coordinates thanks to the cylinder’s axisymmetry. Its solu-
tion gives the profile z as a function of the radial distance r counted
from the center of the cylinder. One has

zðrÞ=QK0
r
λ

� �
, ð3Þ

where K0 is a decaying zero-order modified Bessel function of the
second kind and Q is a constant of integration usually called the
capillary charge of the cylinder and has a crucial importance for
capillary interactions33. For a cylinder piercing a liquid-fluid interface,
Cooray et al.32 have determined Q by using Archimedes principle
stating that, at equilibrium, the weight of the liquid lifted in the
meniscus must equal the capillary force acting on the contact line. For
the cylinder, assuming R ≪ λ, this characteristic elevation is
Qcyl =R cosθ, where θ is the contact angle as defined in the sketch
from Fig. 1. The previous assumptions for the conical spine studied

herein still hold since the contact line keeps axisymmetry. Yet, the
contact line radius changes with the liquid height. For the conical
spine, we, therefore, assume a characteristic elevation

Q= ðR� ðh+h0Þ tanαÞ cosðθ+αÞ: ð4Þ

The above general description (3) of the meniscus tells us that the
horizontal extension of the meniscus is limited by the capillary
length λ.

Regularly arranged spines
A primary motivation of the present work is to defy this limitation by
creating giant menisci with a horizontal extension much larger than λ.
In other words, we would like to obtain a steady situation in which the
interface is tilted over the entire container size. To reach this chal-
lenging situation, we consider an array of identical conical spines. Each
spine crossing the interface is the origin of a meniscus, described by
Eq. (3). When they are close to each other, i.e., when the lattice spacing
a≲ λ, themenisci createdonneighboring spines superimpose. Regular
microstructures are also notably used to mimic the wetting of specific
surfaces34,35, like porousmaterials36,37 or super-hydrophobic surfaces38.
Figure 1c,d shows a sketch and a picture of the edge of a square lattice
of spines. The liquid rises above the undisturbed interface inside the
lattice, proving the effect is significant. On average, the interface on
the whole lattice is nearly flat. Nevertheless, small valleys are seen in
between neighboring spines. In these valleys, the interface height hv is
slightly smaller than h.

Experimental measurements of the interface position have been
done byopticalmeans. Figure 2a plots the heightsh in orange andhv in
purple dots as a function of the unit cell area A function for 12 square
lattices. All lattices are 3D printed with fixed spine shapes (R = 0.2 mm
and α = 1.15°) and varying lattice spacing a. The range of geometrical
parameters is constrained by the 3D printing method used. Although
the 3D printer has a specified resolution of 16 μm, our experimental
tests have demonstrated that we can print spines with a base distance
as small as 0.3mm. If this distance is reduced further, the gap between
the spines becomes too small, causing complications during the 3D
printing process and potentially resulting in the individual spines
sticking together. Consequently, the chosen lattice spacing a and base
radius R are determined by the limitations of our methodology. The
3D-printedmaterial and the fluids determine the contact angle. For the
air-water interface, we measured a contact angle of θ = 53° on our
spines. For small lattice spacing a, h and hv are quite similar, while the
difference between those couples of points seems to increase with the
unit cell area A. High water elevations h up to 5-6mm are reached with
small lattice spacing. This order of magnitude is comparable to the
capillary rise in a millimeter tube as given by Jurin’s law39.

We propose to describe the interface behavior using the Linear
Superposition Approximation (LSA), which assumes the total interface
results from the linear superposition of individual menisci formed
around each spine. This principle, rooted in Nicolson’s work2, is widely
applied to study capillary interactions between floating
bodies1–3,11,14,31–33,40–44. Vassileva et al.44 demonstrated the validity of the
superposition approximation for capillary interactions between two
cylinders of radiusR at a separationd > 4Rbycomparing exact and LSA
capillary force. For smaller separations between cylinders, the super-
position approximation underestimates the liquid elevation between
cylinders and the resulting capillary force. Extending this result to our
study, we assume the superposition approximation to be valid when
a>4ðR� ðh+h0Þ tanαÞ. Under this framework, the liquid elevation at a
position r!= ðx, yÞ inside the lattice is given by:

zðx, yÞ=Q
X
k, ‘

K0
j r!� r!k, ‘j

λ

 !
=Qσðx, yÞ ð5Þ

a

b

c

d

Fig. 1 | Superposition of menisci. a Sketch of a single conical spine crossing the
liquid-air interface. The geometrical characteristics of the spine H and R and the
associated meniscus height h are emphasized. The dashed horizontal line denotes
the undisturbed interface z = 0 at height h0 from the spine’s base. b Sketch of the
edge of a square array of spines separated by a. The water profile highlights the
slight undulation of the interface between the spines from a maximal height h to a
lower liquid height hv between spines. c Picture of a 3D-printed conical spine
crossing blue-coloredwater and illustrating themeniscus formation.dA closeup of
the liquid menisci at the edge of a square lattice. The liquid interface inside the
lattice is 3.5 mm above the undisturbed interface. Scale bars: 1 mm.
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where k and ℓ are lattice indices running over the entire structure, with
r!k, ‘ = ðka, ‘aÞ for the square lattice. Looking around the central spine,
i.e. when k = ℓ = 0, and substituting Q using Eq. (4), one finds the
expression of the liquid elevation h at the contact line:

h= zðR� ðh+h0Þ tanα, 0Þ
= ðR� h0 tanαÞ

×
1

cosðθ+αÞσðR� ðh +h0Þ tanα, 0Þ + tanðαÞ
� ��1

,

ð6Þ

and the liquid elevation of the valley in between neighboring spines:

hv = zða=2, 0Þ
= ðR� ðh+h0Þ tanαÞ cosðθ+αÞσða=2, 0Þ:

ð7Þ

The profiles in the sketch of Fig. 1c were drawn using the LSA
approximation. Figure 2a compares these predictions (orange and
purple curves for h and hv, respectively) with experimental data. The
agreement is excellent across all tested lattice spacings. The red region
in Fig. 2a indicates the range where a<4ðR� h tanαÞ, beyond which
the LSA approximation fails. Notably, all experimental data fall within
the model’s validity.

To further observe the robustness of the model, the non-linear
Young-Laplace equation has been numerically solved for 2D square
lattices of spines. Numerical results forh and hv arepresented in Fig. 2a
as orange and purple crosses, respectively. By comparing numerical
simulations with the liquid heights h and hv determined using the LSA,
we demonstrate that the validity range of the approximation observed
by Vassileva et al.44 for two cylinders can bewidened to a broader array
of spines.

The meniscus height around the spines is influenced by three
main geometric parameters: (i) lattice spacing a, (ii) spine radius R at
z = 0, and (iii) opening angle α and the physical parameters λ and θ,
which depend on the material and the fluids. To adjust the liquid
height of the interface, one can modify geometric parameters like the
cone’s base radius R or opening angle α.

Figure 2 (b) presents graphs of the experimental and numerical
results for the liquid heights h and hv in a square grid when the radius
of the spine R increases, with the A = 2.25 mm2 and α = 3° fixed. The
selected parameters aim to showcase the model’s limitations while

being constrained by the fabrication methods. The experimental data
agree with the LSA model within the model’s validity. When the
superposition approximation reaches its limit, the LSA tends to
underestimate the liquid elevation, which is consistent with the work
of Vasilleva et al.44. Figure 2c presents similarmeasurements for square
arrays as a function of α and with other parameters fixed (R = 0.5 mm
and A = 2.25 mm2). The comparison between experimental, numerical,
and predicted results again demonstrates an excellent agreement
within the LSA limit. While we concentrated on the central spine to
simulate liquid elevation throughout the entire lattice, it is worth
noting that the menisci at the lattice edges are distorted differently
due to the absence of neighboring spines, which can be observed in
Fig. 1(c) and (d). The LSA model effectively captures this specific dis-
tortion and the valleys between spines, both of which are crucial for
potential manipulation applications.

Beyond the LSA limit, the liquid is nearly flat as h and hv converge,
and the liquid height inside an area element A can be modeled by a
simple force balance, as discussed in the Methods. The average liquid
elevation h predicted by this model and given in Eq. (9) is plotted in
green in Fig. 2a–c. While effectively capturing the liquid elevation
inside the lattice as the liquid gets flatter, the force balance model,
unlike the LSA model, fails to capture the valleys and the specific dis-
tortion at the lattice edge.

Specific Liquid Topography
The above results show that liquid height is controlled by the geo-
metric characteristicsA,R, andαof anarrayof conical spines. Thus, the
geometry of each individual spine or the lattice spacing can be
adjusted to pin the interface at different heights within a unique array.
Having effectively captured the impact of these parameters on the
liquid elevation, we can employ this method to program unique liquid
topography.

Elementary topographies can be programmed by varying the
lattice spacing a or the total height of the spine H in one direction,
radially or otherwise. Figure 3 shows various examples to showcase the
method’s versatility and the wide range of menisci that can be gener-
ated. In Fig. 3a and b, two tilted interfaces are produced: (a) the first
one is by gradually decreasing the total heightH, which is equivalent to
modifying the radius of the contact line while keeping the other
parameters fixed, and (b) the second slope is obtained by increasing

1

0.5

2

5

1

0.5 1 5 10

ba c

Fig. 2 | Experiments, numerics andmodels for liquid elevation inside regularly
arranged spines. aMeasured height at meniscus h and between spines hv ofwater
in square lattice as a functionof the unit areaA. Experimental and numerical results
are presented. Spines' characteristics areR=0.2mmandα= 1.15° and thebath level
is h0 = 0 mm. The orange and purple curves are predictions of Eq. (6) and (7)
respectively. The red region is the region over which the superposition

approximation is no longer valid. The green curve represents h, the solution from
Eq. (9), the force balance model. b Elevations h and hv of the interface in a square
lattice as a function of the spine radius R when α = 3°, A = 2.25 mm2 and h0=1 mm.
cHeight h and hv as a function of the angle α for spines of radius R =0.5mm, lattice
spacing A = 2.25 mm2, and bath level h0 = 1 mm.
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the lattice spacing a from left to right. Figure 3c and d display,
respectively, a sinusoidal and a parabolic liquid interface produced by
varying H sinusoidally and quadratically. Conical spines are truncated
above the contact line to highlight the liquid interface. The experi-
mental liquid heights for the sinusoidal and parabolic devices are
presented in orangedots in subfigures (c) and (d). The predicted liquid
height, derived from the LSAmodel for these sinusoidal and quadratic
variations of H, is also plotted in orange curves in the subfigures to
emphasize the correspondence between the intended and actual
liquid topography. Figure 3e displays a hemispherical meniscus cre-
ated by decreasing the total heightH radially. Finally, Fig. 3f shows the
meniscus created by two adjacent inclines with perpendicular slopes,
thus creating a90° turn in theheight gradient. Thismeniscus is created
by decreasing H and keeping R fixed to 0.5 mm.

To program arbitrary and complex liquid topographies, we solve
the inverse problem of Eq. (6): starting from the desired liquid height,
we numerically calculate the corresponding spines and lattice para-
meters. This allows us to create any liquid landscape from a given
target shape, as Fig. 4 exemplifies. From the grayscale image of the
Atomium, the famous Belgian monument, shown in Fig. 4a, we
designed a lattice of truncated conical spines where each spine
represents a pixel of different total height H. The values of H were
determined based on the desired liquid elevation h, which is linked to
eachpixel value ranging from0 to 255. As the liquid invades the lattice,
it rises to different heights, resulting in a three-dimensional repre-
sentation of the Atomium, as shown in Fig. 4b, which offers a per-
spective view of the experiment. Our method of designing the device
that creates artistic liquid landscapes from any 2D images or 3D
coordinates hasbeen implemented in aMathematica code available on
GitHub (see Code Availability).

Meniscus-induced micromanipulations
The wide variety of menisci that specific arrangements of spines can
create gives direct inspiration formicromanipulation. Indeed, when a
particle floats on a surface that is tilted either by the presence of
another particle, a wall meniscus, or, in our case, some spines, the
resulting force is no longer perpendicular to the surface, which
results in a net movement along the surface. Therefore, light parti-
cles, such as bubbles, move upward along the meniscus, following
the height gradient, while heavier particles denser than the liquid
move downward along the interface slope2,3. This simple assumption,
first proposed by Nicolson2, allows to evaluate the capillary interac-
tion between a particle and another meniscus by computing the

a b

Fig. 4 | Artistic topography: The Atomium. From this simplified 2D-image of the Atomium monument in grey levels a, a lattice of truncated conical spines has been
designed and 3D-printed b. As the liquid invades the device, it rises to reproduce the Atomium. Scale bar: 10 mm.
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d
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f

Fig. 3 | Various examples of elementary topographies. a A liquid incline pro-
viding a tilted giant meniscus at equilibrium. The total height H of the spines
gradually decreases along the lattice from left to rightwhile the radiusR =0.2mm is
constant. b The same incline created by another lattice where the lattice spacing a
gradually increases from left to right. c A sine wave topography created by sinu-
soidally varying the total heightH of the spines of radius R = 0.2mm. d A quadratic
well created by varying quadratically the height H of spines of radius R = 0.3 mm.
The experimental measurements and the predicted liquid elevation by Eq. (6) in
devices c and d are plotted in the subfigures using dots and curves respectively. eA
hemisphere created by radially decreasing the total height H of spines of the same
radius R = 0.3 mm. f Two adjacent inclines with perpendicular slopes, therefore,
creating a 90° turn in the height gradient. The inclines are created by varying the
height H of spines of radius R = 0.5 mm. Scale bars: 10 mm.
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gravitational potential energy of the particle at a specific height z in
the latter meniscus. Thus, the interaction potential simply takes the
shape of the liquid profile z(x, y) in which the particle sits. In 2022,
Peng et al. have notably achieved directional bubble transport on a
few slippery oil-infused pillars with height-gradient20. Being aware
that complex tridimensional capillary transport can only be achieved
by complexifying the liquid topography, we herein propose the use
of specific arrays of spines as an effective strategy for particle
transport at liquid interfaces.

To test our strategy, we conducted transport experiments of a
heavy submillimeter bead floating on desired liquid topographies. As a
first experiment, we successfully achieved unidirectional micro-
manipulation using the array shown in Fig. 3a, forming a giant slope
along the interface. Figure 5a presents a 3D plot illustrating the z(x, y)
profile of themeniscus, calculatedusing Eq. (5), superimposedon the 3D
STL file of the device. This plot effectively illustrates a liquid slope of 4°.
The grayscale image within the same figure provides a top-down view of
the device, with trajectories of 400 μm diameter beads color-coded
according to their instantaneous speed. Refer to the Supplementary
Video S1 for the motion. Similar motions are observed in each row,
following the slope of the tilted interface. By varying the particle size, the
steepness of the slope, or the lattice spacing, we observed similar
behaviors but at different speeds. For instance, under the same incline, a
500 μm bead is faster than an 800 μm bead, which is also faster than a
400 μmbead. When testing slope varying from 1° to 5° in increments of
0.5°, we observe a maximal speed for the slope of 3° for all bead sizes.
These counter-intuitive observations emphasize the complexity of the
forces acting on the beads. The drag force on spherical particles trapped
at liquid interfaces depends on various factors, including the shape of
the interface, whether the three-phase contact line is pinned or not, the
immersion depth, and the driving force45–48. In our case, the liquid
interface is not only tilted but also slightly undulated between the height
h and hv following the periodic structure of the array, which highly
complicates the bead’s dynamics. Therefore, the precise dynamics of
particles manipulated in our device will be studied in future works.
However, it should be noted that because the particles reach different
speeds depending on their size when the beads leave the device, they
come to rest at distinct positions. This observation opens up exciting
possibilities for sorting particles based on size or wettability.

More strikingly, the multi-directional transport of particles can
also be performed by other liquid topographies. Two examples are
shown in Fig. 5b and c. Figure 5b presents the calculated liquid profile
of the array displayed in Fig. 3f and the trajectory of an 800 μm bead
descending the slope. The bead first falls down the slope along the
x-direction. When the height gradient in the x-direction vanishes, the
bead briefly stops and then continues its descent along the y-direction
gradient. The 800 μm stops permanently inside the device when the
height gradient and the bead’s inertia canno longer overcome thedrag
force and the slight undulation of the interface. The motion can be
seen in Supplementary Video S2.We note that smaller beads (400 and
500 μm) came to rest outside this device. Once again, different par-
ticles are sorted, and the array controls thefinal positions. In Fig. 5c, we
display a particular lattice forming a sinusoidal valley with a slight
slope, allowing the bead tomake a series of turns while descending the
hill. See Supplementary Video S3 for the real-time motion inside the
sinusoidal valley. Unlike the constant speed measured on the liquid
slope of Fig. 5a, one can observe from the color-coded trajectory of a
500 μm bead that it is always decelerated in the turns, i.e., when the
direction of motion changes, just as in the 90° turn of Fig. 5b.

As a first step toward actuating our lattice, we can draw inspiration
from theworkof Zeng et al.23, inwhich theymanipulatedfloating objects
by adjusting the liquid elevation within a vertical channel that has ver-
tical variations in wettability. For our lattice, considering the simple case
of cylinders (α = 0°), we have designed structural spines with sub-
structures ontowhich the interfacewill be pinned as the liquid level falls.
The upper part of the lattice consists of cylinders with small yet identical
radii, creating a horizontal interface that traps particles. The lower part,
uncovered as the liquid descends, consists of cylinders with decreasing
radii to form a liquid slope and thus manipulate the floating particles.
The menisci are, therefore, time-dependent. Figure 6 illustrates the
upgraded device and demonstrates how the interface is pinned to the
substructures as the liquid descends. Supplementary Video S4 show-
cases the manipulation of a 500 μm bead by a combination of these
devices, enabling the bead to make a complete 360° turn.

0 1 2 3 4

a

b

c

0 5 10 15 20

Fig. 5 | Micromanipulation over programmed liquid valleys. The 3D plots, cal-
culated using Eq. (5), display the liquid landscape created by an arrangement of
spines piercing the liquid. The plot is rainbow-colored according to the liquid
elevation, and the spines are colored in light blue. In each subfigure, experimental
trajectories of heavy submillimeter beads inside the same arrangement are repre-
sented and are color-coded according to their speed from purple to yellow. Real-
time movies can be viewed in Supplementary Videos S1, S2, and S3 for figures a,
b, and c respectively.

Fig. 6 | Time-dependent menisci on substructured spines. Experimental water
profiles within an array of spines with substructures are presented for three dif-
ferent levels of bath liquid. Initially, the liquid interface is pinned to cylinders of
identical radius. As the bath level descends, the liquid interface is then pinned to
cylinders with decreasing radii, and the liquid slope appears. The liquid interfaces
are highlighted in red.
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These illustrating examples offer promising prospects for precise
object transport, such as positioning objects beneath a microscope
lens, the utilization of liquid curvature as a ’capillary tweezer’24,28, or
favoring specific structures on capillary self-assemblies, such as the
side-by-side assembly of cylindrical particles on a curved
interface17,19,25,26. It is worth noting that this manipulation method
works for objects of any nature, solid or liquid, as long as they are
attached to the liquid interface. Furthermore, as long as the distance
between the spines is on the order of the capillary length, even
microscopic objects can be controlled23. As the total size of the device
is only limited by the fabrication process, one major and crucial
application of our method could be the cleaning of interfaces from
specific oil microdroplets and microscopic objects.

Discussion
The innovative approach presented herein demonstrates using arrays
of 3D-printed conical spines tomanipulate liquid surfaces precisely. By
controlling the geometry, arrangement, and spacing of the spines, we
achieved a wide variety of liquid topographies, ranging from inclined
surfaces and sinusoidal patterns to complex artistic structures. These
results confirm the ability to create tailored liquid landscapes over
scales much larger than the capillary length, overcoming the limita-
tions of traditional single-pillar systems. Through theseprogrammable
liquid interfaces, we showcased precise manipulation of floating par-
ticles, including directional transport, size-based sorting, and con-
trolled trapping at predetermined locations.Moreover, by introducing
structural subfeatures on the spines, we demonstrated time-
dependent manipulation, where the interface dynamically evolves as
the liquid level decreases. The versatility and scalability of this
approach open promising avenues for practical applications, such as
particle sorting, micromanipulation, and cleaning liquid interfaces
frommicroscopic debris or oil droplets. Futurework could explore the
dynamic actuation of the spines using adaptive magnetic49 or
magnetoelastic50 materials, shape-shifting materials35, shape memory
polymers43, or mechanical systems to achieve real-time control of the
liquid surface curvature. These advancements would further enhance
the potential of this method for innovative microfluidic technologies
and capillary-driven systems.

Methods
Design and 3D printing
The devices have been designed using a Mathematica script that cre-
ates all the spines with specific characteristics and in the desired
arrangement with a 2 mm base. The script then exports the 3D gra-
phics in an STL file (See Code Availability). Since the lattice spacing a
and the shape of the spines can be modified, about 60 different
devices were printed using a PolyJet 3D printer (Stratasys Object Prime
30). The PolyJet method consists of jetting out resin droplets onto the
platform, which are then cured using UV light. It results in an excellent
announced resolution of up to 16 μm. We used a resin similar to ABS
plastic (Vero Blue) in a glossy finish.

Experimental measurements
The latticewasplaced in the center of a Petri dish. The amount ofwater
added to the system was controlled to define z = 0 and h0. The water
level was determined by optical means, with a camera taking pictures
from the side. The height h of the liquid above the undisturbed
interface was measured by image analysis. For the experiments with
solid particles, we took videos from above the device and then tracked
the particles.

Numerical solution for the interface shape
The code used to solve the Young-Laplace equation has been adapted
fromHoet al.13 anduses the ‘General FormPDE’ solver inCOMSOL5.3a.
The PDEwas solved in 2D for a square array. For the case of spines (i.e.,

α > 0), the contact line position in the 2D computational domain is not
known a priori and was addressed as described in what follows. In the
simulation, the contact linesweremodeled as circular regions of radius
Rc. The nonlinear Young-Laplace was solved exterior to the circular
regions while enforcing a slope of θ + α at the contact line position. For
a fixed combination of A, α, and λ, a range of simulations were run
varying Rc. Then, for a targeted h0 and R in the experiment, the
simulation wherein Rc =R� ðh +h0Þ tanα was satisfied was selected as
the appropriate solution, and h and hv were extracted therefrom. For
all cases, the size of the simulated lattice was increased until the pre-
dicted h and hv at the center of the lattice converged.

Force balance model
The force balancemodel provides a description of the liquid interface
in cases where the Linear Superposition Approximation (LSA) is no
longer valid. When the lattice spacing is small, the interface flattens
between the spines, and the average liquid height is determined by
balancing forces. The capillary force exerted by the spines is matched
with the weight of the liquid displaced in the unit cell area A. Assuming
a flat interface at elevation h, the force balance is expressed as:

2πγ cosðθ+αÞ R� ðh+h0Þ tanα
� �

=ρg A� πðR� ðh +h0Þ tanαÞ2
� �

h:
ð8Þ

This results in a cubic equation for h:

πtan2α h
3 � 2πðR� h0 tanαÞ tanαh

2

+ πðR� h0 tanαÞ2 � 2πλ2 cosðθ+αÞ tanα � A
� �

h

+2πλ2 cosðθ+αÞðR� h0 tanαÞ=0

ð9Þ

The solution to this equation gives the average liquid height h,
capturing the behavior of the liquid interface under conditions
where the LSA model fails. The predicted h is compared with
experiments, numerical results, and LSA predictions in the main
text, as shown in Fig. 2(a–c). For a cylindrical pillar, α = 0° and
Eq. (9) simplifies nicely to

h=
2πRλ2 cos θð Þ

A� πR2 : ð10Þ

In contrast to the LSA model, the force balance does not account
for the valleys and the particular distortion at the lattice edge, which is
crucial for manipulation applications.

Data availability
The data supporting the findings of this study are available within the
paper. The code for creating an arrangement of truncated conical
spines that reproduces a gray-scale image is implemented in Mathe-
matica (Version 13.3). This code and CAD files for 3D printing the
devices presented in this paper can be found at https://github.com/
GRASP-LAB/3D-printed-spines51.

Code availability
The data supporting the findings of this study are available within the
paper. The code for creating an arrangement of truncated conical
spines that reproduces a gray-scale image is implemented in Mathe-
matica (Version 13.3). This code and CAD files for 3D printing the
devices presented in this paper can be found at https://github.com/
GRASP-LAB/3D-printed-spines51.
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