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Resolving spatial subclonal genomic
heterogeneity of loss of heterozygosity and
extrachromosomal DNA in gliomas

Michelle G. Webb 1, Frances Chow 2, Carmel G. McCullough 1,
Bohan Zhang 1, John J. Y. Lee 3, Rania Bassiouni 1, Norman E. Garrett III 2,
Kyle Hurth4, John D. Carpten1,3, Gabriel Zada2 & David W. Craig 1,3

Mapping the spatial organization of DNA-level somatic copy number changes
in tumors can provide insight to understanding higher-level molecular and
cellular processes that drive pathogenesis. We describe an integrated frame-
work of spatial transcriptomics, tumor/normal DNA sequencing, and bulk RNA
sequencing to identify shared and distinct characteristics of an initial cohort of
eleven gliomas of varied pathology and a replication cohort of six high-grade
glioblastomas. We identify focally amplified extrachromosomal DNA (ecDNA)
in four of the eleven initial gliomas, with subclonal tumor heterogeneity in two
EGFR-amplified grade IV glioblastomas. In a TP53-mutated glioblastoma, we
detect a subclone with EGFR amplification on ecDNA coupled to chromosome
17 loss of heterozygosity. To validate subclonal somatic aneuploidy and copy
number alterations associated with ecDNA double minutes, we examine the
replication cohort, identifying MDM2/MDM4 ecDNA subclones in two glio-
blastomas. The spatial heterogeneity of EGFR and p53 inactivation under-
scores the role of ecDNA in enabling rapid oncogene amplification and
enhancing tumor adaptability under selective pressure.

Gliomas are a type of brain tumor originating from glial cells. They are
classified into major types based on cell of origin, histological char-
acteristics, and molecular alterations, which play a vital role in patient
prognosis and treatment. Key subtypes include oligodendrogliomas,
astrocytomas, diffuse midline gliomas, and glioblastomas. Each can
have markedly different growth rates and varying responses to treat-
ment, where subtypes such as oligodendrogliomas are slow-growing
andmore responsive to treatment, while others, such as astrocytomas
and glioblastomas, are aggressive and difficult to treat1.

Hallmark molecular alterations that define glioma subtypes
include somatic mutations, histone gene alterations, chromosomal
anomalies, and gene amplifications, and have evolved into defining
roles in the histological diagnosis and classification of gliomas. For

instance, oligodendrogliomas originate around cells that create and
maintain myelin sheaths around nerve cells called oligodendrocytes
and are molecularly characterized by co-deletion of chromosome 1p/
19q and mutations in either IDH1 or IDH22. Astrocytomas originate
from star-shaped glial cells and are further classified by their aggres-
siveness and typicallyATRX and TP53mutations, contributing to tumor
migration, evasion of apoptosis, and proliferation3. Although con-
sidered a subtype of astrocytoma, the term glioblastoma refers to
astrocytic IDHwild-type tumors that include loss of functionmutations
in the tumor suppressor gene PTEN on chromosome 10, and frequent
activation of PI3K/AKT/mTOR signaling, promoting cell growth and
survival. EGFR mutations are characteristic of IDH wild-type glio-
blastomas, where overexpression promotes cell proliferation and
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survival4. Diffuse midline gliomas are an additional subtype of astro-
cytomas, which include frequent TP53 mutations, PIK3CA mutations,
and signature H3F3A K27M mutations.

While understanding the underlying spatial heterogeneity of
gliomas is essential for understanding the molecular processes that
drive tumor pathogenesis, our knowledge of the spatial context of
these tumor-driving molecular events has been limited. For example,
gliomas are characterized by their diffuse nature, and tumors such as
glioblastomas are fundamentally heterogeneous, where the tumor
core is often molecularly distinct from tissue at the infiltrating edge
and influenced by the surrounding tumormicroenvironment. A recent
approach to characterize invasive, non-enhancing high-grade gliomas
withmagnetic resonance imaging profiling identified heterogeneity of
tumor populations5. Single-cell studies of gliomas can classify tumor
subtypes, deconvolute microenvironment gene expression, and sur-
vey cellular plasticity, yet lack the spatial context provided by more
traditional but targeted histopathological methods6.

Recently, emerging spatial transcriptomics (ST) methods such as
10XGenomics Visium Spatial Gene Expression allow the assessment of
cellular RNA expression globally andwithin the context of neighboring
cells and structures, providing new insights into complex cell micro-
environments and spatially distinct transcriptional patterns. In glio-
mas, Kim et al. applied an integrated approach of spatial profiling,
single-cell RNA sequencing, and neuropathology analyses to char-
acterize and resolve the molecular heterogeneity of the glioblastoma
microenvironment7. Separately, Ren et al. used short and long-read
spatial analysis to describe the expression and splicing of different
isoforms in glioma niches and how this affected transcriptional
signatures8. Ravi et al. applied multi-omic technologies to spatially
resolve regional copy number alterations and exclusive transcriptional
signatures while providing new software for spatial data9,10. Likewise,
Jain et al. investigated cancer-associated fibroblasts and glioma stem
cell interactions, identifying spatially relevant marker expression and
cell type localizations11. More recently,multiple studies have examined
high-grade glioblastomas by integrating single-cell RNA sequencing,
spatial transcriptomics, and other multi-omic methods to better
understand the relation between tissue architecture and invasion of
the tumor microenvironment12–15.

One aspect that has only been explored to a limited extent is how
somatic DNA alterations relate to spatial biology within and across
different types of gliomas. Across glioma subtypes, chromosome-level
changes, or aneuploidy, are found in characteristic patterns. As stated
previously, a hallmark of oligodendrogliomas is the co-deletion of
chromosomes 1p and 19q due to a non-balanced translocation. Loss of
9p, where the tumor suppressor CDKN2A and adjacent CDKN2B are
located, is a prognostic marker for astrocytomas and oligoden-
drogliomas consistent with significantly lower survival rates16,17. The
most frequent numerical chromosome alterations in IDH wild-type
glioblastoma include whole chromosome 7 gain and chromosome 10
loss, which often co-occur. Copy number alterations in gliomas can
potentially be resolved using ST, allowing for the identification of
somatic DNA-level copy number drivers accompanying gene expres-
sion changes across different tumor regions.

A hallmark of many gliomas, including glioblastoma, is the pre-
sence of highly amplified oncogenic driver genes on extra-
chromosomal DNA (ecDNA), often in the form of double-minute
chromosomes (DMs)18–20. Early studies using fluorescence in situ
hybridization (FISH) identified ecDNA elements containing amplified
oncogenes, such as EGFR in gliomas, supporting the idea that ecDNA
drives rapid oncogene amplification outside the chromosomal envir-
onment, contributing to glioma pathogenesis, genetic instability, and
intratumoral heterogeneity21. Recent research has reinforced the role
of ecDNA in driving tumor progression, with amplifications in onco-
genes such as MDM2, MDM4, and CDK422–24. While spatial hetero-
geneity is recognized as a fundamental aspect of glioma progression,

traditional FISH methods have limited spatial ability to resolve con-
comitant expression andgenomic variation. New spatial and single-cell
genome-wide methodologies offer a deeper understanding of how
ecDNA-driven oncogenic events co-occur and influence tumor
development23,25.

In this work, we describe a spatial transcriptomic analysis of sev-
eral major classifications of gliomas, including five glioblastomas, two
astrocytomas, three oligodendrogliomas, and one diffuse midline
glioma. Considering the pronounced molecular heterogeneity and
aneuploidy inherent to gliomas, the spatial analysis of gene expression
and somatic variations can provide insights into tumor biology and
pathogenesis. We utilize tumor-normal exome sequencing combined
with spatial transcriptomics data to gain additional insights into
chromosomal and ecDNA level changes. Generating expression-based
analysis and bulked sequencing data of both tumor DNA and RNA, we
examine RNA allele-specific expression patterns to detect regions of
loss of heterozygosity (LOH) and copy number alteration using Baye-
sian modeling and hidden Markov modeling (HMM) algorithms. Inte-
grating this approach across both bulk and spatial data on this varied
group of gliomas, we discover subclonal loss of heterozygosity events
supported by clinical reports and confirmed by analysis of the DNA
sequences of tumor and normal tissue samples both in an initial and
replication cohort.

Results
Initial sample cohort selection and rationale in glioma cohort A
Therewere two primary objectives in sample selection. The first was to
conduct a comparative analysis of different glioma types, aiming to
characterize the inherent variability across gliomas. Overall, sections
included five World Health Organization (WHO) grade 4 glio-
blastomas, one WHO grade 2 astrocytoma, one WHO grade 4 astro-
cytoma, three WHO grade 2 oligodendrogliomas, and oneWHO grade
4 diffuse midline glioma. Additional considerations were to have at
least one subtype with different WHO grades and at least two sections
from the same individual at recurrence. This aspect of the study design
allowed us to understand global molecular drivers of variation in the
tumor microenvironment, identify genes distinguishing subtypes, and
inform future studies focused on variation within subtypes. The sec-
ond component included an in-depth analysis of five high-grade glio-
blastomas. Glioblastomas are known to be highly heterogeneous
tumors with different cell populations and often harbor subclonal
populations with distinct genetic and transcriptomic profiles.

Spatial transcriptomics combined with genomic data can help
identify subclonal populations and their spatial distribution, informing
our understanding of tumor evolution. Our goal was to characterize
the spatial heterogeneity in terms of genomic somatic DNA events and
the transcriptomic alterations driving pathogenesis. Samples under-
went comprehensive molecular analysis, utilizing Visium spatial tran-
scriptomics, exome sequencing of tumor-derived DNA, and RNA-
sequencing of tumor-derived RNA.

Clinical and molecular features of samples in the glioma
cohort A
For clarity, samples throughout the text are referred to by their
pathology and a unique numeric identifier. Figure 1 shows clinical and
molecular features for all samples, where molecular features have also
been confirmedby clinical labs andhistopathology.Histological grade,
microsatellite instability score, and disease-relevant mutation status
were abstracted from clinical records, shown in Fig. 1. Of note, Glio-
blastoma A1 and Glioblastoma A2 were WHO grade 4, IDH wild-type,
EGFRvIII positive tumors from the same patient. We note that Astro-
cytoma A1 was also characterized as an oligoastrocytoma in some
clinical histopathology, indicating a mixed lineage, but we utilize the
updated secondary astrocytoma label throughout the text. These
tumors were included in the study design to observe any possible
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spatial genomic changes resulting from chemotherapy treatment and
disease recurrence.

Hallmark molecular alterations from bulk exome sequencing in
the glioma cohort A
Initial characterization of all samples was performed by bulk exome
sequencing of paired tumor and germline DNA, where tumor DNAwas
extracted from separately cut curls than that used for spatial tran-
scriptomics. The genomic tumor DNA was sequenced to an average
target coverage of 675x, withmore than95%of the targeted bases over
50x. Target enrichment was employed to assist with copy number
analysis. For each sample in the study, the germline exome was
sequenced to a mean target depth of 85x + /−20 from whole blood.
Hallmark mutations and chromosomal copy number changes were
determined through somatic variant calling and copy number analysis
of paired tumor/germline exome sequenced data. The sequencing
metrics described in this section are annotated by the sample in Sup-
plementary Data 1. Hallmark mutations and copy number profiles
specific to each sample are summarized in Fig. 1.

All glioblastoma samples were IDH wild-type with a hallmark gain
of chromosome 7, loss of chromosome 10, and gain of chromosome
19. All except Glioblastoma A3 have chromosome 20 gain. Glio-
blastoma A2 harbored a TP53 mutation and an EGFR mutation (c.754
C > T; R252C), which were also detected in the recurrence from the
same individual (Glioblastoma A1). Additional EGFR mutations were
detected inGlioblastomaA3 (c.866C >T; A289V) and GlioblastomaA5
(c.787 A >C; T263P). All glioblastomas harbored a deletion of CDKN2A.
PDGFRA was focally amplified in Glioblastoma A4, while EGFR was
focally amplified in Glioblastoma A1, Glioblastoma A2, and Glio-
blastoma A5. As we subsequently discuss, these high-level focal
amplifications are typically extrachromosomal DMs.

Three oligodendrogliomas were sequenced, two with an IDH2
mutation and one with an IDH1 mutation. Each of these showed the
characteristic chromosome 1p and chromosome 19q deletions. Oli-
godendroglioma A1 had an additional TP53 mutation, and Oligoden-
droglioma A3 had PIK3CA and RB1mutations. Both astrocytomas were
IDH1mutants with TP53mutations. Finally, the Diffuse Midline Glioma
A1 had a characteristicH3F3A (K27M)mutation, anATRX stopmutation
(R2111*), and a PDGFRA focal amplification containing a PDGFRA
(c.1027C >T; P343S) mutation.

Distinguishing and shared spatial transcriptomic features
across glioma cohort A
The sample cohort includes gliomas of varied spatial complexity and
genomic profiles. We applied Visium Spatial Gene Expression (10X

Genomics) to all 11 fresh-frozen tissue samples, where key spatial
experimentmetrics are included in SupplementaryData 2. Sequencing
data was analyzed with the 10X spaceranger pipelines.

We conducted both individual-level clustering (Supplementary
Fig. 1) and inter-tumor clustering (Fig. 2). Each approach showed
strengths andweaknesses in different contexts in their ability to reflect
intra- and inter-tumor spatial biology. Specifically, individual-level
spatial clustering was used to identify unique heterogenous features
within a specific tumor to emphasize intratumor variability. Con-
versely, individual clustering does not reflect the global features of a
tumor in comparison to others. For example, Glioblastoma A1 and
Glioblastoma A2 are derived from the same patient at two different
time points. The latter shows clusters driven by VEGFA, whereas the
former has uniformly high coverage of VEGFA, making this feature less
evident. Moreover, the fact that each tumor is clustered and normal-
ized within its own space makes comparison across tumors difficult.
We show individual-level clustering within the supplementary materi-
als, focusing on integrated clustering.

Figure 2 shows the inter-tumor spatial biology by integrating the
ST data from the discovery glioma set of samples. We used Seurat
SCTransform normalization and reciprocal PCA integration methods,
ensuring accurate inter-sample clustering. By aligning the datasets in a
shared low-dimensional space, reciprocal principal component analy-
sis preservedbiological variation and allowed for reliable identification
of consistent spot-level populations across samples. One prominent
feature of ST compared to single-cell sequencing is that we see par-
tially distinct clusters, reflecting that a 55-µm Visium spot overlaps
multiple cells and cell types. In the primary integrated analysis, nine
clusters were identified, representing shared cell populations present
in samples at varying amounts (Fig. 2b, c), and mapping of integrated
clusters on individual samples revealed a structured tissue archi-
tecture (Fig. 2d). Marker genes, or statistically significant over-
expressed genes, were identified for each integrated cluster to better
characterize the underlying biology (Fig. 2e). Apart from the primary
analysis, it is important to note different features are evident at dif-
ferent resolutions. Two additional clustering analyses with smaller and
larger resolutions are demonstrated in Supplementary Fig. 2.

The largest first blue cluster contained mixed neuronal lineages
but was dominated by oligodendrocyte marker genes within the three
oligodendroglioma samples. Co-expression in small clusters over-
expressing MAG, MOG, and MBP (also in oligodendrocyte precursor
cells) and oligodendrocyte precursor markers such as OLIG1 and
OLIG2. Additionally, the diffuse nature of cluster 1 may be drive by
lower unique molecular identifier (UMI) counts in areas that include
apoptotic and highly necrotic regions, as evidenced by the presenceof

Fig. 1 | Overview of somatic alterations in the discovery glioma cohort A. The
initial dataset of 11 fresh frozen glioma tumors were analyzed with spatial tran-
scriptomics, bulk tumor and normal exome sequencing, and bulk RNA sequencing.
The sample set included five glioblastomas, three oligodendrogliomas, two astro-
cytomas, and a diffuse midline glioma. Glioblastoma A1 was a recurrence of Glio-
blastoma A2. a Hallmark mutations identified through exome sequencing and

somatic variant calling analysis are displayed with their mutation status. Point
mutations are shown as •, IDH1mutations are 1, IDH2 are 2. Microsatellite instability
and tumor mutation burden are listed as MSI and TMB, respectively. b Copy
number changes were identified through exome copy number variation analysis.
Blue and red shading indicated chromosome level gains/losses, and red/blue bor-
ders indicate focal amplifications.

Article https://doi.org/10.1038/s41467-025-59805-z

Nature Communications |         (2025) 16:5290 3

www.nature.com/naturecommunications


HBB and HBA1 (globin markers) in black cluster 6. However, cluster 6
also contains other markers, such as PLA2G2A in astrocytoma cells or
MBP, a marker of oligodendrocytes. Larger mixed lineage cluster 1
areas are found in the oligodendroglioma and astrocytoma tumors.

The oligodendrogliomas shared two additional clusters, 8 and 9.
Both clusters contained marker for oligodendrocytes, with cluster 9

specifically exhibiting spatial separation of genes typically attributed
to oligodendrocyte precursor cells, e.g., OLIG1, OLIG2, and SMOC1.
Cluster 8 showed an overrepresentation of oligodendrocyte cell mar-
kers involved in myelination including PLP1, TF, CLDN11, MAG, MOG,
and MBP. Notably, MOG encodes the myelin oligodendrocyte glyco-
protein and MBP encodes the myelin basic protein. PLP1 is an

Fig. 2 | Glioma cohort A integration. Eleven gliomas of varied grading and
molecular phenotype were analyzed by spatial transcriptomics were integrated
bioinformatically with Seurat SCTransform normalization and reciprocal PCA
workflow. aUniformmanifold approximation and projection (UMAP) of integrated
dataset, highlighted by sample. b Stacked bar chart of the distribution of samples
within the integrated clusters. c UMAP of the integrated dataset is color-coded by
cluster. d Spatial maps of integrated cluster assignments for each sample.

e Expression heatmap of top marker genes per cluster. f Heatmap of integrated
data module scores for glioma niche-specific transcriptional modules previously
described by Ren et al. 2023. The gene sets include tumor core, vascular niche,
invasive niche, and hypoxic niche. gHeatmap of integrated datamodule scores for
transcriptional programs previously described by Ravi et al. 2022. Subgroups
include Radial Glia, Reactive Immune, Regional Neural Progenitor-like Cells,
Regional Oligodendrocyte Progenitor-like Cells, and Reactive Hypoxia.
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oligodendrocyte marker involved in myelin production in the central
nervous system, and CLDN11 is critical for proper oligodendrocyte
functioning.

Three clusters were shared primarily in the gliomas with astrocytic
or glial cells: cluster 2, cluster 3, and cluster 5. Clusters 2 and 3 were
found in glioblastoma, astrocytomas, and the diffuse midline glioma
sample and largely absent from the oligodendroglioma samples, con-
sistent with astrocyte lineage, in particular. As seen in Fig. 3e, there is
considerable overlap between the two clusters with several hypoxia
markers, including VEGFA. However, cluster 2 shows strong evidence
for immune signaling (including CD74, HLA-C, HLA-B, and HLA-A) and
multiple markers for radial glia, including TAP1, GBP1, and ISG15.
Cluster 3 shows stronger signals of reactive hypoxia or glia, including
TAP1, BGP1, and ISG15. Cluster 3 shows stronger signals of reactive
hypoxia or mesenchymal cells through overexpression of DNAJB1,
CHI3L1, SPP1, and HSPA1B. Cluster 5 shared similarity to both clusters
exhibiting overexpression of neural stem cell markers, including NES
and AQP1, though they are absent from the diffuse midline glioma.

Collagen genes (e.g., COL1A1, COL1A2, and COL3A1) and markers of
extracellular matrix remodeling, including VWF, IGFBP7, and FN1, char-
acterized cluster 7.While this cluster was seen in all samples, enrichment
of these genes was most pronounced in the diffuse midline glioma.
Cluster 6 was primarily driven by vascularization and dominated by
hemoglobin HBA1, HBA2, and HBB genes. Finally, the composition of
cluster 4 corresponded with stromal, or in some cases, necrotic tissue.

Comparison across tumor types
We characterize expression profiles across different tumor types,
considering some limitations due to sample variability. Among the

glioblastoma samples, 4 out of 5 exhibited highly amplified focal
regions, with 3 samples showing EGFR amplification and 1with PDGFRA
amplification. In contrast, PDGFRA amplification was also found in the
diffuse midline glioma sample, which also shared some molecular
similarities with glioblastoma, such as CDKN2A deletion and chromo-
some 10 deletions, impacting PTEN, found in all glioblastoma samples.
While this study only examined one diffusemidline glioma,we provide
the results and data for inclusion in future studies. As highlighted
earlier, enrichment of a cluster associated with collagen genes was
most pronounced in this sample, along with the absence of a cluster
dominated by neural stem cell marker expression.

As expected, all oligodendrogliomas showed the characteristic
1p/19q co-deletion. Genes associatedwith glial hypoxia, such asVEGFA,
ADM, HSPA1B, SPP1, and VIM, were overexpressed in the glioblastoma
samples. Additionally, classical mesenchymal genes like CHI3L1 and
CD44 were distinctly overexpressed in glioblastoma, further high-
lighting its mesenchymal subtype characteristics. We observed the
highest expression of astrocytic markers such as GFAP in glioblastoma
samples, with moderate expression in astrocytomas. However, Oligo-
dendroglioma A3 uniquely showed elevated GFAP expression, despite
also displaying hallmark oligodendroglioma mutations, including the
1p loss. The oligodendroglioma samples were enriched for oligoden-
drocyte progenitor cell markers, including OLIG1, OLIG2, and SMOC.

Our initial focuswas on identifying common features across the 11
gliomas, but we also explored grouping or pooling smaller subsets,
such as by recurrence status, as seen with Glioblastoma A1 and Glio-
blastoma A4. However, the limited sample size prevented definitive
molecular drivers, making meaningful comparisons difficult without
larger sample sizes. Nevertheless, a consistent feature across the

Fig. 3 | Loss of heterozygosity analysis workflow. a In our LOH analysis, the allele
fraction of known heterozygous SNPs is used to infer underlying copy number
changes at theDNA level.We comparegermline and tumor scenarios, focusing on 5
SNPs to illustrate keyprinciples. The germline example displays a copy number of 2
andB allele frequencies at0.5 across all SNPs. In contrast, the tumordisplays partial
p-armdeletion (white) and chromosomeduplication (blue). The copy number state
varies from 1 in the deleted p-arm region to 3 in the duplication region. B-allele
frequencies at each SNP vary from 0, 0.3, and 0.6. b Integrative Genomics Viewer
example of aligned spatial transcriptomic sequencing reads. The top coverage
track represents the total reads aligned, with an indication of a SNP highlighted in
red. The reference transcript at the bottom is in the 5’ to 3’ orientation, as indicated
by arrows. cTheSNPdensityplot shows the location and relative quantity of unique

SNPs across the glioma dataset. The chromosomes are listed on the y-axis, with an
ideogram below density measurements. d Analysis of i length of defined segments,
ii number of unique SNPs per segment, iii segment mode peak values, and iv
segment sequential sum of log10(K) values. e The analysis workflow of LOH iden-
tification begins with a spatial sample analyzedwith the 10XGenomics spaceranger
software. A sample BAM is split into cluster-specific BAMs. Read coverage is cal-
culated at predetermined heterozygous SNP positions, filtered by strict criteria.
Bayes factor K values are calculated at each SNP. A hidden Markov model inde-
pendently evaluates each chromosome for each cluster and assigns regions with
state determinations. Metrics across segments are evaluated, and a final assign-
ment of heterozygous, LOH, or undefined is determined. SNP allele fractions are
plotted in different panels for each cluster, and points are color-coded by state.
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gliomas was the presence of focal amplifications of EGFR or PDGFRA in
5 of the 11 samples. These features are discussed in more detail later
and informed the selection of theGlioblastoma cohort B validation set.

Comparison across tumor types with published
transcriptomic models
To further characterize transcriptomic profiles shared by the sample
cohort, we utilized published gene sets describing glioma niche tran-
scriptional programs. The modules of Tumor Core, Vascular, Invasive,
and Hypoxic Niches defined by Ren et al. were derived from geo-
graphically weighted regression-based correlation of marker genes
from spatially informed clusters across a dataset of tumors. A module
score was calculated for each spatial spot, and the scores were ana-
lyzed in the aggregate for each sample andmodule (Fig. 2f). Overall, all
samples scored highly in the Tumor Core andHypoxic Nichemodules,
with lower scores for Vascular Niche and Invasive Niche. Oligoden-
droglioma A1 and Astrocytoma A1 displayed the highest Tumor Core
module scores. High Hypoxic Niche scores correlated with our marker
gene analysis, showing high expression of genes related to hypoxia
pathways, such as VEGFA, HSPA1B, and NDRG1.

Loss of heterozygosity analysis from ST RNA-seq
Bulk sequencing identified major clonal events throughout the tumor,
obtained from neighboring sections. Germline heterozygous SNPs
from sequencing of paired blood are proxies for inferring subclonal
loss of heterozygosity by assessing the allelic balance of RNA-
expressed SNPs between the reference and alternative (B-allele) from
copy number gains and losses. LOH analysis begins by splitting a
spatial binary alignment map (BAM) file into cluster-specific BAMs,
each containing only primary read alignments for a single cluster. To
infer copy number changes in glioma ST data, we examine sequence-
level data at heterozygous single nucleotide (SNP) sites to assess the
ratio of allelic expression, where A-allele indicated the reference allele
and B-allele indicates the non-reference allele. The B-allele frequency,
therefore, equals the number of sequenced reads for B divided by all
the reads counted at the SNP position. The number of heterozygous
SNPs (AB) is expected to have a B-allele frequency of 50 percent at a
normal diploid copy state. Copy number changes in the tumor impact
this frequency. For example, a three-copy state with duplication of the
B-allele (ABB) would have a B-allele frequency of 67 percent (Fig. 3a). If
the frequency deviates from 50 percent towards 0 and 100 percent
with adequate evidence of coverage, loss of heterozygosity can be
determined. Since LOH can range from a focal event to stretching
across an entire chromosome, more inferences must be drawn from
survey data from contiguous SNPs. To account for different levels of
expression, Bayes factor values are calculated for each SNP position,
providing a measure of a model of 50/50 heterozygosity verses LOH
models of allelic imbalance.

Segmentation analysis of LOH by HMM
Only one SNP or gene may be subject to various allele-specific RNA
expression. A 2-state hidden Markov model segments multiple con-
secutive SNPs into genomic regions of similarity. Consecutive
log10 scaled Bayes factor K values are added in each Markov-assigned
region to create an aggregate value. Median region K values and these
aggregate values are evaluated against a theoretically defined thresh-
old to assign a label of LOH, heterozygous, or undefined. The three
main metrics influencing final state determinations are the mode of
segment allele fractions, segment log10(K) sum adjusted values, and
median segment K values. We evaluated segments to obtain measures
of significance and the extend of effect by analysis of segment modes.
Measurements within a segment with the top 25% of read coverage
were selected to calculate the mode allelic fraction of segments, and
the shift in allele fraction was also calculated. Specifically, kernel
smoothing is applied to obtain the mode peak to identify regions with

strong shifts away from 0.5. The segment log10(K) sum value is the
sum of all a segment’s informative log10(K) values. Values between
−0.5 and 0.5 are omitted from this calculation as they do not provide
evidence for Model 1 (LOH) or Model 2 (heterozygosity). It should be
noted that we did not fully explore the use of alternative means of
developing initial starting parameters, including bulk sequencing data,
and that further refinement may be possible beyond the scope of
this work.

Segment log10(K) sumvalues greater than 20were considered for
state determination of LOH if the median is above 0.5. The median K
value of each segment provides essential weight to the final state
determination, as sum values can sometimes lead to false positives if
there are many SNPs with minimal positive K values in a large region.
Another metric to aid in state determination is the region threshold
score. We calculate a threshold score by multiplying 85% of SNPs of
0.5, the smallest acceptable K value for evidence of loss of hetero-
zygosity. If the segment sequential sum exceeds this threshold and has
a mode peak greater than 0.1, but the medianmay not pass the cutoff,
then the state is still assigned LOH. We evaluated these approaches
with the dataset and benchmarked the results against known copy
number events determined from exome sequencing and clinical
reports. Specifically, Fig. 3c shows overall informative SNP density
across each chromosome and key output metrics describing segment
lengths. An overview of the output from our LOH identification
method across each sample is in Supplementary Fig. 3, and bulk copy
number analysis of the exome sequencing is provided in Supplemen-
tary Fig. 4.

We evaluated multiple methods to determine the best approach
for this analysis, including assessing known LOH frequencies of glioma
data for prior information. However, this yielded segments with very
few observations, which were not robust enough for broader conclu-
sions. Additional testing will be needed for application of this method
on alternative tumor types. For example, parameter tuning would be
necessary to analyze tumors with homologous recombination defects
with higher rates of LOH. Adjusting the initial state and transition
probabilities in this package impacts the model’s segment output.
Parameters such as the alpha/beta values in the Bayes factor calcula-
tion and transition probabilities substantially affect the final annota-
tions. In our tests, adjusting the transition states proved unsuitable for
the model. If default HMM parameters were not used for the predic-
tions, the output would likely show more significant variability in the
segmentation across datasets for each sample. The state annotations
‘LOH’, ‘HET’, or ‘Undefined’ are determined by cumulative metrics
across segments with predefined cutoffs. If any default parameters
were adjusted, we recommend revisiting and re-evaluating these cut-
offs to maintain consistency and reliability in state labeling.

One specific example of subclonal genomic alteration involves
loss of heterozygosity in Glioblastoma A1. LOH was observed on
chromosome 17 in the EGFR-amplified cluster, and by phasing het-
erozygous SNPs, we identified 34 informative markers. This subclonal
LOHpatternwas consistentwithfindings frombulk exomesequencing
(Supplementary Fig. 4). Notably, subclonal heterogeneity was also
detected in Glioblastoma A5. Here, k-means clustering (k = 3) revealed
several clusters, with LOH detected in chromosomes 7, 10, 13, 15, and
19 in the cluster with high EGFR expression. Re-clustering better
defined these subclonal alterations and highlighted their role in tumor
progression.

Correlation of LOH with tumor and stromal content
In studying subclonal heterogeneity, separating tumor and non-
tumor regions is an essential initial consideration to reduce false
positives or negatives with defining subclones. We employed ESTI-
MATE to assess tumor purity and stromal enrichment across sam-
ples transcriptionally to determine our samples’ tumor and stromal
content26. Spatial application of ESTIMATE has previously been
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shown to correlate closely to a pathologist’s annotation of tumor
regions27. We examined the correlation of tLOH results with tumor
content in the sample Diffuse Midline Glioma 1 (Fig. 4). Graph
clustering analysis of this sample produced 7 clusters (Fig. 4a).
Clusters showed varied stromal scores, with cluster 1 containing the
highest score (Fig. 4b). A spatial map of the ESTIMATE determined
tumor purity scores for Diffuse Midline Glioma A1 shows the highest
tumor content in clusters 4 and 6 (Fig. 4c). ESTIMATE stromal scores
for this sample show high stromal content in regions overlapping
cluster 1 (Fig. 4d). The spatial gene expression of PDGFRA, a com-
monly amplified marker gene of diffuse midline gliomas, corre-
sponds to the tumor content described in clusters 4 and 6 (Fig. 4e).
This is supported by the spatial LOH analysis, which reflects an
absence of LOH in a stromal cluster while LOH is present in tumor
clusters (Fig. 4f, g). It should be noted that the potential use of
LOH to identify stromal regions is not necessarily specific to
Diffuse Midline Glioma A1, only that LOH was most evident in this
sample.

Examination of LOH within astrocytoma, oligodendroglioma,
and diffuse midline glioma samples
In the astrocytoma, oligodendroglioma, and diffuse midline glioma
samples, the most prominent regional LOH differences aligning with
clusters are the delineation between stromal and tumor cells, which
is most evident in the diffuse midline glioma, as discussed above. We
do not observe consistently strong LOH that definitively demon-
strates subclonal genomic heterogeneity of biologically relevant
subclones within the astrocytoma and oligodendroglioma samples.
While we detect positive signals and allelic shifts within clusters
(Supplementary Fig. 3), we typically observe SNPs with high coverage
at approximately 50% allele fraction, as well as near 0% and 100%
allele fractions. These observations suggest a possible mixture of cell
types within the 55-µm Visium spatial spots. Furthermore, when
examining the bulk sequencing data, we find inconsistent agreement
with hallmark features such as chromosome 1p gain and associated
LOH in oligodendrogliomas or LOH around chromosome 19p. Col-
lectively, these results suggest a mixture of stromal and glioma cells,
consistent with the fact that midline gliomas, oligodendrogliomas,
and astrocytomas often exhibit less genomic instability compared to
glioblastomas28. These tumors may possess more homogeneous cell
populations with fewer subclonal variations, resulting in weaker or
inconsistent LOH signals.

Focal amplifications of EGFR+ /PDGFRA+ in high-grade
glioblastomas
We observe the strongest evidence for subclonal LOH within the
glioblastoma samples, particularly in Glioblastoma A1 and A5. This
evidence includes both allelic shifts across clusters and supporting
validation from bulk sequencing data, as well as targeted sequencing.
In these samples, the focal amplification of ecDNA in these glio-
blastomas may contribute to genomic instability, leading to pro-
nounced subclonal heterogeneity characterized by reproducible
instability of key chromosomes observed in ST. Overall, high-level
oncogenic amplification of receptor tyrosine kinases, specifically
PDGFRA and EGFR, was observed in 5 of the 11 discovery samples. EGFR
amplification was detected in Glioblastoma A1, A2, and A5, while
PDGFRA amplification was identified in Glioblastoma A4 and Midline
Glioma A1, highlighting the key role of the genes and genomic struc-
tures in driving tumor progression. High-level focal amplifications
within gliomas are often found in the formof ecDNA structures known
as DMs, which are small, circular DNA fragments that exist indepen-
dently of chromosomal DNA. Studies have shown that DMs are parti-
cularly common in high-grade gliomas, where they harbor amplified
oncogenes such as EGFR, enhancing tumor progression and resistance
to therapy.

Characterizing subclonal spatial heterogeneous ecDNA in Glio-
blastoma A1 and A5
Mechanistically, ecDNADM structures are important in cancer biology
due to their distinct characteristics, including the lack of centromeres
and telomeres, which allow them to replicate independently and
rapidly amplify the copy number of key oncogenes outside normal cell
cycle checkpoints. These ecDNADMs allow cancer cells to dynamically
reprogram their genome at the DNA level in rapid response to envir-
onmental and therapeutic pressures. Within glioblastomas, these
structures were previously studied in karyotyping and are known to be
a key driver of spatial genomic heterogeneity.

Detecting subclonal genomic alterations, particularly those dri-
ven by ecDNA, is crucial for understanding glioma progression. Fig-
ure 5 shows two examples of EGFR-amplified glioblastoma ecDNA
fragments derived from copy number analysis of tumor sequencing
depth. The high depth of exome sequencing was sufficient to detect
the reads spanning the breakpoints of the ecDNA (see Fig. 5, panel v),
confirming the circular structure of the DM elements in both Glio-
blastoma A1 and Glioblastoma A5. In Glioblastoma A1, two distinct but
overlapping DMs were identified, both including the EGFR gene. One
DM was larger at 3.7Mb, while the other was smaller at 500 kb. Nota-
bly, the sample from Glioblastoma A1 is a recurrence of the same
individual’s tumor asGlioblastomaA2, andweobserve only the smaller
EGFR ecDNA in the primary tumor. This mutational evolution suggests
that the larger DM in the recurrent tumor may have been selected as a
response to therapy.

To further understand their architecture, we examined the
amplified region’s boundaries, particularly the breakpoints. Shown in
Fig. 5 (right), there is a single DM spanning two distinct regions of
Glioblastoma A5, where breakpoint analysis allows us to identify how
the ecDNA DM is spliced together. The DM splices a 700 kb region
from chromosome 7p22.3 containing the tumor suppressor EIF3B to a
900 kb region containing EGFR. EIF3B is a core subunit of the eukar-
yotic translation initiation factor 3 complex, which is crucial for sus-
taining the increased metabolic and proliferative demands of rapidly
dividing tumor cells. In glioblastoma, EIF3B amplificationmay enhance
the translational of specific oncogenes or survival factors, promoting
aggressive tumor behavior. The co-amplification of EGFR and EIF3B
suggests a synergisticmechanism in glioblastomaprogression. On one
side, EGFR amplification drives oncogenic signaling pathways that
increase cell proliferation and survival, while on the other side, EIF3B
amplification enhances the cell’s capacity for synthesis of proteins
involved in cell cycle control, apoptosis, and stress responses, all of
which are critical for tumor progression and evolution.

Spatialmapping correlated expressionof ecDNA-encodedgenes
With knowledge of focally amplified genes, we observed a tight cor-
relation of their gene expression that frequently led to distinct clusters
from single-sample clustering. For instance, in Glioblastoma A1,
unsupervised clustering of gene expression data revealed a sub-
population over-expressing EGFR, LANCL2, and VOPP1, which all map
to the amplified ecDNA and show tight spot-to-spot correlation in log2
normalized transformed counts (Fig. 5a, panel vi). Importantly, sub-
clonality was independently validated by a Foundation One clinical
report, which confirmed EGFR amplification and detected an EGFRvIII
R252C subclonal variant on a separately analyzed tissue section. The
tight correlation of genes encoded within the same DM ecDNA is
highly evident on Glioblastoma A5, where break-point analysis shows
eight consecutive genes on chromosome 7p22.3 and four consecutive
genes on the 7p11 EGFR locus form a block of high pair-wise Pearson
correlation of normalized counts across the amplification (Fig. 5a,
panel vi). It is important to highlight that the key to this analysis is the
prior finding of the amplified regions by exome sequencing since
typical ecDNA DMs contain too few genes for accurate de novo dis-
covery/inference of copy number variance.
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Validation of EGFR/p53 genomic spatial heterogeneity in a
separate cohort
The results from the discovery cohort revealed how ecDNA con-
tributes to spatial heterogeneity in glioblastoma, allowing cancer cells
to rapidly reprogram their genome at the DNA level in response to
changes in the microenvironment. This spatial heterogeneity was also
associated with additional genomic alterations, including the LOH on
chromosome 17 in the TP53-mutated Glioblastoma A1. To further
explore these findings, we performed exome sequencing on tumor
DNA from an additional set of six IDHwild-type glioblastoma samples.
Of these, six exhibited focal ecDNA-driven DM amplification of EGFR,
forming the validation cohort (Glioblastoma B1 through B6), as shown
in Fig. 6 and Supplementary Fig. 9. Samples were spatially profiled
using the Visium CytAssist Spatial Gene Expression assay for formalin-
fixed paraffin-embedded (FFPE) tissue. This assay is an adaptation of
the Visium platform used earlier, enabling the analysis of the more
broadly available FFPE tissue. One relevant change is that this assay
version uses a probe-based method to capture RNA fragments. Con-
sequentially, using probe-based capture and ligation for LOH analysis
through expressed SNPs is no longer feasible in the FFPE-derived RNA.
Instead, we inferred copy number variations by correlating gene
expression patterns with the ecDNA DMs identified through exome
sequencing.

Co-amplification of MDMX
Two of the six EGFR-amplified samples showed a second independent
DM harboring negative regulators of the p53 pathway, specifically
MDM2 or MDM4 (Fig. 6a), based on bulk tumor DNA coverage and
breakpoint analysis. For example, in the caseofGlioblastomaB7,which
presented with an EGFRDM from chromosome 7p11, a second DMwas
found on chromosome 1q32.1 (from 202 to 205Mb), notably con-
taining the gene MDM4. Coverage analysis indicated that this sample
carried approximately 18+ copies of EGFR and 8 copies of MDM4. In a
similar case, Glioblastoma B11 revealed a second 230 kb ecDNA DMon

chromosome 12q15, which housed theMDM2 gene. Bulk DNA analysis
suggested that Glioblastoma B11 contained around 15 copies ofMDM2
and over 30 copies of EGFR.

The amplification ofMDM2 andMDM4 (collectively referred to as
MDMX mutations) is a well-established mechanism by which glio-
blastomas inactivate p53. MDM2 and MDM4 are known to negatively
regulate the TP53 tumor suppressor by either promoting its degrada-
tion or inhibiting its transcriptional activity, thus leading to unchecked
cell proliferation and survival. In the case of Glioblastoma A1, the loss
of TP53 was observed, which is mirrored in the validation set, where
MDMX amplificationplays a similar role by functionally inactivating the
p53 pathway downstream. This co-amplification of EGFR with either
MDM2 or MDM4 is common in glioblastomas and pivotal to tumor
progression, and it disrupts the normal cell-cycle checkpoints
enforced by p53.

Spatial gene expression heterogeneity in MDMX/EGFR
Within both Glioblastoma B7 and Glioblastoma B11, we observe dis-
tinct tumor regions characterized by high EGFR expression (Fig. 6).
Within a subset of these EGFR-overexpressing regions, elevated
MDM4 or MDM2 expression also co-occurs. This observation is con-
sistent with findings from our earlier discovery cohort, specifically in
Glioblastoma A1, where EGFR overexpression was associated with
loss of heterozygosity on chromosome 17, harboring the muta-
ted TP53.

In areas where both EGFR and MDMX are highly expressed, we
observe a marked enrichment of proliferative gene signatures. This
suggests that dual overexpression of these two oncogenes may
enhance tumor cell proliferation, potentially through pathways
involved in DNA repair, apoptosis resistance, or unchecked cell
cycle progression. The increased proliferative activity in these
regions aligns with previous studies implicating EGFR and MDMX in
promoting aggressive tumor phenotypes, underscoring their
role as key drivers of glioblastoma growth and therapy resistance. In

Fig. 4 | Spatial distribution of stromal and tumor in DiffuseMidline Glioma A1.
a Graph clustering assignment spatial map of Diffuse Midline Glioma A1, an IDH
wild-type, EGFR negative tumor. b Boxplots of ESTIMATE stromal scores for each
cluster. The minima and maxima are noted by the whiskers for each boxplot. The
25th percentile and 75th percentile are shown as the bounds of each box. A line
across each box represents the median value. The minima is calculated as Q1-
1.5*(interquartile range), and the maxima is calculated as Q3+ 1.5*(interquartile
range). The mean for each cluster is shown as a point on each boxplot. Mean,

median, and number of observations are displayed above each plot. All data points
are shown behind each boxplot. c ESTIMATE tumor purity spatial overlay.
d ESTIMATE stromal score spatial overlay. e PDGFRA log normalized counts spatial
overlay. f Copies of chromosome 10 per spot, whereby the average of normalized
gene expression for all genes above the average of 0.1 counts, where tumor regions
are expected to have chromosome 10 deleted. g tLOH output of allele fractions for
SNPs with total read counts greater than 20. Points are highlighted based on state
determination, where blue is heterozygous, and gold is LOH.
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contrast, in regions where MDMX expression is moderate or lower,
EGFR expression remains high and is additionally associated
with a vascular hypoxia signature (Fig. 6i, iv).This shift in gene
expression may reflect the tumor’s adaptation to hypoxic micro-
environments, where EGFR-driven signaling is uncoupled from
MDMX-mediated pathways. In these hypoxic regions, the tumor
likely relies on angiogenic and metabolic reprogramming to survive,
with lower MDMX levels perhaps indicating reduced apoptotic
inhibition.

Genomic reprogramming through ecDNA and chromosomal
alterations drives spatial heterogeneity
The dynamic nature of ecDNA DMs may enable cancer cells to adap-
tively reprogram their genomes, driving tumor progression in
response to changes in their microenvironment. Analysis of EGFR-
amplified, IDH wild-type glioblastomas revealed four instances where
spatial gene expression heterogeneity suggests that the underlying
mechanisms involve genomic alterations either through LOH, such as
in Glioblastoma A1, or through changes in the copy number of key

Fig. 5 | Subclonal genomicheterogeneity fromextrachromosomalDNAdouble-
minutes. Spatial transcriptomic analysis of a Glioblastoma A1 (left panels) and
b Glioblastoma A5 (right panels) reveals spatially distinct subclonal genomic het-
erogeneity, demonstrating loss of heterozygosity in regions that also show over-
expression of ecDNA-amplified genes, including EGFR. As discussed in the text,
Glioblastoma A1 showed LOH of chromosome 17 within high EGFR-expressing
cluster 9. For each vertical panel: i Schematic of EGFR+ amplified ecDNA fragments
basedon exome copy number and breakpoint analysis. GlioblastomaA2 shows two
different EGFR+ ecDNAvariants. ii–iii Log2 fold change andB-allele frequencyplots
from exome sequencing CNV and LOH analysis. iv–v Exome analysis coverage of

ecDNA, indicating breakpoints and mapped regions. vi SCT-normalized spatial
expression of genes within ecDNA regions. Violin plot shows the expression of
normalized coverage of genes encompassing DM ecDNA (excluding EGFR) for high
EGFR and low EGFR spots (low EGFR < = 5 counts). vii. Spatially mapped average
expression for gene expression marker of hypoxia, proliferative cells, macro-
phages, and cancer stem cells. viii. tLOH analysis showing spatially distinct clusters
with LOH. ix–x Spot-level B-allele frequency analysis indicates clonal LOH of
chromosome 17 in recurrent Glioblastoma A1 and LOH on chromosome 19 in areas
with high EGFR expression (high EGFR > 8 counts). Bars and points are color-coded
by state: blue for heterozygous, gold for LOH, and gray for undefined.
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oncogenes located within DMs. These findings highlight a recurrent
pattern of co-amplification between EGFR and inactivating p53 geno-
mic mutations, linking recurrent structural mutations to the broader
context of genomic instability that is a hallmark of glioblastoma. In
conclusion, identifying subclonal genomic alterations, especially those

driven by ecDNA, provides key insights into glioma biology.While loss
of heterozygosity exemplifies one such alteration, ecDNA amplifica-
tions, particularly involving potent oncogenes like EGFR and PDGFRA,
serve as fundamental drivers of the genetic instability and hetero-
geneity underpinning these tumors’ aggressive nature.

Fig. 6 | Validation cohort B examining transcriptomic and genomic subclonal
heterogeneity in EGFR+ glioblastoma. Exome sequencing, bulk RNA sequencing,
and FFPE STwere used in the validation set, following a similar analysis to cohort A.
a Copy number analysis through exome sequencing, showing the location of focal
amplifications. b Expression heatmapof topmarker genes per cluster. cUMAPplot
of integrated dataset, color-coded by sample, cluster, and the distribution of
samples within integrated clusters. d Spatial maps of integrated cluster assign-
ments for each sample. While all six samples contained amplified EGFRwithin a DM
ecDNA, two of the six samples also had amplificationof negative regulators of TP53.

e Glioblastoma B7 contains independent DMs of MDM4 and EGFR. f Glioblastoma
B11, showing independent DMs with MDM2 and EGFR. Evidence for DMs based on
copy number analysis and corresponding expression data are shown in both
panels: i Spatial expression of MDM4/MDM2 and EGFR, alone with violin plots of
hypoxia and proliferative signatures, ii Detailed copy number analysis, showing
focal amplification zooms, iii Coverage at locus, iv Expression profiles for key
pathways highlight that regions expressing genes within the DM regions in both
samples also align with areas of high proliferative and hypoxic gene signatures.
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Discussion
Gliomas are characterized by their complexity and spatial hetero-
geneity, with diverse populations of glial cells, tumor stem cells, and
subtype-defining somatic alterations distributed across different
regions. Mapping the spatial organization of genomic and tran-
scriptomic alterations is crucial for understanding the molecular pro-
cesses driving tumor pathogenesis in these highly heterogeneous
tumors. In this study, we characterize the spatial transcriptomic het-
erogeneity of various gliomas, including glioblastomas, oligoden-
drogliomas, astrocytomas, and diffuse midline gliomas, using ST
alongside germline blood, tumor DNA, and tumor RNA sequencing.
Through this integrative approach, we identify spatially distinct tumor
subclones driven by somatic aneuploidy using loss of heterozygosity
analysis, aswell as variation in extrachromosomalDNAdoubleminutes
harboring key oncogenes like EGFR and TP53 pathway regulators,
MDM2 and MDM4, in glioblastoma. The DNA-level spatial hetero-
geneity within these subclones provides a mechanism for genomic
plasticity, driven by recurrent and spatially distinct EGFR amplifica-
tions of p53 inactivating mutations, thereby enhancing the tumor’s
ability to adapt to selective pressures.

Clustering across gliomas
Wehavemappedcommonmotifs through integrated clustering across
the major types of high-grade glioblastomas, oligodendrogliomas,
astrocytomas, and diffuse midline gliomas. Our analysis of 11 samples
revealed gene expression patterns that vary according to the type of
glioma. For instance, we noted areas within tumors where rapid
growth may lead to oxygen deprivation, as evidenced by adjacent
clusters showing angiogenesis (marked green in Fig. 2d) and hypoxia
(marked red in Fig. 2). In somegliomas,PDGFRA expression, associated
with oligodendrocytes and new blood vessel formation, was opposite
to HIF1A, a hypoxia indicator. Additional antibody-based methods will
be important to show whether this is a generalizable feature.

Specifically, in glioblastomas, astrocytomas, and diffuse midline
gliomas, we identified regions where glial indicators like VEGFA and
VIM are close to hypoxic areas with elevated levels of NDRG1 and
HSPA1B. In contrast, oligodendrogliomas showed increased levels of
SMOC1, OLIG1, MAG, and MOG, linked to oligodendrocytes and their
precursors. We do see evidence that the cluster of the current 55-
micron spots may be influenced by mixtures of multiple cells; in par-
ticular, the mixed lineage cluster showed fewer marker genes and less
distinct, with expression of oligodendrocytes, oligodendrocyte pre-
cursor cell markers, and in a small set of spots, neural precursor cell
markers. Each tumor exhibits unique tissue complexity, and integrated
clusteringmay obscure certain features. For instance, Glioblastoma A1
displays distinct tissue complexity through graph clustering. Within
this tumor section, several disease-relevant genes, including VEGFA,
HIF1A, PDGFRA, NDRG1, DDIT4, and CD44, demonstrate varied
expression distributions across tissue sections distinctly different
from integrated clustering (Supplementary Fig. 6).

Tracking chromosome gains and losses with loss of
heterozygosity
Observing tumor subclones with distinct mutational profiles repre-
sents a significant advancement in understanding how ST can provide
insights into tumor pathogenesis. We utilized germline sequencing to
identify LOH within the fresh-frozen ST samples. Other groups have
explored thesemethods on single-cell and spatial transcriptomics, and
they are likely essential to understanding tumor evolution and
pathogenesis. It is important to highlight the emergence of multiple
tools andmethods in these areas29–34.While we considered varied tools
and packages in our study, each displayed its own unique set of biases
and strengths, which is anticipated given the rise of new experimental
techniques and innovative analytical strategies. Our results highlight
the efficacy of LOH analysis in deducing tumor content and even in

detecting subclonal tumor genomic heterogeneity, which is directly
related to tumor pathogenesis.

Nevertheless, discussing the challenges that impact the inter-
pretation of LOH analysis with ST data is pertinent, including low read
coverage,multiple cells within a capture spot, variability in sequencing
saturation, and gene capture variability. Across our dataset, the aver-
age number of genes detectedwas around twenty thousand. However,
the total reads fluctuated between 130 million and 390 million. A sig-
nificantly higher read coverage is essential to reporting LOH in con-
ventional copy number analysis. This requisite coverage becomes even
higher for bulk tumor-only analysis, demanding at least 200x coverage
over the sites of interest to detect heterozygous SNPs and to see allelic
subtle shifts within tissues.

Leveraging bulk tumor sequencing to characterize genomic
spatial heterogeneity linked to ecDNA DMs
The main application of inferring genomic copy numbers in tumors
has been to differentiate between normal and tumor tissues, with
fewer instances of its use in identifying true genomic subclones, as
demonstrated in recent prostate tumor studies35. A likely reason for
the lack of spatial subclonal examples is partly because genomic
alterations that drive pathogenesis would be rare events under clonal
expansionmodels and less likely to be observed in a 6.5mmby 6.5mm
grid for a single tissue section. Tumor progression often involves a
recurring series of genomic gains and losses, contributing to subclonal
heterogeneity and localized regions of tumor advancement. These
events can be frequent at the local level. In particular, ecDNADMs vary
in copy number and frequently harbor genes that drive tumor pro-
gression. This often includes amplified EGFR in gliomas, commonly
found within DMs, which enhances proliferative signaling and accel-
erates tumor growth22. Notably, in our analysis, Glioblastoma A1,
Glioblastoma A2, and Glioblastoma A5 exhibited high levels of EGFR
amplification, while Diffuse Midline Glioma A1 and Glioblastoma
A4 showed significant amplification of PDGFRA.

Spatial DNA genomic heterogeneity along the EGFR/p53 axis
The importance of spatially mapping genomic DNA alterations driving
tumor progression is exemplified in Glioblastoma A1, which is positive
for EGFRvIII, a transcript variant with deleted exons 2–7, known to
promote cell proliferation, aggressiveness, and tumor growth through
constitutively active signaling36. ST analysis reveals a spatially distinct
cluster with elevated EGFR expression and a complete loss of hetero-
zygosity on chromosome 17 containing an initial TP53(R252C) muta-
tion. First, clinical reports show EGFR amplification is subclonal based
on copy number and allelic analysis. More significantly, bulk sequen-
cing reveals a modest LOH on chromosome 17, with the phasing and
parental copy lossmirroring the spatial transcriptomics subclone. This
matching allelic loss pattern between the hypoxic subpopulation and
overall tumor suggests the genomic changes in the EGFR 17p LOH
subclone are prerequisites for forming hyper-nucleated hotspots
exhibiting necrosis and cell death.

Sequencing a second set of six IDH wild-type, EGFR amplified
glioblastoma samples showed spatial heterogeneity of ecDNA DMs
harboring amplification of key negative regulators of the p53 pathway
in two samples:MDM4 in Glioblastoma B7 and MDM2 in Glioblastoma
B11. These ecDNA DMs highlight the genomic plasticity, allowing dis-
tinct regionswith amplified EGFR andother areaswhereboth EGFR and
MDM2 are overexpressed. In regions where only EGFR is amplified, we
primarily observed an enrichment of hypoxic gene signatures. These
hypoxic zones may represent adaptations to a poorly oxygenated
microenvironment, contributing to glioblastoma’s vascular remodel-
ing and neovascularization characteristics.

In contrast, regions where both EGFR is overexpressed and p53 is
inactivated, either through TP53 loss or MDM2/MDM4 amplification,
display a different profile. Here, we find that a pronounced
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proliferative gene signature with reduced hypoxic markers, indicating
that these areasmay bemore proliferative and less reliant on hypoxia-
driven pathways. This suggests that concurrently overexpression of
these twooncogenesmay enhance tumor cell proliferation, potentially
through pathways involved in DNA repair, apoptosis resistance, or
unchecked cell cycle progression. The observe hypoxia signature in
neighboring zones could contribute to the vascular remodeling and
neovascularization often seen in glioblastoma9,13,37. Taken together,
this spatial heterogeneity in MDMX and EGFR expression underscores
the dynamic interplay between proliferative and survival pathways in
distinct tumor microenvironments, each presenting unique ther-
apeutic challenges. Moreover, the additional loss of p53-mediated cell
cycle regulation and genomic instability from LOH of TP53 or
MDM2/MDM4 amplifications likely drive multinucleation, polyploidy,
and chromosomal instability. This genomic instability and EGFR
expression may create further treatment-resistant subclones.

Further experimental design considerations
Our results suggest several important considerations for future design.
Experimentally, in-depth sequencing andmultiple sections could yield
more reliable results for future studies. As spatial technology pro-
gresses, we can expect better read depth and resolution. Individual
samples might need specific modifications due to the inherent varia-
bility of this buddingmethodology. Generally, sequencing ST sections
more comprehensively and ensuring multiple sections per tumor
would enhance the general applicability of the results.

Taken together and overall, by integrating spatial transcriptomics
and exome sequencing, we identified spatially distinct subclonal
events, such as ecDNA DMs and LOH, and characterized these altera-
tions in the context of glioblastoma progression. The replication of
these findings across multiple samples highlights the importance of
ecDNA and p53 pathway regulators in common glioblastoma path-
ways, offering deeper insights into potential therapeutic targets, par-
ticularly in EGFR positive IDH wild-type glioblastomas.

Methods
Glioma tumor tissue collection
Eleven fresh frozen, surgically derived glioma biopsy specimens of
varied grading and pathology were analyzed in cohort A. Six IDH wild-
type, EGFR amplified, surgically derived glioblastoma FFPE biopsy
specimenswere analyzed in cohort B. Cohort A includes glioma tissues
frommale and female individuals between the ages of 25 and 63 at the
time of tissue collection. Cohort B includes glioblastoma tissues from
male and female individuals between the ages of 30 and 76. Limited
individual-level sample information including age and sex is available
in Supplementary Data 7. Individual sex was self-reported. Study
design was determined based on glioma pathology and molecular
phenotype. De-identified human samples were obtained from the
University of Southern California Norris Comprehensive Cancer Cen-
ter Translational Pathology Core Facility, and written informed con-
sent for analysis and publication of results was collected from every
participant. Approval was obtained for this study by the University of
Southern California Biomedical IRB (IRB protocol HS #11-00385).

Exome library preparation and sequencing for cohort A
DNA was isolated from adjacent fresh frozen tissue of each glioma
tumor block, and germline DNA was isolated from whole blood. For
cohort A, the Qiagen blood protocol (Qiagen, #69504) was used with
minor adjustments to account for 100mL initial input volume. Pro-
tease was increased 1.5-fold, and protease incubation time was
increased from 10min to 60min at 56 °C. Ethanol precipitation was
increased from 1min to 30min. The number of samples simulta-
neously centrifuged was decreased to 4. Three washes were added to
the end of the protocol to remove residual heparin. The final elution
was reduced from 200mL to 50mL using pre-heated (56 °C) H2O. The

resulting isolates from tumors and blood were analyzed by standard
Illumina whole exome sequencing using Agilent OneSeq V6+UTR
enrichment probes (Agilent Technologies, Inc., #5190-8888). Library
constructionwas performedwith Agilent SureSelect XT-LI dual indices
and enzymatic fragmentation (Agilent Technologies, Inc., #G9916A
and #5191-4080). Sequencing was performed on an Illumina NovaSeq
6000 system.

RNA library preparation and sequencing for cohort A
RNA was isolated from adjacent fresh frozen tissue of each glioma
spatial sample tumor block. The NEBNext Ultra II directional RNA kit
was used, with rRNA depletion and dual indices (New England Biolabs,
#E7760S). Sequencing was performed on an Illumina NovaSeq 6000
System.

Fresh frozen Visium spatial transcriptomic analysis for cohort A
The 10X Genomics Visium Spatial Gene Expression method (10X
Genomics, Inc., #1000187) consists of cryosectioning, tissuefixation to
custom gene expression slides, hematoxylin and eosin (H&E) staining,
high-resolution imaging, tissue permeabilization, reverse transcrip-
tion, second strand synthesis, cDNAdenaturation, cDNA amplification,
and sequencing library construction. At the end of this process, each
sequencing read contains a 16 base pair barcode sequence and 12 base
pair uniquemolecular identifier (UMI) to relate the data to coordinates
on each spatial grid. Sample libraries were pooled and sequenced on
an Illumina NovaSeq 6000 System. The specific protocol used was
CG000239 RevC.

Glioma tumor blocks were prepared for the cryosectioning step
by the USC Norris Comprehensive Cancer Center Translational
Pathology Core Facility using the 10X Genomics Tissue Preparation
Guide. Tissues were sectioned at 10μm thickness and adhered to one
of four available 6.5 × 6.5mm grids on the gene expression slides.
Following H&E staining of the tissue, high-resolution imaging was
performed was performed by the USC Stem Cell Optical Imaging
Facility. Tissue permeabilization was performed for 12min, which
was determined to be optimal by the 10X Genomics Tissue Optimi-
zation Procedure. Spatial data was bioinformatically analyzed using
the 10X Genomics spaceranger pipeline v1.1.0 (https://www.
10xgenomics.com/support/software/space-ranger/latest). The ana-
lysis consisted of read alignment to GRCh38 with STAR, unique
molecular identifier counting, principal component analysis, con-
struction of a k-nearest neighbors graph, and gene expression clus-
tering (graph and k-means).

Exome library preparation and sequencing for cohort B
DNA was isolated from adjacent FFPE tissue and germline DNA was
isolated from whole blood for each glioblastoma sample. Samples
were prepared using standard protocols for the Twist Bioscience for
Illumina Exome 2.0 Plus Panel (Illumina, Inc., #20076914), Illumina
DNA Prep with Enrichment, (S) Tagmentation (Illumina, Inc.,
#20025523), and IDT for Illumina DNA/RNA UD indexes Set A, Tag-
mentation (Illumina, Inc., #20027213).

RNA library preparation and sequencing for cohort B
RNA was isolated from adjacent FFPE tissue of each glioblastoma
spatial sample tumor block. Samples were prepared with the Takara
SMARTer Stranded Total RNA-Seq Kit v2 – Pico Input Mammalian with
HT for Illumina v2 (Takara Bio USA, Inc., #634412) protocol.

FFPE Visium CytAssist spatial transcriptomic analysis for
cohort B
Samples in cohort B were prepared according to the 10X Genomics
Visium CytAssist (10X Genomics, Inc., 10000520) protocols
CG000520 RevB and CG000495 RevC. Sample libraries were
sequenced on an IlluminaNextSeq 2000P3 System. FFPE glioblastoma
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tissue blocks were selected and sectioned at 5μm thickness, then
placed individually on tissue slides. Slides were stained with hema-
toxylin and eosin (H&E) to visualize tissue morphology, followed by
differentiation in 1% acid alcohol, bluing in 1x PBS, and dehydration in
graded ethanol and xylene. Slides were loaded into the CytAssist, and
the transfer process was conducted following the manufacturer’s
protocol to ensure precise capture of spatially resolved mRNA mole-
cules. After transfer, the reverse transcription step was performed to
synthesize cDNA from captured mRNA on the tissue slide. Tissue
sections were removed, and spatially barcoded cDNA libraries were
constructed and sequenced following the 10X Genomics protocol.
Spatial data was bioinformatically analyzed with the 10X Genomics
spaceranger tool v2.0.1, and reads were aligned to the GRCh38 refer-
ence. The Visium Human Transcriptome Probe Set version was v2.0.

Exome sequencing bioinformatic analysis for cohort A and
cohort B
After sequencing, FASTQs were aligned to GRCh38 using bwa-mem
v0.7.1738. GATK v4.0.10.1 IndelRealignerminimizedmismatches across
local alignments, and GCBias determined coverage bias39. GATK Col-
lectMultiMetrics and samtools v1.9 stats were used to output
sequencing statistics40. The tumor and germline BAMs were joint
analyzed with GATK HaplotypeCaller and SnpEff v4.341. The dbSNP
v146 hg38 VCFwas input as a reference for annotation42. Copy number
analysis wasperformedwith the tool tCoNuT v1.0 (https://github.com/
tgen/tCoNuT) and GATK Somatic Copy Number Variant Discovery
v4.2.6.139.

Bulk RNA sequencing bioinformatic analysis for cohort A and
cohort B
After sequencing, FASTQs were aligned to GRCh38 using STAR
v2.6.1d43. Aligned BAMs were then processed with GATK MarkDupli-
cates v4.0.10.1, then sorted and indexed with samtools. Summary
statistics were obtained using samtools stats and Picard RNA metrics
(GATK). Salmon v0.11.3, FeatureCounts v1.6.3, andHTSeqCounts 0.6.0
were used to output gene and transcript level counts from the aligned
reads44–46.

Spatial transcriptomics data integration for glioma cohort A
ST data was normalized with the R package Seurat’s (v4.3.0)
SCTransform normalization, after which the effects of mitochondrial
percentage were regressed out, and all samples were integrated by
reciprocal PCA47,48. A principal component analysis with 50 principal
components was then performed on the integrated dataset. The
FindNeighbors Seurat function was applied, followed by FindClusters
with a resolution of 0.2. This resolution was determined to be optimal
after iteration of a wide range of clustering resolutions and examina-
tion of cluster markers and barcode distributions. The RunUMAP
Seurat function was applied to obtain a UMAP projection, plotted
separately by sample and cluster (Fig. 2a,b). Markers for the per cluster
heatmap in Fig. 2d were calculated using the FindAllMarkers function.

Integrated glioma cohort A feature analysis
To generate a heatmap of relative expression of the transcriptional
programs published by Ren et al. for Fig. 1f, we imported their pub-
lishedgene sets inR8.We applied theSeuratAddModuleScore function
for each set and plotted scores using ComplexHeatmap v2.14.049. The
samemethodwas applied for the heatmapof relative expressionof the
spatial-specific transcriptional programs published by Ravi et al. in
Fig. 2g9.

Spatial BAM separation and allele count calculation
A python pipeline was implemented to prepare cohort A spatial BAM
files for Bayes factor calculation and hidden Markov analysis. The
objective of this pipeline is to obtain per-cluster coverage for reference

and alternative alleles at heterozygous SNP positions. Using this
method, all spaceranger output BAMs from the glioma cohortA spatial
data were split into individual per cluster BAM files. Primary align-
ments were extracted with samtools v1.9. Candidate SNP positions
detailed below were used as a reference for coverage calculation. A
VCF formatted file was output for each sample, with graph-based
clusters listed as individual samples. Positions with total coverage
above 2000 unique molecular identifier counts were removed due to
potential errors that could occur with integration during Bayes cal-
culations. Positions with total coverage less than 5 total reads are also
removed to reduce false positive results. SNPs within the human leu-
kocyte antigen region (chr6:28,510,120-33,500,500) were also omit-
ted. The packages utilized in this method include NumPy v1.19.5,
Pandas v1.1.5, and Pysam v0.15.4 (https://github.com/pysam-
developers/pysam)50,51. The diagrams describing this process in
Fig. 3a, e were generated using Microsoft PowerPoint.

Selection of candidate heterozygous SNP positions
A filtered database VCF was generated to identify likely heterozygous
SNPs in the population for reference in the BAM separation step. The
dbSNP common database (human_9606_b151_GRCh38p7) VCF was
obtained from the NCBI FTP download site. Next, the file was anno-
tated for canonical transcripts with SnpEff, followed by filtering for
transcripts in the untranslated regions (UTR). SNP positions with
minor allele frequency less than 0.10. SNP positions where the allele
fractions were greater than0.10 or less than0.90were kept for further
analysis, ensuring that the remaining SNPs were likely heterozygous.
To validate the results of this approach on the glioma cohort A spatial
data, reference SNP positions were also separately determined from
the companion bulk exome sequencing. HaplotypeCaller VCFs con-
taining both tumor and germline samples from joint calling were used
for this validation. The dbSNP reference-dependent and exome
sample-specific VCFs were annotated for canonical transcripts by
SnpEff and filtered for variants containing the terms UTR, missense,
nor nonsynonymous. Positions were further filtered to exclude multi-
allelic calls, indels, and positions without a dbSNP rsID identifier. The
following methods were tested on tumor-only and bulk exome refer-
ence approaches. The workflow of BAM separation, allele count cal-
culation, and SNP selection is available as a set of python scripts.

Bayesian model
The Bioconductor package tLOH, or transcriptomicsLOH, is a work-
flowof R functions which leverages Bayes factors and a hiddenMarkov
model for determining regions of LOH in ST data. The base input is a
VCF with each cluster listed as a sample. Data is imported using the
tLOHImportData function, which reads the VCF into a data frame.
Next, the function tLOHCalc computes Bayes factor likelihood ratios of
two models at every SNP position. The allele count data is assumed to
have a binomial distribution, where each SNP position is an indepen-
dent event. The twopossible outcomes of the binomial are a normal or
LOH state. Each independent event results in a success or failure in n
trials. Measurement of success would be reads supporting the refer-
ence allele, and failurewould be reads supporting the alternative allele.
The number of trials n is the total reads at a given SNPposition, and x is
the number of reads aligning to the reference allele. In our equation,
Model 1 (M1) represents a loss of heterozygosity event, and Model 2
(M2) represents a heterozygous state. D represents the data which
informs each model. Bayes factor K likelihood ratios are calculated at
each SNP to support evidence for either model.

K =
P M1jDð ÞPðM2Þ
P Dð ÞPðM1Þ ð1Þ

Model 1 is a loss of heterozygosity event where the prior probability is
determined through a modified beta distribution where 0≤θ≤ 1,

Article https://doi.org/10.1038/s41467-025-59805-z

Nature Communications |         (2025) 16:5290 13

https://github.com/tgen/tCoNuT
https://github.com/tgen/tCoNuT
https://github.com/pysam-developers/pysam
https://github.com/pysam-developers/pysam
www.nature.com/naturecommunications


α=500, and β=500.

P θð Þ= absð0:5� θÞα�1ð1� abs 0:5� θð ÞÞβ�1

Bðα,βÞ
ð2Þ

Model 2 is a heterozygous event where the prior probability is deter-
mined through a beta distributionwhere 0 ≤θ≤ 1, α = 1.25, and β = 1.25.

P θð Þ= θα�1ð1� θÞβ�1

Bðα,βÞ
ð3Þ

The expected probability of a model given the data is the product of
the binomial distribution and the beta distribution. The formula is
multiplied by an error factor e = 0.01 and subtracted from one. The
formula below is the probability of Model 2 given the data.

P Dð Þ=
Z 1

0
θxð1� θÞn�xð1� eÞθ

α�1ð1� θÞβ�1

Bðα,βÞ dθ ð4Þ

For both models, the marginal likelihoods are obtained by mul-
tiplying the likelihood with the prior distribution and integrating it to
obtain the area under the curve. The beta distribution is used as the
prior distribution of the binomial. Bayes factors at each genomic
position are calculated by the division of P(Mloh+|D) and P(Mloh-|D).

K =
PðMloh+ jDÞ
PðMloh�jDÞ

ð5Þ

After calculation of Bayes factors, values are log transformed. The
threshold for likelihood of a model is determined by reference to
Appendix B of Theory of Probability by Harold Jeffreys52. Log 10 K
values greater than or equal to 0.5 represent substantial evidence for
Model 1. Log 10 K values less than or equal to −0.5 represent sub-
stantial evidence for Model 2. Values between 0.5 and −0.5 are
nondeterminate.

A hidden Markov model was implemented to classify regions as
normal or loss of heterozygosity with the likelihood ratios as prior
information. There are two states in the HMM. The number of states
were determined by the nature of the model of either LOH (state 1) or
HET (state 2), where the likelihood of LOH vs heterozygous event is
computed at a SNP position.

The HMM analyzed ordered quantile normalized Bayes factor
values in each chromosome in each cluster. Bayes factors are calcu-
lated from allele counts, followed by an ordered quantile normal-
ization to ensure a normal distribution in each chromosome. A 2-state
HMM then segments each region, outputting state assignments.
Cumulative metrics across each segment are calculated, and a state
label is applied.We did not provide individual emission parameters for
the HMM, they were calculated for each iteration by the R package
depmixS4.

The tool depmixS4 was used for HMM implementation53. In our
method, the allele count and Bayes factor data frames are split into
per-chromosome and per-cluster sets for analysis. Ordered quantile
normalization is applied to each set, transforming the likelihood
ratios to a normal distribution54. The R package bestNormalize
orderNorm function is applied (equation shown below), where Φ is
the standard normal cumulative distribution function, and x is each
observation55.

g xð Þ= Φ�1 rank xð Þ � 0:5
lengthðxÞ ð6Þ

The default settings of the initial state is set per chromosome
manner. The two-column table describing these parameters is
available at [https://github.com/USCDTG/tLOH/blob/main/data/

initialStartProbabilities.rda]. The transition parameters are
defined as a matrix of the following values: c(0.999,0.001),
c(0.001,0.999). The tLOH function to run the HMM processing is
hiddenMarkovAnalysis, applied to output from the tLOHCalc
function.

Baum-Welch was used to determine the initial start prob-
abilities, and training was conducted on bulk RNA data. Several
iterations of training were run to determine parameters, including
using a convergence threshold set to a defined threshold. Once
HMM was trained for all gliomas, we examined the stability of
threshold and lengths of segments to assess agreement with seg-
ments from independent bulk copy numbers. In practice, training
took several hours and typically yielded multiple segment options.
The emission probability matrices were set as default, though our
method provides an option to provide custom parameters.
The main functions used from the depmixS4 package are
depmix, fit, em.control, and posterior. The decoding algorithm
specified for fit and posterior is Viterbi. Cumulative metrics are
evaluated across defined HMM segments to obtain final state
assignment labels.

After running the HMMon the per-cluster, per-chromosome data,
the state labels and probabilities are merged into a data frame con-
taining all clusters and chromosomes. The final output is a sample.csv
with per-segment metrics, individual SNP Bayes factors, and state
assignments. Plots representing output from our method were gen-
erated using ggplot2 v3.4.256. The diagram describing the HMM in
Supplementary Fig. 8 was generated with standard Microsoft Power-
Point shapes.

Validation of loss of heterozygosity
The bulk exome copy number variation data was analyzed using two
tools: tCoNuT v1.0 and GATK Somatic Copy Number Variant Dis-
covery v4.2.6.1. To compare the spatial method to the bulk exome
data, we first analyzed complete (not split) spatial BAMs with our
LOH identification method in R. After state determination, we
transformed the output data to a.bed file format with ameasurement
of every million bases for each chromosome. We labeled bases with
the state determinations if they fell between the start and end posi-
tions of the HMM segments. Next, file output from the GATK tool was
read into R and split into 1Mb segments. We then assigned a state
label of LOH if the exome segment mean value was below a pre-
defined level. Positions across the spatial and exome sequencing
results were compared, and regions with no overlap were omitted.
Metrics of specificity, sensitivity, positive predictive value, false dis-
covery rate, and percent reported were calculated (Supplemen-
tary Data 4).

Visualization of SNP density
The SNP density plot in Fig. 3c was generated using the R packages
KaryoploteR v1.30.0, regioneR v1.36.0, and GenomicRanges
v1.56.257–59.We filtered for unique SNPs across the LOH analysis dataset
and converted the list of genomic positions to a Granges object. The
plotKaryotype and kpPlotDensity functions were applied with custo-
mized visualization parameters.

Minimal detectable event size
A central objective in our method development was to determine the
limits of detection of the core algorithm and the minimum data
necessary to define a valid result. Key metrics used in state determi-
nation were the median segment K value, the sequential sum of
log10(K), and the segment mode peak. We required at least an interval
length greater than 1000 bases for a valid segment. HMM segment
lengths across the dataset range from 1000 to 248,000,000 bases. In
the case of Fig. 5, several regions were listed as ‘undefined’ due to
failure at the HMM step, but the allele fractions and segment values
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strongly suggested a complete heterozygous state. An improvement
to our tool would be the implementation of an additional check that
first identifies the likelihood of two states and allows segmentation is
there is supporting evidence. Alternatively, we could allow for more
algorithm runs for convergence or adjust the starting transition
probabilities in response.

Tumor purity analysis
‘Estimation of STromal and Immune cells in Malignant Tumors using
Expression Data’ or ESTIMATE v1.0.13, was run on log normalized
spatial unique molecular identifier counts to investigate tumor purity
and stromal scores across samples26. ESTIMATE plots for all samples in
Supplementary Fig. 7 were generated using Seurat, ggplot2, and the
viridis color map package v0.5.660.

Spatial transcriptomics data integration for cohort B
The FFPE ST dataset was normalized with the R package Seurat
SCTransform normalization. Samples were integrated using the
RunHarmony method v1.2.148,61. A principal component analysis with
30 principal components was then performed on the integrated
dataset. The FindNeighbors Seurat function was applied, followed
by FindClusters with a resolution of 0.19. Markers were calculated
using the FindAllMarkers function61. Gene signatures described in
Fig. 6b and Supplementary Data 5 were based on prior
literature8,11,13,15.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The processed spatial transcriptomics sequencing data generated in
this study is available in the NCBI Gene ExpressionOmnibus repository
under accession code GSE242352. The raw sequencing data generated
in this study is available in the European Genome-Phenome Archive
(EGA) under restricted access at [https://ega-archive.org/datasets/
EGAD50000001394]. Raw sequencing data is stored under restricted
access to protect data privacy. Access to this data may be requested
through the EGA website by submitting a form to the Data Access
Committee (DAC) EGAC50000000579. Restrictions for access to the
data are outlined by the EGADAC Policy EGAP50000000519. TheDAC
policy information states terms and conditions which include pre-
servation and protection of sequencing data confidentiality, appro-
priate use of data in only non-commercial and academic purposes,
acknowledgment of data use, terms for data management upon
completion of research, and compliance with applicable laws, regula-
tions, and ethical guidelines. The expected response timeframe for
access requested to the DAC will be 1 to 2 weeks. Data will be available
for 1 year once access has been granted. Source data are providedwith
this paper.

Code availability
Analysis code and documentation for the results described in this
work are available for download at [https://github.com/USCDTG/
paperAnalysis_LOH]. The transcriptomicsLOH R package is available
for download at [https://github.com/USCDTG/tLOH] under the
MIT license. Individual licenses for each open-source software uti-
lized in this analysis are detailed in the paper analysis code
repository.
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