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The demand for efficient edge computer vision has spurred the development
of stochastic computing for image processing. Memristors, by introducing
their inherent switching stochasticity into computation, readily enable sto-
chastic image processing. Here, we present a lightweight, error-tolerant edge
detection approach based on memristor-enabled stochastic computing. By
integrating memristors into compact logic circuits, we realise lightweight
stochastic logics for stochastic number encoding and processing with well-
regulated probabilities and correlations. This stochastic and probabilistic
computational nature allows the stochastic logics to perform edge detection
in edge visual scenarios characterised by high-level errors. As a demonstration,
we implement a hardware edge detection operator using the stochastic logics,
and prove its exceptional performance with 95% less energy consumption
while withstanding 50% bit-flips. The results underscore the potential of our

stochastic edge detection approach for developing efficient edge visual
hardware for autonomous driving, virtual and augmented reality, medical
imaging diagnosis, and beyond.

In edge computer vision, extracting the image features to enable effi-
cient user-scene interaction and decision-making has been a challen-
ging topic due to the intensive computational workload and
constrained computational resources at the edge. In this context, edge
detection is employed as a fundamental pre-processing technique to
extract the key visual cues, such as shallow features of colour, contour,
and texture, for efficient image understanding and initial decision-
making'?. However, the conventional edge detection approaches using
matrix multiplication and gradient computation in the binary com-
puting domain can still lead to excessive computational workload and
latency against edge hardware integration and deployment’. For
instance, the deterministic nature of binary computing decides high-
precision data representation that can be highly redundant for

computation*®, Taking multiplication as an example (Fig. 1a), the
function, despite its simplicity, requires large-scale logic circuits and
excessive operations. The scalability of the logic circuits and opera-
tions, and the resultant latency, can increase considerably as the
computation throughput increases®. The binary data representation
with position-dependent bit weights also makes edge detection highly
susceptible to errors’. As an example, even a single bit-flip can corrupt
the input and output. Bit-flips, as common soft errors in digital circuits
and computing®’, can be typically induced by noise and
interferences'®. Though advanced error detection and correction
techniques, such as parity bit, cyclic redundancy check, and hash
function are now widely adopted to address bit-flips, they inevitably
incur excessive hardware and computational cost.
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Fig. 1| Binary computing vs. stochastic computing. a Binary computing. Two
example 3-bit binary fraction inputs A and B, representing 4/8 and 6/8, respectively,
are computed to yield a binary multiplication output C of 3/8. When input B
undergoes a bit-flip and the value is changed from 6/8 to 2/8, the output is altered
from 3/8 to 1/8. FA is short for Full Adder. b Stochastic computing. Two example

Stochastic multiplier
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10:0{1]0[1|0[1]|0 Outputc, P(c) = P(a) x P(b) = 3/8
L0:0[1][of1]o[1]0 Output ¢, P(c,,) = P(a) x P(b,,) = 3/8

8-bit stochastic number inputs a and b, with probabilities P(a) and P(b) of 4/8 and
6/8, respectively, are computed to yield a stochastic multiplication output P(c) of 3/
8. When input b undergoes a bit-flip and the value is changed from 6/8 to 5/8, the
output remains at 3/8.

The challenges posed by binary computing put forward a demand
for a lightweight, error-tolerant computing paradigm for performing
edge detection and other image processing tasks in edge computer
vision". Among the various computing strategies, stochastic comput-
ing emerges as a promising solution'. Unlike binary computing, sto-
chastic computing represents the data as sequences of random O s and
1s bits, known as stochastic numbers, wherein each of the bits holds an
equal weight, and the probability of the 1 s bits determines the value of
the stochastic numbers™. This stochastic and probabilistic nature of
data representation allows for the implementation of stochastic
computing with lightweight logic circuits and operations. Again, taking
multiplication as an example, as illustrated in Fig. 1b, the function can
be achieved with one single AND gate, termed stochastic multi-
plier, and notably, the stochastic multiplier can process stochastic
numbers of an arbitrary length without scaling up the logic circuits™.
Meanwhile, importantly, stochastic computing due to its stochastic
and probabilistic computational nature is inherently tolerant of errors.
As an example (Fig. 1b), though the occurrence of a random bit-flip
corrupts the input, the output can remain invariant. The impact of bit-
flips can be even cancelled as the length of the stochastic numbers
increases®. As such, with the lightweight and error-tolerant computa-
tional features, stochastic computing can potentially address the
challenges posed by binary computing. Though promising, realising
stochastic edge detection (and stochastic computing in general) faces
challenges due to the lack of reliable stochastic logics for performing
stochastic number encoding and processing.

In this work, we present a memristor-enabled stochastic com-
puting approach, and prove its lightweight, error-tolerant stochastic
edge detection. We design and realise stochastic number encoders
(SNEs) using memristors for stochastic number encoding, and inte-
grate the SNEs with compact logic gates to develop lightweight sto-
chastic logics for stochastic number processing. Harnessing the
switching stochasticity of the memiristors, the SNEs can encode data
into stochastic numbers with well-regulated probabilities and corre-
lations, allowing the stochastic logics to perform bitwise logic opera-
tions with statistical probabilities in different correlations. As a
practical demonstration of stochastic edge detection, we implement a
hardware Roberts cross operator using the stochastic logics and
demonstrate its exceptional performance in image contour and tex-
ture extractions. Remarkably, the demonstration achieves 95% less
energy consumption while withstanding up to 50% bit-Aflips,

highlighting the lightweight and error-tolerant capability of our sto-
chastic edge detection approach.

Results

Stochastic number encoders

SNEs are the units encoding data into stochastic numbers. They have
been conventionally realised with electronic circuits (e.g. those based
on linear feedback shift registers)“™". However, the circuits are typi-
cally on large scales and can lead to considerable computational cost
(Supplementary Table 1). As the memristor technology advances,
memristors show potential in developing SNEs.

Memristors tend to exhibit stochasticity in switching, originating
from the underlying switching mechanisms. For example, due to the
stochastic diffusion of the conductive elements, filamentary memris-
tors switch with stochasticity'®. This characteristic makes memristors
promising for realising compact SNEs towards stochastic computing
implementation' % Fig. 2a shows a compact circuit design of SNEs we
propose, where each SNE consists of a memristor and a few com-
parators. By harnessing the switching stochasticity, the SNEs can
encode the input data into stochastic numbers - when fed with pulsed
inputs V;,, the memristor is switched stochastically and the output
carrying the stochasticity is then binarised by the comparators via the
reference V¢ for stochastic number encoding with a probability. As
such, the probability of the stochastic numbers is well-regulated by
V.r- The SNEs via convenient circuit reconfiguration can also output
stochastic numbers in varying positive and negative correlations, while
two or more parallel SNEs can encode uncorrelated stochastic
numbers.

To implement the SNEs, we prepare filamentary memristors from
solution-processed hexagonal boron nitride (hBN), following our
previous report®. Briefly, hBN is produced by liquid-phase exfoliation
(Supplementary Fig. 1) and used to fabricate memristors in a Pt/Au/
hBN/SiO,/Ag configuration (Fig. 2b, ¢, and Supplementary Fig. 2). This
solution-based fabrication approach is scalable with high yield. As
demonstrated in Supplementary Fig. 3, the success rate of an array of
12 x12 memristors is 100% in the sampling test. In typical switching
(Fig. 2d), the memristor switches to a low resistive state at the
threshold voltage V, as the silver ions diffuse and form conductive
filaments, and spontaneously resets to a high resistive state once the
bias drops below the hold voltage V4. See also Supplementary Fig. 4
for the ultrafast volatile switching (switching time -50ns, and
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Fig. 2 | Stochastic number encoder (SNE). a Schematic SNE, consisting of a
memristor and a set of comparators. The output probability and correlation are
regulated by both the input V;, and reference V. For negative correlation, a NOT
gate is connected to the comparator, and the voltage supply of the NOT gate is
synchronised with V;, to the memristors to avoid output during the pulse intervals.
Independent parallel SNEs are integrated to yield uncorrelated stochastic numbers.
See Supplementary Fig. 7 for the hardware realisation of SNE. b 12 x 12 memristor
array in a crossbar configuration, with a fabrication yield of 100%. A typical device
area is ~20 x 20 um? Scale bar - 1cm and 20 um. ¢ Schematic and cross-sectional
transmission electron microscopic image of a typical memristor. Scale bar - 50 nm.

d Current-voltage output from a typical memristor, showing 1000-cycle stochastic
yet stable switching with a ratio of ~10°. V4 and V, denote the hold voltage and
threshold voltage. e Distributions of the measured V4 (0.23 + 0.18V) and V,
(0.78 £ 0.39V), along with the corresponding Gaussian fittings. f P.correfated™Vin
relation of a typical SNE in uncorrelation, fitting sigmoid function

Pyncorrelated =1/ (1 + exp[—38.9(V;, — 1.34)]). The error bar representing the standard
deviation at each data point is obtained from 100 repeated samplings, where each
sampling consists of 100 consecutive pulsed signal cycles. g Ppqggive-Vin and
Pregative”Vin Telations of the SNE in positive and negative correlations, fitting sig-
moid function Ppegyive =1/(1+ eXp[—63.1(V, — 0.19)]) and Ppogiive =1 — Pregative-

relaxation time ~1200 ns) and the ultralow energy consumption (-33f]
per bit). Due to the stochastic diffusion of the silver ions, the switching
exhibits stochasticity in both V, and V4. The volatile switching
eliminates the need for any peripheral circuits or excessive resetting
for SNE implementation and operation, while the switching stochas-
ticity can be harnessed for stochastic number encoding, leading to
compact circuit designs of SNEs.

To assess the stochasticity, we conduct a full sweeping cycling
test. The measured current-voltage output exhibits a cycle-to-
cycle stochasticity in the switching (Fig. 2d), with V, (0.78 +
0.39V) and V4 (0.23 + 0.18 V) well fitting Gaussian distributions
(Fig. 2e). This shows a stabilised cycle-to-cycle stochasticity. We
further test the device-to-device stochasticity, and prove a high
device-to-device uniformity, with variations of 6.6% in V4 and
7.4% in V4, (Supplementary Fig. 3). The uniformity, along with the
high fabrication yield, allows for SNE implementation without
excess device calibrations or circuit reconfigurations. To evaluate
the stochasticity further, we perform the Ornstein-Uhlenbeck
process modelling of the measured V, (Supplementary Fig. 5). As
demonstrated, V, renders a mean-reverting behaviour with ran-
dom fluctuations, well-fitting an Ornstein-Uhlenbeck process, i.e. a
stochastic process in a dynamical system”. This indicates the high-
level stability of stochasticity of our memristors in prolonged
switching operations, critical for SNE operations. Indeed, the
endurance test for over 5x10° cycles proves a highly stable yet
stochastic switching of our memristors (Supplementary Fig. 6),
outperforming state-of-the-art reports®* and allowing for a

reliable integration of our memristors into circuits for imple-
menting stochastic computing.

We integrate the memristors into the circuits to develop the SNEs
(Fig. 2a). When in operation, signals in both digit and analogue forms
are first encoded into pulsed inputs, V;,, and then processed into
stochastic numbers via the SNEs, as regulated by V. See Supple-
mentary Fig. 7 for the hardware realisation of the SNEs. Here we pre-
sent in Fig. 2f the probability of uncorrelated stochastic number
P ncorrelated With respect to V. As V;, increases, P ncorelated 1S iNCreased,
as the memristors tend to be switched on. This proves that the sto-
chastic number occurring at a certain time is probabilistically O or 1,
and Pcorrelareq 1S determined by V.. Particularly, Py correlated fOllOWs a
sigmoidal fitting P,correlated =1/ + exp[—38.9(V;, — 1.34)]), proving
that the SNEs can encode data into stochastic numbers with a well-
regulated probability, thereby promising for stochastic computing
implementation. In turn, the P orelated-Vin relation can be employed
as a guidance to practically determine P orrefaed With Viy. Similarly,
we show in Fig. 2g the probabilities of positively and negatively cor-
related stochastic numbers P aNd Pregaive With respect to V.
Poositive  (Pregative) decreases (increases) as V. increases in
positive (negative) correlation, as V  serves as the threshold for
binarization.  Again, Pege follows a  sigmoidal fitting
Pnegative = 1/(1 + eXp[_63'1(Vref - 0.19), and Ppositive =1- Pnegative' See
Supplementary Fig. 8 for an example of positively correlated sto-
chastic number encoding. Therefore, the memristor-enabled SNEs
prove data encoding into stochastic numbers with regulated prob-
abilities and correlations, facilitating subsequent stochastic logic
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development. Here we note the encoding frequency of V,;, is typically
configured as 100 kHz, far below the switching of the memristors (up
to 50 ns, or equivalently 20 MHz) and the clock frequency of the digital
circuits (-GHz). This ensures that the SNEs can be applied in
the implementation of stochastic computing hardware and
applications.

Stochastic logics

We integrate the SNEs with compact logic gates to build lightweight
stochastic logics in different correlations. Using stochastic AND logic
in uncorrelation as an example, we connect two parallel SNEs to a
typical AND gate (Fig. 3a). In this design, the uncorrelated stochastic
outputs encoded by the SNEs serve as the inputs to the AND gate,
enabling stochastic multiplication of the stochastic outputs. When in
operation, based on the demonstrated Pncorelaed-Vin relation in
Fig. 2f, the SNEs are fed with pulsed signal cycles of the corresponding
Vin to encode uncorrelated stochastic numbers, denoted as a and b,
with probabilities of P(a) and P(b), respectively. Then, a and b are bit-
by-bit fed into the AND gate, yielding a stochastic number output,
denoted as c, with a probability of P(c). We show in Fig. 3a the corre-
sponding stochastic numbers and probabilities from the experimental
hardware test. The statistical relation between the probabilities, i.e.,
P(a)P(b) ~ P(c), proves that the stochastic AND logic functions as a
stochastic multiplier for one-step multiplication of stochastic num-
bers. Importantly, compared to the binary multiplier in Fig. 1a, this
stochastic multiplier significantly simplifies circuit design and reduces
the computational cost. Besides, the SNEs can be configured to exhibit
positive (negative) correlation, enabling positively (negatively) corre-
lated stochastic AND logic operations (Fig. 3a). The output probability
P(c) in the correlated cases is determined by the minimum (maximum)
value of P(a) and P(b) instead. Similarly, we build stochastic OR logic in

Stochastic logics Uncorrelated

Positively correlated

all three correlations, and it performs different logic operations as
designed (Fig. 3b).

Edge detection involves matrix multiplication and gradient com-
putation that normally require large-scale logic circuits and consider-
able computational operations®. In contrast, it is possible to perform
absolute-valued subtraction for gradient computation with minimal
computational cost using the stochastic logics. Here we propose in
Fig. 3¢ the design of a stochastic XOR logic, consisting of only an SNE
and an XOR gate, to perform the function. Specifically, the SNE is fed
with pulsed signal cycles of the corresponding V;, according to the
PpositiveVin Telation in Fig. 2g to encode positively correlated stochastic
numbers, denoted as a and b, with respective probabilities of P(a) and
P(b). Then, a and b serve as the inputs to the XOR gate, and the
resultant P(c) satisfies P(c) ~ |P(a) - P(b)|. In this case, positively
correlated stochastic numbers mean a maximum overlap of O sand 1s,
such that the probability for two 1s or two Os is min(P(a), P(b)) or
min(l — P(a),1 — P(b)). Assuming P(a) > P(b), the stochastic XOR logic
outputs P(c)=1- P(b) — (1 — P(a))=P(a) — P(b), and vice versa. This
proves the capability of the stochastic XOR logic to perform the
absolute-valued subtraction function in only one step. Besides gra-
dient computation, denoising, smoothing, and down-sampling are also
essential matrix operations in edge detection. A general approach in
performing these functions is to use mean convolutional filters to
process the pixels. Here we propose in Fig. 3d (see also Supplementary
Fig. 9) the design of stochastic MUX logic to realise a mean convolu-
tional filter.

We present in Supplementary Fig. 10 the pairwise correlations
between the inputs of the above stochastic logics in the uncorrelated,
positively correlated, and negatively correlated conditions, and sum-
marise the statistical relations between P(a), P(b) and P(c) in Supple-
mentary Table 2. The pairwise correlations and the statistical relations

Negatively correlated
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Fig. 3 | Stochastic logics. Schematic stochastic logics in uncorrelation imple-

mented with two independent SNEs and a AND, b OR, ¢ XOR, and d MUX, and the
corresponding circuit tests of the stochastic logic operations. The stochastic logics
can be reconfigured in the positive and negative correlations to yield the stochastic
logic operations as respectively demonstrated. For stochastic MUX, the frequency
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of the select s is half of that of the inputs to ensure that both the inputs participate
in the logic operations. P(red square) represents the probability of the 1s in the
sequences, i.e. the value of the stochastic numbers. The outputs of stochastic logics
in uncorrelation, positive correlation, and negative correlation are consistent with
the statistical formulas in Supplementary Table 2.
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Fig. 4 | Stochastic edge detection. a The example image, i.e. the first frame of the
The Horse in Motion, for edge detection demonstration. The region as marked is
used to illustrate the edge detection process with the operator. The pixels in 0-255
grayscale are encoded into 100-bits. b Schematic stochastic Roberts cross opera-
tor, consisting of two SNEs, two XORs, and one MUX. See Supplementary Fig. 11 for
the hardware realisation of the operator. ¢ Gradient map yielded from scanning

with the operator, showing successful edge detection. d Edge detection of the first

Stochastic edge detection

SSIM 18.95%
PSNR 18.57 dB

A SSIM51.38%
PSNR 23.77.dB

SSIM 85.25%
PSNR 28.27 dB

SSIM 95.15%
PSNR 32.13 dB

Precision, Cost

SSIM 100%
PSNR~dB Y

frame with the operator, and e the corresponding structural similarity index
measure (SSIM) maps and peak signal-to-noise ratios (PSNR). The pixels are enco-
ded into 4, 16, 64, and 256-bits as the inputs. The SSIM and PSNR show that the
operator using more bits gives higher edge detection precision. For comparison,
the edge detection performed using the standard algorithmic method is presented
as the ground truth.

confirm that our stochastic logics can work in the desired correlation
conditions and conduct the corresponding logic operations for per-
forming edge detection tasks. Pearson correlation is adopted here to
quantify the correlations. Note that in the above demonstrations, the
stochastic numbers are encoded in 100-bit for illustrative purposes.
The bit length can be adjusted to accommodate the different com-
putational precision requirements, given the trade-off between the
computational cost and precision.

Stochastic edge detection

As discussed, edge detection in the conventional binary computing
approaches relies on the use of large-scale logic filters, such as Roberts
cross and Sobel operators, leading to significant hardware and com-
putational cost as well as latency’. In this context, we propose a
hardware stochastic Roberts cross operator using the stochastic logics
to address the challenges. Briefly, two SNEs, two XOR gates, and one
MUX are integrated to build the stochastic Roberts cross operator. See
Fig. 4 and Supplementary Fig. 11 for the design and hardware realisa-
tion of the operator.

We apply the stochastic Roberts cross operator in image proces-
sing to demonstrate the feasibility of stochastic edge detection. The
image for illustrative purposes is captured from the artwork The Horse
in Motion (Fig. 4a). Here each pixel in 0-255 grayscale is encoded in
100-bits. As shown in Fig. 4b, the stochastic Roberts cross operator is

used to scan over the pixel map to yield a gradient map (i,j) recon-
structed from the output stochastic numbers. Specifically, one SNE
and one XOR gate work consecutively to yield the x component of the
output gradient (i,j), denoted as |Gx|, while the other SNE and XOR
gate yield the y component, denoted as |Gy|. The gradient G(i,j) is
obtained by averaging |Gx| and |Gy| using the MUX logic, i.e.
G(i,j)=0.5(/Gx| +|Gy|). The coefficient 0.5 scales the gradient within
the original grayscale. As such, as demonstrated in Fig. 4c, scanning
with stochastic Roberts cross operator over the marked image region
of 5x5 pixels in Fig. 4a yields a 4 x4 pixeled gradient map that evi-
dently demonstrates successful edge detection, as outlined by the red
dashed lines. This confirms the feasibility of the stochastic Roberts
cross operator in performing edge detection.

As discussed, the bit length of the stochastic numbers can govern
the computational precision. To investigate the impact of the bit
length on the stochastic Roberts cross operator for edge detection, we
encode the pixels of the image frame in Fig. 4ain 4, 16, 64, and 256-bits,
respectively. The edge detection results (Fig. 4d) prove that the edges
are successfully detected and recognised in all cases. However, as
observed, a longer bit length yields better edge detection. To quanti-
tatively evaluate the performance, we compare the edge detection
results with those obtained from the standard algorithmic method.
We consider the algorithmic result as the ground truth, and assess the
fidelity of the stochastic edge detection using two metrics: the
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the high SSIM (>90%) and peak signal-to-noise ratios (PSNR) (>30 dB) prove that
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the bit-flip injection does not degrade the edge detection performance. In contrast,
a low level of bit-flip injection significantly degrades the performance of the stan-
dard algorithmic edge detection. See Supplementary Fig. 12 for the SSIM map of the
standard edge detection, and the error-tolerance results at more bit-flip injection
levels. Performance comparison in d SSIM and e PSNR between the stochastic and
standard edge detection results.

structural similarity index measure (SSIM) and peak signal-to-noise
ratio (PSNR). Here we visualise the loss in performance by the SSIM
maps (Fig. 4e), where a brighter pixel indicates a higher similarity to
the ground truth, i.e. a better edge detection performance. This thus
reveals and confirms that a longer bit length indeed leads to an
improved edge detection performance. For instance, the 256-bit
achieves a near-ideal performance, with SSIM > 0.95 and PSNR > 30 dB.
In contrast, the 4-bit exhibits relatively poor performance, as the lim-
ited precision in the 4-bit length fails to accurately encode the 0-255
grayscale. However, as evident in Fig. 4d, e, the 4-bit still successfully
detects the edges.

We further investigate the error-tolerance capacity of the sto-
chastic cross operator against bit-flips. Specifically, as illustrated in
Fig. 5a, bit-flips from 5% to 50% are injected into the stochastic num-
bers (in 256-bit encoding). Again, we adopt the SSIM and PSNR metrics
to evaluate the edge detection performance. As evident in Fig. 5b, the
stochastic Roberts cross operator demonstrates successful edge
detection in all levels of bit-flip injections. Notably, the operator even
retains an SSIM of >0.95 and a PSNR of >30 dB at a 50% bit-flip injec-
tion. In comparison, the performance from the standard algorithmic
method substantially degrades at a bit-flip injection of only 5%, with the
edges hardly recognised and the SSIM and PSNR significantly
decreased (Fig. 5c, d, e). See Supplementary Fig. 12 for the SSIM maps

from the standard algorithmic method, and the error-tolerance results
at more bit-flip injection levels. The superior error-tolerance capacity
of the stochastic Roberts cross operator originates from the fact that
each bit in the stochastic numbers carries an equal weight, and thus the
impact of pairs of bit-flips can be cancelled.

Hardware and computational cost

Exploiting the volatile switching and stochasticity of our hBN mem-
ristors, circuits to implement stochastic computing are highly com-
pact. For instance, the SNEs require down to three electrical
components to realise, outperforming those based on the conven-
tional electronic circuits and the other memristors (Supplementary
Table 1). The compact circuits can not only lead to a much lower
hardware cost but also a much less computational cost. To discuss this
further, here we compare the energy consumption of our stochastic
computing approach with the counterpart in the binary computing
domain. Note that the comparison is conducted under the same
computational precision, i.e. each n-bit binary number is represented
by 2"-bit stochastic numbers.

For our stochastic edge detection operators, the energy con-
sumption is mainly contributed to the memristors and the remaining
comparators and logic gates. In terms of the memristors, the switching
energy is estimated as -33 f] per bit (Supplementary Fig. 4). As such,
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Fig. 6 | Performance and energy consumption comparison between the sto-
chastic and conventional Roberts cross operators. Circuit designs of a our
stochastic and b the conventional Roberts cross operator. The 2"-bit inputs to our
stochastic Roberts operator are stochastic numbers. ¢ Circuit design of a n-bit
subtractor and adder in (b). Relation of required d clock cycles and e energy

consumption with respect to the bit length of the binary numbers and stochastic
numbers. f Energy consumption ratio in (e). When the length of the stochastic
numbers is within 2048 bits, the energy consumption of the stochastic Roberts
cross operator is lower. All comparisons are conducted at an input encoding fre-
quency of 100 kHz.

encoding a 2™-bit stochastic number consumes ~33 x 2" f]. Specifically,
this estimation assumes the worst-case scenario, where a sufficiently
large V,, of 2V is adopted. In fact, a V;, of 1.1-1.5V is adequate to
perform the stochastic number encoding (Fig. 2f). In terms of the
remaining circuits, here we estimate the energy consumption based on
the required counts of logic gates and clock cycles for the stochastic
edge detection operators, following W=k xT.xP, where T, is the
clock cycle, k is the required counts of T, and P is the total power of
the remaining electrical components, including the comparators and
logic gates. For the stochastic Roberts cross operator (Fig. 6a), 2"-bit
stochastic numbers are processed serially. Therefore, it requires
(2"+DT, and thus, 2" + )T Pgochasic €Nergy. Given the input encod-
ing frequency of 100 kHz, T is 10 ps. To calculate P cpasic, We refer to
the product power datasheet of the logic gate chips used in our work
(Supplementary Table 3).

The energy consumption to perform the edge detection in the
binary computing domain is incurred by the conventional edge
detection operators. Here we estimate the energy consumption of
the conventional Roberts cross operator (Fig. 6b). As illustrated, the
operator consists of two n-bit subtractors and one n-bit adder. Each n-
bit subtractor and adder can be built using n full adders (FA) and
several XOR gates (Fig. 6¢). Considering parallel computation, each n-
bit subtractor and adder requires (2n +3)T .. Therefore, assuming two
subtractors run in parallel, the conventional Roberts cross operator
requires 2(2n+3)T . and thus, 2(2n+ 3)T .Pqnventional €NErY. Similarly,
we assume 7. =10 us and refer to Supplementary Table 3 to calculate
P onventional- Here we note that binary computing does not encode the
n-bit binary number input into stochastic numbers, and additional

circuits and computational operations in practical computing appli-
cations are often necessitated to deal with errors.

We present in Fig. 6d-f the comparison between our stochastic
and the conventional Roberts cross operators for edge detection. As
shown in Fig. 6d, the stochastic operator requires fewer clock cycles to
complete edge detection with the stochastic number inputs <16-bits.
However, as the bit length increases beyond 16-bits, the stochastic
operator requires exponentially increased clock cycles, surpassing the
conventional counterpart. Nevertheless, as presented in Fig. 6e, the
stochastic operator can maintain a lower energy consumption within
2048-bits. To provide a more intuitive representation of the energy
efficiency, we plot the energy consumption ratio of the stochastic
operator to the conventional counterpart in Fig. 6f. The results show
that with 4-bit stochastic number inputs, the stochastic operator can
consume ~95% less energy. Similarly, with 64-bit stochastic number
inputs, it can still consume ~90% less energy.

Discussion

In this work, we have presented a lightweight, error-tolerant stochastic
edge detection approach using memristor-enabled stochastic com-
puting. The stochastic computing, realised by harnessing the inherent
switching stochasticity in memristors, facilitates the design and
implementation of lightweight stochastic logic circuits for performing
stochastic edge detection. Particularly, owing to the stochastic and
probabilistic computational nature, the stochastic edge detection is
well-suited to edge visual scenarios characterised by high-level
errors. As a practical demonstration, we show that a hardware sto-
chastic Roberts cross operator can achieve excellent edge detection
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with error-tolerance capacity and low hardware and computa-
tional cost.

Given the remarkable edge detection performance, the scalability
of the memristors, and the compactness of the circuit designs, our
stochastic edge detection approach can be readily scaled-up and
generalised towards the development of lightweight, error-tolerant
edge visual hardware. Particularly, arising from the ultrafast switching
characteristic of the memristors, a large-scale stochastic edge detec-
tion with 100-bit stochastic number encoding can in principle easily
process frames at over 1000 fps, fulfilling the requirements of appli-
cations ranging from autonomous driving and virtual/augmented
reality to industrial automation and medical imaging diagnosis. To
explore the feasibility, we show via simulation large-scale stochastic
edge detection of video flows (Supplementary Movies 1-3). Though
promising, large-scale stochastic edge detection requires efforts for
realising large-scale design, fabrication and integration of the mem-
ristors and peripheral electronic circuits, and parallel operation of the
large-scale circuits. Amongst this, the success rate and uniformity of
the memristors are still key concerns in large-scale manufacturing in
current technological advances. A device-to-device non-uniformity can
significantly impact the overall operation and performance of the
circuits. A system-level analysis of memristors, SNEs, and peripheral
circuits may therefore be adopted, e.g. the Process-Voltage-
Temperature analysis. Hardware and algorithm codesigns are also
needed to address or accommodate the non-idealities, e.g. noises and
delays from the memristors and electronic circuits.

Methods

Stochastic memristors

Pristine hBN powder and all chemicals are purchased from Sigma-
Aldrich and used as received. hBN powder (10gL™) and poly-
vinylpyrrolidone (1gL™) are mixed into isopropanol in a sonication
tube in ambient condition. The mixture undergoes 48-h bath sonica-
tion at ~10 °C to facilitate exfoliation and dispersion. The dispersion of
the as-exfoliated hBN nanoflakes in isopropanol is then centrifuged at
4000 rpm for 30 min to remove insufficiently exfoliated aggregates.
The supernatant is carefully decanted and collected. Controlled
volumes of isopropanol and 2-butanol are added to formulate a stable
hBN ink in isopropanol/2-butanol (90/10 vol%), with a concentration of
~1g L™ In a typical process, the memristor is fabricated in a vertical Pt/
Au/hBN/SiO,/Ag configuration, where hBN is deposited by slot-die
coating, the SiOy layer (10 nm) is deposited by electron beam eva-
poration, and the metal electrodes (5/15 nm Pt/Au and 30 nm Ag) are
patterned by photolithography and deposited by electron beam eva-
poration. 10 nm SiO, minimises wash-off of the deposited hBN during
the photolithographic patterning process and thereby increases the
yield. The device substrate is Si/SiO,. The slot-die coater is Ossila
L2005A1. The evaporator is IVS EB-600. During device fabrication, the
hBN layer after deposition is baked at 200 °C for 2 h. For a typical
memristor, given the thickness difference between the SiO, (10 nm)
and hBN (-260 nm) layers, the switching behaviour is governed by the
formation and rupture of silver filaments in the hBN layer.

SNEs and stochastic logics

To build the SNEs and stochastic logics, the memristors are tested on a
probe station and connected to the logic gates and other electronic
devices on a breadboard. Tektronix Keithley 4200A-SCS parameter
analyser with pulse measure units is used to measure the electrical
characteristics of the memristor. Siglent arbitrary waveform gen-
erators and digital storage oscilloscope are used to output the
signals and measure the output waveforms. To endow the stochastic
numbers with a certain probability, based on the demonstrated
P incorrelatedpositive/negative™ Vin T€lation in Fig. 2f, g, each SNE are fed with
n pulsed signal cycles of the corresponding V;, to encode n-bit sto-
chastic numbers. The bit length is determined by n.

Stochastic number correlation
The correlation between the stochastic numbers is quantified using the
Pearson correlation p(a, b) = wz_xy % where w, x, y, and z

N wrxw+y)(x+z)(y+2)
represent the counts of 1-1, 1-0, 0-1, and 0-0 pairs for the two stochastic
numbers a and b, respectively.

Edge detection

The Roberts cross operator consists of two 2 x 2 kernels, i.e. { (1) 91}

and [_01 (1)} As stochastic computing works on the probability

domain, each pixel (i,j) of a grayscale image needs to be initially nor-
malised into a probability, denoted as P(i,j). Hence, for a localised
. P(i,j P(i+1,j
pixel map [P(i,(ji)l) P(i(+ 1,j{r)1)
cross operator is used to encode two positively correlated stochastic
numbers, the probabilities of which correspond to the diagonal
values in the localised pixel map. As such, two SNEs of the operator
encode two pairs of positively correlated stochastic numbers that
serve as the inputs to the XOR gates. A pair is input into the XOR gate
to yield the x of the output gradient at pixel (i,j), denoted as
|Gx|=|P(i,j) — P(i+1,j +1)|, while the other pair and XOR gate yield
the y component, denoted as |Gy| = |P(i +1,j) — P(i,j +1)|. |Gx| and |Gy|
are then averaged by the MUX to obtain the absolute magnitude of
the approximate gradient. Given the high device uniformity and
fabrication yield, the operator is built with two randomly selected
memristor based SNEs. The two SNEs exhibit similar P corretated™Vin
relation. No specific or additional memristor calibration, circuit
redesign, or testing to obtain the P, .omeiaeda-Vin relations are
required to implement the SNEs or the stochastic operators. In the
edge detection demonstrations, the hardware is used to fully per-
form the edge extraction, and the following software is used to
present and visualise the results. Limited by the scalability of the lab-
based realisation of the stochastic Roberts cross operator and par-
allel signal generation and testing, large-scale edge detection on The
Horse in Motion, vehicles on highway, and real-time MRI* is con-
ducted via simulation in Python3.

,each SNE in the stochastic Roberts

Data availability
The data used in this study are available at Figshare [https://doi.org/10.
6084/m9.figshare.28879031].

Code availability
The code used in this study is available at Code Ocean [https://doi.org/
10.24433/C0.7752939.v1].
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