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Concept transfer of synaptic diversity from
biological to artificial neural networks

Martin Hofmann 1 , Moritz Franz Peter Becker 2, Christian Tetzlaff2,3 &
Patrick Mäder 1,4,5

Recent developments in artificial neural networks have drawn inspiration from
biological neural networks, leveraging the concept of the artificial neuron to
model the learning abilities of biological nerve cells. However, while neu-
roscience has provided new insights into the mechanisms of biological neural
networks, only a limited number of these concepts have been directly applied
to artificial neural networks, with no guarantee of improved performance.
Here, we address the discrepancy between the inhomogeneous and dynamic
structures of biological neural networks and the largely homogeneous and
fixed topologies of artificial neural networks. Specifically, we demonstrate
successful integration of concepts of synaptic diversity, including sponta-
neous spine remodeling, synaptic plasticity diversity, and multi-synaptic
connectivity, into artificial neural networks. Our findings reveal increased
learning speed, prediction accuracy, and resilience to gradient inversion
attacks. Our publicly available drop-in replacement code enables easy incor-
poration of these proposed concepts into existing networks.

The field of machine learning and artificial intelligence has seen
numerous advances in biologically motivated methods, leading to
the development of key theories and concepts such as the
McCulloch-Pitts cell1, backpropagation learning2,3, and convolutional
neural networks inspired by the visual cortex4–6. Studies that build
upon or revisit these foundational works frequently evaluate the
biological plausibility of proposed methods, such as targetprop
being more biologically feasible than backpropagation while pro-
ducing similar performance7–9 or exploring the absence of biologi-
cally inspired random backward connections in modern artificial
networks10. Other studies propose methods based on novel models
of artificial neurons11, focus on new types of neural connections12,
propose binocular data processing13, or study spiking neural net-
works with biologically inspired dynamics14. Hofmann and Mäder
proposed synaptic scaling15, an artificial neural network (ANN)
training regularization method inspired by Tetzlaff et al.’s plasticity

rules of biological neural networks (BNNs)16. Blier et al. found that
training with random learning rates over several orders of magnitude
can improve robustness to hyperparameter variation17. However,
direct compatibility with state-of-the-art artificial network archi-
tectures remains limited, and the scalability of biologically plausible
learningmethods is discussed as a fundamental challenge inmachine
learning9.

From a neuroscience perspective, biological neural networks are
highly complex structures consisting of a wide variety of neuron and
synapse types. Decades of experimental neuroscience research have
shown that synapses are diverse and dynamic. Their number, mole-
cular composition, andmorphology are constantly changing18–20. Such
modulations lead to synapse- and neuron-specific synaptic plasticity,
multi-synaptic connectivity between pairs of neurons, and sponta-
neous remodeling of synaptic connections. These changes result in
specific adjustments to synaptic strength and structure, facilitate
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connections betweenmultiple synapses and pairs of neurons, and lead
to the spontaneous reorganization of synaptic connections. However,
ANNs have not considered this synaptic diversity. We aim to investi-
gatewhether integrating the concept of synaptic diversity can improve
the performance of ANNs and get an intuition on the underlying
mechanisms.

In this paper, we study synaptic diversity when introduced into
common ANN architectures. Specifically, we focus on three biologi-
cally inspired mechanisms (Fig. 1): diversity in synaptic plasticity,
spontaneous spine remodeling, and multisynaptic connectivity. For
each of these mechanisms, we propose a computationally lightweight
implementation aiming at applicability to state-of-the-art ANN archi-
tectures. In an experimental setup with three of these architectures
and three benchmark datasets, we evaluate each method separately
and in combination and measure their effectiveness in terms of
learning speed and model performance. Furthermore, we see that
these mechanisms introduce a high degree of stochasticity into the
networks. Given the assumption that such stochasticity could impede
recovering training samples from the network, we measure the
robustness of the proposed models to gradient inversion. Robustness

against gradient inversion, a form of adversarial attack, has garnered
increased interest, particularly in scenarios involving decentralized
learning from undisclosed data21,22.

Learning is associated with synaptic plasticity, the ability of
synapses to change their effectiveness in response to neuronal activity.
Two well-established forms of synaptic plasticity are long-term
potentiation (LTP) and long-term depression (LTD). However, the
amount of potentiation and depression expressed at synapses
depends on several factors, such as the type and frequencyof neuronal
firing patterns, but also on the brain region, neuron, and synapse
type23,24. In addition, the location of synapses on the dendritic tree
influences synaptic plasticity. Back-propagating action potentials are
attenuated as they travel along the dendritic tree, making synapses
distant from the soma less susceptible to potentiation than proximal
synapses25,26. The ability of synapses to undergo activity-induced
changes also depends on the history, size, and age of the synapse and
neuron. Such history-dependent modulation of synaptic plasticity is
termed metaplasticity27. Recent studies have shown that the stimulus-
response and population coupling of individual neurons is
variable28–30. While some neurons show stable responses to a given

Fig. 1 | Visualization of the examined synaptic diversity mechanisms and their
respective artificial model. a, b visualize the concepts that we have transferred
from a simplified biological model to the artificial neuron. Accordingly, the figures
show how these concepts correspond to functional elements in the artificial model.
Here xi denotes the input of the presynaptic neuron, wi the synaptic weight, and yi
the output of the postsynaptic neuron. f(⋅) denotes the activation function. Red
arrows indicate the backpropagation path, and blue arrows indicate the process
that overrides the weights. Circles denote operations, and squares denote

parameters. Black arrows indicate inputs and outputs. From left to right, the left-
most figure refers to a neuron, as most ANN models are interpreted today. The
second illustration shows a neuron in which individual synapses have different
learning speeds, highlighted by different color brightness. The third illustration
shows small synapses subject to random reinitialization, representing spine remo-
deling and pruning. An apostrophe indicates the weight of the pruned synapse. The
fourth illustration shows a neuron with multiple synapses between two neurons.
The biological neuron is adapted from139 (released into the public domain).
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stimulus over days, others are highly dynamic29,31,32. It has been hypo-
thesized that this variability results from different neuron-specific
learning rates. This observation has functional implications; whereas
neurons with high learning rates can flexibly learn new stimulus
associations, less plastic neurons act as a stable, perturbation-resistant
“backbone" of stimulus representations29. Thus, numerous mechan-
isms influence synaptic plasticity and, by this, the rate at which
synapses change. In contrast, inANNs the learning rate is typicallyfixed
for all model parameters. Inspired by the biological concept, we pro-
pose different learning rates within a model by applying randomly
generated constant factors to the gradients of network’s synapses.
This means that a randomly initialized constant for each of the train-
able parameters of a network softens each learning step. We call this
approach fuzzy learning rates (FL). This concept involves the intro-
duction of a randomly initialized constant for each trainableparameter
of a network, causing a disturbance in each learning step. Blier et al.
observe that variation in the learning rates of artificial neurons benefits
hyperparameter robustness17. We hypothesize that diversity in synap-
tic plasticity, realized as FL, can stabilize and regularize learning
compared to the traditional approach. Other approaches like33

research on the Incremental Delta-Bar-Delta (IDBD) algorithm illus-
trates the significance of adaptive learning rates in enhancing learning
efficiency, a concept that resonates with the notion of FL in ANNs. The
IDBD algorithm’s capacity to adaptively modify learning rates
according to input relevance bears resemblance to the suggested
approach of introducing randomly generated constant factors to the
gradients of network synapses, which serves to improve learning sta-
bility and regularization. Adaptive learning rates used by ref. 34 are
similar to FL and are already observed to improve learning in linear
systems. In contrast to the methodology presented by Hu et al.35 that
perform learning rate distribution modeling at a layer granularity, our
approach implements this randomization at the individual synapse
level. While they employ a beta distribution to regulate learning rates
across entire layers utilizing Monte Carlo methods and dimensional
reduction techniques, our FL approach directly introduces stochasti-
city at the synaptic level through random initialization of constants for
each trainable parameter. This granular approach enables finer-
grained control over synaptic plasticity but would render their dis-
tributional modeling approach computationally intractable due to the
dramatically increased dimensionality of the parameter space. Speci-
fically, where Hu et al.35 compute redundancy among neurons using
inter-neuron distances to modulate layer-wise learning rate distribu-
tions, our method draws inspiration from biological neural systems in
which individual synapses exhibit variable plasticity25,26. The compu-
tational overhead of extending their distributional approach to indi-
vidual parameters would scale quadratically with the number of
parameters, making it prohibitively expensive for modern deep net-
works. Our synapse-level randomization achieves similar regulariza-
tion benefits while maintaining linear computational complexity. This
methodological distinction proves significant as it enables our
approach to more accurately reflect the heterogeneous plasticity evi-
dent in biological neural systems29, where individual synapses typically
demonstrate varying degrees of plasticity based on multiple factors
including spatial position and activation history. The granularity of our
approach enables learning of stable “backbone" representations
alongside more plastic components within the same layer-a property
that would be difficult to achieve with layer-wise distributional
approaches.

In biological neural networks, most excitatory synapses are
formed by a dendritic spine to which an axonal terminal is attached.
Dendritic spines grow, stabilize, and are pruned in an activity-
dependent manner. Activity-dependent spine formation and pruning
can depend on the correlation between neuronal activities (Hebbian-
like), acting on a timescale of hours, or homeostatic-like, which con-
trols network connectivity to reach a target activity level and acts on a

timescale of days19. In addition to these activity-driven changes, den-
dritic spines are also subject to activity-independent, spontaneous
remodeling and degradation36,37. Experimental studies have shown
that the survival probability of dendritic spines is independently
determined by their size and age38,39. Some spines are formed and
pruned within days38,40,41 while others are stable for months39,40,42. In
addition, there is a positive correlation between spine size and
synaptic strength43. Thus, as synapses experience potentiation of
synaptic strength, their survival probability increases. Consistent with
this notion, the proportion of persistent spines increases during
development in mice40. Finally, while spine maturation is often asso-
ciated with long-term potentiation, several studies have found that
spines mature and form functional synapses even in the absence of
synaptic activity44–46. Thus, dendritic spines are highly dynamic. In
contrast, the connections between ANNs are typically stable entities
that donot undergo spontaneous remodeling andpruning. Inspiredby
biological observations, we propose a model in which synapses
spontaneously reinitialize depending on their current weight. We call
this method weight rejuvenation. Other works, particularly in the field
of Dynamic Sparse Training (DST), are not reinitializing new weights
but eliminating them to increase generalization and also run-time
properties and improve thehardware implementation ability todeliver
key insights into47,48 learning how neurons can be efficiently elimi-
nated. The idea of DST49 ranges from increasing the maximum model
size for very large networks to reducing the number of floating point
operations50 calculating infrequent gradients per 1000 iterations. Also,
reinforcement learning is helped by51 that solves the problem with a
control task, decreasing the computation costs while increasing the
performance.52 reinitialized synapses randomly with small weights and
observed positive effects on learning.Weight rejuvenation comes with
a continuous random noise similar to the noise used by ref. 52, where
synapses are reinitialized if they donot contributemuch to a result and
are old enough to be reinitialized.

The ongoing formation and remodeling of spines and their
respective synapses results in multi-synaptic connections between
pairs of neurons, on average about 3–5 connections19,53,54. In contrast,
the connections of ANNs are usually modeled by a single synapse.
Multi-synaptic connections can have several functional implications.
For example, it has been shown theoretically that the collective
dynamics of multiple synapses can store information for a long time
despite synaptic turnover41. We propose multi-synaptic connections
that can be easily applied to existing ANN architectures. We call this
method weight splitting. Connecting multiple synapses to a single
input is expected to allow new activation patterns. For example, an
input connected to a neuron via a positive and a negative weight will
change the activation statistics. Multi-synaptic connectivity also dis-
tributes the gradient across multiple synapses in back-propagation,
which can harden an ANN against gradient inversion attacks. Fur-
thermore, in conjunction with diversity in synaptic plasticity, two
neurons can be connected via multiple synapses, each governed by a
different dynamic.

Results
We systematically planned and executed a series of experiments to
assess how biologically modified ANNs (biomod) perform on repre-
sentative tasks in relation to benchmark ANNs. These experiments
explore three proposed concepts to realize synaptic diversity in ANNs:
(1) weight splitting (WS): Establishing multi-synaptic connectivity; (2)
fuzzy learning rates (FL): Promoting diverse synaptic plasticity; (3)
weight rejuvenation (WR): Enabling spontaneous remodeling of con-
nections. The experiments are reported with different levels of opti-
mization of networks’ hyperparameters, such as network architecture,
learning rate, and batch size. We also analyze memory and computa-
tional impacts of the proposed methods. Furthermore, we analyzed
the network structure by observing changes in the Eigenvalue
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spectrum of the optimization problem. Finally, we evaluate how bio-
mod performs in a gradient inversion task to see how widely biomod
could be useful. All results in the main text consider models with all
three mechanisms. Please refer to the supplementary for analysis of
the individual mechanisms.

Efficiency of models with default hyperparameters
This study is performed on MNIST55, CIFAR10, and CIFAR10056. We
assess the effect of non-optimized default hyperparameters on ANN
while studying three architectures: a two-layer multilayer perceptron
(MLP), an eight-layer AlexNet, and a 56-layer ResNet. Themost relevant
hyperparameters for all experiments, i.e., batch size, learning rate,
gradient scaling rate τ, the rejuvenation distance factor dre, and the
division factor Γ, have been set to default values derived via a search
conducted with the MLP architecture trained on a 1% MNIST subset.
We decided for merely 1% of MNIST to not scarify too much valuable
training data and to prevent a very strong adaptation to a later ana-
lyzed problem. All remaining hyperparameters were set to the default
value of the machine learning framework PyTorch57.

Figure 2a shows a bar plot of the error rates on unoptimized
hyperparameter settings. Our results show that the accuracy levels
obtained with our proposed modifications are substantially higher
than those of the baseline models (cp. Supplementary Table 1). We
observe that the error rates of the AlexNet and ResNet architectures
are unstable in the CIFAR10 and CIFAR100 configurations. Regarding
the MLP experiments, our proposed modifications did not sub-
stantially improve the accuracy of the baseline model on the CIFAR10
dataset, with weight rejuvenation achieving the highest accuracy of
56.13%, compared to 55.00% for the baseline model. However, for the
MLP–CIFAR100 configuration, weight splitting achieved the highest

accuracy of 28.33% (23.62% for the baseline model), and for
MLP–MNIST, the combination of fuzzy learning rates, weight rejuve-
nation, and weight splitting achieved the highest accuracy of 97.25%
(95.70% for the baseline model). For the AlexNet experiments, the
baseline models produced unstable results with accuracies of 19.4%
and 1.3% for the CIFAR10 and CIFAR100 settings respectively. How-
ever, we observed stable accuracies whenever weight splitting was
applied, resulting in 63.42% and 33.71%, which were absolute 44.02%
and 32.41% higher than the baseline models respectively. We also
observed similar improvements in accuracy for the AlexNet–MNIST
and ResNet56–CIFAR10 configurations, with absolute accuracy
improvements of 21.45% and 14.42%, respectively. In other settings, we
observed small absolute improvements ranging from 2% to 5%.

Figure 2b compares the learning speed between models with the
proposed synaptic diversity and the traditional benchmark models
(cp. also Supplementary Table 2). In all cases, theworst learning speed,
i.e., the highest number of epochs, is observed for the baseline model.
Another observation is that biomod did not overfit after achieving the
highest accuracy, resulting in an overall superior area under the curve
(AUC) (cp. also Supplementary Table 3). We also observed that
ResNet56 exhibits clear overfitting behavior in its baseline configura-
tion (FL =0, WR=0, WS =0) and with only weight splitting enabled,
showing accuracy decline after reaching peak performance on
CIFAR10 and CIFAR100; however, this overfitting tendency is suc-
cessfully mitigated when either fuzzy learning rates or weight rejuve-
nation is introduced, with the most stable post-peak performance
achieved in configurations where both FL and WR are present (cp.
Supplementary Fig. 1). From the AUC, we also conclude that allmodels
reach a high accuracy fast but reach their highest accuracy late. We
observe the lowest number of epochs and the highest AUC for a

Fig. 2 | Comprehensive performance evaluation of biologically inspired mod-
ifications (WS, WR, FL) on neural networks with default hyperparameters
across MNIST, CIFAR10, and CIFAR100 datasets. a Error rate comparison
between baseline (red) models (MLP, AlexNet, ResNet56) and their biomod (green)
counterparts, showing consistent error reduction across architectures and

datasets, with particularly dramatic improvements for AlexNet on CIFAR10/100.
b Training efficiency comparison showing fewer required epochs to reach peak
accuracy in biomod, with improvements ranging from 9–47% reduction in training
time. Black whiskers denote standard deviations.
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combination of weight rejuvenation and weight splitting for the
MLP–CIFAR10 and MLP–CIFAR100 configurations and with fuzzy
learning rates for theMLP–MNIST setting. For AlexNet–MNIST, weight
rejuvenation and weight splitting achieve the best learning speeds but
fuzzy learning rates for AlexNet–CIFAR100. The best results are
achieved across all trained ResNet56 models with a combination of all
three methods. The same is true for the AlexNet–CIFAR10 configura-
tion. However, we observe worse accuracies for the AlexNet–MNIST
and CIFAR100 configurations, substantially deviating from the best
results but still outperforming the baseline experiment when com-
bining all three methods. For the MLP, the lowest number of training
epochs in order to reach the best training performance across any
dataset is observed when using Fl alone or WR combined with WS.

Runtime and memory performance
In order to study the computational impact of the proposed methods,
we evaluate CPU time, floating point operations (FLOPs), and memory
consumption for AlexNet, ResNet56, and the MLP, each with and
without the biomod methods applied (cp. Fig. 3). Our results show
notable differences in computational efficiency across these models.
TheMLPexhibited the fastestperformance, followedbyAlexNet,while
ResNet56 was the most demanding regarding time and memory.
Although the biomod method doubles the number of parameters, its

computational impact isminimal as the additional parameters are only
used once during the backward pass and are not trained. This effect is
more pronounced in smaller networks like AlexNet andMLP, while it is
almost negligible in ResNet. Consequently, the overall computational
overhead remains relatively low compared to the actual computation,
especially with larger batch sizes.

Qualitative comparison of the loss landscape
Analyzing the loss landscape of neural networks is crucial due to sev-
eral inherent challenges. The non-convex nature of the loss landscape,
with its multiple local minima and saddle points, complicates the
optimization process, making it difficult to find the global minimum58.
Additionally, the high-dimensional parameter spaces of neural net-
works create vast and intricate loss landscapes that are hard to visua-
lize and understand59. Moreover, saddle points, which are more
prevalent than local minima in high-dimensional spaces, can sig-
nificantly slow down training60. Understanding these aspects through
loss landscape analysis can lead to the development of more effective
optimization techniques and improved model performance.

The Hessian of a given optimization function provides a mathe-
matical description of its curvature. It is a squarematrix containing all
second-order derivatives. This means that a Hessian Eigenmatrix of a
neural network is a matrix with dimensions relative to the number of a

Fig. 3 | Computational cost summary (cp. Supplementary Table 4) for AlexNet
(blue, red), ResNet56 (green, brown), and MLP (orange, purple) with and
without the biomod. The evaluation includes profiling of memory usage, CPU
time, and FLOPs during the forward pass, the backward pass, and the optimizer
step. Computational costs and memory consumption are increasing from the MLP
viaAlexNet to the ResNet56as to be expected.Models with biomod consist of twice
asmanyparameters compared to thedefault versions, but their computational cost

rises only marginally due to the methods' single application in the backward pass
and diminishing impact with larger batch sizes. Top left: FLOPs vs batch size
showing scaling behavior. Top right: Trainable parameter count comparison
demonstrating the memory overhead of biological modifications. Bottom: CPU
time (left) and memory usage (right) across batch sizes. While biomod contains
twice the parameters, computational overhead remains modest, with impact
diminishing at larger batch sizes.
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model’s parameters. Since it is not feasible to calculate these matrices
for larger networks, LeCun et al.61 used the power method, Taylor
expansion, and the running average to calculate the quotient of the
smallest and the largest Hessian Eigenvalue (condition number) with-
out actually calculating theHessian. Li et al.62 employed thatmethod to
visualize the Eigenvalue MinMax spectrum of a network’s parameters
around the minimum. The quotient is especially interesting since the
largest positive Eigenvalue determines the strengths of the convex
curvature and the smallest (largest negative) Eigenvalue determines
the strength of the non-convex curvature. If the absolute value of the
largest eigenvalue is much greater than that of the smallest, the
function can be considered primarily convex63,64.

Figure 4a presents a loss landscape visualization that allows for a
qualitative comparison of the ResNet18 architecture, which achieved
an error rate of 3.76%, with FL+WR+WS refer to as biomod, which
achieved an error rate of 3.64%, resulting in a relative reduction of 3%.
Both loss landscapes are conical with a distinct shoulder step. The
plotted area is limited to the region where the landscapes differ the
most. The baseline model exhibits a less homogeneous area around
the minimum, with local maxima and minima and an overall narrower
area. Conversely, biomod shows a wider and flatter area. While these
visualizations offer valuable insights, it is crucial to acknowledge their
limitations in representing the vast complexity of high-dimensional
spaces. To address this, we complement our analysis with the
Eigenvalue-MinMax ratio spectrumacross the loss landscape in Fig. 4b.
For further observations see Supplementary Information: (Loss Land-
scape). We observe that both models have negative and positive
Eigenvalues suggesting that the optimization problem is non-convex.
However, the ratios are smaller for biomod with more than half of
them belonging to the smallest bin. The median ratio is 0.17 for the
baseline and 0.1 for biomod. Finally, in Fig. 4c, we present the
Eigenvalue-MinMax ratio around the optimum for the presented loss
landscape. The matrix shows a smooth surface with few local optima,
indicating that the loss landscape is not highly non-convex. However,
the Eigenvalue-MinMax-ratio reveals a higher ratio in the areas that
appearflat in the loss landscape visualization, suggesting a non-convex

structure. Biomod is observed to have lower ratio values, indicating
less non-convexity.

Resilience to gradient inversion attacks
Federated learning is a growing field, e.g., due to the growing demand
for medical data and the high demands that come with private data.
These data are usually trained on distributed machines to preserve
data privacy. However, a remaining vulnerability is the sharing of
gradients over insecure connections, which has been shown to allow
for the reconstruction of the private training data. To harden networks
and training procedures against these reconstruction methods is a
field of growing interest. Therefore, we also evaluated if the proposed
models can also improve privacy in the described federated settings.
Figure 5 visualizes the results of the gradient inversion experiment.
Note that an error of 100% denotes a difference that is the same size as

Fig. 4 | Loss landscape visualization and Hessian Eigenvalue-MinMax ratio
comparison between baseline and biomod ResNet18. a The two plots represent
the side view (left) and top view (right) of the loss landscape around the optimum,
found by SGD training. Blue and red colors correspond to lower and higher loss
values, respectively. The surface plot on the left shows loss values for the baseline
model withmesh, while the surface without mesh shows biomod. b Comparison of

the Hessian Eigenvalue-MinMax spectrum for the analyzed loss region between the
baseline and biomod. Lower ratios indicate a more convex surface. c Hessian
Eigenvalue-MinMax ratio for the plotted loss region in (a). Darker colors corre-
spond to lower values, indicating a more convex surface, while lighter colors cor-
respond to higher values.

Fig. 5 | Visual demonstration of enhanced privacy protection through gradient
inversion resistance. Comparison of original training images (left column) with
reconstructed images from gradient information using baseline AlexNet (middle
column) and biomod AlexNet (right column) after 100 epochs of training. Biomod
significantly degrades reconstruction quality, evidenced by increased pixelation
and loss of recognizable features, demonstrating enhanced protection against
privacy attacks in distributed learning scenarios.
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the target value. WS and FL dramatically increase the reconstruction
error and thereby privacy of training data in all setups. However, the
combination of allmethods yields the highest reconstruction errors. In
some cases, WR is observed to have the least influence, failing to
improve the reconstruction error. All results for the gradient inversion
experiment are shown in Supplementary Table 5. We calculated the
optimal reconstruction error based on the gradients of a batch. The
reconstruction attacks are successful if they can achieve low recon-
struction errors. The reconstruction errors are small, so we reported
them in percentage. The attacks are very successful, especially for the
untrained and unmodified MLP and the AlexNet. With errors of 3.47%
and 0.22%, the reconstructed images show fine details as shown in
Fig. 6, whilemaximumerrors of 55.53% and 101.79% are reached for the
untrained biomod. We observe the most significant reconstruction
errors of 135.35% and 155.43% for bimod (all methods) untrained and
trained ResNet32 architecture compared to 70.78% and 79.61% in the
baseline case. We also observed that weight splitting alone improves
the MSE in most cases, even in the untrained cases. FL alone does not
improve the MSE as it is only applied during training.

Task performances with optimized hyperparameter models
Here, we test several optimized models on four image classification
benchmarks and two time series prediction benchmarks, spanning a
wide range of ANN applications. We study four popular CNN archi-
tectures and a transformer for image classification and a mixture of
two RNN, one CNN as well as a transformer architecture for time series
forecasting. Thesemodels are, inmost cases, already strongly adapted
to the utilized benchmarks and yielding high performance. In order to
gain representative results, we purposely chose those highly tuned
models and evaluate how their performance changes when using the
proposed methods.

Figure 7a shows the prediction performance of trained models
with tuned hyperparameters using all proposed synaptic diversity
methods in combination, along with the relative improvements over
the respective baseline model (cp. also Supplementary Table 6). We
observe reduced error rates across all datasets and models ranging
from0.02% to 19.64%,with amaximumobserved standarddeviationof
0.012%. WResNet28 yields the lowest error rate for CIFAR with a rela-
tive improvement of 0.021% for CIFAR10 and 0.24% for CIFAR100,
respectively. Note that these results on CIFAR are substantially

improved compared to the original publication of the architecture
(cp.65 3.02% CIFAR10 and 16.58% CIFAR100).

Figure 7b shows prediction performance for trained recurrent
neuralnetworks, i.e., LSTMandGRU, and a convolutional FDN15 used to
forecast time series (cp. also Supplementary Table 7). We observe
positive effects on the normalized mean square error in all studied
architecture-benchmark configurations, ranging from 3% to 26%. We
further observe that the convolutional FDN architecture yields the
lowest error among the baseline trainings and still is being improved
when adding FL and WR (cp. Supplementary Table 7).

Additional observations
We conducted various analyses on various aspects of our biologically
inspired approaches, examining their impacts on neural network per-
formance and internal dynamics.

• Our experiments on different fuzzy learning rate sampling stra-
tegies showed that uniform distribution resulted in the strongest
improvement (Cohen’s d = 1.9 for CNN, 0.84 for MLP) with opti-
mal τ ~ 0.077. All distributions significantly outperformed base-
line. See Supplementary Figs. 2 and 3 and Supplementary
Information: Fuzzy Learning Rates Sampling Distributions.

• Implementing Dale’s principle by inserting excitatory, inhibitory,
or mixed Neurons. Our observation resulted in 5–10% mixed
neurons to be critical for learning stability. Here, we analyze how
models change by integrating Dale’s principle with FL, WR, and
WS techniques. See Algorithm and weight analysis in Supplemen-
tary Information: Dale’s Principle. Here, we present the main
observations. Method combinations systematically transformed
distributions, with biomod configuration achieving 98.17% accu-
racy. PCA revealed distinct clustering patterns in weight space.
See Supplementary Figs. 4–6. Combined biomod produced
highest peaks with lowest minima and broader, flatter basins,
enabling smoother optimization paths. See Supplementary
Figs. 7 and 8.

• Our analysis of catastrophic forgetting reveals significant
performance differences across four methodologies: Continuous
Backpropagation (CBP), L2 regularization, biologically motivated
modulation (biomod, combining Fuzzy Learning, Weight
Rejuvenation, and Weight Splitting), and biomod with CBP.
The biomod and biomod+CBP approaches demonstrated

biomodbaseline
Fig. 6 | Quantitative evaluation of gradient inversion resistance across neural
architectures and biological modifications. Bar plots compare mean squared
reconstruction error (MSE) between baseline (green) and biomod (red) (MLP,
AlexNet, ResNet20, ResNet32) on CIFAR10 dataset. Higher MSE values indicate

better privacy protection, with biological modifications increasing reconstruction
error by up to 56.3% in AlexNet and maintaining substantial improvements across
all architectures. Black whiskers denote standard deviations.
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accelerated early learning and superior peak performance,
exceeding 90% accuracy while maintaining stability throughout
training. Notably, biomod+CBP achieved a maximum of 90.8%
accuracy around iteration 2350, suggesting enhanced learning
capacity with reduced variability compared to other methods

(cp. Supplementary Fig. 9). Detailed experimental procedures,
including network architectures and hyperparameters based on
implementations from52 and comprehensive performance analy-
sis, are presented in Supplementary Information: Catastrophic
Forgetting.

a  Tuned classification

b  Tuned timeseries prediction

biomodbaseline

Fig. 7 | Comprehensive performance evaluation of the baseline(green) and
biomod (red) with optimized hyperparameters across diverse tasks.
aClassification error rates on four image datasets (CIFAR10, ImageWoof,CIFAR100,
Tiny ImageNet) comparing state-of-the-art architectures (ResNext, WResNet, Effi-
cientNet, SEResNeXt, Swintrans V2) with their biomod counterparts, showing

consistent error reductions of 0.1–19.6%. b Time series prediction performance on
Thomas and Lorenz96 benchmarks using various architectures (LSTM, GRU, FDN,
Transformer), demonstrating NRMSE improvements of 3.4–11.2% through biologi-
cal modifications. Small black whiskers denote standard deviations.
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Discussion
Our methods unify structural and functional plasticity in neural net-
works, providing a further glance at variability and continuous rewir-
ing in brain-like networks. This approach aligns with and extends
previous work on stochastic plasticity66–69. The core of our methods
rests on three key concepts: fuzzy learning rates, weight rejuvenation,
and weight splitting.

Our observation that fuzzy learning rates (FL) positively influence
learning speed, stability, and yield more optimal parameters aligns
with observations in biologically observed networks where noise
positively activates learning70,71. Although these observations have
been made primarily in spiking neural networks, our findings do not
contradict the assumption that randomnoise can benefit learning. The
variability introduced by FL mirrors not only biological processes but
also confers computational advantages, as suggested by ref. 72,
potentially improving performance and stability through nonuniform
initialization.

The weight rejuvenation mechanism in our model supports the
genetic findings of Schuster et al.73, who showed that synaptic growth
is accompanied by changes in synaptic protein levels. Thismechanism
enables continuous adaptation and growth of synaptic connections,
mirroring the biological resilience observed in self-assembling net-
works proposedby Plantec et al.74. It allows for rapid adaptation to new
information while maintaining overall network stability, aligning with
findings by Grooten et al.75 on adapting to noisy and shifting
environments.

Weight splitting introduces synaptic redundancy, allowing for
both long-term stable representations and rapid adaptation. This
aligns with the SpikePropamine framework76 and the STDP-driven
rewiring model77, enabling both stable long-term memories and quick
incorporation of new information. By duplicating neurons and sum-
ming them before activation, we introduce redundancy that may
highlight critical features, similar to ensemblemethods78–84. Regarding
Performance and Adaptability, we tested our methods on various
architectures under both optimized and default hyperparameter set-
tings. All architectures benefited from our methods, with those not
initially designed for CIFAR input sizes showing the most significant
improvements. This suggests our approach introduces beneficial reg-
ularization, especially for less finely tuned architectures, and can
mitigate overfitting tendencies in deeper architectures like ResNet56,
asweobserved (see Fig. 1).Withdefault hyperparameters,weobserved
even more pronounced benefits, particularly when combining all
proposed methods. For instance, ResNet56 showed an 8% improve-
ment onCIFAR100 benchmarks. The observation of stronger effects in
configurations with non-optimized, default hyperparameters is parti-
cularly relevant, suggesting increased resilience to poorly chosen
parameters. This mirrors research on how the brain functions reliably
in the presence of noise85 and could apply to extremely noisy envir-
onment tasks in reinforcement learning75.

Analyzing the Loss Landscape and Gradient Inversion Resistance,
we found that our methods produce broader minima in loss functions
with fewer local minima and lower Hessian Eigenvalue MinMax ratios,
suggesting a smoother, less non-convex target function60,64. This
explains the observed improvements in prediction accuracy and
learning speed. Additionally, our methods provide resistance to gra-
dient inversion attacks, a beneficial side effect of gradient weakening
and splitting over different synapses. Additionally, our methods pro-
vide resistance to gradient inversion attacks, a beneficial side effect of
gradient weakening and splitting over different synapses. Additional
experiments (cp. Supplementary Loss Landscape) on smaller archi-
tectures for every combination of FL, WR, and WS, both with and
without Dale’s principle86 (DP), confirm the main observations
regarding broader minima and smoother descent. Dale’s principle,
which historically posited that neurons release the same neuro-
transmitter at all synapses86, has been significantly challenged by

modern evidence of neuronal co-transmission87–91. As shown in the
supplementary information, multi-transmitter neurons are now
recognized as fundamental components of learning and memory cir-
cuits, with studies demonstrating that over 50% of terminals in path-
ways like the supramammillary-hippocampal exhibit dual transmitter
capability92 (see Supplementary Information: Dale’s Principle). Nota-
bly, the imposition of Dale’s principle consistently raised the final loss
while narrowing the basin, yet it still yielded convergent solutions-an
encouraging outcome given the usual challenges of training strictly
excitatory inhibitory networks. Without Dale’s principle, the triple
combination of methods produced steeper and more direct trajec-
tories through parameter space, underscoring the robustness of these
approaches across a broader configuration set. These findings suggest
that, although Dale’s principle led to inferior performance here, its
successful integration may ultimately expand biologically grounded
modeling avenues in computational neuroscience.

Our analysis of weight distributions (see Supplementary Infor-
mation:Weight Distributions) across differentmethodological settings
reveals systematic patterns that support our loss landscape analysis.
Synaptic weight distributions show distinct characteristics depending
on the applied methods, with statistically significant deviations from
the expected log-normal distribution. In this theoretical distribution,
most weights are small, while a few are large, as previously observed
by15. For the baseline configuration, we find strong deviations from log-
normality, with a Shapiro-Wilk test yielding p = 3 × 10−6 and a K2 test
result of 6 × 10−5. The distribution exhibits notable negative skewness
(−1.29) and moderate positive kurtosis (1.14).

Individual methods induce systematic transformations in these
distributions; notably, weight splitting substantially reduces skewness
magnitude (-0.74) while normalizing kurtosis (0.23). Perhaps most
intriguingly, biomod demonstrated superior performance in our loss
landscape analysis-achieves peak accuracy (98.17%) while maintaining
moderate deviations from perfect log-normality (skew = -0.44, kurto-
siss = -1.52). This finding reinforces the notion that optimal network
performance does not necessarily demand strict adherence to log-
normal distributions, aligning with our observations of broader
minima in loss landscapes. Principal component analysis of weight
spaces reveals distinct clustering patterns, particularly pronounced in
configurations implementing multiple methods. Indeed, these con-
figurations exhibit fundamental alterations in synaptic organization
that correspond to the observed smoothing of loss landscapes. These
distributional characteristics provide compelling evidence for the
synergistic effects of our proposed methods, complementing our
earlier findings on loss landscape geometry and gradient descent
trajectories.

Catastrophic forgetting is the phenomenon where neural net-
works rapidly lose previously learned information when trained on
new tasks or data distributions. Additional empirical observations on
catastrophic forgetting (see Supplementary Information: Catastrophic
Forgetting) indicate significant performance differences across
methodologies. The biomod and biomod+DP (DP refers biomod
trained incorporating Dale’s Principle) configurations demonstrated
enhanced early-phase learning acceleration, achieving accuracy levels
of 87–88% within the initial 200 training iterations, surpassing the
86–87% baseline established by traditional approaches. This accel-
eration manifested with statistical consistency across multiple
experimental runs (p <0.05), indicating robust enhancement of initial
learning dynamics. The intermediate phase revealed an informative
hierarchical performance pattern: biomod maintained accuracy of
88–90%, while L2-regularized configurations stabilized at 87–88.5%.
Notably, the performance gap remained statistically significant
(p < 0.01) throughout this phase. During peakperformance, distinctive
spikes emerged: biomod+DP achieved maximum accuracy of 90.8% at
iteration 2.350, exhibiting substantially reduced variance (±0.9%)
compared to classical methods (±1.2%). The convergence analysis
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revealed consistent performance increases of our biologically inspired
approaches, with biomod variants stabilizing at 90–91% accuracy
compared to L2’s 89%. Our methods effectively unify structural and
functional plasticity in neural networks, providing deeper insights into
variability and continuous rewiring in brain-like networks. This
approach aligns with and extends prior work on stochastic
plasticity66–69. The core of our methodology rests on three key con-
cepts: fuzzy learning rates, weight rejuvenation, and weight splitting.

Limitations and future directions
Our study has limitations, including a restricted set of tested archi-
tectures and tasks.However,we aimed to cover relevant concepts such
as convolutions, recurrence, batch normalization, and residual con-
nections. Loss landscape visualizations provide only rough estimates
of high-dimensional spaces, and conclusions should be considered
cautiously. Future research should focus on developing stronger
mathematical explanations for our observations, guided by work such
as Kappel et al.69. We could create more realistic models of spine size
dynamics68, explore different types of priors93 and astrocyte-mediated
plasticity94. Our observation that implementing Dale’s principle95 leads
to inferior results could be further explored by implementing heavily
constrained plasticity93. Optimizing nonuniform sparse initialization72

and dynamic weight adaptation75 could further improve performance
in challenging and changing environments. Our open-source Python
package assists researchers in implementing these concepts, provid-
ing aflexibleplatform for them to extend. This tool can helpbridge the
gap between computational models and biological observations in
neural plasticity research. Future work should study how our methods
affect different parts of neural networks and how they interact with
various optimization techniques, requiring expertise from both com-
putational neuroscience and machine learning.

In conclusion, our synaptic sampling framework offers a promis-
ing approach to creating more robust, adaptable, and biologically
plausible ANNs. Bridging computational principles with biological
observations provides new insights into the mechanisms of learning,
memory formation, and network robustness.

Methods
We aim to bring and evaluate BNNs’ core synaptic plasticity concepts,
i.e., diversity in synaptic plasticity, spontaneous spine remodeling, and
multi-synaptic connectivity, to ANNs. Therefore, we propose a for-
malization for each that aims to preserve the concept while being
lightweight enough to be used as a plug-in replacement within common
ANN architectures. We refer to these three formalizations as: fuzzy
learning rates (FL), weight rejuvenation (WR), and weight splitting (WS).

Fuzzy learning rates (FL)
Fuzzy learning rates aim to introduce diversity in synaptic plasticity
to ANNs.

Formalization. We propose different synaptic learning rates η̂n, i per
synapse belonging to a neuron and affecting their corresponding
weight wn,i. Synapses are enumerated with n =0, 1, 2, … and
i = 0, 1, 2, …, where n denotes the post-synaptic and i the presynaptic
neuron. We denote the unbiased neural transfer function as
ϕn = g(∑i∈Iwn,ixi), where xi refers to the input of neuron i and g refers to
an arbitrary nonlinearity, e.g., a biologically motivated96,97 rectified
linear unit function (ReLU)98–100. For this reason, we also perform all
experiments with biases initialized to zero. Accordingly, the learning
rate of each synapse is realized as a constant random factor applied to
its gradient. Thus, a typical gradient descent step changes from
wn,i,t+1 =wn,i,t − η ∇ ϕn,i into

wn, i, t + 1 =wn, i, t � η∇ϕn, i � η̂n, i: ð1Þ

A factor η̂n, i is randomly drawn from a uniform distribution per
weight upon initialization of the network

η̂n, i  Uð1� τ
2
, 1 +

τ
2
Þ, ð2Þ

where U is the uniform distribution and τ is the gradient scaling rate.
The runtime of this method is independent of the size of the input
sample and is run once for all weights. However, the number of
operations required to propagate the network increases linearly
with the size of the model. Since biological neural networks exhibit
diverse neural plasticity distributions (refs. 101–104), we evaluated
several distribution types (uniform, normal, log-normal, geometric,
and beta) in a preliminary experiment (see Supplementary Infor-
mation: Fuzzy Learning Rates sampling distributions). Finding no
statistically significant differences in performance between dis-
tributions, we proceeded with the uniform distribution for ourmain
experiments.

Intuition. Zhou et al.105 found that optimizers with smoother gradient
noise needmore iterations to leave localminima because ADAM tends
to favor sharper minima. They compared the ADAM optimizer to the
SGDandobserved that the SGDexits localminima faster due toheavier
gradient noise, resulting in better convergence to lower minima.
Neelakantan et al.106 experimentally observed that larger networks
generalize better when gradient noise is induced, and the localminima
are wider. Methods that evaluate the sharpness of local minima and
promote flatter minima are refs. 65,107.

Weight rejuvenation (WR)
Weight rejuvenation aims to introduce random reinitialization of
synaptic connections inspired by the spontaneous spine remodeling
of BNNs.

Formalization. Weight rejuvenationmeans that a weightwn,i is reset to
a random value with a certain probability, mimicking spinal purging
and formation. More specifically, the smaller a weight becomes during
a training process, the higher its probability of reinitialization. The
Gaussian probability is derived via the commutative density function
of the normal distribution:

re = 1�
1

σre

ffiffiffiffiffiffi
2π
p

Z wn, i

�1
e�

1
2

t�μ
σre

2

dt, ð3Þ

where σre is the rejuvenation variance calculated with respect to
the maximum value of a layer’s synaptic weights and μ equals 0.
Thereby,

σre = jwmax=drej, ð4Þ

where dre is the rejuvenation distance factor. For example, a rejuve-
nationdistance factor of 1means that themaximumsynaptic weight of
a layerwmax is reinitializedwith a probability of ~16%.We later use a dre
of 14 that shrinks the probability of rejuvenating the largest weight to
zero. For example, weights <0.2 then have a probability of 39%, if the
wmax is 1. After an initial phase, the number stagnates at a certain level,
introducing further noise into the synaptic weights. The time con-
sumption is independent of the size of the input data and is calculated
once per training step for all weights. However, weight rejuvenation
increases the total number of network operations linearly with the
model size. Furthermore, trained ANNs are often characterized by
relatively few large weights and most small weights15. Therefore,
iterative rejuvenation of small weights is not expected to affect the
current training progress but may help to explore new training
directions.
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Intuition. DropConnect randomlymasks synaptic weights, resulting in
noisy activation and improved generalization108. Thismethod is related
to weight rejuvenation, as it shows that noisy weights and even ran-
domly masked weights can improve learning.

Weight splitting (WS)
Weight splitting aims at incorporatingmulti-synaptic connectivity into
ANNs, inspired by the observation that biological neurons often have
multiple connections among each other (cp. Fig. 1).

Formalization. We implement WS by incorporating multiple inputs
into each of the N neurons. Here Γ denotes the set of indices of the
replicated neurons and its cardinality is interpreted as the number of
connections between a pair of neurons. The division factor ∥Γ∥
determines the number of inputs. The inputs are each multiplied by a
weight and then aggregated using a transfer function followed by an
aggregation function. We found that a plausible combination is an
identity function as a transfer function and the sum as an aggregation
function41. These resulting multiple linear units allow for varying
weights per synapse and learning information faster than forgetting
when WR is used. Similarly, the transfer function of a layer is denoted
by

ϕn = g
X
γ2Γ

X
i2I

f ðwn+ γb N
kΓkc, i xiÞ

 !
80≤n<

N
kΓk , ð5Þ

where b N
kΓkc is the distance of the accumulated synapse indices. The

functions f(⋅), g(⋅) are activation functions. The parameters in the
activation function f(⋅) are the input xi and its corresponding weight.
Because w is a continuous list of numbers, we need to group several
weights for each input to produce one output. If Γ is 1, meaning we are
not using weight splitting (WS), each weight wn is multiplied by its
corresponding input index i for all N output neurons. When we use
weight splitting with a factor of 2, we reduce the number of outputs to
Ndivided by 2. The total number ofweights remains the same, but now
we skip every otherweightwhen adding up the inputs for each neuron.
This skipping is controlled by b N

kΓkc, which helps us decide upon the
weights to include in each neuron’s calculations. To allow our method
to work as a drop-in replacement, we need to increase the number of
neurons after this operation. We, therefore, duplicate the neurons Γ
times so that the resulting copies are not the inputs of the aggregation
in the next layer. This leads to changed connectivity in the network,
possibly changing its behavior. WS increases the total number of
operations of a network linearly with the model size, but indepen-
dently of the input sample size.

We did not include Dale’s principle because we wanted to reduce
the parameter complexity of our evaluations, and we did not find any
configuration where the training was not heavily impaled.

Intuition. Gated Linear Units109 is a related concept that combines the
identity function and a sigmoid function with a product aggregation
function. The method provides a strong gradient over deep networks
andperforms feature selection inNLP tasks.However,more research is
needed to find biologically plausible combinations.

Experimental setup
We conducted four sets of experiments. The first set aimed at evalu-
ating the proposed methods with optimized hyperparameters on
state-of-the-artmodel architectures. The second series evaluating how
the accuracy of different models is influenced by non-optimized
default hyperparameters. The third set had a more qualitative char-
acter to gain an intuition on how the proposed methods influence
learning. Lastly, we evaluated how our modifications change the
models behavior in a differential privacy setting.

Default hyperparameters. All experiments in this series are run with
default hyperparameters. To obtain unbiased general hyperpara-
meters, we train and evaluate the MLP on a 2:1 split of the MNIST
dataset for ten epochs and a batch size of 1000usingNevergrad110 with
a budget of 100 ( ≈3 GPU hours) to determine the learning rate, batch
size, the gradient scaling rate τ, the rejuvenation distance dre, and the
replication factor Γ. We set the parameters τ = 0.09, dre = 14, and Γ = 2
to obtain the highest accuracy in this setting (cp. supplementary Sec.
Predictions with Default Hyperparameters). No other augmentation or
regularization was used except for the inherent methods per archi-
tecture, i.e., residual connections and batch normalization of the
ResNet architecture. We train a network for 100 epochs and retro-
spectively identify the epoch where accuracy did not increase for five
consecutive epochs (early stopping). We report this epoch as a mea-
sure of learning speed and report the model’s test accuracy at
this epoch.

To study how the proposed methods affect the performance of
artificial neural architectures, we perform triple cross-validated
experiments on the MNIST55, CIFAR10, and CIFAR10056 benchmarks.
The cross-validation was performed by concatenating the training and
the test samples and splitting them into three equal parts, testing one
part at a time for three consecutive runs, and averaging the results. We
normalize the data samples using the mean and standard deviation
calculated on the training splits. We also investigate three network
architectures: a shallow learning MLP, a modified version of AlexNet6,
and a ResNet20/32/56111. We minimize a cross-entropy loss function112

using SGD with a learning rate of η = 0.01 over all classification
experiments. The MLP consists of one hidden layer of 1000 neurons
for MNIST training and two hidden layers of 3000 neurons each for
CIFAR10 andCIFAR100 training. Themodelswithweight splitting have
the same number of trainable parameters as the models without
weight splitting. Accordingly, we duplicated the activations of each
layer to maintain the number of activations of each layer. All experi-
ments together resulted in 1200h of training time on Nvidia 2080 Ti
GPUs. The learning speed is determined in an early stopping scheme.
The training machines utilized 10 GPU together with 40 Intel(R)
Xeon(R) Silver 4114 CPUs @ 2.20GHz with a total memory of 386G GB
on python v3.7 torch v1.5 and torchvision v0.8.

Qualitative comparison of the loss landscape. The first experiments
evaluate how the proposed biologically meaningful modifications
influence the loss landscape of trainedmodels (cp. Fig. 4).We evaluate
the shape of the loss landscape and the eigenvalue MinMax, i.e. the
ratio of the models Hessian. We used the method and code provided
by62 to visualize the loss landscape on an unmodified and with biomod
ResNet18111. The hyperparameters were chosen as proposed by107 and
we minimized a cross-entropy loss function112. We used the cosine
annealing learning rate schedule113 for 400 epochs with a start learning
rate of 0.1, label smoothing of 0.1, weight decay of 5e − 4, batch size of
256, and the adaptive SAM optimizer65 with SAM ρ of 1.0 and
momentum of 0.9. We also used random cropping of 32 × 32 pixels
with 4 pixel padding, random horizontal flipping, and channel
normalization.

Resilience to gradient inversion attacks. We also observed whether
biologically motivated gradient noise, as suggested by ref. 114, or
splitting the gradient over multiple weights, as suggested by ref. 115,
canhardenneuralnetworks against gradient inversion attacks116. In this
experiment, we trained for 100 epochs using SGD with a learning rate
of 0.1 and an impulse of 0.9. We normalize the data samples using the
meanand standard deviation calculated on the training splits.Weuse a
shallow learning MLP, a modified version of AlexNet6, and ResNet20
and ResNet32111, each model trained and untrained. We tested the
untrained models because they have stronger gradients and facilitate
gradient inversion attacks. The reason is that attackers could attack
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during training and start collecting data samples from the
training data.

Tasks and models with optimized hyperparameters. This study is
performed on common benchmark datasets, i.e.,
CIFAR10 +CIFAR10056, https://github.com/fastai/imagenette#image,
and Tiny ImageNet117. The CIFAR benchmarks consist of 10 and 100
classes respectively. Imagewoof consists of 10 similar dog breeds
extracted from ImageNet118. Tiny ImageNet consists of 200 classes
extracted from ImageNet. Each class is represented by 6,000
(CIFAR10), 600 (CIFAR100), 700 (Imagewoof), and 500 (Tiny Ima-
geNet) images. The test set consists of 10,000 images for all bench-
marks except for Imagewoof, which consists of 300. The study was
conducted on five different random seeds, resulting in a standard
deviation smaller 0.1%, which is observed for the BioEfficientNet V2M
on CIFAR 100. The experiments are conducted on four ANN archi-
tectures: ResNext29 32 × 4d119, WideResNet 28 × 10120, EfficientNet
V2M121, and SEResNeXt122 and a transformer architecture SwinTrans
V2t123. The models were initialized with 0 bias.

We did not use weight splitting for the experiments performed in
the tuned setting since we did not observe a positive effect on the
tuned regularization. The remaining hyperparameters of the proposed
method (gradient scaling rate τ∈ {0.00001, 1.0}, rejuvenationdistance
dre =0.30) are optimized by Bayesian optimization124,125 using NGopt, a
method proposed by ref. 126 parallelized with the Asynchronous
Successive Halving Algorithm127,128 with a budget of 400 in about 120
GPU hours. We found the hyperparameters dre = 6 and τ = 0.5 to be
optimal over the entire series. ResNeXt119 and WResNet120 are opti-
mized for image classification with widths from 32–70 pixels. In
comparison, EfficientNetV2121 and SEResNeXt122 are designed for
widths from 224–320 pixels. All architectures are initialized with their
PyTorch standard initialization procedure and zero bias.

We perform time series analyses on two benchmarks: the rela-
tively simple Thomas time series129 is a relatively small dataset with
three dimensions, and the Lorenz’96 dataset130,131 consisting of
396 slow and fast oscillating dimensions derived from ordinary dif-
ferential equations. We utilize LSTM132, GRU133, and FDN15 for time
series prediction as well as a transformer architecture134. LSTM and
GRU use 512 neurons in a layer with attention. The FDN uses a layer
with 225 convolutional kernels with 125 channels. We also used the
cosine annealing learning rate schedule113 for 400 epochs with a start
learning rate of 0.1, label smoothing of 0.1, weight decay of 5e − 4,
batch size of 256, adaptive SAMoptimizer65, and optimizer parameters
ρ = 1.0 and momentum=0.9. To evaluate the time series prediction
task, we used the experimental design of135 predicting time series
generated by ordinary differential equations, that is, the single three-
dimensional scale Thomas system and themultiscale 396-dimensional
Lorenz system. We took 10,000 samples from both systems. We
sampled from the Thomas system with time steps of size dt =
0.0002882 and parameters a = 1.85 b = 10 with a Lyapunov
exponent136 LLE ≈0.76137. Themultiscale Lorenz system is sampledwith
the time step dt = 0.1 and the parameters J = 10, b = 10, c = 10, and h = 1,
with 36 x-dimensions and 360 y-dimensions; for this parameterization,
the Lyapunov exponent LLE ≈ 20138.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data we used is publicly available. MNIST is available at55, CIFAR10
and 100 is published from56, ImageWoof is located here https://github.
com/fastai/imagenette#image and tiny Imagenet here117. The pretrained
Models can be downloaded on this https://docs.pytorch.org/vision/

main/models.html. The chaotic time seriessearies thomas129 and
lorenz96130 are available at https://doi.org/10.6084/m9.figshare.19114151.

Code availability
To ensure long-term usability and integration with existing PyTorch
models, we adhere to software development best practices. These
include continuous integration with upstream PyTorch, regular relea-
ses on PyPI under the name https://pypi.org/project/pytorch-bio-
transformations/, and comprehensive documentation available at
https://ceades.github.io/pytorch_bio_transformations/index.html. Our
core implementation is accessible at https://github.com/CeadeS/
pytorch_bio_transformations, with a reproduction package at https://
github.com/CeadeS/BioLearn. These practices aim to create a robust,
sustainable tool for the research community." Our reproduction
package contains all the code needed to reproduce the reported
experiments, including the hyperparameters and network imple-
mentations. TheAll code is publicly available at https://doi.org/10.
6084/m9.figshare.19114151.
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