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Metabolic modeling reveals a multi-level
deregulation of host-microbiome metabolic
networks in IBD

Jan Taubenheim 1,8 , A. Samer Kadibalban1,6,8, Johannes Zimmermann 1,2,7,
Claudia Taubenheim3, Florian Tran 4,5, Stefan Schreiber4,5, Philip Rosenstiel 4,
Konrad Aden 4,5 & Christoph Kaleta 1

Inflammatory bowel diseases (IBDs) are chronic disorders involving dysregu-
lated immune responses. Despite the role of disrupted host-microbial inter-
action in the pathophysiology of IBD, the underlying metabolic principles are
not fully understood. We densely profiled microbiome, transcriptome and
metabolome signatures from longitudinal IBD cohorts before and after
advanced drug therapy initiation and reconstructed metabolic models of the
gut microbiome and the host intestine to study host-microbiome metabolic
cross-talk in the context of inflammation. Here, we identified concomitant
changes in metabolic activity across data layers involving NAD, amino acid,
one-carbon and phospholipid metabolism. In particular on the host level,
elevated tryptophan catabolism depleted circulating tryptophan, thereby
impairingNADbiosynthesis. Reducedhost transamination reactions disrupted
nitrogen homeostasis and polyamine/glutathione metabolism. The sup-
pressed one-carbon cycle in patient tissues altered phospholipid profiles due
to limited choline availability. Simultaneously, microbiomemetabolic shifts in
NAD, amino acid andpolyaminemetabolismexacerbated these hostmetabolic
imbalances. Leveraging host and microbe metabolic models, we predicted
dietary interventions remodeling the microbiome to restore metabolic
homeostasis, suggesting novel therapeutic strategies for IBD.

Inflammatory bowel disease (IBD), with its two main entities Crohn’s
disease (CD) and ulcerative colitis (UC), represents a severe inflam-
mation of the gastrointestinal tract. While UC is limited to the mucosa
of the colon, CD manifests as transmural inflammation in the terminal
ileum, the perianal region or even the complete digestive tract1. IBD
presents as recurrent flares of inflammation that ultimately lead to

widespread tissue destruction with a drastically increased risk of
sequelae such as colitis-associated cancer or the necessity to surgically
remove parts of the digestive tract2,3. Previous work has uncovered
substantial genetic and environmental contributions to disease sus-
ceptibility, but the primary causes of IBD are unknown1,4–6. Besides a
strong involvement of innate and adaptive immunity, dysbiosis of the
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intestinal microbiome is a hallmark of IBD1,4–7. However, to which
extent intestinal dysbiosis is a contributor to IBD-associated patho-
mechanisms or a consequence of intestinal inflammation so far
remains unclear.

Current therapeutic approaches aim to specifically interfere with
key immune pathways (e.g., TNFα, IL-23, JAK-STAT, IL-6) involved in
the perpetuation of the mucosal immune response8. Although the
advent of novel therapies, particularly JAK1/IL-23 inhibition9, indicates
improved disease control, there is still a considerable amount of
approximately 40% of patients that do not benefit from any IBD
therapy, leaving a substantial therapeutic gap and opportunities for
improvement of outcomes10.

Previously, we have used constraint-basedmetabolicmodeling of
the microbiome to investigate IBD-associated changes in model-
predicted microbiome metabolic activity and its association with
therapy response during anti-inflammatory therapy11. We found that
IBD microbiomes were depleted of within-microbiome metabolic
exchanges and enriched with interactions that contribute to intestinal
dysbiosis, in particular for patients not responding to anti-
inflammatory therapy. One hallmark of decreased metabolic exchan-
ges was the reduced production of the anti-inflammatory short-chain
fatty acid (SCFA) butyrate in non-responding patients which we could
confirm using metabolomics11. In other studies, microbial community
metabolic modeling revealed that dysbiosis is associated with
increased amino acid synthesis and reduced sulfur species production
in IBD patients12 as well as with a reduced potential to produce sec-
ondary bile acids13. Modeling also revealed that even small IBD related
perturbations of the microbial community change the hepatic meta-
bolic potential in glutathione turnover and bile acid metabolism14.
Furthermore, human metabolic models have been used to con-
textualize IBD-related gene expression profiles and to subgroup
patients usingnetworkcoherence inferredby reaction activity scores15.
Another study used context-specific modeling to predict metabolic
changes in the CD patient-derived organoids and confirmed accuracy
of the model prediction by metabolomics, rendering it a suitable tool
to understand inflammation-induced metabolic changes in the host16.

While metabolic modeling has uncovered various disease-
associated metabolic alterations in individual tissues and the micro-
biome in IBD, it remains unclear whether common patterns exist that
could reveal primary drivers of pathology across tissues and thereby
differentiate causal relationships from consequential associations.
Holistic studies investigating interactions of metabolic functions of
patients and the microbiome are sparse and often miss functional
explanations17. To address this knowledge gap, we applied metabolic
modeling to two extensively phenotyped IBD cohorts to understand
metabolic alterations in the host and the microbiome during inflam-
mation, remission, and response to treatment. We found a high con-
cordance between changes in metabolic activity on the microbiome
side and linked pathways on the host side. In particular, we observe a
profound loss of metabolic activity both in inflamed tissue and sys-
temically in the host that is strongly tied to changes wemodeled in the
microbiome. We found a reduced host NAD metabolism and altered
tryptophan metabolism in parallel to a reduced microbial nicotinic
acid production. Further, we observed intricate links in the amino acid
metabolism of the host and the microbiome, resulting in reduced
transamination reactions in IBD patients and consequently leading to
reduced systemic glutathione production. Finally, we found reduced
one-carbon (C1) metabolism with consequences for the lipid home-
ostasis in the host, which is exacerbated by the reduced synthesis of
homocysteine by the microbiome. Using serum metabolomics data,
we confirmed several model-based predictions in host metabolic
activity tied to the microbiome and thereby identified potential mar-
kers of deregulated host-microbiome-co-metabolism in IBD. Finally,
using the derived metabolic microbiome models, we identified
potential nutritional interventions that could be used to counteract

inflammation-associated changes in the microbiota that are tied to
deregulated inflammatory metabolism in the host.

Results
Inflammation is associated with reduced within-community
metabolic exchange and altered microbiome-host exchange
To understand how metabolism in the microbiome and patients
changes during inflammatory flares, we used data from two long-
itudinal cohorts of northernGerman IBDpatients (see “Methods”) with
a total of 296, 324, and 565 biopsy, blood and 16S samples from 62
patients with CDor UC, respectively (Supplementary Fig. 1). To analyse
the microbial metabolic changes during IBD, we mapped 16S sequen-
cing data to microbial reference genomes of the HRGM collection18

(see “Methods”). These genomes were used to reconstruct genome-
scale metabolic models and model metabolic fluxes within microbial
communities in coupling-based (MicrobiomeGS211) and agent-based
(BacArena19) approaches (Supplementary Figs. 2 and 4, mean model
size: 50.1 ± 21.27 bacteria per model, see “Methods” for details). We
predicted flux distributions for the bacterial communities and asso-
ciated individual reaction fluxes with the patients’ disease activity
scores (HBI/Mayo score), by building linear mixed models and using
the patient identifier as a random effect to account for patient-specific
effects in our longitudinal cohort. Disease activity score can be con-
sidered as a proxy for inflammation and we will use the terms syno-
nymously throughout the text. We identified 185 different bacterial
reactions whose fluxes were associated with inflammation (Fig. 1A and
Supplementary Datas 1 and 2), enriched in nine pathways (Fig. 1B). The
modeling approaches stress different aspects of microbial ecology
(MicrobiomeGS2—cooperation, BacArena—competition), hence we
detected relatively little overlap between both methods. Most reac-
tions in these pathways displayed reduced fluxes during inflammation,
with six pathways involved in the synthesis of NAD, 2-arachido-
noylglycerol, nucleotides, teichoic acid, flavins, and tetrapyrroles. The
remaining three pathways were involved in the degradation of com-
plex carbohydrates and their fermentation to SCFAs.

Observing changes in microbiome metabolism, we hypothesized
that cross-feeding of metabolites between bacteria (bacteria
exchange, see “Methods”) would differ in phases of high disease
activity. We identified ten metabolites with altered cross-feeding pat-
terns during inflammation (Fig. 1C and Supplementary Datas 3 and 4).
While lactate cross-feeding increased, all other metabolites showed
reduced cross-feeding. These included reduced amylotriose, glucose,
and propionate cross-feeding—metabolites related to fermentation
and SCFA production. Further, we found similar associations for oxo-
glutarate and succinate, two metabolites closely related to the tri-
carboxylic acid cycle, and alanine and aspartate (key amino acids in
various pathways). Notably, glucose, succinate, and aspartate are
precursors for flavine20, tetrapyrrole21, NAD22, and nucleotide23 synth-
esis, respectively. Therefore, the reduced microbial synthetic pathway
activity for NAD, 2-arachidonoylglycerol, nucleotides, teichoic acid,
flavins, and tetrapyrroles during inflammation (Fig. 1B) may be partly
driven by decreased cross-feeding of these key metabolites among
microbes (Fig. 1C).

To understand the consequences of microbiome metabolic
changes for the host during inflammation (host exchange, see
“Methods”), we investigated the association of microbial pro-
duction and consumption of metabolites with disease activity. We
predicted 19 inflammation-dependent metabolites, including
well-described metabolites dysregulated in IBD, such as reduced
microbial butyrate production24,25 and deconjugated bile acids
(cholate, glycocholate)26 production (Fig. 1D and Supplementary
Datas 5 and 6). Furthermore, we evaluated which taxonomic
groups contributed most to the production and consumption of
IBD-associated cross-feeding and host-exchanged metabolites
(Fig. 1E, F). Clostridia and Bacilli showed the highest contribution
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Fig. 1 | Disease activity-associated microbial metabolism. A Overlap in
inflammation-associated reactions between coupling- and agent-based modeling.
B Enriched pathways for inflammation-associated reactions. Points represent esti-
mates of linear mixed model association coefficients of significant reaction fluxes
with disease activity. Estimates above zero indicate higher activity in inflammation
(and vice versa). Triangles express coefficientmeans.C,D Estimates of linearmixed
model coefficients for inflammation-associated metabolite exchanges within the

microbiota (C) and between microbiome and the host (D). Centers display the
coefficient, whiskers express the confidence intervals of the estimate. Values above
zero indicate an upregulation during inflammation. E, F Contribution of microbial
phylogenetic classes to the uptake/production of target metabolites for within-
community exchanges (E) and exchanges with the host (F). micr. microbial, reac.
reaction, infl./inflam. inflammation, MGS2 MicrobiomeGS2, ES effect size (t-value),
n = 565 samples, multiple testing adjustments via Benjamini–Hochberg correction.
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to the cross-feeding of microbiomes (each nine different meta-
bolites, Fig. 1E). Both are producing metabolites whose cross-
feeding is associated with high and low inflammation, though low
inflammation metabolites are predominant. This indicates that
both phyla play important roles in healthy microbiome interac-
tions. Similarly, Bacteroidia predominantly produce metabolites
which are associated with low disease activity scores. Addition-
ally, Clostridia exhibited beneficial contributions to the produc-
tion of health associated metabolites and the consumption of
metabolites that are exchanged with the host during inflamma-
tion (Fig. 1F).

Modeling of tissuemetabolism in inflammation shows profound
changes in lipid and amino acid metabolism
To understand how metabolism of the patients’ tissue changes with
disease activity, we reconstructed context-specific metabolic models
(CSMM, mean model size 5408 ± 716 and 4997 ± 1466 reactions for
biopsy and blood, respectively, Supplementary Fig. 2) using bulk RNA
isolated from colon biopsies and blood samples and calculated the
metabolic potential of these models. We estimated reaction activity
using four different modeling-based approaches. First, we directly
determined reaction-level expression activities (rxnExpr) using the
gene-reaction rules of the models. Second, we considered reaction
absence or presence in the CSMM (PA). Third, we used flux variability
analysis to determine upper and lower bounds of each reaction which
we used to derive centers (FVA.center) and ranges (FVA.range) of
fluxes in the CSMMs. We used linear mixed models to test the asso-
ciation of rxnExpr, PA, range.FVA, and center.FVA with disease activity
while accounting for patient-specific effects by using patient ID as
random factor for each individual reaction.We identified 3115 and 6114
unique reactions significantly associatedwith disease activity in biopsy
and blood samples, respectively (Supplementary Fig. 3A and Supple-
mentary Datas 7 and 8). To facilitate interpretation, we performed an
enrichment analysis on the subsystem annotation from Recon3D. We
found 25 (24.3%) and 36 (34%) subsystems enriched by these reactions
in biopsy and blood samples, respectively (Fig. 2A). Generally, meta-
bolic changes were concordant locally (biopsy) and systemically
(blood), with a larger-than-expected overlap in enriched subsystems
across tissues (18 subsystems associated in both tissues, p < 1e−⁴, per-
mutation test). Most reactions in these subsystems showed lower
activity during inflammation.

For biopsy samples, we observed both an induction and sup-
pression of individual reactions in tryptophan metabolism, starch and
sucrose metabolism, and NAD metabolism (Fig. 2A), suggesting a
deregulation of these pathways during inflammation.

Inflammation led to notable shifts in modeling-predicted activity
in lipid metabolism, including alterations in peroxisomal transport,
steroid metabolism, and eicosanoid metabolism. Simultaneously,
enzymes associated with fatty acid oxidation, arachidonic acid meta-
bolism, and bile acidmetabolismexhibited reduced activity, indicating
decreased lipid degradation (Fig. 2A).

To identify key metabolites contributing to the observed meta-
bolic changes, we performed an enrichment analysis for metabolites
involved in inflammation-dependent reactions (Fig. 2C, D). We enri-
ched 36 metabolites (20 in biopsies, 25 in blood samples, with nine
overlapping) that were more prevalent in our prediction of IBD-
associated reactions than would be expected by chance. These “hub
metabolites” are expected to have a central role in inflammation-
associated metabolism. Almost all reactions linked to the enriched
metabolites showed reduced activity during inflammation. Among the
common hub metabolites in blood and biopsy samples, we detected
central energy metabolites (NAD, FAD), metabolites for general lipid
degradation (CoA, carnitine, including SCFAs such as acetate-CoA,
malonyl-CoA), and cholesterol. Furthermore, most tissue-specific
enriched hub metabolites were also lipid-related: different acyl-CoAs

(biopsy, blood) and cholesterol esters, phosphatidylcholine, and
phosphatidylethanolamine (blood). This finding reflects the number of
lipid degradation-associated subsystems and underlines the effect of
inflammation on lipid metabolism in IBD patients. Among the hub
metabolites identified in blood metabolic models, we also found sev-
eral amino acids (Arg, Gln, His, Lys, Trp), indicating deregulated amino
acid metabolism, particularly in the serum of IBD patients.

Our findings in host metabolism integrate well with the disease
activity-associated changes in microbiome metabolism. Firstly, many
IBD-associatedmicrobialmetabolites available to the host are involved
in the detected hostmetabolic subsystems (Fig. 2B and Supplementary
Fig. 4A), particularly affecting amino acid metabolic pathways. Sec-
ondly, similar metabolic pathways were affected in both, microbiome
and patients during inflammation, such as NAD synthesis and meta-
bolism, nucleotide synthesis and interconversion, or reduced synth-
esis of 2-arachidonoylglycerol and arachidonic/eicosanoidmetabolism
(Figs. 1B and 2A). Notably, the central energymetabolitesNADand FAD
were enriched in inflammation-associated reactions of biopsy and
blood samples, aligning with the reduced NAD and flavin synthesis
observed in microbial subsystems (Figs. 1B and 2C, D).

Serum metabolomics confirm metabolic modeling predictions
Next, we aimed to validate the in-silico predictions of host and
microbiome metabolism changes by measuring serum metabolite
concentrations using targeted metabolomics (biocrates MxPⓇ Quant
500). We used linear mixedmodels to associate serum concentrations
with disease activity scores (HBI/Mayo score) in the same manner as
before with the predicted metabolic functions (Patient-ID as random
factor, HBI/Mayo score as predictor see “Methods”, Supplementary
Data 9, and Fig. 3).

In association with disease activity, we identified 18 significant
metabolites (Fig. 3A and Supplementary Data 10). Nucleotides, sphin-
golipids, and fatty acids/acylglycerides generally exhibited increased
concentrations at higher disease indices, while amino acids and lyso-
phosphatidylcholines were suppressed (Fig. 3A, B).

Sixteen of the 18metabolites are involved in one ormore disease-
enriched host subsystems (biopsy: 7, blood: 14, Fig. 3C), confirming
ourmodeling results. High hypoxanthine levels in the blood suggested
reduced purine catabolism and nucleotide interconversion during
inflammation. Reduced phosphatidylcholines, increased sphingoli-
pids, and fatty acids might result from reduced fatty acid oxidation,
glycosphingolipid, and sphingolipid metabolism in the host. Addi-
tionally, we observed reduced levels of tryptophan, histidine, and
citrulline during inflammation—amino acids and derivatives involved
in the urea cycle, tetrahydrobiopterin metabolism, tryptophan meta-
bolism, arginine and proline metabolism, as well as alanine and
aspartate metabolism. Notably, for ten of the 14 host subsystems
(excluding tetrahydrobiopterinmetabolism, sphingolipidmetabolism,
and glycosphingolipid metabolism) associated with the metabolomic
changes, we also identified candidates from significantly altered
microbial products during inflammation (Supplementary Fig. 4A). This
suggests that the model-predicted changes in microbial metabolism
are reflected in the blood metabolome.

Data layer integration reveals deregulated host microbiome
co-metabolic pathways in IBD
To understand potential interactions between microbiome metabolic
activity, host metabolic activity, and the host metabolome, we per-
formed network analyses on the host metabolic networks for blood
and biopsy. To this end, we constructed a metabolic network with
reactions significantly associatedwith inflammation, only, once for the
blood and once for the gut tissue. Onto these networks we mapped
IBD-associated microbial and host metabolites (Supplementary Fig. 5
and Supplementary Datas 8, 11, and 12, for more detailed descriptions,
see Supplementary Information 1). Since these networks are not flux
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consistent anymore and thus unsuitable for metabolic modeling we
fell back to classical network analysis techniques like shortest paths.
We used the two networks to understand the relationshipofmicrobial,
metabolomics and hub metabolites in terms of path distances (com-
pare Figs. 1D, 2B, and 3A). To this end, we calculated the shortest path
(see “Methods”) between metabolite pairs of the three categories and
compared them to the path length of all other pairs in the network
(Fig. 4A–C). A short path was defined as the smallest combined edge
length between two metabolites. The edge length was calculated by
the sum of the degrees of the connecting metabolites to avoid short-
cuts through co-factors in the network (see “Methods”)27. We found

generally shorter paths for hub and metabolomics metabolites in
biopsy samples (Fig. 4A). In blood samples, path lengths between all
categories showed shorter paths than the rest of the network (Fig. 4C).
This indicates that inflammation-dependent blood metabolism is clo-
sely associated with both microbial and metabolomics derived meta-
bolites, whereas gut tissue metabolism appears more dependent on
blood metabolites than microbial metabolites.

To further explore the inflammation-dependent networks, we
derived closely connected compounds between the different layers.
To this end, we determined shortest paths between all pairs of meta-
bolites in the network and sub-selected those pairs of metabolites

Fig. 2 | Reduced host metabolic activity during high disease activity.
A Inflammation-association of host reactions grouped into significantly enriched
subsystems after linear mixed model association of reaction activity, presence/
absence of reaction and reaction range and center to inflammation (see “Meth-
ods”). Boxplots represent the estimates of the linear mixed model coefficient to
disease activity scores, hence values above zero indicate higher pathway activity
during higher inflammation and vice versa. B Most IBD-associated microbial
metabolites are part of the inflammation-associated host subsystems. C, D Hub
metabolites—metabolites enriched in inflammation-associated reactions. C The

boxplot shows estimates of linear mixed models coefficients for association with
disease activity scores of reactions which use the hub metabolites. D The barplot
indicates if metabolites are substrate, product or both in activated (up) or deacti-
vated (down) reactions during inflammation. Boxplots: center line, median; box
limits, upper and lower quartiles; whiskers, 1.5 times interquartile range; points,
outliers. n = 296 for biopsies and n = 324 for blood samples, multiple testing
adjustments via Benjamini–Hochberg correction. reac. reaction, inflam. inflam-
mation, SCFA short chain fatty acids.
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whose connecting shortest paths were among the shortest 5% (see
“Methods” for details) (Fig. 4B, D). In this analysis, we detected
numerous connections between microbiome-host metabolism and
blood metabolomics related to lipid metabolism. For biopsies, acyl-
carnitines (octanoyl-, 3-hydroxybutyryl,- and dodecanoyl-carnitine)
were predominantly connected to metabolites of the oxidative phos-
phorylation pathway, such as FAD, NAD(H), and ubiquinone/ubiquinol
(Hub-Met, Fig. 4B). This might explain the increased fatty acid con-
centrations in blood metabolomics (Fig. 3A) as a consequence of
reduced oxidative phosphorylation in gut tissue (Fig. 2A), potentially
caused by the reduced SCFA production by the microbiome (Fig. 1D).

Reflecting decreased β-oxidation (Fig. 2A), we detected short
paths connecting energy metabolism related hub metabolites with
acyl-CoA compounds from the microbiome and the metabolomics
(Fig. 4D). Furthermore, several lipids and energy metabolites iden-
tified as hub metabolites were connected by downregulated reac-
tions to microbial cholate (Fig. 4D), indicating interdependence of

lipid metabolism of the host and bile acid metabolism of the
microbiome.

Further, we observed short paths between different phospholi-
pids and sphingolipids in biopsy samples (Fig. 4B), accompanied by
the reduction of their interconversion during inflammation in blood
(Fig. 1D) and increasing concentration imbalance of these lipids
(Fig. 3A). This hints at a loss of the ability to interconvert these meta-
bolites and balance their concentrations.

To corroborate this notion, we performed a hypergeometric
enrichment analysis with the reactions along the shortest paths and
identified glycerophospholipid and sphingolipid metabolism as enri-
ched (Supplementary Fig. 6).

Finally, we noticed strong interconnections between amino acids
in inflammation-associatedmetabolism inboth tissues and between all
groups of metabolites (hub, microbiome, metabolomics). This inclu-
ded paths between asparagine, histidine, and tryptophan, (biopsy,
Mic-Met, Fig. 4B) as well as glutamine, arginine, histidine, proline,

Fig. 3 | Association between serum metabolomics and disease activity.
A Significant association of serum metabolite concentrations with disease activity
scores displayed as estimates for linear mixed model coefficients. Centers display
the coefficient, whiskers represent confidence intervals of the linear mixed model
(see “Methods”), values above zero indicate highermetabolite levels in high disease
activity. B Enrichment of inflammation-associated metabolites in metabolite

classes. Percentage values indicate the relative abundance of the class.
C Connection between inflammation-associated metabolites and modeling-
predicted inflammation-associated host pathways. n = 150 samples, multiple test-
ing adjustments via Benjamini–Hochberg correction. inflam. inflammation, met.
metabolite, no. number.
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Fig. 4 | Connected metabolites between microbial-, tissue-metabolism, and
metabolomics data layers. A, C Comparison of path lengths betweenmetabolites
from different data layers compared to randomly chosen metabolites. The dis-
played p-value describes results of a one-sided student’s t-test between the specific
group and all other paths (all). B, D Connected metabolites between data layers
among the 5% shortest paths between all metabolite pairs. Boxplots: center line,
median; box limits, upper and lower quartiles; whiskers, 1.5 times interquartile

range; points, outliers. For biopsy: all n = 1254898, Hub-Met n = 260, Hub-Mic
n = 160, Mic-Met n = 49 paths. For blood: all n = 2998770, Hub-Met n = 496, Hub-
Mic n = 480, Mic-Met n = 213 paths, multiple testing adjustments via
Benjamini–Hochberg correction. Hub hub metabolites, Met inflammation-
associated metabolites detected in metabolomics, Mic inflammation-associated
metabolites detected in microbiome modelling.
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asparagine, and leucine (blood, Hub-Met/Hub-Mic, Fig. 4D). Aspar-
agine, glutamine, and arginine form part of a glutamine-arginine axis
for amino acid transaminations which prompted us to examine whe-
ther amino acid interconversions were particularly affected by
inflammation.We searched our data set for reactions facilitating direct
interconversion between amino acids (mainly transaminations). Out of
the 37 reactions in our data set, we detected 33 reactions (~90%) sig-
nificantly associatedwith inflammation (15 for biopsy and 29 for blood,
Supplementary Fig. 7). Overall, the findings indicate a central role of
amino acid interconversion andNH4metabolismduring inflammation,
which was also reflected in the affected host metabolic subsystems,
such as decreased glutathione, glutamate, alanine and aspartate,
arginine and proline, methionine and cysteine metabolism, and urea
cycle (Fig. 2B). Simultaneously, we found aspartate and 2-oxoglutarate
(a glutamine derivative) among the metabolites exhibiting decreased
exchange amongmicrobes during inflammation (Fig. 1C), emphasizing
similar changes in microbial metabolism.

In addition to direct amino acid interconversion, we predicted
short paths from homocysteine to arginine, histidine, and phosphati-
dylethanolamine (Fig. 4D). Conversely, we detected short paths from
glutamine and phosphatidylcholine to homocysteine (Fig. 4D). This
describes the role of homocysteine in C1 metabolism, which connects
amino acid metabolism and membrane lipid metabolism. The enrich-
ment analysis with shortest path reactions confirmed these findings
and significantly enriched subsystems for tryptophan, valine, leucine
and isoleucine, histidine, alanine and aspartate, arginine and proline,
and methionine and cysteine metabolism (Supplementary Fig. 6).

Disease activity-associated metabolic functions in host and
microbiota are attenuated in responders and remitters
So far, we associated metabolic changes with disease activity and
unraveled the deregulated parts of the metabolic network, either as a
cause or consequence of intestinal inflammation. To better under-
stand the association of metabolism with treatment outcome, we
investigated metabolic changes in treatment response (“Response”)
and remission after treatment (“Remission”).

Initially, we scanned our modeling predictions for associations
with remission and response at baseline, at 14 days after treatment or
with the changebetween these two timepoints (Supplementary Fig. 8).
We identified only two reactions in the microbial metabolism which
were associated with response/remission in this analysis—3-hydro-
xybutyryl-CoA dehydrogenase and the production of heme (Supple-
mentary Fig. 9).

Next, we investigated associations between modeling predictions
and remitter/responder status across all time points except 14weeks (at
which remission is defined based on disease activity). In general, we
found fewer significant hits compared to the analysis of the association
betweenmodeling predictions in disease activity which, moreover, also
mostly overlapped with the results of our previous analysis (see Sup-
plementary Figs. 10–12). While this is essentially expected since remis-
sion and response are defined based on changes in disease activity, we
wondered whether there is potentially an underlying signature inde-
pendent of disease activity indicative of therapy response and remis-
sion. More specifically, we hypothesized that the deviation ofmetabolic
processes in a patient from the average of the entire patient cohort at a
particular state of disease activity could be indicative of overall therapy
success. Using linear models, such a test can be performed by deter-
mining the association of metabolic processes with remission/response
while controlling for disease activity. Indeed, disease activity as a mea-
sure of therapy success is strongly influenced by the effect of the ther-
apy itself. Since this effect strongly varies throughout the course of
therapy due to changes in dosage and patient-level heterogeneity in
response to therapy, controlling for disease activity could therefore
uncover the underlying molecular signature of re-establishment of cel-
lular homeostasis independent of the direct effect of therapy.

Determining associations between metabolic activity and
response/remitter status while controlling for disease activity, we
observed an increase in reaction activity/metabolite levels in respon-
ders and remitting patients in particular for those reactions sup-
pressed during inflammation. Thus, we predicted increased NAD and
nicotinamide production, increased degradation and fermentation of
complex carbohydrates to propionate andbutyrate, reduced synthesis
and increased consumption of amino acid, and decreased production
of diverse lipid species in themicrobiomeof responding and remitting
patients (Supplementary Fig. 6 and Supplementary Information 1).

For the changes in host metabolism, we found increased amino
acid metabolism and increased glutathione metabolism in patients
responding to treatment (Supplementary Fig. 7C and Supplementary
Information 1), reversing some effects observed during inflammation.
In patients undergoing remission, wepredicted increased sphingolipid
metabolism in biopsies, which were reduced during active disease in
blood (Supplementary Fig. 7G and Supplementary Information 1).
When analyzing metabolite enrichment of the significantly associated
reactions with response and remission, we found no consistent pat-
terns between blood and gut tissue (Supplementary Fig. 7D, H and
Supplementary Information 1). Notably, for responders, the enrich-
ment of NAD(H) in biopsies and coenzyme A in blood was driven by
more upregulated reactions, consistent with the downregulation of
these metabolites during inflammation (Supplementary Fig. 7D and
Supplementary Information 1).

Association of the metabolomics data with response and remis-
sion, revealed an increase of serum levels of lysophosphatidylcholines,
phosphatidylcholines, and choline (response only), higher levels of
kynurenine and serotonin, and higher levels of cystine (cys-S-S-cys,
Supplementary Fig. 13A, D)—coherent with similar negatively asso-
ciated signals during inflammation (Supplementary Information 1).

In summary, correcting for HBI/Mayo score in the association of
metabolic functions to therapy outcome revealed that remission and
response patients have a general increase in amino acid, glutathione,
sphingolipid, and NADmetabolism. At the same time, activity of these
metabolic pathways are reduced during inflammation making them
ideal targets for potential therapeutic intervention.

Inflammation-associated metabolic exchanges are potentially
modifiable by dietary interventions
After identifying 59 microbial metabolites whose exchange within the
microbiota or between microbiota and host was associated with dis-
ease activity, we aimed to determine which of these metabolic
exchanges are modifiable through in-silico dietary interventions. This
approach could help identify targets for in-vitro testing of dietary
supplements that could reverse disease-associated microbial meta-
bolic functions. (Fig. 1C, D, Supplementary Fig. 14C, D, E, H, and Sup-
plementary Datas 13 and 14). First, we excluded metabolites that
showed inconsistency between the two community simulation meth-
ods that we used (BacArena and MicrobiomeGS2) or across the three
disease phenotypes considered in our analysis (inflammation scores,
remission and response), that is, metabolites that showed a positive
association with inflammation using one method and a negative
association using another. We identified 48metabolic exchange fluxes
associated with one or more inflammation measures (intervention
targets). Of these, 31 were within-community exchanges, and 17
exchanges between the community and the host.

In order to find the modifiable metabolites among the 48 targets,
we tested a total of 221 dietary interventions, i.e., all metabolites that
are found in the diet and can be taken up or secreted by the micro-
biome models. In each intervention, a single dietary metabolite was
either removed or its concentration doubled. This resulted in a total of
442 dietary metabolic interventions that were simulated for each of
the 476 microbial communities (see “Methods”). We conducted a
paired Wilcoxon signed-rank test to examine the impact of dietary
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interventions on metabolic fluxes across 490 metabolites (245 fluxes
within the community and 245 fluxes with the host). Our analysis
revealed that 60 fluxes with the host (24%) and 47 fluxes within the
community (19%) were significantly changed as a result of one ormore
interventions. Out of the 48 inflammation-associated fluxes for target
metabolites, 39 could be altered by at least one intervention (23 with
the host and 16 within the microbiome). We next tested whether the
interventions had the desired effect on metabolic exchanges, for
instance, a reduction in flux in case of a positive association with dis-
ease activity or an increased flux in case of a negative association. All
interventions showed desired and undesired effects on the target
metabolic exchanges (Fig. 5). The removal interventions generally had
a more pronounced influence on the target metabolic fluxes than
doubling interventions. Especially, the removal of lactose (galactose
and glucose disaccharide), sucrose (glucose and fructose dis-
accharide), starch (a polymeric carbohydrate of glucose), sulfate,
asparagine, and glutamine had a particular strong effect onmultiple of
the target metabolites (Fig. 5).

In addition, the doubling interventions involving nitrite,
ubiquinol-8 (energy production), glycocholate, and pyruvate had
desired effects on the fluxes of multiple target metabolites (Fig. 5).

Discussion
In this study, we comprehensively investigated associations between
host as well asmicrobialmetabolic activities and disease activity in IBD
and howpatients differ by response to treatment and remission during
treatment. Our modeling approach confirmed known disease-
associated metabolic changes observed in the gut, such as the
reduced production of SCFAs24,25, the reduction of deconjugation of
bile acids26,28,29, and reduced tryptophan and histidine levels in patient
serum30–32. Crucially, our metabolic modeling approach for the first
timeallowedus to link shifts in hostphysiology to changes inmicrobial
metabolism and to investigate the interplay between different meta-
bolic pathways affected during IBD-induced inflammation.

In our analysis of microbial metabolism, we found that overall
metabolic activity was suppressed in inflammation. Essential cofactors
like NAD, flavins, and tetrapyrroles seemed to be increasingly sourced
from the diet rather than synthesized by the microbiome (Fig. 1B). It is
known that microbially-produced vitamins significantly contribute to
host vitamin metabolism33 and deficiencies are associated with detri-
mental phenotypes34,35 including IBD36 and exacerbate inflammation37.
Further, cross-feeding of amino acids, carbohydrates, and their
degradation products among microbes was diminished (Fig. 1C).
Consequently, we found that more amino acids became available to
the host, while our models predicted a reduction of colonic carbohy-
drates and degradation products (including SCFA) due to altered
microbial metabolism (Fig. 1D). Many of these changes have been
described before11,12,36,38–40 confirming our analysis. Clostridia and
Bacilli, both belonging to the Bacillota phylum (formerly Firmicutes),
appeared to contribute substantially to cross-feeding and host-
exchanged metabolites (Fig. 1E, F). In line with our predictions, Clos-
tridia abundances are decreased in IBD patients39,41.

For host metabolism, we found a general reduction of metabolic
activity with active disease and identified NAD, tryptophan, lipid
metabolism, and general amino acid metabolism as key affected
pathways, compatible with reduced serum metabolite levels involved
in these pathways during inflammation in our and other studies42,43. At
the same time, the changes in the microbial metabolism integrated
well with and potentially contributed to host metabolic differences—
especially in NAD and lipidmetabolism.On themetabolomics level, we
observed increased sphingolipid and fatty acid levels while phospha-
tidylcholines were reduced during active disease, directly reflecting
themetabolic changes in the lipidmetabolism derived frommetabolic
modeling. Furthermore, we found tryptophan serum levels decreased
during active disease, in line with earlier studies44, corroborating the

findings for tryptophan metabolism in the host. We confirmed these
initial intuitions of highly interdependency of host and microbial
metabolism and metabolite serum levels with a network and shortest-
path analysis.

Additionally, we found NAD at the center of metabolic changes
associated with disease activity in both tissues (Fig. 2B and Supple-
mentary Fig. 5). Indeed, NAD metabolism and tissue levels have been
described as relevant for inflammation in IBD44. We detected an
increase in NAD degradation during inflammation, while the final
reactions of salvage and de novo NAD synthesis were less active
(Fig. 6), in line with previous reports45. NAD degradation is mediated
by sirtuins and poly(ADP-ribose) polymerase (PARP) proteins and
both are directly involved in the regulation of inflammatory
responses46. NAD levels quickly diminish if the salvage is inactive47

and decreased levels have been reported in inflamed tissue of UC
patients48,49. The NAD salvage pathway is important formonocytes to
induce a proper immune response50 and invasion of activated
monocytes into the inflamed tissues could explain our prediction of
increased nicotinamide phosphoribosyltransferase activity. Further-
more, increased NAD salvage has been observed in treatment-
responsive patients and the pathway has been proposed as a
potential target for IBD therapy45,51,52. De novoNAD synthesis is fueled
by the levels of quinolinate and its nicotinate derivatives. The
microbiome is an important factor in regulating NAD levels in the gut
by production of quinolate from aspartate53, and we predicted
decreased flux for this pathway in patients with high inflammation
(Figs. 6A, B, and 1B). At the same time, quinolinate production by
tryptophan degradation was suppressed, as indicated by the
increased production of indole in the microbiome during inflam-
mation (Fig. 1D). Interestingly, indole is an anti-inflammatory agonist
of the aryl hydrocarbon receptor and has been reported as beneficial
during colonic inflammation54–57. Tryptophan supplementation
induces microbial indole production58, which has been proposed to
be a factor to establish and maintain host tolerance to microbe
dwelling59 and might allow less beneficial bacteria to colonize during
inflammation. Furthermore, we found decreased tryptophan levels in
the serum during inflammation (Fig. 3A) consistent with previous
reports29,30,49, accompanied by the prediction of increased degrada-
tion of tryptophan via the kynurenine pathway in biopsy samples
(Supplementary Fig. 15A, B). The observed induction of the kynur-
enine degradation pathway is characteristic of inflammatory pro-
cesses, as its products xanthurenate and kynurenate play crucial
roles in reducing the inflammatory response31,60. Simultaneously, we
predicted a blocked quinolinate production from kynurenate and
consequently a reduced production of NAD from tryptophan (Sup-
plementary Fig. 15A, B). Thus, the enrichment of inflammation-
associated reactions using NAD as a substrate in blood and biopsy
was likely a result of reduced NAD levels in the tissue, a consequence
of increased NAD degradation, reduced de novo synthesis driven by
changes in the microbiome and reduced tryptophan metabolism in
the gut. This most likely led to enhanced inflammatory responses and
can significantly contribute to disease progression, as shown in
mice37. Further, our findings are supported by an inflammation-
independent increase of microbial production of NAD and nicotina-
mide, an increased utilization of NAD in the gut, as well as increased
levels of kynurenine and serotonin (indicating higher tryptophan
degradation) in responders/remitters.

Wepredicted that themicrobiome is producingmoremetabolites
carrying an amino group during inflammation, increasing the provi-
sion to the patients. Yet, we predicted reduced activity of transami-
nation reactions in patients and reduced urea cycle activity, indicating
a demand for amino-groups. We speculated that the main sink for
amino groups is the production of proinflammatory NO from arginine
and indirectly glutamate in the gut (Supplementary Fig. 16C, D). This
notion was supported by other studies where serum levels of amino
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acids were found to be decreased during inflammation, while amino
acids glutamine and glutamate concentrations were increased in
inflamed gut tissue42,43. NO is important for proper T-cell61 and mac-
rophage function as well as wound healing62, while glutamine is an
important suppressor of proinflammatory signals63,64 and improves
epithelial barrier function65–67. Further, host NO has been reported to
be an electron acceptor in the microbiome68, which might explain the

increased production of amino acids bybacteria to fuel NOproduction
of the host for their own benefit. This hinted at a disturbance in
nitrogen and amino acid levelswith direct implications for the immune
system. Indeed, glutamine/glutamate levels have been in the focus of
several studies of IBD before69,70, and arginine/glutamate supple-
mentations have been tested as an IBD therapy in animals71,72 and
humans73, with varying success.

Fig. 5 | In-silico interventions predict potential dietary therapies. A The effects
of doubling or removing dietary metabolites on the exchange fluxes of
inflammation-associated metabolites between the host and the microbiome. The
size of the circle reflects the intervention effect size (log2 fold change). The color of
the circle represents whether the intervention is predicted to have inflammation-
reducing effects. Desired influence in blue, (increased flux of metabolites nega-
tively associated with inflammation or vice versa), undesired influence in red
(increased flux of metabolites positively associated with inflammation or vice
versa) andpurple circles represent interventions that cause the targetmetabolite to

change the direction of the flux (from the microbiome to the host before the
intervention and from the diet to the microbiome after the intervention or vice
versa).B Same as in Fig. 4A, but with the influenceonmetabolic fluxes observed for
metabolic exchange within the microbial community that are associated with
inflammation. A, B All interventions show mixed desired and undesired effects,
with more positive influence of the removal of saccharides on the exchange
between themicrobiome and host and a negative influence on the exchange fluxes
among the microbiome. Multiple testing adjustments via Benjamini–Hochberg
correction. FC fold change.
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We observed one-carbonmetabolism as a hub connecting several
of our findings including changes in lipid and NAD metabolism—with
S-adenosylmethionine (SAM) at its core. We predicted a reduction of

one-carbonmetabolism in blood samples and a decreased production
of homocysteine (precursor of SAM) by the microbiome (Fig. 6C, D).
Homocysteine itself is also a direct modulator of immune system

Fig. 6 | Metabolic pathways connecting inflammation-associated reactions. Schematic representation of inflammation-associated changes in NAD metabolism and
associated pathways in biopsy (A) and blood (B). Accordingly, one-carbon metabolism and its associated pathways in biopsy (C) and blood (D).
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functions and T-cell differentiation74–76. Next to folate metabolism,
choline-derived betaine can serve as a donor of carbon to recycle
homocysteine. Choline, an essential nutrient77, is predominantly used
for homocysteine recycling by the degradation of phosphatidylcho-
lines. Our predictions showed reduced activity during inflammation in
reactions liberating choline in both tissues (Fig. 6C, D). This is sup-
ported by decreased serum levels of phosphatidylcholines during
inflammation (Fig. 3A, B) and, at the same time, might cause the
observed shift from phosphatidylcholines to ceramides and glyco-
sphingolipids in bloodmetabolomics. Glycosphingolipids fulfill similar
functions inmembranes as phosphatidylcholines andmight be used to
compensate for the loss of phosphatidylcholines due to choline usage
in SAM recycling. Clinical and mouse studies have proposed phos-
phatidylcholine supplementation to treat gut inflammation, with
positive effects on inflammation severity and various metabolic
pathways78–82. Conversely, the knockout of the rate-limiting enzyme of
phosphatidylcholine synthesis in mice causes severe colitis83 and high
sphingolipid levels have been described as pro-inflammatory84–86. Our
data supports the notion that this proinflammatory shift in lipids is at
least partly driven by the increased degradation of choline to recover
homocysteine and C1 metabolism. Methyl-nicotinamide is an anti-
inflammatoryderivative ofNADand its synthesis is amajor regulator of
the substrate levels of SAM and NAD in the cell (Fig. 6A, B)87–90. We
found increased activity of these reactions during inflammation in
biopsies, which would further contribute to the lack of NAD and SAM
during inflammation.

Finally, our dietary intervention simulation yielded predictions
of metabolites that could be provided as adjuvant therapy to rees-
tablish host-microbe and microbe-microbe interactions deregulated
in IBD. Often, the same intervention had a desirable effect on
microbiome-host exchanges but an undesirable effect on the
exchanges within the microbiome in our models. This indicates that
there is no one-fits-it-all solution for dietary interventions across all
IBD-associated metabolic changes in the microbiome and the het-
erogenousmicrobial profiles in IBD patients. Furthermore our results
imply that single metabolite supplementations are most likely not
suitable as a general adjuvant therapy in IBD. Consequently, it also
means that microbial heterogeneity complicates finding effective
complex dietary interventions for IBD patients and requires highly
individualized dietary plans which are tailored to the metabolism of
the patients and their microbiome. Thus, it is less surprising that
clinical studies which evaluate different dietary regimes and sup-
plementations showed varying success73,91. Metabolic modeling
could help identify these personalized diets by modeling the meta-
bolism of the microbiome and the host and should be used as a
supporting tool in future studies. Among the interventions, sucrose
removal had mostly a desirable effect on the fluxes of metabolites
associated with inflammation, which agrees with sucrose interven-
tion experiments performed on mice with dextran sulfate sodium
induced colitis92,93. Additionally, the positive effect of in-silico
removal of polysaccharides and lactose are backed by studies that
showed improvement in clinical remission after polysaccharides
reduction and increased risk of lactose intolerance after lactose
supplementation in IBD patients94,95. Other promising predictions
were the removal of sulfate and the addition of nitrate. Increased
sulfur levels lead to mucin degradation and contribute to colon
inflammation in animal models96 while administration of nitrate was
found to increase colon length and alleviate existing colonic
inflammation97. Further studies are needed to validate the effects of
these metabolites through controlled dietary manipulations within
bacterial communities, which could yield valuable insights into their
role in reducing inflammation as potential adjuvant therapies.

Interestingly, when analyzing our data for markers of therapy
response/remission, we found that responders/remitters are highly
heterogeneous and that there is an effect of treatment (strength) on

this metabolic heterogeneity. We were able to correct for some of this
heterogeneity by accounting for disease activity, as a potential proxy
for the treatment effects on response/remission. This finally led to the
identification of metabolic functions, which are generally associated
with response/remission, regardless of inflammatory state. In the
future, this approach might be more useful to identify factors for
treatment success which are independent of the disease state of IBD
patients. Further, this might allow to disentangle molecular markers
for wanted and unwanted treatment effects, which would help to
identify markers for treatment response.

Furthermore, we would suggest some improvements for data
collection in future studies. We used 16S amplicon sequencing and
bulk RNA sequencing in order to infer high level interactions between
the microbiome and the tissue of patients, lacking the finegrained
resolution of strain and cell-specific information. Yet, modern meta-
genomic and single cell sequencing could unravel details of strain and
cell-specific communication holding potential treatment avenues
which are highly specific on these interactions.

With this study, we show that IBD is associated with a loss of
microbiome and host metabolic activity. This disruption extends
beyond the gut, showing a strong correlation between changes in
directly affected tissue and those in the bloodstream. This tight
interplay underscores the indispensable role of the microbiota in
influencing host metabolic processes. We revealed that NAD, amino
acid, one-carbon, and phospholipid metabolic pathways are intri-
cately linked, and severely affected by intestinal inflammation. We
argue that adjuvant dietary treatments should integratively consider
thesemetabolic alterations and target all pathways simultaneously to
obtain themaximal effect. Conversely, this might explain why certain
dietary interventions had no effect in previous studies73,91. Simulta-
neously, our results enable the development of individualized
therapies, considering the microbial as well as the host metabolism
and their interplay. However, interventions targeting these pathways
pose significant challenges as no predicted intervention demon-
strated exclusively positive benefits. This highlights the complexity
of IBD and the inadequacy of single-metabolite interventions and
likely explains the failure of previous intervention approaches. It
underscores the necessity for more comprehensive therapeutic
strategies that account for the intricate interactions between host
and microbiota.

Methods
Cohort description
To understand how metabolism in the microbiome and the host
changes, we re-analyzed data from two previously published long-
itudinal IBD cohorts from northern Germany (trial IDs: EudraCT
number 2016-000205-36 and ClinicalTrials.gov NCT02694588)11,98,99.
These included a total of 62 patients, diagnosed with either CD or UC
and treated with either anti-TNFα agents or with olamkicept (antag-
onizing IL6, Supplementary Fig. 1A). Patients were monitored for
clinical and biochemical parameters,while samples of feces, blood and
gut biopsy were taken at several time points over the course of
14 weeks. Inflammation states for both cohorts were estimated using
the Mayo scoring system (Mayo) for UC and Harvey-Bradshaw index
(HBI) for CD. These were monitored over time and used to define
remission and response in the patients after treatment—which we did
according to the original publications11,98,99 (Supplementary Fig. 1B). To
analyze both scores together, we censored the HBI values at a value of
16 to ensure similar scales for both disease activity scores.We imputed
missing values for HBI/Mayo by a linear regression model for each
individual patient over time. Within the two cohorts, 11 patients were
defined as “healthy controls” as these showed no active inflammation
at baseline or throughout the study (Supplementary Fig. 1B). The
cohortswere overall balanced for different covariates, like sex, gender,
therapy, and age (Supplementary Fig. 1B, C). Both cohorts were
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analyzed simultaneously as we did not observe fundamental differ-
ences in disease activity changes over time and between diseases
(Supplementary Fig. 17). Since our dataset lacked dietary information
of patients, we estimated the nutrient availability by a data set of a
similar cohort from northern Germany100 (called Matjes diet, Supple-
mentary Data 15).

Metabolic modeling
Community models. The fecal 16S sequences were mapped against a
set of 5416 human gut bacteria (theHRGMcollection18) using a BLASTn
algorithm. The mapping revealed the presence of 991 bacterial strains
within the cohort. These strains were used to calculate abundances for
each individual sample (Supplementary Data 16) and used to derive
taxonomic and other information (Supplementary Data 17). We
thereafter used gapseq101 for the reconstruction of genomic scale
metabolic models for each of the identified gut bacterial strains using
the earlier described standardized diet, those models are compatible
with the sybil R packagemodel formats. Thesemodels were employed
in the respective community modeling approaches. For some key
statistics on themodel size, number of genera in themodel, number of
uptake/secretion reactions and cross-feeding reactions refer to Sup-
plementary Fig. 2 and Supplementary Data 18.

Constraint-basedmodeling, coupling (MicrobiomeGS2). For eachof
themicrobial communities that were collected from the fecal samples,
we reconstructed a community metabolic model using a coupling
approach with MicrobiomeGS2 R package11. First, we excluded bac-
terial models with low estimated growth rates (<10−3), as they can
drastically reduce the overall growth of the community (in total 26 of
991 models, Supplementary Data 19) We then joined the bacterial
models belonging to the same community in a merged model, where
eachmodel has its owncompartment and all themodels are connected
through an environmental compartment to freely exchange metabo-
lites. Themicrobial abundances (Supplementary Datas 16 and 17) were
used as weighting factors for the communities biomass function,
ensuring overall biomass production in the same proportion as
observed in the experimental data. We set a coupling factor c = 200
which couples reaction flux of an organism to biomass production if
the flux is larger than a coupling threshold u = 0.01mmol gDw

−1hr−1 as
previously described102. CplexAPI R package103 was thereafter used to
run the metabolic simulations using the CPLEX solver with an aca-
demic license104.

The simulations resulted in 245 metabolites being exchanged
between the community and the host or among the community, or in
both. After filtering outmetabolites that have no exchange or the same
exchange rate among all samples (no variance between the different
communities), we ended up with 111 metabolites being exchanged
among the community and 106 metabolites exchanged between the
community and the host, 31 of which are produced by the commu-
nities, 60 are consumed by the communities, and 15 metabolites that
are produced in some of the communities and consumed by others.

Agent-based modeling (BacArena). Besides flux coupling, we used
another community modeling approach focusing on the independent
optimization of microbial biomass production. In particular, we
employed the individual-based community modeling framework
BacArena (v.1.8.2)19. The initial abundance of bacterial models was set
similarly to the coupling approach above. The spatial setup of the
arena environment was 100 × 100 grid cells. In addition to the descri-
bed standardized diet, concentrations of 1mM for chorismate, indole,
and salcilate were assumed to ensure the initial growth of all models.
The simulation was performed for three time steps, and afterwards,
exchange fluxes for all samples were obtained. CplexAPI R package103

was used to run themetabolic simulations using the CPLEX solver with
an academic license104.

Host exchange, microbiome exchange, and overall flux. To assess
metabolic exchange of the bacteria with each other and with the host,
we calculated the ‘microbial exchange’ and ‘host exchange’ values for
each exchange metabolite in our community models. That is, for
‘microbial exchange’ the sum of all absolute fluxes for internal
exchange reactions was subtracted by the overall exchange flux.
Internal exchange reactions are those reactions whichmark themodel
boundaries for each individual species within the microbial commu-
nity and would be ordinary exchange reactions if each bacteria in the
community would be modeled individually. For ‘host exchanges’ we
simply used the exchange reaction fluxes for the whole community in
coupling-basedmodeling and summed all exchange reactionfluxes for
all bacteria in the model in the agent-based approach. Overall flux
through a reaction for the whole microbial community was deter-
mined as the total sum of individual fluxes through the respective
reaction in each microbial model.

Simulating metabolic dietary interventions. We aimed to predict
candidate dietary supplementation that could potentially reverse
parts of the observed alterations in the microbial metabolic fluxes
associated with inflammation. Therefore, we conducted dietary
intervention simulations to assess their impact on the metabolic flux
of target metabolites. The selection of target metabolites was based
on their consistent direction of the association with the three
inflammation proxies (HB-Mayo score, remission, and response, i.e.,
all positive or all negative). To execute these interventions, we
manipulated the lower bounds of exchange reactions for the inter-
vention metabolites in the community models. Three distinct types
of interventions were employed: doubling interventions, wherein the
original metabolite flux in each community was doubled; and
removal interventions, resulting in the complete elimination of the
metabolite from the diet. Each dietary metabolic element was sub-
jected to the two types of intervention individually. Subsequently, we
repeated the community model simulations following each inter-
vention by each dietary element and observed the fluxes of the target
metabolites between the microbiome and the host’s diet on the one
hand, and among the microbiome member species on the
other hand.

To statistically evaluate the impact of the dietary interventions on
the target metabolic fluxes, we conducted paired Wilcoxon tests that
compared the original flux of each target metabolite with its flux after
each intervention. We specifically considered interventions that
resulted in significant changes in the metabolic flux of at least one
target metabolite across the microbial communities. Thereafter, we
quantified the fold change in metabolic flux following each interven-
tion, by employing the formula:

mean log 2
f lux af ter intervention

original f lux

� �� �

Only fold changes exceeding 5% were deemed significant.

Reconstruction of context-specificmodels. Context-specificmodels
were constructed based on the bulk RNAseq data for colon biopsies
and blood samples of the patients. To link gene expression values to
the human metabolic model (recon3D105) we determined reaction
expression values using the gene-reaction rules. Read counts were first
transformed to TPM values and the boolean gene-reaction operators
were translated to sum(x) or min(x) for OR and AND operators,
respectively. To obtain core reactions, we thresholded resulting reac-
tion expression values with local and global thresholds. Global
thresholds were defined as the 10ths and 90ths percentile of all reac-
tion expression values across the respective tissue as lower and upper
bound, respectively. All reactions below the lower bound were con-
sidered inactive, all reactions above the upper bound were defined as
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core reactions. All reactions between these two bounds were thre-
sholded on the 50ths percentile of the local expression values for that
reaction (that is, the reaction activity score for this reaction across all
samples in the respective tissue). Reactions above the boundary were
considered as core reactions. The resulting core reactions were sub-
mitted to FASTCORE106 to reconstruct context-specific metabolic
networks. After context-specific model reconstruction, we performed
fluxvariability analysis to estimatemetabolic capabilities of themodels
using the implementation of cobrapy107. The methods for this work-
flow were implemented in the python corpse package (https://github.
com/porthmeus/corpse)108, while the reconstruction pipeline was
implemented in a snakemake workflow (https://github.com/
Porthmeus/CSMGen_miTarget). Reaction activity score (reaction
expression, rxnExpr), presence/absence (PA) in the model after FAS-
TCORE reconstructions and a flux variability analysis (FVA, minimal
and maximal values converted into ranges and center of the reaction
flux, FVA.range, FVA.center) were submitted to statistical analysis as
individual data layer. We built linear mixed models for each reaction
with the rxnExpr, PA, range.FVA, and center.FVA as fixed effects,
patient identity as random factor and disease activity (HB/Mayo) as
dependent variable.

Data preparation and statistical analysis
Each data layer in our data analysis was first filtered for features with
near zero variance (caret::nearZeroVar v6.0-93109), scaled and centered
(base::scaleR 4.2.2110) and clustered. Clusteringwas based on Pearson’s
correlation coefficient d = 1�

ffiffiffiffiffi
ρ2

p� �
and was performed with

DBSCAN (fpc::dbscan v2.2-9111) using a maximal distance of 0.1 and a
minimal cluster size of 3. This resulted in many small clusters and only
grouped those features with very high correlation (e.g., reactions lying
consecutively in a pathway). Finally, we fitted (generalized) linear
mixed models to the data. We excluded most covariates to avoid
overfitting and those included were knowledge informed (see Sup-
plementary Data 9 for details). For model fitting, we used the lme4
(v1.1-31)112 and statistical tests on individual coefficients were per-
formed using lmerTest (v1.1-31, t-statistics with Satterthwaite’s esti-
mation for degrees of freedom)113. Compliance to model assumptions
were tested with diagnostic plots and manual inspection of the plots.
For generalized linear mixed models, residuals were modeled using
the DHARMa package (v0.4.6)114. Actual formulas to build the models
are given in Supplementary Data 9. Resulting significant associations
were enriched with hypergeometric tests or gene set enrichment
(GSEA) as implemented in clusterProfiler (v4.6.0)115. GSEA was per-
formed on effect sizes for the coefficient in the given dataset. For
human reactions, we calculated the mean for each reaction on the
effect size for the model across the three data layers (rxnExpr, PA,
FVA). Host reactions were used to enrich subsystems (pathways) as
annotated in recon3D105 using both hypergeometric tests and GSEA.
For identification of enriched metabolites, we performed only hyper-
geometric tests. For microbial reactions, we enriched BioCyc pathway
annotation as given in the gapseq database101 using hypergeometric
tests and GSEA. Microbial pathways have been manually regrouped
and renamed in cases of high overlap of reactions in the enriched
pathways.

To calculate taxonomic contribution to metabolite production in
our microbial analysis we fitted individual linear mixed models to the
production/consumption rates of each of themetabolites identified in
the previous analysis using taxonomic identity and other confounders
as explanatory variable (flux ~ source + seqtype + taxonomy + (1|
PatientID)). Hereweused fluxes of internal exchange reactions (that is,
the exchange reaction of the individual bacteria in the community
modeling approach) to measure the contribution of each taxa to the
overall exchange flux of each metabolite. Each taxonomic level was
tested individually within this framework, where all unassigned and
low abundant species (represented in fewer than 5 samples) were

grouped to “Other”. Taxonomic annotation was derived from the ori-
ginal annotation provided by the HRGM reference18. Statistical testing
was performed using a log-likelihood ratio test, followed by a post hoc
test for taxonomic contribution to flux deviation from 0 (emmeans
v1.8.2116).

For all other tests, we performed bootstrapping and compared
observed values against randomly shuffled expectations values. For all
tests, a significance level of p <0.05 was adopted and p-values were
corrected for multiple testing using the Benjamini–Hochberger
correction.

Network reconstruction
For network analysis, we used all reactions which showed significant
association with one of the IBD-associated phenotypes as the basis for
the reconstruction of one network per tissue and phenotype associa-
tion.We reconstructed the network by translating themetabolites and
reactions into nodes and edges, respectively. Edge distances were
calculated as the log of the sum of node degree, similar to the
description in ref. 27. For layouting, we used the Fruchterman-
Reingold algorithm and we calculated path lengths using the Dijkstra
algorithm. Shortest paths of interest were defined as paths with a
distance between two compounds being smaller than the lower 0.05
percentile of all shortest paths in the dataset. Network calculations
have been performed in igraph for R (v1.3.5)117, plotting and interactive
graphs have been created with ggplot2 (v3.4.4)118, ggraph (v2.1.0)119,
and visNetwork (v2.1.2)120.

Plotting
General data handling and plotting was performed in R using data.-
table (v1.14.8)121, ggplot2 (v3.4.4)118, cowplot (v1.1.1)122 and RColor-
Brewer (v1.1.3)123. Boxplots were drawn with the following
specification: center line, median; box limits, upper and lower quar-
tiles; whiskers, 1.5 times interquartile range; points, outliers. Error bars
in other plots represent the confidence interval of the shown estimate.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequencing data are available in the GEO database under
accession code GSE191328 (Cohort 1) and GSE171770 (Cohort 2). All
other data generated in this study have been deposited in a Zenodo
repository under https://doi.org/10.5281/zenodo.13759863124.

Code availability
All data, analysis script, final, and intermediate results are available
through Zenodo (https://doi.org/10.5281/zenodo.13759863124), scripts
only are published at github (https://github.com/Porthmeus/
IBDMetabolicModeling)125. The pipeline for context-specific model
reconstruction is available at github (https://github.com/Porthmeus/
CSMGen_miTarget)126.
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