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Inferring internal states across mice and
monkeys using facial features

Alejandro Tlaie 1,2, Muad Y. Abd El Hay 1, Berkutay Mert1, Robert Taylor 1,
Pierre-Antoine Ferracci 1, Katharine Shapcott 1, Mina Glukhova1,
Jonathan W. Pillow 3, Martha N. Havenith 1,4 & Marieke L. Schölvinck1,4

Animal behaviour is shaped to a large degree by internal cognitive states, but it
is unknown whether these states are similar across species. To address this
question, here we develop a virtual reality setup in which male mice and
macaques engage in the same naturalistic visual foraging task. We exploit the
richness of a wide range of facial features extracted from video recordings
during the task, to train a Markov-Switching Linear Regression (MSLR). By
doing so, we identify, on a single-trial basis, a set of internal states that reliably
predicts when the animals are going to react to the presented stimuli. Even
though the model is trained purely on reaction times, it can also predict task
outcome, supporting the behavioural relevance of the inferred states. The
relationship of the identified states to task performance is comparable
between mice and monkeys. Furthermore, each state corresponds to a char-
acteristic pattern of facial features that partially overlaps between species,
highlighting the importance of facial expressions as manifestations of internal
cognitive states across species.

In the wild, all mammals engage in similar foundational behaviours:
they all hunt or forage for food, sleep, mate, avoid predators, and
explore their environment, to name just a few. None of these beha-
viours can be simply explained as a passive reaction to environmental
input; rather, they are crucially shaped by dynamic fluctuations in
internal states such as satiety, alertness, curiosity or attention1,2. So, if
fundamental behaviours are comparable across species, how similar
are the internal states that drive them? Is ’attention’ in a monkey the
same as ’attention’ in a mouse?

The common approach to investigate internal states has been a
reductionist one: highly restrictive tasks featuring simplified stimuli
and narrow behavioural repertoires (e.g. button presses), with little
room for fluctuations over time3–5. What is more, experimental para-
digms diverge widely depending on the species under study. For
example, attention studies in primates typically require subjects to
fixate on a central fixation point while paying attention to a peripheral
stimulus that might subtly change its appearance6,7. Attention studies

in rodents, on the other hand, typically use the 5-choice serial reaction
time task (5CSRTT), in which the subject is required to scan five
apertures for the presentation of a brief light stimulus, and then
navigate towards the light source8,9. Even though the behaviour asso-
ciated with high attention, i.e. short reaction times and accurate
responses, is the same in both cases, clearly these tasks are too dif-
ferent to draw any meaningful cross-species comparisons when it
comes to the behavioural dynamics and neuronal mechanisms they
may engage.

Breaking away from this restrictive regime towards studying
internal states as they occur naturally is tricky. To tackle this challenge
successfully, an ideal behavioural paradigm needs to (1) rely on innate,
naturalistic behaviours to accurately reflect spontaneously occurring
rather than training-induced internal states10, (2) identify internal
states in a data-driven way that is not restrained by (potentially
anthropomorphising) concepts of cognitive processing imposed by
the researcher, and (3) track the evolution of internal states over time
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to capture their intrinsically dynamic nature. For this, binarymetrics of
behaviour such as a button presses or nose pokes will not suffice;
rather, precise, multi-parametric behavioural tracking is needed to
generate time-resolved analyses that extract underlying cognitive
states from the measured behavioural parameters moment by
moment11–13.

Recent technological advances have opened up new avenues to
achieve these goals in a principled way. Virtual reality (VR) environ-
ments, for instance, allow researchers to create immersive yet highly
controlled experimental settings that can be tailored to different
species’ intrinsic sensory capacities and behavioural repertoires14,15.
Importantly, this maximizes adaptability across species, opening up
the unique opportunity to record directly comparable behaviours in
different species. At the same time, advances in deep-learning algo-
rithms enable us to dynamically track ongoing changes in body
movement and posture from video footage16–18. This allows for the
ongoing and time-resolved tracking of behavioural dynamics—a fun-
damental prerequisite if we aim to identify the spontaneous emer-
gence of internal cognitive and emotional states19,20.

In this study, we leverage these technological breakthroughs to
infer and directly compare the spontaneously occurring internal states
of two species commonly studied in neuroscience - macaques and
mice. Specifically, we combine a highly immersive and naturalistic VR
foraging task solved well by both species21–24, with a state-of-the-art
deep learning tool that allows for precise, automated tracking of
behavioural features. The features extracted in this way then serve as
inputs to aMarkov-Switching LinearRegression (MSLR)model25, which
infers time-varying internal states across trials.

Importantly, such single-trial inference of internal states is only
meaningful if the behavioural markers it relies on are not indirectly
tracking the concrete motor outputs required for task performance.
For instance, task-related motor output such as preparatory paw
movements might trivially predict a hit trial, and a lack of such
movements might predict a miss trial. To ensure that the behavioural
parameters we chose would truly reflect internal processing, we
focused on the animals’ facial expressions.

While facial expressions have long been thought to only play a
role in highly visual and social species like monkeys and humans26–29,
recent work has highlighted that also less social, less visual species like
mice exhibit meaningful facial expressions19,30. These expressions
seem to reflect fundamental emotions like pleasure, pain, disgust and
fear in a way that is not only consistent within one species, but also
readily translatable across species31,32. This argues for an evolutionary
convergent role of facial expressions in reflecting (and potentially
communicating) emotions.

Outside the realm of emotional processing, spontaneously
occurring behavioural states have so far mainly been tracked using
individual facial features to identify isolated cognitive processes. For
instance, pupil size has been related to changes in attention and
arousal in rodents33–35, non-human primates36–40, as well as humans41,42.
Similarly, eye movements in monkeys and humans43–45 and whisker
movements in mice46 have been used to track attention and decision-
making.

In addition to such individual facial features, movement intensity
across the entire face (regardless of individual features) has been used
to delineate, for instance, the contribution of instructed versus unin-
structed movements to task performance47,48, and to explain neural
activity49,50. Orofacial motion is also a key component in explaining
trial-to-trial variability in dorsal cortex activity in mice51, especially
when mice are disengaged from an instructed task48. More detailed
analysis into task performance states based on such facial features
revealed that optimal visual discrimination coincides with average
pupil size and moderate levels of facial movement52.

While these findings highlight promising ways to track internal
states—both in the emotional and cognitive domain - using facial

expressions, it stands to reason that facial expressions contain richer
and more complex information than what can be extracted using
either individual facial features or overall orofacial movement. By
focusing on amulti-faceted representation of entire facial expressions,
we aim to for the first time map out the spectrum of spontaneously
occurring internal states in a data-driven way that is directly compar-
able across species. Our approach of using facial expressions to infer
spontaneously occurring internal states from natural behaviour con-
stitutes a drastic departure from the classical approach, which instead
imposes internal states through restrictive behavioural tasks (e.g. cued
attentional shifts). By tying the results of this approach back to known
relationships between internal states and overt behaviour, such as
shorter reaction times during focused attention, these spontaneous,
agnostically inferred internal states can be tentatively related to known
cognitive processes such as attention andmotivation. Importantly, this
puts us in the unique position to directly compare spontaneously
occurring internal states across species by minimizing confounds
introduced by species-specific tasks and training procedures.

Results
Experimental set-up
To track and compare spontaneously occurring internal states of mice
and macaques during the performance of the same naturalistic visual
discrimination task, the animals were placed inside a custom-made
spherical dome (Fig. 1A, top).On the insideof thedome,weprojected a
virtual reality (VR) environment using a custom-made toolbox called
DomeVR53. The monkeys navigated through the VR environment
manually using a trackball; the mice ran on a spherical treadmill, the
movements of which were translated into VR movements (for details,
see 'Methods'—Experimental Setup).

Twomonkeys and sevenmicewere used in this study, comprising
18 and 29 experimental sessions (20,459 and 12,714 trials), respec-
tively. The animals engaged in a simple, foraging-based two-choice
perceptual decision task, in which they had to approach a target sti-
mulus while avoiding a distractor stimulus, both of which were
represented by natural leaf shapes integrated in a meadow landscape
(Fig. 1A, bottom; see 'Methods'—Experimental paradigm). Such tasks
can be performed successfully by both monkeys23 and mice21,54. Their
performance on this task was quantified first in terms of trial out-
comes: hit (target stimulus reached), wrong (distractor stimulus
reached), and miss (neither stimulus reached); as well as in reaction
time (RT). For this, we identified turning points in the animals’ running
trajectories through the VR to define the moment when an animal
decisively oriented itself towards one of the two potential targets
(Fig. 1C; for details, see 'Methods'—'Reaction Time'). As Supplementary
Fig. S1 shows, success rate and reaction times were largely comparable
across species, although mice showed less consistent performance
than monkeys, in terms of running trajectories, reaction times, and
correct target choices. We hypothesize that this is due to the lack of
fine motor control of the mice on the trackball.

As the animals were performing the task, we recorded their faces.
For macaques, this was done by analysing video footage from one
camera positioned frontally on the monkey’s face, as well as eye
tracking output (see 'Methods'—'Behavioural tracking'). For mice, we
analysed video footage from one camera positioned on the side of the
face (Fig. 1B). From these videos, we extracted facial features such as
eyebrow, nose and ear movement using DeepLabCut (Fig. 1C; see
'Methods'—Facial key point extraction). For monkeys, we selected 18
features; formice, 9 features (see 'Methods'—'Facial features for the full
list of facial features').

For each trial, facial features were averaged over a timewindowof
250 ms before the stimuli appeared in the VR environment. This time
window was chosen to maximize the interpretability of the inferred
hidden states: as there is no task-relevant information available yet,
presumably all of the facial expressions that the animals make are due
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to internally generated processes, rather than being reflective of sti-
mulus or task parameters.

Model performance
The facial features extracted in this way were used as inputs to a
Markov-Switching Linear Regression (MSLR) model (Fig. 1C; see
Methods - Markov-Switching Linear Regression). We used a recently
developed software package55 to implement the MSLR. The MSLR
manages to capture the non-stationarity and regime shifts often pre-
sent in behavioural data52,56–58, by flexibly accommodating complex
temporal dynamics while keeping a relative simplicity, compared to
deep learning-based methods59. Moreover, the MSLR is less data-
hungry than other common data-driven models60–62. The MSLR uses
the ’pre-stimulus’ facial features in each trial to predict the animals’
reaction time (RT) in the same trial by assuming ’hidden’ states. Each
hidden state implies a different linear relationbetween individual facial
features and the subsequent RT in the same trial. For instance, in one
hidden state, the RT might be best predicted by eyebrowmovements,
while in another, nose sniffing might be most predictive. We used
cross-validation to select the number of states for each species (see
below). For each trial, themodel then outputs the predicted RT aswell
as the probability of each hidden state (Fig. 1D). The two models (one
for mice, one for monkeys) were trained and tested on data from all
individuals; Fig. S20 shows the outcomes of themodels split by session
and by individual and Fig. S8 shows the generalisation across mice.

Mathematically, this model takes the form:

RTt =Wzt
� xt + ξzt , ð1Þ

where RTt is the reaction time at trial t, zt is the state at trial t,Wzt
are

the regression weights for state zt, xt is the vector of facial features at
trial t, and ξzt is a zero-mean Gaussian noise with variance σzt

.
To test if this approach was appropriate for our behavioural

recordings, we first checked if assuming the presence of multiple
hidden states was in fact warranted by the data, or if they could also be

described by one constant, uniform relationship between facial
expressions and RTs over time. To this end, we determined model
performance when only one internal state was permitted (Fig. 2A; see
also Fig. S14). For both species, the model’s predictive performance
was remarkably low under these circumstances - in fact, predictions
were less accurate than random guessing.

Next, we quantified model performance for different numbers of
hidden states—which is the main free parameter of the MSLR. Model
performance was tested by using cross-validation (see Methods—
Model tuning). Fig. 2A shows the cross-validated R2 for different
numbers of states and for optimal (solid line) and suboptimal (shaded
area) constellations of hyperparameters. For both species, the cross-
validated R2 improved dramatically when allowing for more than one
hidden state until reaching a plateau. Since the accuracy of RT pre-
dictions began to saturate with increased model complexity, we took
the finite difference of the CV performance curve for each species and
fixed the number of internal states at its maximum, in order to reach
the optimal trade-off between predictive accuracy and model simpli-
city (Fig. 2A; see Fig. S11 for a more detailed explanation of this). This
approach yielded a similar optimal number of hidden states for both
species: for monkeys, the optimal number of states was 4, for mice it
was 3. Tests on held-out data showed a similar performance (Fig. 2A,
insets).What ismore,model performancewas consistently high across
individual animals, and models trained in a leave-one-out analysis
could also be successfully applied to data from animals they had not
been trained on (see Supplementary Fig. S8). Together, these control
analyses indicate that the model generalises robustly not just to held-
out data but even across animals, suggesting that it captures shared
behavioural features rather than individual idiosyncrasies. The CV
procedure ended up selecting hyperparameters thatmainly differed in
the concentration parameter (α), controlling how sparse each transi-
tion matrix was. For more details, see 'Methods'—”Model tuning'.

In both species, and across all individual animals, our models
yielded remarkably accurate trial-by-trial predictions of RT (see also
Fig. S20), indicating that pre-trial facial expressions can indeed predict

Fig. 1 | Experimental setup and computational pipeline. A Macaques and mice
were seated inside a large dome on the inside of which a VR was projected via a
curved mirror (top). They were rewarded for moving towards a spike-shaped leaf
compared to a round-shaped leaf (bottom). B As the animals were engaged in the
task, behavioural datawere collected:movements of the trackball (top andbottom)
and videos of their faces (middle). C Trackball movements were translated into

paths through the virtual environment (top and bottom), from which reaction
timeswere determined (seeMethods). Individual facial featureswere automatically
detected from the videos using DeepLabCut (DLC) and tracked over time (middle).
D Facial features entered two separateMarkov Switching Linear Regression (MSLR)
models (one for each species), which yielded, for every trial, a predicted reaction
time and internal state probabilities.
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subsequent task performance (Fig. 2B, top row). It also suggests that
the relation between facial features and task performance is dynamic
rather than static over time, reflecting multiple underlying states.
Finally, model performance was not impacted by removal of variables
associatedwith pupil size, indicating that the performance did not rely
trivially on known correlates of arousal (Fig. S16).

Is task performance dominated by a single state at any given
moment, or do several states co-exist continuously? After fitting the
model parameters, we used the model to identify the animal’s internal
state on a trial-by-trial basis. Note that themodel does not allow for the

animal to be in multiple states at the same time; rather, it gives us
probabilities telling how confident we can be about the state the ani-
mal is in on each trial. Specifically, we computed the posterior prob-
ability over states on each trial given all past and future observations.
The probabilities of each state over time suggest that the model is
highly confident about what state the animal is in on each trial (Fig. 2B,
bottom row). These observations were confirmed by the highly
bimodal distribution of these probabilities for both species (Fig. 2C).
Crucially, in monkeys, this separation between high-certainty (ps ≈ 1)
and low-certainty (ps≈ 1/ns) trialswasparticularly pronounced, while in
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mice, state probabilities were somewhat more mixed. Quantifying the
single-trial certainty as measuring its difference with the uniform dis-
tribution –through the Kullback-Leibler divergence (KL)—corrobo-
rated these findings (Fig. 2D; Mann-Whitney U-test: p = 1.11 ⋅ 10−274). As
such, the hidden states identified by our model seem to reflect largely
mutually exclusive behavioural modes that animals switch in and out
of. Given how consistently trials were dominated by one state, we
chose to binarize hidden state outcomes by assigning each trial to its
most probable hidden state.

State dynamics
To explore if the hidden states showed attributes that could be
reflective of internal cognitive states, we first characterized their
temporal dynamics. To this end, we examined the frequency of state
transitions in both species. The state transition matrices, which show
how likely a trial of a given hidden state is followed by a trial of any
(other or same) state (see Methods - Markov-Switching Linear
Regression), revealed high values along the diagonal for macaques,
indicating stable states that switched rather rarely. In mice, the diag-
onal of the transition matrix was slightly less pronounced, suggesting
that hidden states in mice were less stable and more prone to transi-
tion than in macaques (Fig. 3A). This was confirmed by the learned
hyperparameters of both models: These were highly comparable
across mice and monkeys with the exception of the concentration
parameter, which governs the sparseness of transition probabilities
and was markedly lower for monkeys than mice (see Methods - Model
tuning for details and for the values of the parameters we selected).

As a complementary analysis, we computed the dwell time for
each state. This quantity is defined as the number of consecutive trials
that a given state is occupied for before transitioning to a different
state. As dwell times are dependent on absolute numbers of trials
spent in each state (a state with very few trials overall cannot have long
dwell times), we plotted the dwell times alongside the number of trials
spent in each state (Fig. 3B). Supporting the previous observations,
hidden states lasted generally longer inmacaques than inmice (Mann-
Whitney U-test; nmac = 4092, nmice = 2543 trials, p = 0.0014), suggesting
that internal processing may be more steady in macaques. This is
consistent with previous findings that behavioural dynamics may
fluctuate faster in mice34,63 than monkeys64. Apart from a genuine
species-driven difference, this observation may also reflect the fact
that monkeys are trained more extensively and may therefore have
developed more stereotyped behavioural strategies than mice, which
were trained more briefly.

Hidden states as performance states
To link the identified hidden states more concretely to internal cog-
nitive processing, we set out to investigate how each hidden state
related to behavioural outcomes, starting with the RTs that the model
was trained to predict. There are two potential scenarios for how the
modelmight partitionRTvariability: on theonehand, it is possible that
each hidden state covers the full range of RTs, but predicts them from

a different constellation of facial features. Alternatively, each hidden
state might ’specialize’ on predicting specific ranges of RTs. For
example, one hidden state might cover facial features that distinguish
between fast and extremely fast RTs, while another state mainly pre-
dicts variations between slower RTs. This second scenario wouldmake
itmore likely that the identified hidden states reflect genuinely distinct
performance states.

To distinguish between these scenarios, we plotted the overall
state-specific RT distributions, pooling trials across all sessions and
animals, for each hidden state (Fig. 4A; top panel; Fig. S21 shows the
same plot for individual sessions and animals). The resulting dis-
tributions support the second scenario: while one hidden state (state B
in both monkeys and mice) covered a rather broad range of RTs, all
other states showed a distinct profile of response speeds. This implies
that the hidden states relate to distinct performance regimes (in this
case, in terms of response speed), making them viable candidates for
defining specific internal states of cognitive task processing.

To further probe the possible link of our internal states to known
cognitive processes, we related all hidden states to the three possible
trial outcomes of the task (hit, wrong, and miss; see Methods—
Experimental Paradigm). Crucially, given that we trained the model to
predict RTs, it never received any explicit information about trial
outcome. Furthermore, RTs were only marginally related to trial out-
comes (Fig. S1), so that trials with a specific RT would not be sig-
nificantly more likely to result e.g. in a hit or a miss trial. Finally, as we
only used information about facial features in the pre-stimulus phase
of the trial to train the model, it cannot reflect stimulus features.

Even though information about trial outcomeswas not part of the
MSLR model, the resulting hidden states were consistently predictive
of specific trial outcomes (Fig. 4A, bottom panel). For instance, in
monkeys, trials that were classified as belonging to state C were most
likely to result in a hit, while trials from state A often resulted in
incorrect responses, even though the RT distributions of both states
overlapped strongly. The same dynamic can be observed in states A
and C in mice.

Adding more states to the models and subsequently predicting
RTs and task outcome invariably resulted in several states strongly
overlapping in their predictions. For example, using 10 states in
monkeys and 8 states in mice (models with best cross-validated per-
formance, see Fig. 2A) resulted in two groups (of 2 and 6 states) in
monkeys and two groups (of 2 and 3 states) in mice, where the rela-
tionship of the states to RTs and task outcome was very similar
(Figs. S10, S12). We therefore conclude that the task performance
space is best covered by the three states for mice and four states for
monkeys.

Linking internal states to RTs and trial outcomes revealed that
individual states covered unique combinations of speed and accuracy.
To visualize these combinations, we plottedmean RT per hidden state
against the difference in probability of a hit versus a wrong trial for
each state. Interestingly, the constellation of states in this space was
comparable across species (Fig. 4B). Both mouse and monkey data

Fig. 2 | Model performance and state probabilities. A Cross-validation perfor-
mance for various numbers of states (ns), for macaques (left) and mice (right).
Circles indicate the maximum CV R2 and the shaded region extends until the 5th
percentile over folds and repetitions (nfolds=5,nrep= 5) for eachns. For both species,
increasing the number of states improves model performance to a plateau at an
R2 ≈ 0.8. Lasso is a regularized Linear Regression (i.e., a MSLR with 1 internal state).
The arrows indicate the number of states we selected, based on the maximum
difference of the CV performance curve (see Fig. S10). Insets show a box plot with
the mean of the average model performance, and model performance for indivi-
dual sessions as dots, for held out data at the selected number of states; dashed
horizontal lines indicate the 99th percentile of the surrogate performances (see
Methods). Note that the shuffled R2 is negative because only uncorrelated pre-
dictors are expected to be centred at 0, and due to finite sampling effects, there is

always a non-zero correlation between the shuffling and the ground-truth. Fur-
thermore, as we are dealing with skewed distributions (see Fig. S1), the null ten-
dency is not captured by the mean, as assumed by the default R2. B Predicted RTs
(top) and state probabilities (bottom) for an example stretch of data (left, maca-
ques; right; mice). C Probabilities of all states over all trials, regardless of state
identity (blue, macaques; orange, mice). The bimodal distribution suggests that
states are either absent or dominant on any given trial. D Kullback-Leibler diver-
gence (KL) for monkey (blue) andmouse (orange) internal states. KL quantifies the
difference between the posterior state probability under the model and the uni-
form distribution, normalizing by the number of states. A KL value close to 1
indicates maximally dissimilar distributions (i.e., only one present state at a time),
while a value close to 0 indicates indistinguishable distributions (i.e., equally likely
states).
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seem to generate one hidden state (state A inmice, state C inmonkeys)
that is associatedwith fast RTs and largely successful trial outcomes - a
performance regime that could be interpreted as globally attentive.
Conversely, state C andA inmice andmonkeys, respectively,maponto
rather fast yet often incorrect responses, potentially reflecting more
impulsive decision-making21,65. Finally, state B for both species features
particularly slow RTs, large RT variability, and mostly incorrect trials
for mice and equally likely trial outcomes for monkeys, potentially
signifying a state of global inattention66,67. The only state that appears
in monkeys but not mice (state D) features no reactions at all (i.e. no
change in path direction) and only misses; a sign of complete task
disengagement.

Relationship to facial features
A final clue towards the interpretation of our internal states might be
given by the facial features from which they are inferred. To explore
this possibility, we plotted the regression weights of all facial features
for thehidden states associatedwith hit, wrong, andmiss trials (Fig. 5A;
for the facial features comprising the fourth state in the monkey, see
Fig. S13). These plots reveal highly distinct contributions of different
facial features to each internal state. For example, in mice, pupil size
and whisker movements predict reaction speed in the ’hit’ state,
whereas nose movements predict reaction speed in wrong and miss
states. Similarly, in monkeys, large pupil size predicts fast reactions in
hit and wrong states, but slow reactions in miss states, and eye
movements play a strong predictive role in hit and wrong, but not in

miss states. One interpretation of these observations is that different
sensory modalities may be more dominant in driving decision making
(and thereby decision speed) in different states. Especially inmice, one
of the hallmarks of the hit state is that it is the only state in which pupil
size plays a decisive role, suggesting that in other states, behaviour
may be less strongly driven by sensory sampling from the visual
domain (and more by sampling e.g. from the olfactory domain).

Interestingly, the facial constellations predicting RTs in the states
most closely associated with hit and wrong trials, respectively, are
quite similar in monkeys, but not in mice. This may suggest that in
monkeys, the behavioural state underlying correct and wrong trial
outcomesmay be a generally engaged and high-attention state, and hit
or wrong outcomes are mainly dictated by visual difficulty than dif-
ferent internal cognitive state. In contrast, in mice, hit and wrong trials
maybe the product ofmore distinct underlying cognitive states, e.g. in
terms of attentive capacity (see Supplementary Fig. S19 for a sum-
marized visualization).

This notion becomes even more apparent when focusing only on
the facial features that both species have in common (pupil size, and
eye and nosemovements), as shown in Fig. 5B. Surprisingly, the direct
comparison of shared facial features across species shows that the
contribution of individual facial features to the three performance
states is highly overlapping, particularly in hit andmiss states (Fig. 5B).
Shuffling the features and computing the mouse-monkey overlap
10.000 times, revealed that this overlap is extremely strong in the hit
state, quite strong in themiss state, and indistinguishable from chance

Probability of state transitions

Characterization of state statistics over trials

Fig. 3 | State dynamics. A State transition matrices for macaques (left) and mice
(right), that show the probability, at any one trial, of transitioning from a certain
state (rows) to any other state (columns). Transitions between different states (off-
diagonal terms) are more frequent for mice than for macaques. B Macaques (left
plots) spendmore time thanmice (right plots) in the same state, asmeasuredby the
dwell time (number of consecutive trials of each state being the most likely one;

nmac ∈ [90, 1930], nmou ∈ [110, 1160]). Context for these dwell times is given by the
trial counts (per session) on the left of each dwell time plot (nmac = 18, nmou = 29).
Box plots reflect the median and 25th, 75th percentiles of the dwell time and
number of trials per session, withwhiskers showing 10th, 90thpercentiles; individual
dots below the box plots reflect sequences of consecutive trials of a particular state
and trial counts per session, respectively.
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in thewrong state (at 97.9, 86.2, and 56.7 percentile of the distribution,
respectively). This result further underlines the notion that, unlike hit-
and-miss trials, wrong trials may be the outcome of genuinely distinct
cognitive states inmice andmonkeys.More globally, the strongmatch
of facial features, especially in hit and miss states, indicates that facial
expressionsmay be evolutionarily preserved across species not only in
terms of emotional32, but also in terms of cognitive and attentional
processes.

Do the internal states reflect global facial constellations, or could
they be inferred equally well from individual facial features such as
pupil size? To answer this question, we plotted the contribution of
individual facial features across all inferred internal states. (Fig. 5C
shows the distribution of model weights across all facial features.
Some features (e.g. the upper lip in monkeys or vertical whisker
movement in mice) did not contribute significantly to predicted

performance in any internal state. For more prominently predictive
facial features (e.g. right ear or pupil size in monkeys and vertical eye
movements or nose movements in mice), there was a wide spread of
model weights across states. This indicates that no single facial feature
waspredictive of performance across all states. Rather, inboth species,
reaction times are best predicted by a complex and variable con-
stellation of facial features that cannot simply be reduced to individual
components. This finding is further supported by the observation that
different states are consistently distinguished by more than one facial
feature (Fig. 5A; see also Fig. S9), and that removing one of the most
prominent predictive facial features—pupil size—together with all
facial variables significantly correlated to it, did not impair model
performance in any way (see Figs. S15, S16).

Together, these results suggest that 1) holistic analysis of complex
facial expressions is much more informative than analysis of one iso-
lated facial feature such as pupil size and 2) the relationship between
facial features and cognitive processing is not linear, but changes
depending on the internal state that the animal is in. For instance, in a
high-performance state, large pupil size may indeed predict trial suc-
cess (as shown e.g. by refs. 33,36), whereas it may be irrelevant or anti-
correlated in a low-performance state (see e.g. contribution of pupil
size to hit versus miss states in monkeys, shown in Fig. 5A).

Lastly, we aimed to establish whether the constellations of facial
features associatedwith each internal state were sufficiently distinct to
infer internal states in individual trials. To this end, we classified the
facial read-out from each trial as part of a hit, miss or wrong state,
based on its correlation to the corresponding hit, miss, and wrong
facial profiles (Fig. 5D). In both species, trials were classified as
belonging to their rightful internal state far above chance level
(Fig. 5D). This suggests that in both species, there are indeed char-
acteristic facial expressions reflecting e.g. attentive or disengaged
cognitive states, that are distinctive enough to be successfully identi-
fied on a single-trial basis in a majority of trials.

Influence of trial history
One reasonwhy hidden states can predict trial outcomes so accurately
despite not being trained on them in any way might be that pre-trial
facial features are mostly a trivial consequence of the animal’s trial
history. For example, facial featuresmightmainly reflect an animal still
drinking reward from the previous trial, which might in turn raise
motivation to perform correctly in the upcoming trial. In this case,
facial features would merely be a particularly convoluted way of
quantifying the previous trial outcome, and using it to predict
upcoming performance, as has been achieved previously68,69. To
account for this possibility, we trained an Auto-Regressive Hidden
Markov Model (ARHMM) based on RTs (see Methods - ARHMM for
details). As can be seen in Supplementary Fig. S6, the facial features
model outperforms the ARHMM for all states, for both species.

As an extra control, we correlated each facial feature with the
history of prominent task parameters, specifically two related to the
directly previous trial (its outcome,whichmight affectmotivation; and
the location of its target, which might predict side biases), and two
related to the overall session history (the cumulative amount of reward
and the time that passed since the start of the session, as proxies for
satiety and fatigue, respectively). Correlations between task variables
and facial features were sparse in both species (Supplementary
Fig. S17). In fact, attributes of the previous trial did not relate sig-
nificantly to facial features at all, andmore sustained session attributes
modulated facial features merely somewhat. This suggests that facial
features may be modulated by ubiquitous internal processes like fati-
gue and satiety, which are in turn impacted by task parameters, but
they are not a trivial reflection of task history. Rather, the fact that
facial expressions are modulated by the overall task context makes
them a more plausible reflection of realistic fluctuations in cognitive
processing.

Reaction Time distribution per state

State similarity between macaques and mice

Fig. 4 | Internal states and task performance. A (Top) Splitting the RTs over
internal states shows large diversity for bothmacaques (left) andmice (right), from
fast reaction-states to extremely slowones. Box plots reflect themedianRT and the
25th, 75th percentiles, with whiskers showing 10th, 90th percentiles; individual
dots reflect trials (nmac ∈ [90, 1930], nmou ∈ [110, 1160]). (Bottom) Correlations of
state probabilities with the three task outcomes (hit, wrong, miss), for macaques
(left) andmice (right). Black boxes indicate the statesmost strongly associatedwith
a certain task outcome.BConjunction of RT and excess likelihoodof a hit outcome,
for all states (blue circles, macaque; orange triangles, mouse) (nmac ∈ [90, 1930],
nmou ∈ [110, 1160]).
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Fig. 5 | Informativeness of facial features. A Predictor weight of the facial features
for themacaque (top) andmouse (bottom)model in the hit, wrong andmiss states
(see black boxes in Fig. 4A, bottom). Central circle indicates a predictor weight of
zero; inside this circle are negative predictor weights, outside are positive weights.
Note that a positive weight implies a negative relationship with performance and
vice versa (for example, the strong negativeweight onpupil size formonkeys in the
hit statemeans that the bigger the pupil, the slower reaction times it predicts). Each
state has its own characteristic facial expression pattern. B Plotting only the facial

features that overlap between the species reveals strong similarities in their
importance to the three performance states. C Variability of all facial features
(nmac = 4, nmou = 3) over states. Although some features contribute more than
others, clearly, all features contribute to the model distinguishing between the
various internal states. We show themean value ± SEM.D As seen in (A), each state
has a distinctive facial expression pattern. Further supporting this, we show thatwe
can decode states on single-trial states based on similarity to each state-averaged
template.
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Discussion
Internal cognitive states are known to substantially shape overall brain
activity70,71 as well as behavioural decision making1,2, yet they are
notoriously difficult to identify. As a result, it is even less clear to what
extent they converge across species. To infer hidden cognitive states in
mice and monkeys, we harnessed an MSLR model25 trained on their
facial features while they were engaged in an immersive VR foraging
task. Specifically, we trained the MSLR to predict an animal’s reaction
time (RT) in a given trial based on its facial expressions prior to sti-
mulus presentation. For both species, RTs could be predicted on a trial
by trial basis with high accuracy from preceding facial features only.
This suggests that facial expressions reflect internal parameters that
are directly relevant to task performance from moment to moment.
These parameters were only minimally shaped by task history, sug-
gesting that they were not a trivial reflection e.g. of the previous trial
outcome.

Even more surprisingly, this approach revealed multiple distinct
hidden states, which were characterized by equally distinct relation-
ships between a complex constellation of facial features and sub-
sequent task performance. In different states, performance seemed to
be dominated by specific sensory modalities, e.g. eyes versus nose for
hit versus wrong states in mice. This suggests that, depending on an
animal’s internal state, the relation between facial features and sub-
sequent task performance can shift dramatically, and there are no
individual facial features that reliably predict behaviour across differ-
ent internal states. As such, our results emphasize how data-driven
characterization of internal states can highlight crucial features that
might be missed when using experimenter-defined states (see
also ref. 72).

These findings stand in marked contrast to previous research
studyingmostly linear relationships between single facial features (e.g.
pupil size or eye movements) and isolated cognitive states (e.g.
attention) pre-defined by the experimenter33,34,36–39,43–45. They also go
beyond recent studies highlighting the relationship betweenmotionof
the entire face (regardless of the facial features), and task performance
(Musall et al. 2019; Hulsey et al., 2024) or neural activity (Syeda et al.
2023; Salkoff et al. 2020; Talluri et al. 2023). This highlights the fact
that information reflected in the entire face is not only richer but also
qualitatively different from information extracted from individual
facial features.

Most importantly, the internal states revealed by theMSLRmodel
mapped distinctly onto behavioural trial outcomes (i.e. hit, wrong and
miss trials)—even though this information had been in no way part of
the inputs the model received. This suggests that the hidden states
highlighted by our model were not simply ’computational devices’
increasing its predictivepower. Instead, they appear to reflect genuine,
dynamically fluctuating cognitive states, which result in distinctive
behavioural outcome profiles.

Our findings were not dependent on the use of one specificMSLR
model, as we repeated our analyses with a GLM-HMMmodel (training
an individual model per animal and experimental session), with very
similar results73. In two separate studies, such a GLM-HMMmodel was
applied to behavioural choices in sensory discrimination tasks inmice.
Both studies revealed distinct cognitive states that were identified as
states of high or low engagement in the task48,52. The states were cor-
related with classic measures of arousal: pupil diameter, spontaneous
facial movements and locomotion52. Moreover, brain wide imaging
signals recorded during a disengaged state showed higher trial-to-trial
variability, which was due to task-independent (partly facial)
movements48. By taking into account comprehensivemeasurementsof
the entire face rather than mainly behavioural outcomes, our study
could not only infer performance states on a single trial level (Fig. 5D),
but also show that disengaged states can reflect the dominance of less
relevant sensory modalities (Fig. 5A), and that similar behavioural
states engage similar facial features in monkeys and mice (Fig. 5C),

suggesting strong evolutionary preservation of the underlying
mechanisms.

Interestingly, despite the fact that the optimal number of states
was determined separately for each species and in a purely data-driven
way, our approach converged onto a low and noticeably similar
number of internal states for both species: three states for mice (in
agreement with48,52), four for macaques. How comparable are these
internal states of mice and monkeys?

We found that in terms of the dynamics by which animals tra-
versed different internal states, results diverged across species.
Specifically, mice appeared to transition more frequently between
states than monkeys. A control analysis that matched the number of
subjects, trials and facial parameters across species before fitting the
MSLR models showed that this difference is not a trivial result of
divergences in data structure (see Supplementary Fig. S18). Given
that mice have previously been shown to alternate between strate-
gies during perceptual decision-making56, this finding may point at a
genuine difference in the cognitive dynamics of mice and monkeys.
Alternatively, the prolonged training time of the monkeys compared
to the mice may have given them the chance to converge on more
stable behavioural strategies over the course of training74,75.
Recordings from mice that experienced a more prolonged training
scheme and/or from more naive monkeys will give fascinating
insights into the role of expertise in fosteringmore stable transitions
between cognitive states.

Beyond state dynamics, the constellation of behavioural profiles
covered by different states was largely comparable across species76,77.
Each hidden state predicted only a narrow range of reaction times; and
when relating the inferred hidden states to task performance beyond
the RTs that the model was trained to predict, we found that states
mapped onto the behavioural outcomes (hit, wrong, miss) with dis-
tinct probabilities. Moreover, each hidden state covered unique
combinations of RT ranges and trial outcomes (hit, miss and wrong
trials), despite the fact that trial outcomes had not been part of the
MSLR in any way. Specifically, both monkeys and mice display a state
where trial outcome is typically slow and unsuccessful (which could be
interpreted as ’inattentive’), as well as several states where perfor-
mance is largely fast and correct,with apreference for thoroughness in
one state, and a preference for speed (and potentially impulsivity) in
the other. These states potentially map onto various levels of task-
related attention, and further support the notion that classical con-
cepts of attention can indeed reflect much of the internal structure of
goal-directed behaviour, also in naturalistic settings.

Different internal states were associated with distinct con-
stellations of facial features, as evidenced by the facts that states
were highly separable based on the associated facial features, and
that they could be successfully inferred through facial template
matching on a single-trial level. This strong relation points to a role of
facial expressions beyond emotional expression. Facial expressions
have so far been mostly studied in a social or emotional context, and
mostly in social species such asmonkeys29,78 and humans26,79. Inmice,
until recently facial expressions were thought to mainly reflect
pain30,80,81, until careful analyses using machine-learning algorithms
identified their facial expressions as innate and accurate reflections
of several emotional states as well19,31,82. Our results suggest that
similarly to humans, facial expressions in monkeys and mice also
convey cognitive and motivational variables such as focus or cogni-
tive strain, even in the absence of a particular emotional or social
context. What’s more, the facial features predictive of comparable
behavioural outcomes in mice andmonkeys were highly overlapping
(Fig. 5C). This suggests that the mechanisms mapping behavioural
states onto facial expressions are robust and highly preserved across
the evolutionary ladder.

The fact that such performance-related states are equally appar-
ent in both species is intriguing, sinceonemight have assumed that the
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prominent differences between the two species (such as the acuity and
dominance of their visual system) would imply that they are likely to
solve tasks usingdifferent strategies. Andwhileboth species have been
shown to experience spontaneously shifting internal states, such as
slow fluctuations in attention21,64,65,70, it has been difficult to make
accurate comparisons between species based on available work. Stu-
dies of internal states have typically employed species-specific tasks
that require extensive training56,64, which may have imposed cognitive
dynamics that would not occur in the wild. As such, similarities and
differences in the internal states identified in different species might
have reflected similarities and differences in behavioural settings and
training schemes just as much as innate differences in cognitive pro-
cessing. Our study minimizes such confounds compared to previous
research56,64, and thus adds one of the first rigorous estimates of which
aspects of internal states truly generalize across species—andwhich do
not. The fact that with this approach we were able to identify strong
similarities in spontaneously occurring internal states across species
opens the door to further inquiries into the common and evolutionary
preservedprinciples of these states. Specifically, the spontaneous state
fluctuations identified here can be important indicators of underlying
brain-wide activity fluctuations thatmaywell generalize across species
to a large extent. Global internal states such as arousal,motivation, and
attention typicallymanifest themselves via brain-wide dynamics, and it
will be an exciting endeavour to investigate how well those neuronally
defined internal states correspond to the ones we here identified
behaviourally.

The MSLR model that we used yielded single estimates of the
internal states per trial, and our subsequent analysis using ’facial
templates’ of internal states for single-trial predictions of behavioural
outcomes was highly successful in both species (Fig. 4). This con-
stitutes a great basis for accurate, time-resolved tracking of ongoing
dynamics in internal states, which can be further extended in future,
using MSLR models with higher temporal resolution. Such MLSR
models will be able to align identified internal states with specific
events within each trial, such as the appearance and disappearance of
stimuli, thereby allowing for more precise characterisation of their
dynamics and functional roles.

Perhaps most importantly, such a time-resolvedMSLR would also
allow us to link cognitive processes to neural activity on amoment-by-
moment basis, without the need for repeatedly presenting identical
trials and thendoing extensive post-hoc averaging. As theMSLRmodel
yields a time-resolved estimate of cognitive states, these time courses
can be directly compared to continuous neural activity. As such, this
approach opens up a much more naturalistic view of the neuro-
behavioural dynamics involved in spontaneous cognitive states than
traditional approaches can offer47,57.

These findings suggest that in an ecologically valid framework
that applies across species (in this case, a foraging-based task set in a
naturalistic, immersive visual environment), many features of cogni-
tive processing are more similar than classical paradigms might have
suggested. At the same time, presumably genuine cross-species dif-
ferences, e.g. in the transition frequency between cognitive states, also
become more apparent.

In summary, we have shown here that in both monkeys and
mice, facial features can be used to infer internal cognitive states
and to track their spontaneous dynamics over time. With this
approach, we find that the basic attributes of such internal states
map onto known cognitive states such as attention in both species
in a translatable way, but that the dynamics by which mice and
monkeys traverse these states are somewhat different. This high-
lights the crucial importance of using naturalistic behavioural
paradigms, especially in cross-species research, in order to discern
truly species-specific results from differences induced by restrictive
testing methods.

Methods
Animals
This study includes data from two male macaques (Macaca mulatta)
and six male Black6 mice (Mus musculus). The monkeys were housed
together in a spacious outside and inside area, connected via a small
flap door and both containing environmental enrichment. Mice were
kept in day-night reversed housing and were initially group-housed,
but housed individually once behavioural training commenced to
ensure correct food restriction. Single-housed animals were given
’playtime’ in a large play cage shared with litter mates following their
behavioural training in order to counteract stressful effects of single
housing. Mouse cages were placed in a room with a temperature of
21.5 °C and 55 percent humidity, and contained environmental
enrichment such as running wheels. All procedures were approved by
the regional authorities (Regierungspräsidium Darmstadt) under the
authorization number F149/2000 and were performed in accordance
with the German law for the protection of animals and the 'European
Union’s Directive 2010/63/EU'.

Surgical procedures
All animals were fitted with custom-milled headposts for the purpose
of head fixation during this experiment. The headpost design and
implant procedures for themacaques have been extensively discussed
in ref. 83. Briefly, a four-legged titaniumbaseplatewas screwed into the
skull under general anaesthesia. After several weeks of osseo-integra-
tion, a titanium top part was screwed onto the baseplate in a simple
procedure. The headposts for the mice have been described in ref. 84.
Briefly, the animalwasplacedunder isoflurane anaesthesia, shaved and
given local analgesia on the top of the head. An incision wasmade and
the skin on top of the cranium was removed, before the cranium was
cleaned and the custommilled titanium head plate was attached using
dental cement.

Experimental setup
Experimentswere carried out in a darkened room (mice) or electrically
shielded booth (monkeys). The animals were in the centre of a 120 cm
diameter spherical dome extending to 250 deg visual angle. The
headfixed mice were positioned on a styrofoam spherical treadmill;
the headfixedmonkeys were seated in amonkey chair and could spin a
12 cm diameter trackball with their hands. Movements of the spherical
treadmill and trackball allowed the animals to traverse a virtual reality
(VR) environment projected on the inside of the dome by means of a
spherical mirror. Projecting the VR environment on a dome sur-
rounding the animals enabled both their central and peripheral view to
be covered, thereby providing an immersive and realistic VR envir-
onment. The VRenvironment was created usingDomeVR, our custom-
made toolbox combining photorealistic graphics renderedwithUnreal
Engine 4, with high timing precision required for neuroscience
experiments53.

Experimental paradigm
Mice and monkeys were required to distinguish two natural shapes at
equal distance in front of them, amidst a grassy field with a blue sky
above and mountains in the background (Fig. 1A). The two shapes
emerged out of a central shape which was either right at the starting
position (for monkeys) or a short distance in front (for mice). A virtual
collision with the correct shape yielded a reward (’hit’), whereas the
incorrect shape yielded no reward (’wrong’), and no collision with
either shape also yielded no reward (’miss’) (2AFC paradigm). Rewards
were drops of diluted juice for the monkeys and drops of vanilla soy
milk for the mice. For the monkeys, the shapes varied smoothly
between a non-rewarded, textured square and a rewarded triangle
(monkey K) or between a rewarded, jagged and a non-rewarded, hour-
glass shaped leaf (monkey C). On each trial, a blend between the two
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shapes was shown alongside the exact middle blend (’reference
shape’). For the mice, the shapes and their reward contingencies were
the same as for monkey C.

Monkey data were recorded in 7 sessions for monkey C, 11 sessions
for monkey K. Each session lasted about one hour, during which the
monkeys completed 1208± 186 and 991 ± 492 trials at 67 and 77 percent
correct (monkeys C and K, respectively). The monkeys were both fully
trained on handling the trackball to move through the VR environment,
as well as the VR task. Mouse data were recorded in (12, 4, 6, 3, 2, 2)
sessions for mice (001, 003, 004, 005, 012, 013), respectively. Each
session lasted about one hour, during which the mice completed
(280± 103, 514 ± 70, 573 ± 112, 246±87, 462 ±8, 394± 87) trials at
(59, 54, 60, 77, 45, 63) percent correct (same mice ordering as before).
Following the headpost surgery, the mice were handled for 5 days to
reduce experimental anxiety due to head fixation and interaction with
the experimenter, before behavioural training began. Behavioural
training in the experimental setup at initial stages lasted between 3-5
sessions, before final data collection began, which lasted up to
30 sessions.

Behavioural tracking
Werecorded videos of themonkeys’ andmice’ faces during the tasks at
60 Hz using Basler acA640-121gm infra-red cameras with a modified
version of PylonRecorder2 software (https://gitlab.mpcdf.mpg.de/
mpibr/scic/pylonrecorder/PylonRecorder2). Additionally, in the mon-
keys, eye movements were recorded at 500 Hz using a Grasshopper3
infra-red camera and the free eye tracking software iRecHS285 and
synchronized with DomeVR53.

Facial key point extraction
To extract facial key points from the videos, we used markerless pose
estimation on them, as implemented in DeepLabCut16,86. For mice,
features were extracted from videos of the left side of the face using
our own model to identify key points such as the coordinates of the
eye, whisker pad and nose. For mouse pupillometry, we used the eye
coordinates from the facemodel to crop the video to include the entire
left eye and ran it through a refined model based on the 'mouse pupil
vclose' Animal Zoo model (provided by Jim McBurney-Lin at the Uni-
versity of California Riverside, USA) included with DeepLabCut. The
output of the pupil model was 8 points covering the circumference of
the mouse pupil, that were then used to calculate pupil and eye sum-
mary statistics.

For the macaque facial key points, we used the pre-trained 'pri-
mate face' model from the DeepLabCut Animal Zoo (provided by
Claire Witham at the Centre for Macaques, MRC Harwell, UK) and
extended it with additional points on the lips to capture more precise
mouth movement than in the original model. All models were further
trained and refined to achieve a detection error of less than2 pixels per
tracked key point in all conditions. The macaque raw pupil size
recorded by the eye-tracker was Z-scored over timewithin the training
data set.

To synchronise the video timing with events in the virtual reality
environment, we used 32 ms long infra-red flashes emitted from an
LEDmounted near the camera lens. These flashes were then extracted
from the face videos tobeused as timestamps for synchronisationwith
DomeVR. Five consecutive flashes indicated the start of a behavioural
session; a single flash indicated the start of a trial.

Reaction time
In our VR setting, where animals move towards one of two stimuli
rather thanpressing a button or lever, ormaking an eyemovement, we
define the reaction time (RT) as the time point of the initial substantial
movement directed towards either stimulus. While determining this
time point, it is crucial to distinguish between stimulus-related
movements and minor positional adjustments. We specifically focus

on the first deviation in lateral movement, while excluding forward
movement due to its susceptibility to randommovements and its task
irrelevance.

To calculate the RT, we use a sliding window linear regression
approach, incorporating a time decay mechanism. This approach
enables us to detect non-linearity by examining the coefficient of
determination (R2) for each window. A low R2 value indicates that the
data deviate from linearity, and suchadeviation canbe interpreted as a
deviation in lateral movement.

First we compute a linear regression on the time series of lateral
VR movement for adjacent sliding windows i and j of a given size (nw).
Then, R2

i (i.e., R2 for window i) is calculated as:

R2
i = 1�

Pnw
j = 1 lj � l̂ij
� �2

Pnw
j = 1 lj ��l
� �2 ð2Þ

where lj is the jth element of the lateral movement observed in the
second window, l̂ij is the corresponding predicted lateral movement
value (based on window i) and �l is the mean lateral movement within
the second window. As a result, we get an array of R2

values: R2 = ½R2
1 , . . . ,R

2
n�.

Subsequently, we reverse the sign of the—R2 array and detect its
local maxima. For this, we resort to the definition of extreme points
(we have a univariate function in this case):

L= argmax
w

d2rðwÞ
dw2

" #

ð3Þ

where we have simplified the notation, using—R2 ≡ r(w). Once we have
found the local maxima (L), we further require that they have a mini-
mum prominence (λ). Prominence is a measure of the significance of a
peak by comparing the peak to its surroundings:

λi = rðw0Þ �max rðbl, iÞ, rðbr, iÞ
� �

,

bl, i = argmin
j 2 ½0, L0 �

rðwjÞ
h i

,

br, i = argmin
j 2 ½L0, n � 1�

rðwjÞ
h i ð4Þ

where r(w0) is—R2 at L0 and bl and br are the arrays of left and right
bases of the peaks; we are making use of the notation by
which r(w) ≡ −R2.

For each peak in r(w), we calculate the prominence and discard
the ones that are below a given threshold (λ0). The particular value for
this threshold was not critical for the overall performance of the
algorithm. For the sake of stability, we usemultiple window sizes (100,
150, 200 and 250ms) and combine the results in the followingway. For
each window k, we have an array of candidate points (xk

cand). Then, we
create a vector of weights (wk 2 Rn) that have a value equal to a
Gaussian distribution centred around each candidate point of each
window. Mathematically:

wkðxÞ=
N ðx � xk

cand ,σÞ if x 2 Bk
cand

0 otherwise

(

where Bk
cand denotes the vicinity of each point in xcand for window k.

Finally, the RT is given by:

RT = argmax
x

X

k

wkðxÞ
 !

=x

" #

ð5Þ

Figure S1 shows the distribution of RTs split by trial outcome over
sessions, for both species; Fig. S2 shows example paths and detected
RTs for both species.
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Facial features
The extraction of the predictors for the MSLR model involves a multi-
step process to go from continuous recording time (60 Hz for video
data and 500Hz for the macaque eye-tracker) to trial-based
predictions.

First, we chose several points of interest on the animals’ faces,
which are then automatically identified and tracked over time using
DeepLabCut16:

• Macaque: both ears, eyebrows, nostrils and lips (see Fig. S3A).
• Mouse: nose tip, left ear, left eye and median whiskers location
(since we have a side view of the face, see Fig. S3B).

Once the data streams were aligned, we computed the median
location (x, y) of each facial point over the 250ms window before the
stimuli appeared on the dome. This time window was chosen to make
sure that all of the facial expressions of the animals are due to
internally generated processing, rather than stimulus processing. Dif-
ferent window sizes (particularly: 200, 300 and 500ms) did not yield
any qualitative difference. In addition to the median location, we also
computed the total velocity of each facial point.

For both species, we further computed themedian pupil size over
the same time window. Pupil size is a well-known indicator of arousal
and cognitive load, and thus provides valuable information about the
internal state of the animal.

This resulted in a set ofdata points for each trial, corresponding to
the median vertical and horizontal location, and total velocity of each
of the facial features. These data points serve as the predictors for the
MSLR model.

Markov-switching linear regression
Markov-Switching Linear Regression (MSLR) models, which we ran
using Dynamax55, are a powerful tool for modelling time series data
that exhibit regime-switching behaviour, where the underlying
dynamics of the system change over time.

The MSLR model is defined by a set of linear regressions, each
associated with a particular state of a discrete Markov chain. The state
of the Markov chain determines which sets of weights and biases
predict the evolution of the observed data at each time step. The
transitions between states are governed by the transition probabilities
of the Markov chain, which are learned from the data.

Formally, an MSLR model can be described as follows. If S is the
total number of latent (discrete) states of a Markov process, at each
time step t, a given state zt 2 f0, 1, :::, Sgð Þ will follow a Markovian evo-
lution such that:

Pðzt + 1 = jjzt = iÞ=πij ð6Þ

As these are stochastic matrices, πij ∈ [0, 1].
Let the M − dimensional input time series at time t be denoted

by xtð2 RMÞ. Let the N—dimensional output time series at time t be
denoted by ytð2 RNÞ. Then, in the case of a MSLR, the discrete latent
variable at time t (zt), will dictate which emission weights
(W 2 RN ×M) and emission biases (bs 2 RN) we will use to predict the
outputs (emissions) based on the inputs (predictors). Moreover, an
emission covariance matrix (Σs 2 RN ×N

k0 ) will also have to be learnt.
Explicitly, at time t, the emission distribution in this model is
given by:

pðyt jzt , xt ,θÞ=N ðyt jWzt
xt +bzt

,Σzt
Þ ð7Þ

Therefore, the problem of fitting this model amounts to finding
the set of emission parameters denoted by:

θ= Ws,bs,πs ,Σs

� �� 	S
s = 1

ð8Þ

In other words, the aim is to find the weights (Ws) and biases (bs)
for the linear regressions and the transition πs and covariance Σs
matrices for the Markov process.

In our case, the discrete latent variable (zt) represents the internal
state of the animal at trial t, which is inferred from the facial features
(xt) extracted using DeepLabCut16 and the observation (yt) that
represents the RT of the animal. We trained theMSLRmodel using the
Expectation-Maximization (EM) algorithm87, which iteratively com-
putes the probability over latent states given the data and updates the
model parameters to maximize the likelihood of the observed data.
For further details, we refer the reader to ref. 88. We iterated the EM
algorithm for 50 times, for all models. We initialized the model para-
meters using a normal distribution for weights and biases and we used
the identity matrix as the initial covariance matrix for the emissions.
We assumed a Dirichlet prior for the transition matrix. We repeated
this process 10 times to increase confidence that we got the optimum
value for each combination of parameters.

Training and inference
We used an 80: 20 ratio for train-test splitting and performed hyper-
parameter optimization by cross-validating the training set only
(see Methods - Model tuning for details on CV and model selection).
For each species,we concatenated the training sets of all sessions,with
forced transitions in between the sessions (setting predictors and
emissions to 0 for 50 consecutive trials), so that state probabilities are
reset. Then, after optimizing each model, we performed inference on
each held out test set (separately per session). We decided to take this
approach for various reasons:

• Model generalization: as the model learns from potentially dif-
ferent faces, it is likely that it can pick up on common information
between them.

• Model interpretability: given that we do not update the model
parameters at the inference step, all internal states have the same
meaning over subjects and, thus, are directly comparable.

• Better convergence: increasing the number of training samples
(i.e. concatenating sessions as opposed to training a different
model per session) allows the model to have more data to
learn from.

All of the results in the main text, unless otherwise stated, are for
held out data.

Model tuning
For the model we described in Markov-Switching Linear Regression,
there are several parameters that can be tuned to explain the data
better. We assumed a Dirichlet prior distribution, as it is the conjugate
prior distribution of the categorical distribution. The concentration
parameter (α) controls the relative density or sparseness of the
resulting transition matrix. We decided to explore the influence of
changing themaximum number of internal states (S) and to add sticky
transitions to the Markov process (a self-bias term in the transition
matrix π, making states taking longer to transition to a different one);
the parameter that controls this is the stickiness (β), and to vary the
transition matrix sparsity (concentration).

In order to balancemodel performancewith scientific insights, we
took a hybrid approach. We increased the number of internal states in
a greedy way, to show that the error saturates and that there are
diminishing returns when increasing model complexity. On the other
hand, for a given number of states, we optimized the two free para-
meters of the Markov process (α and β).

For the sake of efficiency, we used Optuna89, a flexible framework
to implement Bayesian optimization. In Table 1 we report the relevant
quantities for this process.

To select the best combination of parameters, we performed
5-fold Time-Blocked Cross-Validation90.
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We ended up selecting these values, after cross-validation: for
macaques:α = 19.315, β = 45.705; formice: α = 34.312, β = 42.029. These
values explain the overall tendency we find in the main paper: maca-
ques have a more block-like behaviour (sparser and more diagonally-
dominant transition matrix), whereas mice transition more and in
between more states (denser and less diagonally-dominant transition
matrix).

Synthetic data and ground truth states
In order to validate the retrieval of states when we do not have access
to ground truth ones, we generated a time series of ground truth
emissions and states based on the given inputs (by using the same
input data as in the main text). To this end, we trained anMSLRmodel
with a known given number of states and sampled some emissions and
states sequence from it. We aimed to recover the appropriate number
of states with the correct temporal sequence, and to correctly predict
the emissions.

In Fig. S4A, we show that the model’s R2 saturates at the ground-
truth number of states (dashed vertical line). Nevertheless, we took the
best performing number of states (ns = 10) and cluster (through a
hierarchical clustering algorithm, details below) these states based on
their predicted emissions, and compare their similarities against a
surrogate distribution (constructed via 500 shufflings of one of the
input predictions, thus destroying any temporal structure). For those
within or below a significance range (chosen to be the 90th−99th
percentile of the surrogate distribution), we group them together. At
the end of this process, we end up selecting 5 states (thus recovering
the ground-truth ns), see Fig. S4B.

For the selected number of states, we fit a MSLR using the EM
algorithm for 50 steps (same as in the main paper) and plot the state
sequence (true vs inferred), see Fig. S4C. To quantify the observation
that the inferred states closely match the ground-truth ones, we
computed their correlation (one-hot encoding the true and predicted
state sequences), showing a very high value for each value across the
diagonal (and only for that one), see Fig. S4D. There is a very close
match (ρ(strue, spred) > 0.7) between the true and inferred states, given
that the 99th percentile of the surrogate correlation distribution was
0.12. We mask all values below this surrogate threshold.

Hierarchical clustering
We clustered n states based on their emission distributions. In order to
quantify the pairwise distribution similarity, we used the Jensen-
Shannon Distance, so we first needed to turn each state-specific RT
emissions distribution into a histogram. To that end, we used the
Freedman-Diaconis rule to automatically select the optimal number
of bins.

Face separability
We computed a “face separability” measure, which quantifies how
dissimilar the different distributions of facial features are when split
over states.

Mathematically, this measure is defined as:

Ω= maxðA, 1� AÞ ð9Þ

where A is Vargha-Delaney’s A-statistic (also known as measure of
stochastic superiority), an effect size derived from the Mann-Whitney
U-test91.We decided to useΩbecause it is especially interpretable. As it
is related to the U-statistic, it can be thought of as the probability of a
randomly selected point from one distribution being higher than
another randomly selected point from the other distribution. This
measure is bounded between 0.5 and 1. If there is no overlap, Ω = 1. In
this extreme case, one distribution would have complete stochastic
dominance over the other. If X and Y are completely overlapping,
Ω = 0.5. Intermediate cases reflect the degree of dominance one
distribution has over the other. The more its value deviates from 0.5,
the less overlapping the distributions are.

We have shaded regions according to the common
interpretation91:

• Small separability (grey): 0.56 < Ω < 0.64.
• Medium separability (orange): 0.64 < Ω < 0.71
• High separability (red): Ω ≥ 0.71

For example, for the first column in the macaque row (Fig. S5,
State A vs B), taking pupil size (bottom row) as an example, thismetric
quantifies howdifferently distributed the pupil size in state A vs state B
is over sessions. Its median value is around 0.72, meaning high
separability. This implies that this feature is very different across these
two states, whereas the vertical left ear position (lEar [y] in the plot, top
distribution) is much less useful to disambiguate between these two
states. Comparing the separability (across features) between the var-
ious state combinations, two main results emerge:

• There are some states whose faces are similar to each other
(Macaque: State C vs A; Mouse: State B vs C). This is in line with
what we are showing in Fig. 5A in the main text.

• No single feature is useful to disambiguate between states. This
points back to one of our conclusions in the main paper: when
accounting for internal states, the field is currently discarding
potentially useful information by only relying on a single feature
(most often, pupil size).

ARHMM
As we wanted to ensure that facial features were indeed informative of
reaction times (RTs) beyond what is to be expected by the RT auto-
correlation structure, we implemented an Auto-Regressive Hidden
MarkovModel (ARHMM). In this case, we used the same pipeline aswe
detailed in the previous sections, but substituted the facial features at
the current trial t for the RT of the previous trial (t − 1). As it canbe seen
from Fig. S6, the facial featuresmodel outperforms the ARHMM for all
states, for both species.

Task performance and internal states
Wewere interested in investigatingwhether the inferred internal states
were correlated with task performance, even though the model had
notbeen trainedon such information.We therefore used thepredicted
single-trial state probabilities to decode choice, using a simple Logistic
Regression model, with an L2 penalty term. After verifying that the
model does indeed classify outcomes beyond chance level (Fig. S7), we
took the weight of each state as a proxy for how related it was to each
outcome.

Software and Tools
All analyses were performed in Python. For data handling and
numerical computations, we used NumPy92 and Pandas93. Statistical
analyses and signal processing were conducted using SciPy94 and

Table 1 | Parameter values for the Bayesian parameter opti-
mization procedure

Parameter Range Fitted Values

Concentration (α) [0, 100] αmac = 19.3, αmou = 34.3

Stickiness (β) [0, 100] βmac = 45.7, βmou = 42.0

Procedure Setting Notes

Sampler CMA-ES98 –

Objective Function R2 Maximized

Number of Searches 100 –

The fitted values are shown for macaque (mac) and mouse (mou) scenarios, independently
explored for each number of internal states in the HMM.
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Scikit-learn95. Visualizations were created using Matplotlib96 and
Seaborn97.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data sets analysed during the current study, containing the
quantified facial features over time as outputted by our DeepLabCut
models, are publicly available at https://github.com/atlaie/thoughtful-
faces/.

Code availability
All the relevant scripts are publicly available at https://doi.org/10.5281/
zenodo.14850103.
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