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The oxygen isotope composition of seawater (§"Ogeawater) is shaped by high-
and low-temperature rock-water interactions, reflecting Earth system’s
dynamics and evolution. The history of 6 Ogcawater remains debated due partly
to post-depositional imprints to all current mineral proxies. The oxygen atoms
in sulfate minerals are among the most inaccessible to later exchange but often
not in isotope equilibrium with ambient water. However, the 8®Ogyjface may
reach a plateau or approach equilibrium with the §®Ogeawater as the corre-
sponding 6**Sqirace increases during microbial sulfate reduction. Here we show
289 paired 6'®0-8*'S values for sedimentary barite spanning six periods of the
Phanerozoic Eon. The 8®0-8*S trajectories point to variable equilibrium
8"®0parice Values for different periods. A ~ 4%o lower §®Ogeawater Value is evident

before the Carboniferous than today if assuming the same formation tem-
perature. Utilizing the barite §'0-8*'S trajectory approach, we now have a
robust proxy to advance the long-debated issue of seawater 60 history.

The oxygen isotope composition of seawater (8§ Ogeawater) is primarily
determined by two competing geological processes: high-temperature
rock-water interactions within the oceanic crust, which increases the
6®80cawater Value, and low- or surface-temperature interactions on land
and oceanic crust, which decreases the value'™. Active plate tectonics
may have maintained the §®Ogeawater at its current value of 0%. because
the fluxes of these two processes may have reached steady state over
much of Earth’s history based on the investigation of oxygen isotope
compositions of ancient oceanic crusts (i.e., ophiolite data)*®. How-
ever, this steady-state may be disrupted by changes in the thickness of
the oceanic crust or seawater depth**'. An increase of seawater 50
value throughout the geological history is supported by 60 proxies of
various marine sedimentary minerals (e.g., carbonate minerals’?,
chert”®, phosphate®, and iron oxides™'®) and ophiolites”™". Unfortu-
nately, most existing mineral proxies suffer from ambiguities in for-
mation or lock-in temperature as well as post-depositional alteration. A
potential solution to the temperature issue is to identify a mineral
whose oxygen isotope fractionation is insensitive to the surface for-
mation temperature range. While iron oxides are promising

candidates”, their fine-grained nature and intergrowth with other
silicates in sediments may introduce significant analytical uncertainties
in their 80 measurements. Additionally, the age of sedimentary iron
oxides can be in question, as many are secondary minerals formed via
the oxidation of Fe(ll) carbonates or Fe(ll) silicates in later geological
ages’*?. Meanwhile, quantifying post-depositional alteration on
6®0mineral femains largely an intractable problem. Recently, a pro-
mising approach has been proposed by combining 60 and clumped
isotope composition (A7) of carbonate minerals to identify the extent
of alteration based on different water/rock ratios during diagenesis®.
However, this approach requires the assumption that the carbonate
minerals experienced only a single episode of post-depositional fluid
interaction, which contradicts the fact that multiple fluid-rock inter-
action events and fluid sources often occurred during late
diagenesis***. Sulfate, an oxygen-bearing mineral group, is nonlabile
and chemically stable in its oxygen isotope composition, with no
exchange occurring between sulfate and water under most surface
temperature conditions®*. Moreover, the original 50 signal of sulfate
can be preserved for over a billion years, as evident from the retention
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Fig. 1| Enzyme-catalyzed reversible intracellular steps of sulfur and oxygen
isotope fractionation during microbial sulfate reduction processes. These steps
mainly include the activation of adenosine 5’phosphosulfate (APS) from sulfate, the
reduction of APS to intermediate-valence state sulfur species (e.g., sulfite), and
reduction of sulfite to hydrogen sulfide (H,S)”***. Sulfur isotope fractionation is
controlled by the reduction of APS to sulfite and sulfite to sulfide, and their
reversibility>**, while oxygen isotope fractionation of sulfate occurs during the
reversible redox reactions between sulfate and APS, APS and intermediate-valence
state sulfur species (e.g., sulfite) as well as sulfite-water exchange®* .,

of non-mass-dependent O signatures in Proterozoic sulfate”. How-
ever, the remarkable stability of the 8®Ogr.ce COMeS at a “cost”: it is
rarely in equilibrium with the 60 of ambient water. Here, we pro-
posed a new proxy for the 8®Ogcawater, Namely, the plateau 8®Ogyface
value in the §'®0-6™S trajectory of a set of *S-variable sulfates, com-
monly found in sedimentary barite deposits.

During microbial sulfate reduction (MSR), sulfate can effectively
exchange its oxygen isotopes with that of ambient water through
reversable enzyme-catalyzed steps* (Fig. 1). These steps include the
uptake of extracellular sulfate by cell, its activation to adenosine
5’phosphosulfate (APS) via adenosine-triphosphate (ATP) enzymes,
the reduction of APS to intermediate valence state sulfur species (e.g.,
sulfite), and the eventual reduction to hydrogen sulfide (H,S)***7¢. In
particular, the rapid oxygen exchange between intermediate S(IV)
species, e.g., sulfite, and water is a key step in establishing the oxygen
isotope equilibrium between sulfate and water, however, it alone does
not account for either theoretical or observed fractionation factors
(Xsufate-water)- Theoretical calculation predicted an Qgyfate-water Value at
approximately 1.023 to 1.026 at temperatures between 10 °C and 25
°C*, whereas an Oisysice-water Value ranging from 1.008 to around 1.015 at
room temperature within a wide pH range from 2 to 10°**°, The
enzyme-mediated rate of the backward MSR reaction becomes
increasingly significant as sulfate concentration decreases or H,S/HS
concentration increases®**., This backward rate eventually approaches
the forward sulfate reduction rate, thereby achieving oxygen isotope
equilibrium between sulfate and water. Although the detailed kinetics
warrants further exploration, it is anticipated that an oxygen is added
to sulfite via an enzyme to become sulfate and that oxygen must have
equilibrated with water. Otherwise, we would not observe a plateauing
880guirace Value as the corresponding §**Sqyrce Value increases. Non-
equilibrium scenarios would exhibit variable §0/8*S slopes on the
8%0-6™S trajectories™ Importantly, data from laboratory
experiments®**' and modern sediment porewater sulfate’*>***" are
consistent with theoretical prediction of the &gyfate-water Values.

Sedimentary barite deposits, both bedded and nodular types, are
well-documented in geological records for their association with MSR
activities*s**. These deposits display a wide range of §*S values, often
exceeding 50%. within individual nodules or beds. If we measure the
8'80-6%S paired data for a set of barite samples collected for a specific
geological time, the plateau 8§®Ogyrace Value in a 6'0-6*S trajectory
should reflect the 6 Ogeawater Value of that time. Here, we collected six
sets of sedimentary bedded and nodular barite deposits from different
geological periods of the Phanerozoic Eon. Samples from South China

cover the Early Cambrian (Guizhou and Anhui Provinces), Late Ordo-
vician (Yunnan Province), Early Silurian (Chongging Municipality), and
Late Devonian (Guizhou Province and Guangxi Zhuang Autonomous
Region), while Late Carboniferous samples were obtained from
northwest Mexico (Sonora) and Mid-Cretaceous ones from southeast
France (Nyons) (Supplementary Text 1-3, Table Sl1). Petrographic
examinations of the sedimentary barite deposits by scanning electron
microscope were conducted to characterize their mineral assemblage
and paragenesis (Figures S1-S6).

Results and discussion

Syngenetic sedimentary barite deposition

Sedimentary bedded barite deposits often occur in organic-rich silic-
eous clastic rocks, with a significant temporal clustering in the Paleo-
zoic Era. A recent study has integrated the oceanic redox history and
seawater sulfate concentrations, proposing that sulfate-limited euxinic
conditions in seawater facilitate the scavenging of hydrothermally
derived metal ions (Zn**, Pb*) and promote the accumulation of Ba*'
ions in the sulfate-free waterbody®. Subsequently, the Ba*"-rich water
mass encountered a sulfate-rich one in the ocean, leading to the for-
mation of massive bedded barite ore deposits, referred to as the
Sulfate-limited Euxinic Seawater (SLES) model®. All sedimentary bed-
ded barite deposits exhibit a wider 6*S range and higher &*S values
compared to those of the contemporaneous seawater, consistent with
sulfate-limited seawater conditions. Sedimentary nodular barite
deposits, however, do not exhibit clear temporal clustering and are
found throughout the Phanerozoic Eon. Barite nodules formed during
early diagenesis, in association with the oxidization of organic matter
and microbial sulfate reduction within pore water centimeters to
meters below the sediment-water interface****” and occasionally
found in association with bedded barite deposits**~°*. Evidence sup-
porting their syngenetic origin includes the distortion of external
lamination around the barite nodules*®**”. Similarly high &*S values
are observed in nodular barite deposits***".

The petrographic results reveal that both bedded and nodular
barite types exhibit primary crystal morphologies, with barite grains
dispersed within a silica and/or calcium matrix (Figs. 2 and S1-S6). For
instance, the Early Cambrian and Late Carboniferous barite deposits
contain both bedded and nodular types. The Early Cambrian deposits
are characterized by disseminated barite within quartz and calcite,
while the Late Carboniferous deposits occur as columnar or globular
barite in quartz (Figs. 2 and SI, S5). The Late Ordovician and Late
Devonian deposits are predominantly bedded type with massive barite
and minor quartz (Figs. 2 and S2, S4). The Early Silurian deposit is of
nodular type, with columnar barite grains, similar to those found in the
Mid-Cretaceous barite nodules (Figs. 2 and S3, S6). Petrographic
examination was conducted to exclude apparent late diagenetic barite,
e.g., barite veins. As we emphasized, petrographic examination cannot
guarantee that we selected only the unaltered original barite. It is the
5180-6*S trajectory that filters out the post-depositional alternated
signatures if any.

The 80 and 8**S trajectories of barite deposits
Each of the six barite deposits displays a wide range of §®0 and 6*S
values. Importantly, the §'®0 values approach a plateau as its corre-
sponding &*S values increases from ~35%o to 80%o. for individual per-
iods (Fig. 3). Approximately, the plateau §®Oparice is at 18%o during
much of the early Paleozoic Era (Fig. 3), but rise to 22%. during the early
Carboniferous and mid-Cretaceous periods (Fig. 3a, 3b). In the early
Silurian, barite’s plateau §'®0 values approach 20%. but declines to
18%o in the late Devonian (Fig. 3¢, 3d). In general, the plateau §'0 value
of the sedimentary barite increased -4%. from the Cambrian to the
Cretaceous periods.

The 80 and §*S plateauing trajectory for the six sets of barite
samples largely resemble the typical pattern seen in culture
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Fig. 2 | Backscatter electron images illustrating the petrographic textures of
Phanerozoic sedimentary barite deposits. a, b Tabular and grained barites within
calcium-rich matrix in Mid-Cretaceous barite nodules from the Marnes Bleues
Formation of the Vocontian Basin, France. ¢, d Tabular and globular barite within a
quartz matrix in Late Carboniferous Mazatan bedded barite deposits from Sonora,
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Mexico. e Massive barite with minor quartz in Late Devonian bedded barite
deposits, South China. f Tabular barite within a quartz matrix in Early Silurian barite
nodules, South China. g Barite within a quartz matrix in Late Ordovician bedded
barite deposits, South China. h Barite within a quartz matrix in Early Cambrian
bedded barite deposits, South China.

experiments®®* and field observations**>*>**’, Under different MSR
rates, the corresponding 6*Sy..ie Values can vary while the plateau
880parite Value is set by the same seawater or pore water. This is seen in
the Devonian barite sample set, in which two distinct clusters of the
same plateau §'®0pyyice region in §'°0-6*Sy, i Space have the 8**Spqrice
at approximately 36-38%o. or greater than 55%o, respectively (Fig. 3c). A
similar spread of plateau 6%0p,rie region is also observed at the
8**Sparite Of 51%0 and 58%o, respectively, in the Silurian data (Fig. 3d).
Mixing with any sulfate source of non-equilibrium 8O Value,
being it a pulse of riverine sulfate or sulfate from deep water or an
adjacent basin during the barite precipitation should have pulled down
the 8"®Oparite Values, so would any post-depositional alteration. We
observed a decrease in the §®%0pice at the highest 8**Sp,rice in the
Cretaceous and Cambrian data (Figs. 3a and f), which may or may not
be attributed to the mixing of a small amount of seawater sulfates not
in equilibrium with seawater or other unknown factors. Further sta-
tistical treatment in a plateau region would have to assume certain
relationship between the 80 and 6*S of the barite samples, which is
not necessarily true in our sample set. Therefore, for now we selected
the maximum 8%0p, e Value in a plateau region to represent the
equilibrium 8®0p,ice With seawater during a particular time period,
allowing the trajectory to be enhanced with new data addition in the
future. Based on this criterium, the equilibrium 8®Op,ice Values are
18.2%o for the Early Cambrian, 17.8%. for the Late Ordovician, 20.4%o
for the Early Silurian, 18.4%. for the Late Devonian, 21.5%. for the Late
Carboniferous and 21.2%. for the Mid-Cretaceous (Fig. 3).

These §®0-8*S trajectories allow for independent evaluation of
both oxygen isotope equilibrium and diagenetic imprints. This is what
sets barite apart from other mineral proxies, such as calcite, quartz,
apatite, and iron oxide, that rely on empirical and statistical assess-
ments of optical, textural, and trace element criteria™**',

A late Paleozoic rise of the 6®0gcawater?

While our barite 8'®0-8*S trajectory approach can offer a 8®Ogyface
value that were in equilibrium with the 6®0geawacer Of a particular
geological time, translating the 8®Ogyjface t0 8" Ogcawater r€quires an
independent constraint on the barite formation temperature, as the
equilibrium fractionation factor (Qsyifate-water) iS NOtably temperature-
sensitive. However, the below-wave continental shelf depositional
settings, constrained by thin beddings and an organic-rich siliceous
clastic sequence, and their all low paleolatitude settings support a
similar formation temperature for all the six time periods (Supple-
mentary Text 4). If indeed the barite formation temperature for all the
six periods are more or less similar, the ~4%o, late Paleozoic rise in the
plateau 6®0y,ice values indicate a similar degree of 60 values change
in seawater. This 4%, shift may be taken seriously because similar
record was also observed in a group of Devonian-Carboniferous car-
bonate minerals’>®?> and confirmed by a reactive transport model
consisting of hydrothermal alteration and continental weathering
fluxes' (Figure S7). A late Paleozoic rise of the §®Ogeawater Would
require a dramatic increase in the flux of high-temperature relative to
surface-temperature rock-water alteration. We can speculate potential
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Fig. 3 | Paired §'°0-8**S data trajectory of six Phanerozoic sedimentary barite
deposits. a Mid-Cretaceous barite samples from southeast France. b Late Carbo-
niferous samples from northwest Mexico. ¢ Late Devonian samples from South
China. d Early Silurian samples from South China. e Late Ordovician samples from
South China. f Early Cambrian samples from South China. The maximum §®Op,ice

values in the plateau region is chosen to represent the equilibrium 8'®0pyyice With

seawater (see explanation in the main text). Data uncertainty is the external mea-
surement uncertainty, with £0.3%o for both 8®Oprie and 8**Sparite, all smaller than
the size of the symbols.

causes for the rise: 1) a deepening of ocean depth, which enhanced
seawater penetration and hydrothermal fluid circulation?”, 2) sedi-
ment “blanketing” on land and ocean crust, which decreased low-
temperature alteration flux*'°, 3) a decrease in the rate of authigenic
clay formation'®, and 4) the oxidation of the deep ocean as mentioned
for the Neoproterozoic oxygenation event®.

The 8®0 difference between mineral and water is temperature
sensitive for all non-iron-oxide mineral proxies and mineral samples of
the same time period could come from different paleolatitudes thus
their 80 were affected by different temperatures. Thus, a secular §'%0
trend could be mis-represented by samples’ uneven paleolatitude
distribution. Although we argue for an attenuated variation for the
formation temperature for all six sets of sedimentary barite deposits, it
does not guarantee that all the six sets of barite samples formed under
the same temperature. However, unlike other mineral proxies, because
our barite §'%0-8*S trajectory approach guarantees the most likely
8%0parite Value that was in equilibrium with the co-eval seawater §°0,
we now have established a robust methodology so that we can sample
barite from different paleolatitudes of a particular time to quantify the
paleotemperature difference. What we provide here is not the final
result, but a platform for incorporating additional data, thereby
enhancing both the temporal and spatial resolution of the current
pattern of the plateau 8®Ogyrace. This platform holds significant pro-
mise for ultimately resolving the longstanding debate surrounding one
of the most important issues in Earth’s history: the §®0 and tem-
perature history of Earth’s ocean.

Methods

Petrographic observation

Representative barite samples of each period were first sectioned,
polished, and carbon-coated. Petrographic observations were then
conducted using a FEI Scios Dualbeam field emission scanning elec-
tron microscope equipped with an EDAX spectrometer at the Institute
of Geochemistry, Chinese Academy of Sciences (IGCAS). Back-
scattered electron imaging and energy-dispersive spectrometer ana-
lysis was employed for texture analysis and mineral identification.

The 60 and 6*'S measurement on barite

Barite samples were obtained using a micro-drill device and pulverized
to a fine powder (<200 mesh) using an agate mortar. The resulting
powders were initially treated with 10 wt% hydrochloric acid to remove
possible carbonate minerals. The residual material underwent a
diethylenetriaminepentaacetic-acid dissolution and re-precipitation
(DDARP) procedure to extract and purify BaS0,%. The oxygen (§'0)
and sulfur isotope (6**S) compositions of purified barite were analyzed
using an EA-HT-Delta V plus and an EA-Isolink-Delta V plus, respec-
tively, at the International Center for Isotope Effects Research, Nanjing
University. The §®0 value for each barite sample was measured in
duplicate, with the average value reported, while §**S value was mea-
sured once (Source Data). Sulfur isotope measurements were cali-
brated against Vienna Canyon Diablo Troilite (VCDT) using two in-
house barium sulfate standards: ICIER-SO-1 (15.05%0) and ICIER-SO-2
(4.05%o), both of which were calibrated against two international barite
standards NBS127 (20.3%.) and IAEA-SO-5 (0.49%.). Oxygen isotope
measurements were calibrated against Vienna Standard Mean Ocean
Water (VSMOW) using one in-house barium sulfate standard (ICIER-
SO-3, 11.81%o), itself calibrated against two international barium stan-
dards NBS127 (8.6%o) and IAEA-SO-6 (-11.35%o). The standard deviation
for both §'®0 and 6*S measurements was better than 0.3%. based on
the performance of the in-house standards.

Data availability

The authors declare that the data supporting the findings of this study
are available within the paper and its supplementary information
files. Source data are provided with this paper.
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