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A robust multiplex-DIA workflow profiles
protein turnover regulations associated with
cisplatin resistance and aneuploidy

Barbora Salovska1,2,Wenxue Li 1,2, OliverM. Bernhardt3, Pierre-LucGermain 4,
Qinyue Wang1,2,5, Tejas Gandhi 3, Lukas Reiter 3 & Yansheng Liu 1,2,6

Quantifying protein turnover is fundamental to understanding cellular pro-
cesses and advancing drug discovery. Multiplex-DIA mass spectrometry (MS),
combined with dynamic SILAC labeling (pulse-SILAC, or pSILAC) reliably
measures protein turnover and degradation kinetics. Previous multiplex-DIA-
MS workflows have employed various strategies including leveraging the
highest isotopic labeling channels to enhance the detection of isotopic signal
pairs. Here we present a robust workflow that integrates a machine learning
algorithm and channel-specific statistical filtering, enabling dynamic adapta-
tion to channel ratio changes across multiplexed experiments and enhancing
both coverage and accuracy of protein turnover profiling. We also introduce
KdeggeR, a data analysis tool optimized for pSILAC-DIA experiments, which
determines and visualizes peptide and protein degradation profiles. Our
workflow is broadly applicable, as demonstrated on 2-channel and 3-channel
DIA datasets and across two MS platforms. Applying this framework to an
aneuploid cancer cell model before and after cisplatin resistance, we uncover
strong proteome buffering of key protein complex subunits encoded by the
aneuploid genome mediated by protein degradation. We identify resistance-
associated turnover signatures, includingmitochondrial metabolic adaptation
via accelerated degradation of respiratory complexes I and IV. Our approach
provides a powerful platform for high-throughput, quantitative analysis of
proteome dynamics and stability in health and disease.

Protein turnover, the balance between synthesis and degradation, is a
fundamental process that regulates cellular homeostasis, adaptation,
and response to environmental stimuli. It plays a crucial role in a
variety of biological processes, including cell growth, differentiation,
and apoptosis, and is a critical factor in understanding disease pro-
gression and therapeutic responses. In cancer biology, for example,
altered protein turnover rates are often linked to genomic instability,
such as aneuploidy and resistance to chemotherapeutic agents like

cisplatin1,2. Measuring protein turnover in these contexts is essential
for identifying potential therapeutic targets, biomarkers, and
mechanisms of proteostasis in aneuploid cells.

Mass spectrometry (MS)-based approaches have become a key
tool for studying protein turnover, with data-independent acquisition
(DIA)MS being one of themost robust and reproducible techniques3,4.
The multiplex-DIA-MS approach essentially increases the analytical
throughput of DIA-MS5–7 and, when combined with dynamic stable
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isotope labeling by amino acids in cell culture (pulse-SILAC, or
pSILAC)8–11, it allows for multi-time-point measurements and precise
quantification of protein-specific turnover rates across diverse biolo-
gical conditions5,12–17. The reproducibility of DIA-MS makes it particu-
larlywell-suited for complex experimental designs such as time-course
experiments in dynamic SILAC design.

Recently, techniques such as BoxCarmax17,18, which enables small
isolation windows in combination withmultiple sample injections, and
instruments like Astral and timsTOF, which support DIA-MS of narrow
isolation windows directly19–21, are able to significantly improve the
peptide detection and quantification of heavy to light (H/L) ratios by
separating the H and L versions of SILAC peptides into different
MS2 scans. Accordingly, a larger fraction of peptide fragment ions,
such as b ions, become eligible for DIA-MS quantification. These
advancements will greatly increase the precision and throughput of
protein turnover analysis.

In pSILAC experiments, the intensity ratio of the labeled and
unlabeled channels reflects the protein turnover rate. This may result
in the near absence of one of the channels for a particular protein (or
peptide) in the early and very late time points, presenting a challenge
in measuring H/L ratios. Previous signal extraction strategies have
focused on specific channels: we previously presented an “Inverted
Spike-In Workflow” (ISW)5, which utilizes only the light channel for
scoring and signal detection in pSILAC-DIA data, increasing the num-
ber of H/L pairs quantified by approximately 30% in early pSILAC
labeling time points. However, ISW is not ideal for the late pSILAC
labeling time points and othermultiplex-DIA-MS experiments in which
the labeled peptide signals can often be higher than the light ones
depending on the specific experimental condition and individual
proteins. On the other hand,multiplex-DIA-MS analysis strategies such
as plexDIA7 or mDIA6, implemented within DIA-NN22 or RefQuant6,
target the best isotopic channel or the reference channel to improve
peptide detection. While effective, these approaches still leave room
for optimization, such as leveraging all available isotopic channels and
peptide transitions for more comprehensive analysis.

Here, we introduce an approach that incorporates machine
learning and channel-specific statistical filtering into the peptide
detection process for multiplex-DIA datasets, referred to as “Labeled”
workflow (LBL).Ourmethoddynamically adapts to systematic changes
in isotopic channel ratios, ensuring effective utilization of all channels
without requiring pre-selection of the highest-signal channel. We
extensively assessed our strategy and found that, together with a
subsequent data processing tool, it significantly enhanced the accu-
racy and robustness of protein turnover measurements in complex
pSILAC. To apply our workflow, we focused on a cancer cell model of
aneuploidy. Aneuploidy, characterized by an abnormal number of
chromosomes, alters the protein homeostasis landscape, leading to
unique turnover profiles that may contribute to the development of
drug resistance. Our pSILAC-DIA measurement and workflow, applied
to aneuploid ovarian cells with divergent cisplatin resistance, suc-
cessfully uncovered key turnover signatures and regulatory mechan-
isms that may drive resistance.

Results
Overview of a robust workflow for multiplex-DIA MS data ana-
lysis: Enabling large-scale protein turnover quantification and
comparative studies
Multiplex-DIA-MS, combined with pSILAC, enables precise quantifica-
tion of protein turnover across multiple conditions by measuring
protein dynamics at different time points (Fig. 1, Upper left). However,
the effective detection and quantification of MS signals in these
datasets in which the heavy (or labeled) signals are generally low
abundant in the early labeling time points remains challenging. To
address this, we previously introduced the “Inverted Spike-In Work-
flow” (ISW)5. ISW relied on an extensive hybrid peptide spectral library

generated from the measurements of label-free and multiplexed
samples by both DDA-MS and DIA-MS. This spectral library was then
used to perform the targeted extraction in the multiplex-DIA-MS files
(Fig. 1, Lower left). In ISW, the peak picking and scoring are based
exclusively on the light precursors, which was demonstrated to be
advantageous in samples with a low relative abundance of heavy sig-
nals such as extreme H/L dilutions18 or early labeling time points of a
pSILAC experiment5.

However, recent rapid advancements in library-free DIA-MS data
analysis in software such as the directDIA+ algorithm in Spectronaut23

and other software tools like DIA-NN22, or FragPipe24, driven by
machine learning and deep learning techniques, have essentially
eliminated the need for generating extensive project-specific spectral
libraries for routine peptide identification tasks in proteomics, sig-
nificantly streamlining DIA-MS data analysis. Herein, we reason that
performing the XIC peak picking and elution group scoring using the
information across all channels (n = 2, 3, …, N) may enable a dynamic
scoring of increasingly complex labeling experiments accommodating
awider range of labeled/unlabeled ratios over the entiremultiplex-DIA
experiment and support additional labeling channels.

Leveraging the directDIA+ algorithm and improved machine
learning, we optimized and evaluated a library-free “Labeled” work-
flow (LBL), which is available in Spectronaut v19 (Fig. 1, Lower left).
Notably, during the targeted peak extraction, this workflow performs
the XIC peak picking across all channels in a combined fashion.
Moreover, in the elution group scoring, all channels along with their
specific and cross-channel scores are considered collectively in the
machine learning process, leading to the estimation of a “Group Q-
value”. Together, these enable dynamic adaptation to systematic
changes in channel ratios per sample, resulting in optimal scoring
weights for labeled and unlabeled peptide transitions. These scoring
weights showed strong consistency with the SILAC ratios in real pSI-
LAC experiments (Fig. 1, Upper Middle). Additionally, the labeled or
unlabeled channels can be scored independently using channel-
specific metrics, supporting the determination of channel-specific q-
values, a feature newly introduced in Spectronaut v19. This further
enables channel-specific FDR filtering of the quantification results.
In the “Min Q-value” option, at least one channel needs to be
independently identified (q-value < 0.01), while in the “Max Q-value”
option, all channels must be independently identified to accept the
entire elution group for a given peptide (Fig. 1, Upper Middle). To
evaluate sensitivity, quantification precision, and accuracy, we
applied these integrative data processing steps to a 2-channel stan-
dard dilution dataset18 and a 3-channel dataset25 (Fig. 1, Upper Right,
see Methods).

To facilitate downstream analysis of the pSILAC data, we also
present an open-source R package, KdeggeR, which streamlines the
processing and visualization of pSILAC DIA-MS data. KdeggeR per-
forms data formatting, quality control, calculation of peptide and
protein turnover rates (kloss), degradation rates (kdeg), comparative
analysis, and data visualization (Fig. 1, Lower Middle, see Methods).
The package supports data from various raw data processing software,
making it a versatile tool for a range of proteomics workflows.

Finally, we applied the complete workflow to investigate protein
turnover regulation in a cisplatin-resistant ovarian cancermodel, using
A2780 and A2780Cis cell lines. By integrating the multiplex-DIA data
with other omics, we gained insights into the mechanisms underlying
drug resistance and proteome buffering in this highly aneuploid can-
cer model (Fig. 1, Lower Right).

Improved identification of multiplex-DIA-MS datasets through
machine learning-guided dynamic selection of isotopic labeling
features
To assess the effectiveness of the LBL and compare it to the ISW, we
analyzed the A2780 standard 2-channel SILAC dilution series (H:L: 1:16,

Article https://doi.org/10.1038/s41467-025-60319-x

Nature Communications |         (2025) 16:5034 2

www.nature.com/naturecommunications


1:8,…, to 8:1, 16:1) as the first benchmarking dataset18 using both LBL
and ISW workflows in Spectronaut 19. We found that, in a library-free
analysis of the 1:1 sample, LBL identified 142,363 precursors and 7785
protein groups (Fig. 2A, Supplementary Fig. 1A), representing increa-
ses of 3.8% and 12%, respectively, compared to the current ISW result.
Strikingly, this represents 147.6% and 35.3% more precursors and
protein groups than we reported previously in the same samples
analyzed using ISW with an extensive, project-specific hybrid library
(which contained 188,886 peptide precursors corresponding to 7,457
proteins) with Spectronaut v1418. These results demonstrate improved
performance, particularly due to the deep learning features included
in the recent DIA data analysis software tools22–24. Furthermore, in the

A2780 dilution series, LBL outperformed ISW (both in Spectronaut 19)
by identifying more precursors and proteins across various mixing
conditions (Fig. 2B, Supplementary Fig. 1B). In the light-dominant
samples, LBL identified slightly more features (approximately 10%
more precursors and 5% more protein groups), indicating that the
concurrent consideration of heavy transitions during the machine
learning step still improved the peptide pair detection even in these
samples. Importantly, LBL dramatically outperformed ISW in the
heavy-dominant samples (2–7.5 times more precursors and 1.3–2.7
times more protein groups). In line with this, the LBL workflow suc-
cessfully assigned scoring weights to both channels in a dynamic
manner, which is consistentwith the actual SILAC ratios in each sample

KdeggeR: Data processing package 
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Fig. 1 | A robust workflow formultiplex-DIAMSdata analysis.Upper left: Protein
turnover analysis on a large scale using dynamic stable isotope labeling by amino
acids in cell culture (pSILAC), combined with highly robust and reproducible
multiplex data-independent acquisition (DIA)mass spectrometry (MS), enables the
quantification of thousands of protein turnover rates and facilitates quantitative
comparisons between multiple conditions. Datasets from two MS platforms
(Orbitrap Fusion Lumos and timsTOF Ultra) were processed. Lower left: In the
previously reported “Inverted Spike-In Workflow” (ISW), peak picking and scoring
relied solely on the light channel. In the “Labeled” (LBL)workflow, XIC peakpicking,
elution group scoring, and “Group Qvalue” calculation are performed across all
channels (n = 2, 3, …, N) in a combined fashion, facilitated by improved machine
learning. Upper middle: In addition to the “Group Qvalue”, our Spectronaut v19
(SN19) solution now offers channel-specific q-value filtering options for more
stringent quantification data filtering. In the “Min Qvalue” option, at least one
channel needs to be independently identified (q-value < 0.01), while in the “Max
Qvalue” option, all channels must be independently identified (q <0.01) to accept

the entire elution group. Lower middle: As part of the workflow, we provide an R
package named KdeggeR for the analysis of pulse SILAC DIA-MS data from various
raw data processing software, including data formatting, data filtering and quality
control (QC), the calculation of precursor-, peptide-, and protein-level turnover
rates (kloss), subsequent protein degradation rate (kdeg) transformation, compara-
tive data analysis, and data visualization. Upper right: We evaluated the multi-
channel analysis implemented in SN19 (and onwards) using 2-channel and
3-channel standard datasets acquired previously and publicly available (Salovska
et al., 2021; Bortecen et al., 2024). Lower right: We demonstrated the feasibility of
the entire workflow by applying it to the study of protein turnover regulation in a
cisplatin resistance model of the highly aneuploid ovarian cancer cell line A2780
and integrated the data with other omic layers. This application highlighted the
importance of studying protein turnover to derive biological insights into complex
phenomena such as cancer drug-resistance phenotype. Several components were
Created in BioRender. Liu, Y. (2025) https://BioRender.com/7y30v3c.
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(Fig. 2C). The LBLworkflow also achieved a global FDR below 1% in a 3rd

channel decoy experiment (Supplementary Fig. 1F).
As the second benchmarking dataset, we leveraged a public

dataset of HeLa cells with three SILAC labeling states (Light, Medium,
andHeavy)25. Thisdataset consisted of twodifferent compositions, i.e.,
mix1 (H:M:L = 15:15:70) andmix2 (H:M:L = 40:40:20). In bothmixes, we
found that LBL identified more precursors and proteins, leading to a
greater number of pairwise ratios between the three channels
(Fig. 2D, E, Supplementary Fig. 1C). Similar to the 2-channel result, LBL
yielded a slight improvement in the light-dominantmix1, with 5.3% and
12.7%more precursors and proteins identified, respectively. Inmix2, in
which the light peptides accounted for only 20%, LBL showed a dra-
matic improvement, identifying 115.9% and 28.9%moreprecursors and
proteins, respectively. The number of missing values across the

replicates was very low in the results based on the LBL workflow,
especially at the protein level (2.73% on average, Fig. 2E). The scoring
weight histogram of this 3-channel dataset provided additional com-
pelling evidence supporting LBL (Fig. 2F).

Next, to evaluate LBL performance in real pSILACexperiments,we
acquired and analyzed a third dataset from the A2780 cell line mea-
sured on an Orbitrap Fusion Lumos MS (see Methods). Herein, LBL
consistently identified an average of 6900 proteins across four time
points and three experimental replicates (Fig. 2G). To validate the
general applicability of LBL, we analyzed another pSILAC experiment
conducted in two fibroblast cell lines, with datasets obtained from two
independent LC-MS platforms, Orbitrap Fusion Lumos and timsTOF
Ultra (Fig. 2H, see Methods). Impressively, with a 2.5-fold shorter gra-
dient and less than 10% of the sample amount (130 ng vs 1.5 µg), using
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the timsTOF Ultra platform we identified, in total, 227,242 precursors
and 9270 protein groups (that is, 30.1% and 31.2% more than using
Lumos, respectively, Fig. 2H), and achieved a consistent turnover
quantification of 9130 proteins on average (Fig. 2I). The protein
degradation rates also showed a decent cross-platform consistency
(Supplementary Fig. 2A). Moving beyond pSILAC-DIA applications, we
tested a 2- and 3-channel dimethyl-labeling multiplex-DIA (mDIA)
sample set from a current study analyzed by both Orbitrap Exploris
480 and timsTOF HT platforms6. In this sample set, LBL (at a channel
identification FDR below 1%, Supplementary Fig. 2B) identified and
quantified a comparable number of peptide precursors (about ±10%,
Supplementary Fig. 2C, D) and a slightly lower number of protein IDs
(10% lower in timsTOF data and ~20% less in Orbitrap data, Supple-
mentary Fig. 2E–G) compared to the original report using DIA-NN and
spectral libraries predicted by AlphaPeptDeep6,26. Altogether, these
analyses demonstrated the versatility and reliability of LBL across
instruments from different vendors and various multiplex-DIA-MS
experiments.

Channel-specific q-value filtering for quantifying ratios of iso-
topically labeled peptides
Because LBL performs the elution group scoring across all channels
and individually for each channel, the multiplex-DIA quantitative
results can be exportedwith flexibledata filtering. This is supported by
the following new options in Spectronaut: “Group Q-value” (shown
above; GroupQ), “Min Q-value” (MinQ), or “Max Q-value” (MaxQ).
In MinQ, only one of the channels needs to independently pass the
q-value threshold (q < 0.01) for quantifying ratios of isotopically
labeled peptides. InMaxQ, however, all channels present in the sample
need to pass the q-value < 0.01 threshold, providing the most con-
servative filtering option. We evaluated these filtering options using
the above 2- and 3-channel SILAC datasets and the A2780 pSILAC-DIA
dataset (Fig. 3).

In the 2-channel dilution series, the GroupQ and MinQ options
provided a similar quantification result with comparable numbers of
quantified protein-level ratios and accuracy. We found that MaxQ led
tomore conservative filtering results with considerable data loss in the
extreme ends of the dilution series, which seemed to be overall
intensity dependent (Fig. 3A, B). At the same time, MaxQ provided
more stringent filtering that improved quantification precision, as
shownby the significantly reduced standard deviations in theH/L ratio
distributions,with similar overallmedian values. At the precursor level,
there was a substantial overlap between the quantified precursors
between the GroupQ and MinQ filtered results (Supplementary
Fig. 1D), with GroupQ consistently identifying slightlymore precursors
(~3.3% more on average), emphasizing the benefit of considering all
channels simultaneously.

The analysis of the 3-channel experiment yielded similar results.
While the median protein-level ratio values remained quite consistent
across all three filtering options, the MaxQ filtering increased quanti-
tative precision (Fig. 3C) but also resulted in a significant reduction in
the number of quantified proteins (on average 29.9% inmix1 and 9% in
mix2, Fig. 3D). This reduction also affected proteins with a CV across
replicates <20% (14.1% in mix1 and 5.4% in mix2). This result indicated
that MaxQ was compromised by a partial loss of high-quality signals.

Next, to benchmark these results against another alternative
multiplex-DIA-MS workflow, we applied plexDIA7 workflow in DIA-
NN 1.9 with the recommended matrix channel filtering (q < 0.01)25

(Supplementary Fig. 3). Notably, the 2-channel results from the
plexDIA workflow most closely matched those of the MaxQ fil-
tering option, with a higher number of quantified protein-level
ratios in the MaxQ result (up to 30% in the 1/16 and 16/1 H/L
samples). A slightly better precision was observed in the plexDIA
results using DIA-NN (Supplementary Fig. 3A). In the 3-channel
sample, we observed a similar trend but a slightly better precision

of MaxQ (Supplementary Fig. 3C). When we restricted our ana-
lysis to the same precursors and proteins, the ratio distributions
appeared nearly identical between Spectronaut and DIA-NN
workflows (Supplementary Figs. 3B, S3D).

In the pSILAC A2780 dataset, MaxQ filtering significantly reduced
the number of quantified protein ratios in the first time point
(Figs. 3E, F), and the ratios showed an overall lower median. However,
in the overlapping IDs, the distributions were largely identical (Sup-
plementary Fig. 1E). Again, MaxQ reduced noisy data points used for
quantification, while also discarding a substantial subset of proteins
with a good across replicateCV < 20% (an average of 32.7% and 13.8% at
the 1st and 2nd time point, respectively, Fig. 3F).

Together, in all datasets evaluated, both GroupQ and MinQ
options retained higher sensitivity, while the MaxQ improved quanti-
fication precision at the cost of a considerable reduction in quantified
proteins. Of note, identification results per individual channel can be
further exported (see Methods and Supplementary Notes 1 and 3) for
inspecting the pre-analytical and experimental factors (e.g., channel
mislabeling) if needed.

KdeggeR: a comprehensive R package for proteomic turnover
analysis
To streamline the analysis of pSILAC-DIA datasets, we present Kdeg-
geR, an integrative R package. KdeggeR offers functions for importing
data from multiple common raw data processing tools, ensuring
compatibility across MS platforms. It also performs data cleaning and
quality control steps to prepare the data for analysis (Fig. 4A). Next,
KdeggeR allows for the estimation of kloss at the precursor level using
three different published methods5,11,13,27–29, which can be then aggre-
gated to thepeptideor protein level. Bydefault, the aggregation step is
performed using a weighted average of precursor-level kloss values,
with weights determined by the precursor-level fit quality and the
number of data points, but this step can be customized. KdeggeR also
calculates protein degradation rates (kdeg) and half-lives (t1/2) using
either user-provided or theoretically estimated cell division rates (kcd).
Finally, the package also includes visualization tools to assess pre-
cursor- and protein-level fitting and quantification results and to
conduct comparative turnover analyses between different conditions
(see Methods for more details).

We utilized KdeggeR to process the protein turnover datasets
from the A2780 (used above) and A2780Cis ovarian cancer cell lines30.
The cisplatin-resistant cell line A2780Cis was developed by exposing
the parental cisplatin-sensitive cell line A2780 to increasing con-
centrations of cisplatin31. A triplicate pSILAC experiment was per-
formed with four time points (1, 4, 8, and 12 h) and measured on an
Orbitrap LumosMS (Fig. 1, Lower Right). The raw data were processed
using the LBL workflow and filtered using the GroupQ, MinQ, and
MaxQ functions, respectively. Figure 4B illustrates the precursor-level
quality filtering in KdeggeR, where we applied a series of filtering cri-
teria based on data completeness and assumptions specific to a pSI-
LAC experiment (see Methods). In addition, we included an option
considering outlier values in the early time point (i.e., the first data
point) by performing a linear regression on the log-transformed H/L
ratios (ln (H/L + 1)) and conducting a statistical test to determine if the
first time point significantly deviates from the residual distribution
(“Outlier filtering”). This is because the first short labeling time point
may be critical for precisely determining the turnover rates of short-
lived proteins12,15 or modified peptides15. However, due to the lower
intensity of heavy-labeled peptides at this initial stage in many pSILAC
experiments, theH/L ratios can exhibit substantiallyhigher noise levels
compared to later time points, which may impact the accuracy of the
turnover rate quantification. As shown in Fig. 4B, applying this data
filtering approach effectively reduced the standard deviations of H/L
ratio distributions, particularly in the first and second time points,
while retaining significantly more values with the GroupQ filter
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Fig. 3 | Channel-specific q-value filtering for quantifying ratios of isotopically
labeled peptides. A Comparison of protein-level ratio distribution in the A2780
standard dilution samples after different q-value quantification filtering for multi-
channel samples (enabled in SN19); the dashed lines and numbers represent the
medians of the data distributions, shown using density plots; the points represent
individual values. B The histograms indicate the number of protein-level H/L ratios
quantified in the samples shown in (A). C Comparison of protein-level ratio dis-
tributions in the HeLa 3-channel standard sample after different q-value quantifi-
cation filtering. Ratios were calculated between channels as indicated and
represent average from 3 replicates. The dashed lines indicate expected ratios
based on sample composition; the numbers represent observed median values.

D Binned protein-level ratio CV based on 3 replicates in the HeLa sample after
different q-value quantification filtering. EComparisonof protein-levelH/L ratios in
the pulse SILAC A2780 samples after different q-value quantification filtering. The
protein-level ratios were calculated based on 3 replicates. The numbers represent
observedmedian values.FBinnedprotein-level ratioCVbasedon 3 replicates in the
A2780 pulse SILAC sample after different q-value quantification filtering. In (A–F)
groupQ, minQ, and maxQ refer to “Group Q-value”, “Min Q-value”, and “Max Q-
value” filtering, which are the quantification settings in the data analysis in SN19. In
(C, E) the boxes indicate Q1–Q3 with the median; whiskers span 1.5 × IQR. Outliers
beyond this range are shown as individual points. Source data are provided as a
Source Data file.
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compared to the more conservative MaxQ filter. Thus, the GroupQ-
filtered dataset was selected for our downstreamanalysis of the A2780
experiment. We found that, following linear regression analysis of the
log-transformed precursor-level ratios by KdeggeR, most curves had
R2 values greater than 0.9 (Supplementary Fig. 4A). We next used
the RIAmethod and a weighted average, both available in KdeggeR, to
estimate the precursor and protein-level rates of loss (kloss) values (see
Methods). This enabled the estimation of an average of 6866 protein
kloss values across the two cell lines and replicates (Supplementary
Fig. 4B), which were subsequently transformed into kdeg for the
downstream analysis. For example, KdeggeR facilitated the identifi-
cation of MBNL1, a protein exhibiting significantly slower turnover in
the A2780Cis compared to A2780 (Fig. 4C–E), as visualized by the
plotting functions available in KdeggeR. Our package further supports

a series of plots visualizing the intermediate and final quantification
results determining protein turnover (Fig. 4C–E, Supplemen-
tary Fig. 4C).

Together, KdeggeR allows for accurate and flexible calculation of
protein turnover rates, making it accessible for users without a strong
bioinformatic background.

Multi-omics analysis reveals thedual role of protein degradation
in proteomic buffering against chromosomal aneuploidy and
promoting cisplatin resistance
Cancer development is often linked to genomic instability and the
adaptive evolution of malignant clones. This results in potential
genomic alterations conferring selective advantages, such as adapta-
tion to chemotherapy. However, it also imposes a substantial burden
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Fig. 4 | KdeggeR, a comprehensive and integrative R package for proteomic
turnover analysis. A The KdeggeR package streamlines pSILAC data analysis by
providing functions for importing data from several common raw data processing
software tools, data cleaning, and quality control. Next, precursor-level kloss can be
estimated using three different methods, and protein-level kloss can be calculated
byperforming aweighted averageof the correspondingprecursor-levelkloss values,
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degradation rates (kdeg) and half-life (t1/2) are calculated using cell division rate (kcd)
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kloss value distribution. Visualization functions enable inspection of the precursor-
and protein-level fitting results and comparative analysis between multiple condi-
tions. B Demonstration of precursor-level quality filtering in the dynamic SILAC

experiment performed in the A2780 cell line. Data were analyzed using the LBL
workflow and exported using the “GroupQ-value” (groupQ), “MinQ-value” (minQ),
and “MaxQ-value” (maxQ) channel quantification filtering.C–E Example analysis of
MBNL1, a protein with a significantly slower turnover rate in the A2780Cis (resis-
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precursor-level data. D Distribution of precursor-level kloss values (N = 3) corre-
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are provided as a Source Data file.
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on cells to maintain proteostasis. Previous studies, including our own,
have shown that cells can harness protein degradation systems to
buffer the proteomic imbalances resulting from aneuploidy and
genomic instability5,14,32–34. The A2780 and A2780Cis ovarian cancer
cell lines represent a well-established aneuploidy model for studying
cisplatin resistance, with well-documented and distinct karyotypic
abnormalities in both parental and cisplatin-resistant cells30. These
aneuploid abnormalities have been characterized through genomic35,36

and proteomic37 analyses.However, an exploration of protein turnover
and its role in responding to chromosomal aneuploidy and driving
drug resistance remains underexplored.

To investigate how protein turnover regulates drug resistance
associated with genomic imbalance, we conducted an integrative
multi-omics analysis of aneuploid A2780 and A2780Cis cells. By com-
bining proteomic data—covering both protein abundance and degra-
dation rates (kdeg)—with transcriptomic data from a previous study35,
we firstly confirmed a positive correlation between mRNA and protein
log2 fold changes (R = 0.661, Supplementary Fig. 5A), which is as
strong as previously reported mRNA-protein correlations among
cancer cells38,39. This result indicated a good match between omics
datasets. Furthermore, the correlation between mRNA and kdeg was
weakly positive (R = 0.145, Supplementary Fig. 5B), consistent with our
previous work in HeLa cells5,13. This reinforces the notion that mRNA-
kdeg correlation serves as a valuable indicator of finely tuned post-
translational buffering by protein turnover. Next, we used the copy
number alteration (CNA) information from the same cell lines36 and
mapped the protein-coding genes to the integrated dataset (Fig. 5A).
As expected, themRNA levels largely followed the CNA changes, and a
similar trend was observed in protein abundance data, although the
dosage change appeared attenuated at the proteome level (Fig. 5A).

To further explore post-translational buffering mechanisms
associated with aneuploidy, we focused on genes affected by CNA,
comparing those that encode protein complex subunits (CORUM
4.040) with those that do not. We examined the correlation between
mRNA and kdeg, which may serve as a more sensitive indicator of
proteome buffering than the protein-kdeg correlation as we showed
previously5. Remarkably, proteins encoded by CNA-affected genes
involved in complexes exhibited a significantly stronger mRNA-kdeg
correlation (R =0.537) compared to CNA-affected proteins not parti-
cipating in protein complexes (R = −0.05, P = 1.83e−9, Fisher’s z-test,
Fig. 5B). This difference provides compelling evidence for large-scale
proteome buffering in this highly aneuploid system, achieved by sta-
bilizing protein complex stoichiometry through regulated protein
turnover between A2780Cis and A2780 cells. We further analyzed the
mRNA-kdeg correlation within individual protein complexes (Fig. 5C,
Supplementary Fig. 6A, B), revealing an overall preference for protein
complex buffering (Supplementary Fig. 6A, B). Our results supported a
strong buffering of CNA-affected subunits of key complexes involved
in RNA transcription (Mediator complex and RNA polymerase II),
splicing (Spliceosome E), or cell division (CEN complex, Fig. 5C).

While degradation acts to buffer the effects of aneuploidy, it may
also actively remodel the proteome to support cisplatin resistance.
Prolonged low-dose cisplatin exposure in A2780 cells likely imposed
selective pressure, driving genomic and proteomic adaptation.
Accordingly, changes in gene copy number, protein abundance, and
degradation in A2780Cis cells may directly contribute to the resistant
phenotype. To evaluate their functional impact, we performed a gene
ontology biological process (GOBP) enrichment analysis using
Metascape following the genome rearrangement (Fig. 5D). Notably,
processes involving large protein complexes, such as “ribosome bio-
genesis,” “mRNA processing,” “regulation of translation,” “RNA spli-
cing,” and “cell division” were enriched among gained or lost genes
that were buffered (or buffered in both directions), indicating that
these protein degradation regulations counteracted CNA changes,
consistentwith the buffering patterns observed in Fig. 5B, C. Strikingly,

many biological processes enriched among genes with increased copy
number were further amplified at the protein level via decreased
degradation, such as “regulation of DNA-binding transcription factor
activity”, “mitochondrion organization”, or “ubiquitin-dependent
protein catabolic process” — several of which have been previously
linked to cisplatin resistance41,42. Furthermore, “DNA repair”, a well-
established contributor to cisplatin resistance43–46, was enriched
among both gain and loss groups, particularly among genes whose
protein levels were shaped by turnover (“gain + amplified” and “loss +
buffered”). This suggests a direct post-translational mechanism con-
tributing to resistance. Among them were MCM8 and RRM2B, two
proteins previously shown to enhance cisplatin resistance47,48. Toge-
ther, our results show that protein degradation in A2780Cis cells not
only buffers proteome imbalances caused by aneuploidy but also
facilitates adaptive remodeling of key pathways that promote cisplatin
resistance.

Cisplatin resistance in A2780Cis cells involves protein
degradation-mediated mitochondrial adaptation
Beyond proteome buffering and amplification linked to CNA, we
explored the functional role of protein turnover underlying the drug-
resistant phenotype. Statistical analysis identified proteins with sig-
nificantly altered abundance and degradation rates in A2780Cis cells
as illustrated in volcano plots (Supplementary Figs. 5D, S5E, Supple-
mentary Data 1). In total, we identified 1961 proteins with significant
changes in abundance and 1356 proteins with significantly altered
degradation rates; only 407 proteins commonly regulated in both
datasets (BH adjusted FDR <0.05 and |fold change|> 1.5, Fig. 6A). This
finding suggests that both protein abundance and protein turnover
regulation are important parts of the drug-resistant proteotype,
highlighting the value of measuring protein turnover in this system.
Further analysis revealed that among proteins with increased kdeg,
significantly downregulated proteins were over-represented (N = 75,
enrichment factor = 2.42, P = 1.5e−14), while upregulated proteins were
not enriched (N = 25, enrichment factor = 0.87, P =0.06, Fisher’s exact
test). Conversely, proteins with decreased degradation rates were
enriched for upregulated proteins (N = 188, enrichment factor = 1.32,
P = 3.86e−6) and depleted for downregulated ones (N = 125, enrich-
ment factor = 0.81, P =0.0006, Fisher’s exact test), demonstrating
coordinated regulation of protein degradation and abundance
(Fig. 6B). To elucidate relevant protein functions, we performed
Metascape enrichment analysis49, which revealed a densely inter-
connected protein cluster significantly enriched in pathways such as
“ATP synthesis coupled electron transport” (P = 7.94e−30) and “Oxi-
dative phosphorylation” (P = 3.16e−31), primarily composed of pro-
teins with increased degradation rates and decreased protein
abundanceunderlyingdrug resistance (Fig. 6E, SupplementaryData 2).

Next, we conducted a two-dimensional (2D) GOBP enrichment
analysis using relative changes in protein abundance and degradation
rates between A2780Cis and A2780 cells (Fig. 6C, Supplementary
Data 3). The correlation between median log2 fold changes for sig-
nificant GOBP terms was weakly negative (R = −0.244), indicating that
the cross-layer functional regulation tends to be overall concordant.
Several processes, such as the “TCA cycle”, “lipid homeostasis”, “cell
redox homeostasis”, and “oxidation-reduction process,” showed
increased abundance and reduced turnover. Notably, the latter two
align with previously reported cisplatin resistance mechanisms44,50.
Conversely, proteins involved in “mitochondrial respiratory chain
complex I” or “translation” displayed decreased abundance and
increased turnover, consistent with the Metascape results.

Mitochondria are central to cellular energy production and can
dynamically adapt to support tumor survival and drug resistance51.
Given the degradation-mediated alteration in complex I, we examined
other mitochondrial compartments and complexes. GOCC analysis
revealed significantly reduced protein abundance in respiratory
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Fig. 5 | Multi-omics analysis of the cisplatin-resistant model illustrating buf-
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tion. A Copy number alterations (CNA) in the A2780 paired cell line model were
mapped to transcriptomic data, protein abundance data, and protein degradation
rate (kdeg) values measured by DIA-MS. The CNA and transcriptomic data were
generated by previous studies analyzing the same cell lines (Prasad et al. 2008;
Behrman et al. 2021). Relative differences between A2780Cis (resistant) and A2780
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B Post-translational buffering of protein complex subunits (CORUM 4.0) encoded
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complexes I, IV, and V, but not complexes II and III (Fig. 6D, Supple-
mentary Figs. 6E, 7B). Moreover, complexes I and IV also showed sig-
nificantly increased degradation rates (Fig. 6D, Supplementary
Figs. 6E, 7B), supported by CORUM complex enrichment analysis
(Supplementary Fig. 6C). In contrast, themitochondrial proteome and
mitochondrial matrix proteins exhibited a slight but statistically sig-
nificant increase in abundance and reduced degradation (Fig. 6D,
Supplementary Fig. 7A), suggesting selective metabolic remodeling
rather than changes in total mitochondrial mass. Importantly, these
findings are consistent with previous reports implicating respiratory
chain complexes in drug resistance42,52–54 (Supplementary Fig. 6E).

Finally, we investigated the protein and proteostasis profiles of
genes associated with cisplatin resistance. We utilized the DepMap
portal55 to identify genes significantly associated with cisplatin

sensitivity by examining the correlation between transcript abundance
and cisplatin response (N = 414, P <0.01). Notably, 107 of these genes
were mapped to our proteomic datasets, and numerous proteins
showed significant regulation either at the protein abundance or
degradation level (Fig. 6F, Supplementary Data 4). In this list, proteins
showing significant regulation at both levels with opposite directions—
upregulation in one accompanied by downregulation in the other—are
more likely to serve as key mediators of cisplatin drug resistance.
Intriguingly, we found that NDUFB11, a mitochondrial complex I pro-
tein, was the only protein to display significantly increased degrada-
tion alongside decreased protein abundance (Fig. 6G). The DepMap
data revealed anegative correlationbetweenNDUFB11 transcript levels
and cisplatin sensitivity across 154 cell lines (Fig. 6H), validating that its
reduced protein abundance, potentially driven by increased turnover,
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is associated with, or may contribute to, enhanced drug resistance in
the A2780Cis cell line. Moreover, MBNL1 and OXSM, which exhibited
increased protein levels and reduced degradation rates in the resistant
cells (Supplementary Fig. 5H), showed positive correlation with cis-
platin resistance according to DepMap transcript profiles (Supple-
mentary Figs. 5F, G), reinforcing their potential roles in mediating
cisplatin resistance as well.

In conclusion, our findings highlight the strong relationship
between protein turnover and cisplatin resistance, with key proteins
involved in mitochondrial function, redox homeostasis, and oxidative
phosphorylation showing significant regulation.

Discussion
Multiplex-DIA-MS, when integrated with pSILAC8–11, enables high-
performance protein turnover analysis across multiple time points
under various biological conditions5,12–14,16,18,56–58. This approach is par-
ticularly well-suited for time-course designs in pSILAC experiments,
due to the reproducible profiling of large numbers of peptides. Recent
advances in library-freeDIA-MSdata analysis, poweredbymachine and
deep learning22–24, have dramatically enhanced the applicability of DIA-
MS measurement by removing the necessity of generating extensive
project-specific spectral libraries in many scenarios, making DIA-MS
workflowsmore efficient and scalable for complex proteomic studies.
Herein, we showed that the LBL workflow in Spectronaut significantly
advanced multiplex-DIA-MS data analysis, particularly for pSILAC
experiments. Unlike earlier methods that focus on a single channel for
signal extraction, LBL takes a flexible approach by integrating data
across all labeling channels. During the stages of peak picking and
elution group scoring, LBL considers both channel-specific and cross-
channel metrics to extract more comprehensive and reliable signals.
Moreover, it fully leverages the label-free directDIA+ algorithm in
Spectronaut23, eliminating the need for creating a project-specific
spectral library. Indeed, we demonstrated that LBL outperformed ISW
in the analysis of multiple labeling datasets, significantly and con-
sistently identifying more precursors and protein groups across var-
ious conditions and sample compositions. Notably, we demonstrated
improved identification with LBL in standard experiments that inclu-
ded two and three labeling channels that could theoretically extend to
N channels. This is particularly promising as the interest in multi-
plexingDIA-MS continues to grow,with new reagents being developed
in the future to potentially leverage additional channels for more
intricate experiments, such as single-cell proteomics7,59. We also
demonstrated the effectiveness of LBL across two MS platforms, sug-
gesting that LBL will remain valuable as mass spectrometry technolo-
gies evolve. On the other hand, strategies like ISW or “Spike-in” (with
the heavy sample as the reference) may still be suitable for specific
experiments such as those using spike-in standards60.

Proper FDR control is critical in multiplex-DIA experiments to
ensure reliability and accuracy of the protein quantifications across
multiple labeling channels. LBL leverages machine learning to calcu-
late both cross-channel and channel-specific scores. These enable
channel-specific FDR filtering of the quantification results with three q-
value filtering options available in Spectronaut: GroupQ, MinQ, and
MaxQ, which accommodate different user preferences for data filter-
ing. Based on our results, the GroupQ (integrative cross-channel
q <0.01) and MinQ (at least one channel q <0.01) offered higher sen-
sitivity by retaining more quantification data, while MaxQ (each
channel q <0.01) provided more stringent filtering and improved
precision at the cost of reduced sensitivity. This data loss following the
MaxQ settingmight be especially impactful in studies focusing on low-
abundance proteins or peptide-level quantification12,15,56. Thus, for
studies that prioritize sensitivity, the GroupQ or MinQ options may be
more appropriate, while those aiming for the highest level of precision
and confidence in their quantification may benefit from using MaxQ,
albeit with reduced overall data retention. However, it is important to

note that the GroupQ and MinQ results practically encompass almost
all MaxQ results, and that Spectronaut offers flexibility with these fil-
tering options, allowing users to tailor their analyses to specific
experimental requirements. For example, certain experiments, such as
those using a booster sample channel, might benefit from channel-
specific q-value filtering6.

To provide a user-friendly and flexible workflow for analyzing
pSILAC data obtained through multiplex-DIA-MS, we developed the R
package KdeggeR. A few software tools have been developed pre-
viously, among them proturn57, which offers a user-friendly Shiny app
and was primarily designed for pSILAC-TMT experiments; JUMPt61,
which calculates protein turnover rates using a differential equation-
based model to account for amino acid recycling, and is particularly
useful in in vivo studies such asmousemodels; SPLAT, which enables a
more specialized workflow for simultaneous protein localization and
turnover analysis (https://lau-lab.github.io/splat/); and turnoveR,
which was designed to work with SVM files and Massacre output
(https://github.com/KopfLab/turnoveR). While some of these existing
packages enable the estimation of protein degradation rates from
pSILAC-DIA data, they often require manual data pre-processing.
KdeggeR offers an alternative and more streamlined workflow by
handling data import and peptide-to-protein processing with various
options, as well as providing a series of data visualization functions
within a single package. A limitation of KdeggeR is its current inability
to account for amino acid recycling, which can be critical in in vivo
systems and is already provided by other software tools such as JUMPt,
ApplE, and others61–63. Nevertheless, the current version of KdeggeR
was designed to provide optimal analysis for pSILAC-DIA experiments
in cultured cell models, allowing protein lifetime inference using sev-
eral models and even in the absence of measured cell doubling times.

We applied our full workflow to study the potential contribution
of protein turnover to the development of a drug-resistant phenotype
in A2780 cells, which exhibit extensive cytogenetic changes31. Our
results confirmed large-scale protein complex buffering32 through
protein degradation, as previously observed in states of genome
imbalance14. We observed that proteins encoded by CNA-affected
genes involved in complexes exhibited a much stronger positive
mRNA-kdeg correlation compared to those not involved in complexes,
underscoring the utility of mRNA-kdeg correlation in aneuploidy
research. However, such buffering was not universal to all proteins
participating in protein complexes. In our model, cells selectively up-
or downregulated specific complexes following cisplatin exposure/
aneuploidy to establish new homeostasis and therefore did not buffer
all transcript-level variation through protein degradation. In fact, some
pathways appeared “amplified” by protein degradation. For instance,
we observed that “DNA repair” genes were enriched among the “Gain”
regions and at the same time showed reduced protein degradation
rates (i.e., the gain genotype was “amplified” by protein degradation),
while the opposite was observed for “Loss” genes. These findings align
with the role of DNA repair pathways in cisplatin resistance30,43,46,64,
supporting a direct link between CNA and resistance and suggesting
that protein degradation helps shape CNA-driven pathways toward a
resistant phenotype. Furthermore, key pathways such as oxidative
phosphorylation andATP synthesis, andmitochondrial complex Iwere
significantly enriched among proteins with increased degradation
rates and reduced abundance, whilematrix-localized pathways such as
the TCA cycle and fatty acid β-oxidation showed the opposite trend.
Previously, both complex I42,52,53 and complex IV54 proteins have been
associatedwith cancer drug resistance and several complex I encoding
genes have been proposed to regulate cisplatin resistance in a
genome-wide siRNA screening42, supporting our findings. This mito-
chondrial adaptation in A2780Cis might be attributed to redox
regulation57,65,66, as supported by our observation of increased abun-
dance and reduced turnover of proteins involved in redoxhomeostasis
—an axis previously implicated in cisplatin resistance44,50. However, the
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precise pathways and regulatory networks involved warrant further
investigation.

Finally, we employed the DepMap portal55 to identify genes
associated with cisplatin sensitivity. Of particular interest was
NDUFB11, a mitochondrial electron transport chain protein that
exhibited increased degradation and decreased abundance. This fur-
ther directly supports that altered turnover of mitochondrial proteins
may contribute to drug resistance and could present potential ther-
apeutic targets. The DepMap results also strongly supported MBNL1
and OXSM, which showed increased protein levels and reduced
degradation rates, potentially contributing to the cisplatin resistance.
Further verification experiments are required to establish the func-
tional linkage between these synergistic protein level regulations and
cisplatin effects.

In conclusion, our workflow integrating multiplex-DIA-MS with
pSILAC significantly enhances protein turnover quantification across
multiple labeling channels. These advancements will facilitate similar
future studies utilizing widely used DIA tools such as Spectronaut and
offer valuable insights into biological mechanisms, such as drug
resistance and aneuploidy research.

Methods
Reagents and resources
The chemicals, equipment, instruments, and software tools used in
this study, including their catalogue and version numbers, are pro-
vided in Supplementary Data 5.

Sample sets
A2780 standard dilution sample set (2-channel SILAC). This sample
set was measured in our previous study18. Ovarian cancer cell line
A2780 (93112519, Sigma) was cultured for at least eight passages in
media containing 13C6

15N4-Arg and 13C6
15N2-Lys to reach >99% labeling

efficiency (as evaluated by MS)18. The sample set included the follow-
ing H/L dilutions: 1:16, 1:8, 1:4, 1:2, 1:1, 2:1, 4:1, 8:1, and 16:1 in one
replicate. The detailed sample preparation and LC-DIA-MS protocol
can be accessed in the original protocol, and the raw files are provided
at ProteomeXchange (PXD021922). In brief, the 4-h LC-MS method
consisted of anMS1 survey and 33 MS2 scans of variable windows12 on
an Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo
Scientific).

HeLa standard dilution sample set (3-channel SILAC). This sample
set included data from a published study25 and downloaded from
ProteomeXchange (PXD039578). HeLa cells (CCL-2; ATCC) were
grown in high-glucose DMEM with dialyzed fetal bovine serum, sup-
plemented with heavy (13C6

15N4-Arg,
13C6

15N2-Lys), intermediate (13C6-
Arg, D4-Lys), or light (unlabeled) lysine and arginine for 10 days. The
H:M:L composition of the mix 1 sample was 15:15:70, and the compo-
sition of the mix 2 sample was 40:40:20. Each sample was analyzed in
triplicate using LC-DIA-MS, as described in the original paper (MS2-
optimized; see ref. 25 for details). In brief, a 105-minmethodwas used,
which included anMS1 survey followed by 26MS2DIA scans of equally
sized windows of 23.3m/z on a Q Exactive HF mass spectrometer
(Thermo Scientific).

Fibroblast pSILAC sample set (2-channel pSILAC). The skin fibro-
blast cell lines were purchased from the Coriell Institute for Medical
Research (GM06113, GM06170). The two cell lines are referred to as
cell line #54 and cell line #55 in the current manuscript. The cells were
cultured at 37 °C and humidified 5%CO2 atmosphere in completeMEM
medium supplemented with L-glutamine, 15% fetal bovine serum, and
penicillin-streptomycin. Cells were seeded on 6-well dishes in com-
plete growth medium at a density of 15,000 cells per cm2. After 24 h,
the cells were washed and subjected to pulse SILAC labeling for 1, 4, 8,
12, and 24 h. The SILAC MEM medium was supplemented with 15%

dialyzed FBS, penicillin-streptomycin, L-proline (200mg/L), 13C6
15N4-

Arg, and 13C6
15N2-Lys. The dishes were washed with PBS, snap-frozen in

liquid nitrogen, and the cells were scraped into 100 µL of cell lysis
buffer containing 10M urea, 100mM ammonium bicarbonate, cOm-
plete™ protease inhibitor cocktail, and Halt phosphatase inhibitors.
The collected samples in one replicate were snap-frozen and stored at
−80 °C before further processing.

Parental and cisplatin-resistant A2780 cell sample set (2-channel
pSILAC). The A2780 (parental cell line; 93112519, Sigma) and
A2780Cis (cisplatin-resistant cell line; 93112517, Sigma) were cultured
in RPMI medium supplemented with 2mM glutamine, 10% FBS, and
penicillin-streptomycin. Additionally, the A2780Cis cell line was cul-
tured in the presence of 1 µMcisplatin. After switching to SILAC heavy
medium (13C6

15N4-Arg and 13C6
15N2-Lys)

18, both cell lines were har-
vested in biological triplicate at 1, 4, 8, and 12 h of labeling. Addi-
tionally, a triplicate sample was harvested at time point 0 to analyze
the total proteomes. The disheswerewashedwith PBS, snap-frozen in
liquid nitrogen, and the cells were scraped into 200 µL of cell lysis
buffer containing 10M urea, 100mM ammonium bicarbonate, cOm-
plete™ protease inhibitor cocktail, and Halt phosphatase inhibitors.
The collected samples were snap-frozen and stored at −80 °C before
further processing.

Protein extraction and digestion
Cell pellets in lysis buffer (all A2780 and fibroblast sample sets) were
thawed and sonicated at 4 °C twice for 1min each using a VialTweeter
device (Hielscher-Ultrasound Technology)13. Afterward, the samples
were centrifuged at 20,000 × g for 1 h to separate insoluble materials.
Protein concentrations in the resulting supernatant were measured
using the Bio-Rad protein assay. Each protein sample was diluted to a
final concentration of 2μg/μl, reducedwith 10mMDTTat 56 °C for 1 h,
and alkylated with 20mM IAA in the dark at room temperature for 1 h.
Reduced and alkylated proteins underwent precipitation-based
digestion (for parental and cisplatin-resistant A2780 cell sample set)
or in-solution digestion (for fibroblast pSILAC sample set), with
respective protocols described previously13,67. For the precipitation-
based digestion, five volumes of a cold precipitation solution (50%
acetone, 50% ethanol, and 0.1% acetic acid) were added to the protein
mixture, and the samples were stored at −20 °C overnight. The pre-
cipitated proteins were collected by centrifugation at 20,000 × g for
40min, washed with cold 100% acetone, and centrifuged again under
the same conditions. Following acetone removal, residual acetone was
evaporated in a SpeedVac. The proteins were then digested overnight
at 37 °C with sequencing-grade porcine trypsin at a 1:20 enzyme-to-
substrate ratio in 300μl of 100mM ammonium bicarbonate. For the
in-solution digestion, the protein samples were diluted five times with
100mM ammonium bicarbonate prior to the addition of trypsin in a
1:20 enzyme-to-substrate ratio. The final peptidemixture was acidified
with formic acid and desalted using C18 columns (MacroSpin Col-
umns, NEST Group Inc.) according to the manufacturer’s instructions.
The peptide yield was quantified using a NanoDrop (Thermo
Scientific).

Mass spectrometry measurements
Orbitrap fusion lumos platform. For LC-MS analysis, 1.5μg of the
peptide mixture (from all the sample sets) was analyzed as previously
described13,68. Peptide separation was carried out using an EASY-nLC
1200 system (Thermo Scientific) with a self-packed PicoFrit column
(New Objective, Woburn, MA, USA; 75μm×50cm) containing
ReproSil-Pur 120A C18-AQ 1.9 μm resin (Dr. Maisch GmbH, Ammer-
buch, Germany). Peptides were eluted over a 150-minute gradient
using buffer B (80% acetonitrile, 0.1% formic acid) from5% to 37%, with
buffer A (0.1% formic acid in water) as the corresponding solvent. The
flow rate was set to 300 nl/min, and the column was maintained at
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60 °C using a column oven (PRSO-V1; Sonation GmbH, Biberach, Ger-
many). The separated peptides were analyzed on an Orbitrap Fusion
Lumos Tribridmass spectrometer (ThermoScientific) equippedwith a
NanoFlex ion source, with a spray voltage of 2000 V and a capillary
temperature of 275 °C. The DIA-MS method included an MS1 survey
scan followed by 33 MS2 scans with variable windows, as described
previously23,69. TheMS1 scan rangewas 350–1650m/zwith a resolution
of 120,000 at m/z 200. The MS1 AGC target was set to 2.0E6, with a
maximum injection time of 100ms. For MS2, the resolution was set to
30,000 at m/z 200, with a normalized HCD collision energy of 28%.
The MS2 AGC target was 1.5E6, and the maximum injection time was
50ms. The default peptide charge state was set to 2. Both MS1 and
MS2 spectra were recorded in profile mode.

timsTOF Ultra platform (fibroblast pSILAC dataset). Peptides
(130 ng) from fibroblast pSILAC sample set were separated using a 52-
min ACN gradient on a 25 cm× 75 µm column (Ion Opticks) using a
nanoElute2 LC. The LC systemwas connected via a CaptiveSpray Ultra
source to trapped ion mobility – quadrupole time-of-flight MS (tim-
sTOF Ultra, Bruker Daltonics). The MS was operated in dia-PASEF
mode70 with 3 PASEF mobility scans, each with 20 DIA variable win-
dows (a “20 × 3” method; Bruker Daltonics)71.

Mass spectrometry data processing
Label-free DIA-MS data analysis. The label-free data analysis was
performed in Spectronaut v19 using directDIA+23 by searching against
the human SwissProt sequence database (N = 20,399 entries, down-
loaded in September 2022) and the default Spectronaut settings39.
Briefly, the Trypsin/P was used as a cleavage rule with up to 2 missed
cleavages; “Carbamidomethyl (C)”was set as a fixed modification, and
“Acetyl (Protein N-term)” and “Oxidation (M)” were set as variable
modifications; Top 3–6 Best N Fragments per peptide were enabled.
The precursor q-value and the experiment-wide protein q-value were
set to 0.01, and the run-wise protein q-value was set to 0.05. The
quantification was performed at the MS2 level, and the cross-run
normalization was enabled. The peptide and protein quantification
were performed using max Top 3 precursors and max Top 3 stripped
peptide sequences, respectively. The “Minimum Log2 Precursor
Quantity” was set to 3.

Multiplex-DIA data analysis using the “Labeled” workflow (LBL).
The multiplex-DIA data analysis was performed in Spectronaut v19
using the library-free “Labeled” workflow. The analysis was performed
using directDIA+ against a human SwissProt sequence database
(N = 20,399 entries, downloaded in September 2022) using the default
settings withmodifications as described below. The search parameters
were kept the same in all datasets across MS platforms.

In the Pulsar Search: Trypsin/P was used as a cleavage rule with up
to 2 missed cleavages; the labeling was set to two channels with no
labels specified in Channel 1 and “Arg10” and “Lys8” specified in
Channel 2; “Carbamidomethyl (C)”was set as a fixedmodification, and
“Acetyl (Protein N-term)” and “Oxidation (M)” were set as variable
modifications; in the Workflow tab, the “In-Silico Generate Missing
Channels” option was enabled with “label” as a Workflow; in the Result
Filters tab, Top3–6 Best N Fragments per Peptide were used, and the
“Overlapping between Channels” was enabled to exclude fragments
shared between channels for the accurate estimation of channel-
specific FDR. For the analysis of dimethyl-labeling mDIA samples
downloaded from a previous study6, most parameters were kept
identical, but the labeling was set as follows: “DimethLys0” and
“DimethNter0” in Channel 1, “DimethLys4” and “DimethNter4” in
Channel 2, and, when applicable, “DimethLys8” and “DimethNter8” in
Channel 3 (3-plex experiment).

In the DIA Analysis: in the Identification tab, the precursor q-value
and the experiment-wide protein q-value were set to 0.01, the run-wise

protein q-value was set to 0.05; in the Quantification tab, the Multi-
ChannelQ-valuefilterwas either set to “GroupQ-value”, “MaxQ-value”,
or “Min Q-value” to evaluate channel-specific q-value filtering options.
For the analysis presented in Fig. 2 and Supplementary Fig. 1, this
parameter was kept as “Group Q-value” (as it is the default option for
the LBL in Spectronaut). The quantification was performed at the MS2
level, and the cross-run normalization was enabled. The “Exclude All
Multi-Channel Interferences” option was enabled. The peptide and
protein quantifications were performed using max Top 3 precursors
and Top 3 stripped peptide sequences, respectively. The “Minimum
Log2 Precursor Quantity”was set to 3. In the Workflow tab, the “Multi-
Channel Workflow Definition” was set to “Labeled”.

Please see Supplementary Note 1 in the supplementary file for a
detailed step-by-step protocol.

Multiplex-DIA data analysis using the “Inverted Spike-In”
workflow (ISW). The ISW analysis was performed in the same Spec-
tronaut v19 version by selecting the following parameters: the “Multi-
Channel Workflow Definition” was set to “Spike-In”, and both “Inver-
ted” and “Reference-based Identification” were enabled. Other para-
meterswere kept as described in the section above, describing the LBL
workflow.

Multi-channel experiment processing and scoring in spectronaut.
Spectronaut organizes all channels corresponding to a given peptide
into “elution groups,” representing a group of peptide precursors
expected to elute simultaneously. Extracted ion chromatograms
(XICs) are obtained for each group from the relevant MS2 scans. The
peak-picking strategy depends on the specific multi-channel proces-
sing mode selected. By default, Spectronaut utilizes the “Labeled”
workflow for multi-channel elution groups, in which XIC peak picking
is performed across all channels in a combined fashion. Each peak is
assigned scores based on both channel-specific and cross-channel
features, for both MS1 and MS2 data. Note that the data extraction is
always performed per MS2 window, and Spectronaut does not per-
form any channel-specific quantification correction for peptides that
span multiple MS2 windows.

The final score per elution group is determined during the
machine learning step, with the strategy beingworkflowdependent. In
the “Labeled”workflow (LBL), all channels, alongwith their specific and
cross-channel scores, are considered collectively in the machine
learning process, allowing for dynamic adaptation to systematic
changes in channel ratios, which are common in pSILAC experiments.
These scores are then used to compute the “Group Q-value” for each
elution group. Additionally, channels are scored independently based
on channel-specific metrics, which are used to determine channel-
specific q-values. However, within Spectronaut and for all post-
processing steps, all channels of an elution group are always treated
as a unified group. Quantification is always performed for all channels
of a group that is considered identified based on their shared RT peak
boundaries, and the fragment ion selection is always synchronized
across all channels and samples. Therefore, all multi-channel q-value
filtering options will always exclude or include the entire group of
channels within one run, based on the user’s preferences. Note, since
this filtering is performed at the precursor level, the quantification of
an elution group (and thus the ratios between the channels) will be
identical for those precursors passing the FDR filtering by multiple
options. Finally, in an experiment containing more than one sample,
the elution groups are scored within individual samples and only
accepted/reported if they pass the selected quantification filtering in
individual samples. The only exemption from the whole elution group
filtering rule is an additional “ChannelQ” filtering option, which per-
forms elution group identification using the elution group scoring
and then filters the individual channels based on their channel-specific
q-value (Supplementary Fig. 1G). This function is intended as an
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additional pre- and post-analytical quality control option. Please see
Supplementary Note 1 for details.

Furthermore, when enabled in theQuantification settings, a cross-
run normalization is performed per elution group based on the
assumption that the majority of all signals do not show any systematic
trend across measurements, and the normalization is performed
according to this assumption. In the case of a multi-channel experi-
ment, the sum over all channels is considered as the group’s quantity
that needs to be normalized.

Spectronaut result reporting
Label-free DIA-MS data. For the total proteome analysis, the data
were exported using the protein pivot report using “PG.Pro-
teinGroups” as the unique protein ID and the “PG.Quantity” as the
quantification column.

Multiplex-DIA-MS data. The precursor/elution group (EG) level pivot
report was exported. The “EG.Channel1Quantity” and “EG.Channel2-
Quantity” (for a 2-channel experiment), and “EG.Channel3Quantity”
(for a 3-channel experiment) quantities were used as quantification
values, and the “EG.PrecursorId” column was used as the unique pre-
cursor ID column. For protein-level quantification of the multiplex-
DIA-MS data, the precursor-level ratios were estimated first as the
ratios between the channels, and then the protein-level ratios were
calculated as the median value of all precursor-level ratios corre-
sponding to a unique protein ID (“PG.ProteinGroups”). In all replicate
experiments (HeLa 3-channel, A2780 pSILAC), the replicates were
aggregated to obtain an average ratio by calculating the means and
CVs of non-transformed ratio values after filtering for precursor values
quantified in all 3 replicates. Please refer to Supplementary Note 3 in
the supplementary file for details on data reporting.

Multiplex-DIA-MS data analysis using DIA-NN
To benchmark the multiplex-DIA-MS analysis in Spectronaut, we
additionally analyzed the data using DIA-NN (version 1.9)22 using the
plexDIA recommended workflow7 and largely followed the para-
meters used previously to analyze the 3-channel HeLa standard
sample experiment25. A predicted spectral library was generated
using the default settings from the same FASTA file used for Spec-
tronaut searches and the same fixed and variable modifications. For
raw data analysis, the default settings were used, along with addi-
tional commands necessary to analyze a plexDIA experiment
(https://github.com/vdemichev/DiaNN). Specifically, the SILAC
channels were registered, depending on the 2- or 3-channel experi-
ment, corresponding to Lysine and Arginine mass shifts: Lys
(+4.025107Da), Lys8 (+8.014199 Da), Arg6 (+6.020129 Da), Arg10
(+10.008269Da). Retention time translation between peptides
within the same elution group was enabled. Both the first 13C-
isotopic and monoisotopic peaks were included for quantification,
with MS1 deconvolution level set to 2. Peptide lengths ranged from 7
to 30 amino acids, precursor charge states ranged from 1 to 4, and
the precursor mass-to-charge (m/z) range was set between 300 and
1800, with a fragment ion m/z range from 200 to 1800. The pre-
cursor false discovery rate (FDR) was set to 1%. Precursor matrix
output tables were filtered for FDR< 0.01, as well as for channel-
specific (“--matrix-ch-qvalue”). The match-between-runs (MBR)
function in DIA-NN was enabled. The precursor-level matrices were
used for the downstream analyses (“report.pr_matrix_channels.tsv”).

Determination of protein degradation rates from the pSILAC
experiments using KdeggeR
Protein degradation rates reported in this manuscript were calculated
using theKdeggeR 1.0 package following an algorithmbasedon the nls
fitting in the relative light isotope abundance values (RIALight) at the
precursor level as described previously5,11,13,27–29 and subsequent

averaging to the protein-level rates of loss and degradation. The main
steps are described below, together with the description of additional
options and functionalities of the package. Thepackage is provided via
GitHub (https://github.com/yslproteomics/KdeggeR); see the package
documentation for details on the functions and parameters.

Data import, formatting, and filtering. The precursor-level report
from, e.g., Spectronaut, was imported, and the channel intensity values
were filtered to remove low-intensity signals (e.g., with log2-trans-
formed intensity <8).Note that thisfiltering significantly improves data
quality in our datasets and is recommended performing in the multi-
channel data analysis in Spectronaut by default, using the “Minimum
Log2PrecursorQuantity”quantificationfilter.Next, theH/L ratioswere
calculated and further filtered based on i) valid values (e.g., at least 2 in
time points 4, 8, and 12 h for the parental and cisplatin-resistant A2780
cell sample set), ii) increasing trendover the timepoints, and iii) outlier
detection in the first time point based on the identification of sig-
nificant outliers using linear regression. To do so, we fitted a linear
model using log-transformed H/L ratios (ln (H/L + 1)) from time points
4, 8, and 12. We then calculated residuals of the fit for each time point,
including the first time point. Grubbs’ test was used to detect sig-
nificant outliers from the residual distribution at time point 1.

Estimation of precursor-level kloss values using the RIA method. At
each time point, the amount of heavy (H) and light (L) precursor was
extracted and used to calculate the relative isotopic abundance RIAt.

RIAt =
L

L+H
ð1Þ

The value of RIAt changes over time as unlabeled proteins are
gradually replaced by heavy-labeled proteins throughout the experi-
ment. This occurs because of cell division, which dilutes the unlabeled
proteins, and the natural turnover of intracellular proteins, where the
loss rate can be described by an exponential decay process.

RIAt =RIA0 : e
ð�kloss :tÞ ð2Þ

WhereRIA0 denotes the initial isotopic ratio and kloss the rate of loss of
unlabeled protein. We assumed RIA0 = 1, as no heavy isotope was
present at t = 0, thus, the value of RIAt will decay exponentially from 1
to 0 after infinite time, and we used nonlinear least‐squares estimation
to perform the fit. As discussed previously11, these assumptions may
reduce measurement error, especially at the beginning of the experi-
ment, where isotopic ratios are less accurate.

Estimation of precursor-level kloss values using the NLI method. A
simpler approach to determine de facto protein degradation rates is to
directly calculate the rate of loss from the light peptide intensities. The
light peptide intensities need to be normalized using median channel
sums to calculate the normalized intensity values (NLI). Then, the light
precursor rate of loss can be modeled using the same model and
assumptions as in the case of the RIA-based modeling. As we reported
previously, the NLI and RIA methods’ results are strongly correlated;
however, the NLI method tends to have higher variability5.

Estimation of precursor-level kloss values using the HOL method.
The heavy proteins are synthesized over time, leading to an increasing
H/L ratio. This process is exponential because the heavy proteins are
gradually replacing the unlabeled (light). The H/L ratios are linearized
by log-transformation, and the rate of incorporation of the heavy label
is then estimated using a linear model.

ln
H
L
+ 1

� �
= ksyn : t ð3Þ
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In the steady-state condition, the rates of protein synthesis and
degradation reach equilibrium. This means that the rate at which new
heavy-labeled proteins are synthesizedmust be balanced by the rate at
which proteins are degraded (kloss).

Estimation of protein-level kloss values. Protein-level kloss values can
be calculated using different options, including performing aweighted
average of the selected precursor-level fit (e.g., RIA only) or their
combination/complement (e.g., RIA and NLI). The number of data
points used to estimate precursor-level kloss, the variance of the fit, or
both can be used as weights.

Calculation of protein-level kdeg values. Protein degradation rates
are estimated by subtracting the cell division rate (kcd) to correct for
the protein pool dilution caused by the exponential cell division.

kdeg = kloss � kcd ð4Þ

However, practically, the cell division rates tend to be highly
variable between different experiments, and thus, the precision and
accuracy tend to be low. Therefore, we enabled the option to use a
value derived from the distribution of the kloss values by assuming that
most kdeg values should be positive after the correction. We recom-
mend defining kperc so that its subtraction from kloss yields no more
than 1% negative kdeg values, allowing robust estimation in cell culture-
derived datasets. Note that this transformation will result in the pre-
selected proportion of negative values in the data, and they need to be
replaced by NA for further analysis.

kdeg = kloss � kperc ð5Þ

Optionally, protein half-lives can be calculated from the degra-
dation rate constant using the following formula.

t1=2 =
lnð2Þ
kdeg

ð6Þ

Note that for the results presented in thismanuscript, we used the
precursor kloss estimation using the RIA method, and then calculated
theprotein kloss as aweighted average of the precursor-level data using
both the number of data points and variance as the weights of the fit.
The kdeg values were calculated by subtracting the theoretical kperc
from the kloss values.

Bioinformatic analysis of the drug-resistance aneuploidy model
aCGHdataset. Array comparative genomic hybridization (aCGH) data
were downloaded fromaprevious study (SupplementaryTable 1 of the
study)36. Protein-coding genes mapping to the regions with gene copy
number alterations (CNA) between the A2780 (parental) and A2780Cis
(cisplatin resistant) provided in the table were identified by mapping
those regions to the homo sapiens Ensembl genomeusing the bioMart
R package.

RNA-seq dataset. The RNA sequencing results were downloaded
from the GEO under accession GSE173201, which was published in
a previous study35. A table containing TPM normalized counts
(GSE173201_norm_counts_TPM_GRCh38.p13_NCBI.tsv) was used for all
analyses presented in this study. The data were filtered for transcript
matching to protein-coding genes and filtered for genes with at least 2
valid non-zero values (out of 3 replicates) in each condition. The TPM
data were transformed using the limma::voom() function before sta-
tistical analysis.

Proteome abundance analysis. The protein-level pivot report tables
were exported from Spectronaut v19, log2-transformed, and normal-
ized using the limma::normalize.cyclic.loess() function72. The data

were filtered to only contain proteins quantified in at least 2 out of 3
experimental replicates before the statistical analysis.

Protein degradation analysis. The kdeg values exported from the
KdeggeR package were log2-transformed and filtered to only contain
proteins quantified in at least 2 out of 3 experimental replicates before
the statistical analysis.

Downstream statistical analysis. The statistical analysis was per-
formed using the limma 3.58.173 R package following the standard
pipeline of lmFit(), contrasts.fit(), and eBayes(). The limma results were
corrected for multiple testing using FDR correction using the
Benjamini–Hochberg method. Cutoffs of FDR <0.05 and an absolute
fold change >1.5 were used to report significantly regulated features in
the RNA-seq, protein abundance, and protein degradation datasets.
The moderated log2-transformed fold changes exported from the
results were used in all downstream analyses.

Datasets integration and correlation analysis. The datasets were
integrated based on unique gene symbols. The absolute correlation
analysis was performed for the A2780Cis cell line using IDs success-
fully quantified in all 3 layers (N = 6221) and using average log2 TPM,
log2 protein intensity, and log2 kdeg, and Spearman’s rho was reported.
The relative correlation analysis was performed using moderated log2
fold changes using IDs with valid log2 fold changes in all 3 layers
(n = 6203), and Pearson’s correlation was reported. For the kdeg-mRNA
analysis presented in Fig. 5, the data were split into four groups based
on two parameters to perform a correlation analysis and statistical
analysis using a two-sided Fisher’s z-test. As for the first parameter,
genes affected by CNA were identified as all protein-coding genes
identified based on the aCGH data, excluding genes encoded by the X
chromosome. As for the second parameter, the genes were further
grouped based on the participation of the encoded protein in protein
complexes as retrieved from the CORUM 4.0 database40.

Functional enrichment analyses. A multiple gene list enrichment
analysis was performed using the Metascape web interface (https://
metascape.org)49 to perform the functional enrichment analysis. Four
lists of protein IDs were provided based on the results of the above
statistical analysis (protein “up”, protein “down”, kdeg “up”, and kdeg
“down”), and the default parameters were used. All protein-protein
interactions (PPI) from the STRINGdatabase74 between the four lists of
proteins were used to generate a PPI network, followed by the Mole-
cular complex detection (MCODE) algorithm75 to identify densely
interconnected clusters in the PPI network, followed by a gene ontol-
ogy (GO) enrichment analysis. The resulting color-coded protein-
protein interaction networks were further processed in Cytoscape
(3.10.1) to generate figures presented in Fig. 6. Metascape output was
also used to generate the Circos76 plot in Fig. 6. The 2D enrichment
analysis77 presented in Fig. 6 was performed using the log2 fold
changes between the A2780Cis (resistant) and A2780 (parental) cell
lines at the protein abundance and protein degradation (kdeg) level
using a function provided by the Perseus platform78,79 (1.6.14.0). The
annotation of the gene ontology biological process (GOBP_Direct) was
extracted from theDAVIDdatabase80. In the “bubble plot”presented in
Fig. 6, only those categories with at least 10 protein IDs and an
enrichment P value < 0.01 were visualized and further restricted to the
top 25 categories with the lowest P values. The size of the dots was
used to reflect the number of proteins in each category.

Identification and verification of cisplatin sensitivity-related genes
using DepMap. The Dependency Map (DepMap) portal55 was used to
perform a custom correlation analysis to identify gene expressions
associated with cisplatin sensitivity. A Pearson’s correlation was cal-
culated between the mRNA expression dataset (Batch corrected
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Expression Public 24Q2) and the cisplatin (CIS-DDP) sensitivity data
(IC50 based on Sanger GDSC1) using all cell lines available (N = 154);
and 414 geneswere identifiedwith a significant correlation (P < 0.01, as
reported by DepMap) and mapped to the protein abundance and
degradation-level data for the analysis as presented in Fig. 6.

Data visualization
The following R packages were used (R 4.4.1) for data visualization:
ggplot2 3.5.1, ggrastr 1.0.2, ggrepel 0.9.6, LSD 4.1-0, pheatmap 1.0.12,
and VennDiagram 1.7.3. Other R packages used for the analysis
underlying visualization: MASS 7.3-60, outliers 0.15, parallel 4.3.1,
tidyverse 2.0.0. In boxplots, the boxes indicate Q1–Q3 with the med-
ian; whiskers span 1.5 × IQR. Outliers beyond this range are shown as
individual points. Data points beyond this range are considered out-
liers and are displayed as individual points. In density/violin plots, the
density represents a smoothed estimate of the data distribution,
computed using a kernel density estimation (KDE) method, and the
area under the density curve is equal to 1.

Improved data visualization features for multi-channel work-
flows in Spectronaut v19.3
In addition to the specialized multi-channel workflows and channel
q-value filtering options, new data visualization features for multi-
channel data inspection were made available from Spectronaut v19.3
onward. These include, for example, scoring histograms and channel
H/L ratio plots, which provide a detailed overview of scoring weights
across channels and the overall H/L ratio distribution across multiple
samples and time points, facilitating easy experiment quality control.
Additionally, new protein-specific interactive H/L plots can be visua-
lized across runs to assess the quality of individual data points. Please
refer to Supplementary Note 2 in the supplementary file for details and
examples.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The mass spectrometry data and raw output tables have been depos-
ited in the ProteomeXchange Consortium via the PRIDE81 partner
repository with the following identifiers. The 2-channel standard
dilution sample of the A2780 cell linewaspreviously depositedwith an
identifier PXD021922. The HeLa 3-channel dataset was downloaded
from PXD039578. The HeLa 2- and 3-channel dimethyl-labeling mDIA
dataset was downloaded from PXD038632. The A2780 and A2780Cis
total proteome and pSILAC experiment and the pSILAC experiment in
the fibroblast cell lines were deposited with the dataset identifier
PXD057632. The RNA sequencing results were downloaded from the
GEO under accession GSE173201. Source data are provided with
this paper.

Code availability
The KdeggeR package is available via GitHub (https://github.com/
yslproteomics/KdeggeR).
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