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Investigating the sources of variable impact
of pathogenic variants in monogenic
metabolic conditions

Angela Wei 1,2,3,4, Richard Border 5,6, Boyang Fu 5, Sinéad Cullina7,8,
Nadav Brandes 9,10,11, Seon-Kyeong Jang6, Sriram Sankararaman 3,4,5,
Eimear E. Kenny7,8,12,13, Miriam S. Udler 14,15, Vasilis Ntranos 9,10,11,
Noah Zaitlen3,4,6,16 & Valerie A. Arboleda 1,2,3,4,16

Over three percent of people carry a dominant pathogenic variant, yet only a
fraction of carriers develop disease. Disease phenotypes from carriers of var-
iants in the same gene range from mild to severe. Here, we investigate
underlying mechanisms for this heterogeneity: variable variant effect sizes,
carrier polygenic backgrounds, and modulation of carrier effect by genetic
background (marginal epistasis). We leveraged exomes and clinical pheno-
types from theUKBiobank and theMt. Sinai BioMeBiobank to identify carriers
of pathogenic variants affecting cardiometabolic traits. We employed recently
developed methods to study these cohorts, observing strong statistical sup-
port and clinical translational potential for all three mechanisms of variable
carrier penetrance and disease severity. For example, scores from our recent
model of variant pathogenicity were tightly correlated with phenotype
amongst clinical variant carriers, they predicted effects of variants of unknown
significance, and they distinguished gain- from loss-of-function variants. We
also found that polygenic scores modify phenotypes amongst pathogenic
carriers and that genetic background additionally alters the effects of patho-
genic variants through interactions.

With the rapidly increasing use of exome sequencing in clinical prac-
tice, and with over three percent of the population carrying a patho-
genic variant in genes associated with autosomal dominant disease1–3,
predicting which carriers will develop disease and how that severe the

disease will manifest are central questions for the practice of genomic
medicine4,5 (Fig. 1A). Addressing the full spectrumof clinical genotypes
associated with liability to diseases would improve preventative and
targeted approaches prior to disease onset. However, the causes that
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affect penetrance and severity are largely unknown, making it difficult
to determine which patients will require clinical interventions and
what degree of intervention will be needed5,6. In this study, we applied
recently developed computational methods to biobank-level data to
study three theorized sources of this heterogeneity in the context of
clinical metabolic traits: differing pathogenic variant effects within a
gene, variable polygenic background amongst carriers, and marginal
epistasis—the combined pairwise interaction effects between carrier
status and all other SNPs while controlling for linear, additive
effects (Fig. 1).

Mounting evidence suggests that each of these factors contribute
to incomplete penetrance and variable disease severity. For example,
loss-of-function (LOF) variantswithin theMC4R gene causemonogenic
obesity; however, other missense variants in the same gene that are
gain-of-function (GOF) are associated with protection against obesity7.
Recently, Goodrich et al.4, Fahed et al.8 and Huerta-Chagoya et al.9

found that polygenic risk scores (PRS) can independently influence the
phenotype amongst carriers in several monogenic diseases. Finally,
individual case reports have identified direct genetic epistatic modi-
fiers, that is genetic background acting directly through the carrier
variant’s mechanism, that are protective in highly penetrant mono-
genic disorders10. While some studies11 have identified digenic variants
whose effects modify the impact of pathogenic variants, these studies
did not identify whether genetic background variants directly interact
with pathogenic variants, i.e., provide evidence of marginal epistasis,
to affect penetrance and/severity in biobank level data.

Here, we employ recently developed statistical genomics meth-
ods in combination with phenotypes and exomes from our discovery
cohort of the 200,638 exomes release from UK Biobank (UKB)12 par-
ticipants (Table 1), aswell as replication in the 28,817 participants from
the Mt. Sinai BioMe Biobank (Supplementary Data 1)13 and the 454,787
UKB exomes release14, to comprehensively study these factors in genes
associated with monogenic cardiometabolic conditions: high LDL
cholesterol (familial hypercholesterolemia), high HDL cholesterol

Fig. 1 | Outline of study. A Phenotypic heterogeneity exits within carriers and
noncarriers of pathogenic variants; individuals will range from mild to severe dis-
eases, as shown in this toyfigure. This studyappliesnovel bioinformaticmethods to
understand the genetic factors that affect carrier phenotype at biobank-scale.BWe
apply ESM1b, a protein language model, to predict the variable effect sizes of
monogenicmissense variants.CWeutilize polygenic risk scores (PRS) to determine
if pathogenic variant carrier phenotype is modified by additive genetic effects and

identify the distribution of PRS where noncarriers have greater more severe phe-
notypes than carriers. Here,Y is the individual’s phenotype,C indicates pathogenic
variant carrier status and its effect size βC, and G is common genetic variation with
its effect sizeβG.DWe employ a novelmethod, FAME, to estimate the contribution
of marginal epistasis (∑G ·C · βCxG,interaction term) between carrier status and
polygenic background to phenotypic variation. Created in BioRender. Arboleda
(2025) https://BioRender.com/hmwost8.

Table 1 | Demographics and distributions of patients in the
discovery cohort

Participant information

participants, n 200,628

female, n (%) 110,475 (55.1%)

European ancestry, n (%) 188,027 (93.7%)

Age at recruitment, mean (sd) 56.5 (8.1)

HDL mg/dl, mean (sd) 56.4 (14.8)

LDL mg/dl, mean (sd) 145.9 (34.1)

triglycerides mg/dl, mean (sd) 159.1 (94.7)

BMI kg/m2, mean (sd) 27.4 (4.8)

T2D, n (%) 12,382 (6.2%)

Analyses and data generated in this paper were performed on the 200k exome-sequencing
release from UK Biobank cardiometabolic traits as our discovery cohort.
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(familial hyperalphalipoproteinemia), high triglycerides (familial
hypertriglyceridemia), monogenic obesity, and maturity-onset dia-
betes of the young (MODY) (Table 2 and Supplementary Data 2). We
also examine variants within this set of disease genes that are bene-
ficial, such as variants that are LDL-lowering (familial hypobetalipo-
proteinemia) or protect against obesity. Using these biobanks, we
identified individuals carrying at least one allele of these autosomal
dominant pathogenic variants, whom we refer to as “carriers.”

First, to study effect size heterogeneity of variants within mono-
genic genes, we leverage our recently developed method for variant
pathogenicity prediction based on the ESM1b protein language model
(Fig. 1B)15,16. The effect of rare missense variants in protein-coding
genes are often classified as variants of uncertain significance (VUS), or
grouped into coarse categories such as “pathogenic” or “benign”5. Of
the 206,594 missense variants curated in ClinVar17, 57.5% (118,864) are
labeled as VUS as of November 202118. Classification of VUSs is crucial
for diagnoses and treatment of genetic disorders19, but there is still a
gap in methods to address this problem20. This critically limits studies
of effect size heterogeneity aswell as the prognostic power of genomic
medicine for many patients21. Our model produces numerical scores
for any possible amino acid change in any protein, which we demon-
strate are tightly coupled to phenotype for many genes.

Next, to examine additive polygenic background effect (Fig. 1C),
we employ polygenic risk scores (PRS), which combine variant effects
from genome-wide association study (GWAS) loci, to measure the
additional genetic load on the phenotypes (Y) included in this study22.
We improve upon previous studies by binning individuals into finer-
grained PRS quantiles to identify the threshold at which PRS-risk
exceeds that of established clinical, pathogenic variants.

Finally, we employ our recent method, FAst Marginal Epistasis test
(FAME)23, that quantifies the impact of genetic epistasis, or genetic
interactions, on modification of individual variant’s effects (Fig. 1D).
Previous methods have identified genome-wide genetic interactions24

and genetic-by-environment interactions25 that affect phenotype; how-
ever, we utilize this method to focus on identifying genetic interactions
that directly modify the effect size of carrier status of pathogenic var-
iants. With FAME, we previously showed that genetic background
modifies the effect of many common GWAS variants, with epistatic
effects sometimes exceedingmarginal effects by an order of magnitude
across diverse traits, and have replicated known marginal epistasis
effects such as on gene expression23,26. Here, we extend this work to
study the impact of marginal epistasis on autosomal dominant rare
variants, i.e., identifying if genetic background variants are interacting
with pathogenic variants to affect carrier phenotype and penetrance.

We find that the variant effect heterogeneity, additive polygenic
risk, andmarginal genetic epistasis each contribute to disease severity
and penetrance in these traits. Importantly, a variant’s ESM1b scores
are predictive of phenotype severity in six out of tenmonogenic genes
(Table 2) included in this study. ESM1b outperforms other variant

prediction methods for predicting clinical effect of monogenic mis-
sense variants even at rare allele frequencies and distinguishes
between GOF and LOF missense variants. These results indicate that
contemporary variant pathogenicity prediction methods extend
beyond binary pathogenic/benign classification to provide more
nuanced prognoses. We assessed the additive and epistatic effect of
genetic background on the phenotype of carriers and found that PRS
was significantly associated with phenotype severity for four of the six
monogenic diseases examined in this study, demonstrating that
polygenic background has an independent effect on carrier pheno-
type. In addition, we show thatmarginal epistasis, the effect of genetic
background directly on the monogenic variant, significantly modifies
the effect of the monogenic variant in carriers of high triglycerides,
high LDL, and MODY variants. Inclusion of marginal epistasis in pre-
diction of carrier phenotype could improve predictive accuracy by as
much as 170%.

Results
Incomplete penetrance and variable disease severity of mono-
genic cardiometabolic variants
To establish the full spectrumof genetic contributions to “monogenic”
diseases, we sought to determine the penetrance and disease severity
across a subset of cardiometabolic traits within the UK Biobank (UKB).
Cardiometabolic traits are pervasive quantitative phenotypes available
within electronic health record (EHR) systems and have been pre-
viously associated with rare monogenic variants and common genetic
variation. In the UKB, we identified a total of 1356 carriers of the
curated monogenic variants that affect cardiometabolic phenotypes
(Table 2 and Supplementary Data 2) and established that the pene-
trance for disease within these carriers is higher, but incomplete
compared to disease prevalence within noncarriers using current
clinical thresholds defined in the “Methods” (Fig. 2A). The monogenic
trait with the highest penetrance was high triglycerides, where 56.10%
(115/205) of carriers had triglycerides levels greater than 200mg/dl;
the monogenic trait with the lowest penetrance was for the LDL-
lowering variants, where 42.28% (137/324) carriers had LDL levels less
than 80mg/dl.

Penetrance is also dependent on the gene that the variant was
carried in; for example, penetrance of LDL-lowering variants (LDL <
80mg/dl) was 42.28%, but was only 13.41% (22/164) in PCSK9 patho-
genic variants compared to 72.05% (116/161) in APOB pathogenic var-
iants. Concomitantly, underlying phenotypes are variable amongst
variant carriers of different genes (Fig. 2B). GCKMODY carriers have a
narrower range of HbA1c, a measurement of blood glucose
concentration11, in comparison to HNF1A and HNF4A MODY carriers
whohave awider range of values. Across traits and genes, this diversity
of variant effect spans negligible to clinically actionable. We therefore
examine the underlying factors that affect this incomplete penetrance
and variable disease severity.

Table 2 | Summary of clinical, monogenic conditions and curated variants

Condition (formal name) Condition (shor-
tened name)

Monogenic
genes

Total curated, patho-
genic variants

Total UKB 200k
exomes carrier
identified

Total noncarriers with
exome and phenotype
available

Familial hypobetalipoproteinemia LDL-lowering PCSK9, APOB 63 341 190,832

Familial hypercholesterolemia High LDL LDLR, APOB 87 414 190,766

Familial hyperalphalipoproteinemia High HDL CETP 27 120 176,489

Familial hypertriglyceridemia High triglycerides APOA5, LPL 20 211 191,104

Maturity-onset diabetes of the young MODY HNF1A,
HNF4A, GCK

73 128 191,623

Monogenic obesity Obesity MC4R 20 148 199,655

Heterozygous clinical variants that were previously validated across monogenic genes (referenced through the paper as “curated” variants) that affect cardiometabolic traits. The total number of
curated pathogenic variant carriers identified in UKB exomes 200k release is summarized; some individuals identified carried the same curated, pathogenic variant. Additional information, such as
variant effect and total number of carriers per variant is available in Supplementary Data 2.
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Severity of monogenic missense variants is predicted by
ESM1b scores
We first consider the possibility that effect size heterogeneity across
non-synonymous (missense) variants within a gene contributes to
phenotypic heterogeneity of known autosomal dominant cardiome-
tabolic traits; i.e., each pathogenic variant has each own respective
effect size β (Table 2). There have been previous reports that different

pathogenic variants within the same gene display differing disease
penetrances27–31 or expressivity32. We expand on this by employing
ESM1b derived protein language scores15 to predict the severity of
missense variants across the 10 cardiometabolic genes. ESM1b defines
likely pathogenic missense variants with a score less than −7.516. While
we and others have previously shown that variant pathogenicity pre-
dictors can help classify variants as pathogenic versus benign16,33, we

Fig. 2 | Carriers of pathogenic variants that affect cardiometabolic traits have
incomplete penetrance and variable disease severity. A Penetrance thresholds
were defined based on clinical definitions of disease. Relative to noncarriers (blue),
carriers (pink) have higher rates of disease across all cardiometabolic phenotypes
included in this study; error bars are based on 95% confidence intervals. Totals of

individuals with phenotype recorded in table on the right. Carriers also show
incomplete penetrance of disease across all monogenic disorders. B Among
pathogenic variant carriers, we observe different severity of phenotypes. Total
individuals (carriers and noncarriers) listed in Table 2; carrier totals based on gene
of variant carried supplied in Supplementary Data 2.
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find that ESM1b predicts the mean phenotype of missense variant
carriers with p <0.05 for six of the ten genes considered (Fig. 3;
binomial enrichment p = 2.76E−06). Two of these gene ESM1b-mean
phenotype correlations are remarkably strong with correlations
exceeding 0.25 and are significant after Bonferroni correction. Filter-
ing to rarer variants further increases predictive power; an additional
gene ESM1b-mean phenotype gains significance after filtering for rarer
variants (Supplementary Data 3).

Wenext askedwhether ESM1b could distinguishbetween LOF and
GOF variants, something that none of the previous variant patho-
genicity predictors have been able to do. We first explored MC4R, a
single exon gene where missense variants have either LOF or GOF
effects7 leading to either monogenic obesity or protection from obe-
sity, respectively.We identified carriers of both curated4,34 andClinVar-
strong missense variants and quantified the association of these var-
iants with their ESM1b scores. We found that ESM1b scores of these

Fig. 3 | ESM1b scores are predictive of disease severity for missense variant
carriers. Single missense variant carriers for MC4R (A, B), LDLR (C), PCSK9 (D),
APOA5 (E), LPL (F), and GCK (G) were identified and mean phenotype per each
missense carrier group was measured. p values shown are generated from mean

phenotype-ESM1b score two-sided Pearson correlation tests and adjusted for age,
sex, and first 10 genetic PCs. ESM1b scores also distinguish gain- vs. loss-of-function
variants (A), which is replicated in Mt. Sinai’s BioMe biobank (B).
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known pathogenic missense variants are significantly associated with
carrier BMI after adjusting for age, sex, and the first 10 genetic PCs in
UKB (Pearson r = −0.47, p =0.034). ESM1b also predicts phenotype in
carriers of missense VUS (Fig. 3A), allowing for more accurate classi-
fication in the absence of molecular functional data. We extended our
analysis to 14,135 individuals in UKB harboring any single missense
variant in MC4R (134 unique missense variants). ESM1b score was sig-
nificantly correlated with mean BMI of corresponding carriers after
adjusting for covariates (r = −0.29,p = 9.85E−04). Finally,we found that
ESM1b separatesMC4R GOF (pink) from LOF (navy) missense variants
(Fig. 3A); (t-test p = 1.42E−04). We replicated these results in an
ancestrally diverse cohortofpatients from theBioMebiobank (Fig. 3B).
In 1456 individuals that carry a single MC4R missense variant out of a
total 28,817 individuals, ESM1b was significantly correlated with mean
BMI (r = −0.23, p =0.036).

We next examined ESM1b scores for LDLR and PCSK9 missense
variants in relationship to LDL levels (Fig. 3C, D). LDLR encodes for the
LDL receptor; pathogenic/LOF variants account for 90% ofmonogenic
high LDL cases35 and disrupt LDLR’s ability to remove LDL from the
bloodstream leading to elevated LDL blood levels36. The ESM1b scores
of known pathogenic missense variants are significantly associated
with LDL after adjusting for age, sex, and first 10 genetic PCs (n = 298,
r = −0.46, p = 1.28E−3). ESM1b accurately classifies the curated mis-
sense LOF variants (navy, Fig. 3C) as likely pathogenic; 23/24 (95.83%)
had an ESM1b score < −7.5. Interestingly, the remaining pathogenic
missense variant, with a score > −7.5, also had lower LDL levels com-
pared to the other pathogenic missense variants. ESM1b was also able
to predict phenotype in carriers of LDLR missense VUSs. In all 21,362
individuals carrying a single missense LDLR variant, representing 346
unique missense variants, ESM1b was significantly correlated with
mean LDL (r = −0.49, p = 1.75E−21, Fig. 3C); these results also replicate
in the BioMe exomes (r = −0.31, p = 3.65E−4, nmissense = 126,
nindividuals = 3889). We observed similar significant correlations
between PCSK9 missense variants and LDL levels, but in the opposite
direction (r = 0.20, p =0.018, Fig. 3D). Interestingly, there was no sig-
nificant difference in LDL levels of carriers reported37 PCSK9 GOF and
LOF variants (Fig. S2), highlighting complexities in reporting based on
existing annotations38,39.

Similar associations between ESM1b pathogenicity scores and
phenotypewere found in known clinical and VUSmissense variants for
additional genes and traits. APOA5 and LPL LOF variants are associated
with hypertriglyceridemia yet few missense variants are associated
with these clinical phenotypes. We found that ESM1b scores are a
predictor of triglyceride levels in missense variant carriers of both
APOA5 (r = −0.19, p =0.017, Fig. 3E) and LPL (r = −0.19, p = 0.014,
Fig. 3F). These correlations also replicate in the same direction and
approach significance in BioMe - APOA5: r = −0.26, p =0.066.
nmissense = 50, nindividuals = 3049; LPL: r = −0.23, p =0.11, nmissense = 52,
nindividuals = 2016. ESM1b scores also predicted HbA1c levels in GCK
single missense variant carriers. GCK encodes for glucokinase, an
enzyme that regulates insulin secretion40. Variation in GCK has been
associated with both hyperglycemia and hypoglycemia41. ESM1b pre-
dicted the mean HbA1c levels of 401 single GCK missense variant car-
riers in Fig. 3G (r = −0.29, p = 7.7E−03).

To assess whether other variant effect predictors had the same
features as ESM1b, we repeated these analyses using SIFT42, CADD43,
PolyPhen244, PrimateAI45, AlphaMissense46, and EVE47 scores and found
that thesemethods do not classify the pathogenicmissense variants as
accurately as ESM1b, show weaker correlations between variant score
and mean BMI compared to ESM1b, and do not differentiate between
GOF and LOF missense variants (Fig. S1 and Supplementary Data 3).

We also found that ESM1b scores remain predictive of carrier
phenotype at missense variants with small allele frequencies (Supple-
mentary Data 3). We replicate these results for five of the six pheno-
type correlations in additional individuals within the 500k UKB

exomes, excluding individuals already present in the 200k exomes
(Fig. S3); the remainingphenotype correlation approaches significance
(p = 0.0666). Collectively, these results suggest that effect sizes of
clinical variants within a gene are heterogeneous and therefore con-
tribute to variability in penetrance and disease severity. They also
indicate that ESM1b has the potential to reclassify thousands of var-
iants that have conflicting classifications or are of uncertain
significance.

Polygenic background in carriers and non-carriers of patho-
genic variants
Next, we addressed another source of phenotypic heterogeneity
amongst carriers of the same pathogenic genetic variant using tools
suchaspolygenic risk scores (PRS), aweighted sumof commonvariant
effects with weights determined by results from GWASs48, and emer-
ging large scale biobanks (Fig. 1C) for each trait of interest (Table 2).
Previous studies have shown that polygenic background additively
affects disease severity4,8 in rare variant carriers across a variety of
traits. We leverage a larger, more powered release of UKB to investi-
gate PRS and pathogenic variants, restricting to the unrelated white
British population to reduce confounding from population structure49

(see “Methods”).
Consistent with previous studies, each PRS was significantly cor-

related with the corresponding traits in carriers (Fig. S4). Then, to
compare polygenic and monogenic risk, we contrast the phenotypes
of noncarriers within the tails of 1000th-tiles (0.1%) bins of the PRS to
the phenotypes of pathogenic variant carriers to identify the exact
percentile where noncarriers have more extreme phenotypes than
carriers. We tested PRS for non-carriers for monogenic obesity, HDL
and triglycerides and find that individuals in the tails of PRS havemore
extreme phenotypes than individuals in the tails of PRS for HDL and
triglycerides have phenotypes larger than individuals harboring cura-
ted clinical variant carriers (Fig. 4A–C). Across all three traits we
observe that hundreds to thousands of individuals have a polygenic
load that results in amore extremephenotype than currently reported
clinical variants. Exact PRS percentiles at which non-carrier pheno-
types exceed those of carriers are reported in Supplementary Data 4
and are denoted in red in Figs. 4 and S5. These findings replicate that
individuals within the tails of PRSs are at equivalent or greater risk of
disease than pathogenic variant carriers4,50. While individuals in the
tails of the current LDL and Type 2 Diabetes (T2D) PRS do not have
phenotypes exceeding those of clinical variant carriers, this will likely
change as PRS become more accurate and larger cohorts are studied.
We also replicated Ripatti et al.’s51 work in additional phenotypes and
observed an enrichment of noncarriers with extreme PRSs within
individuals that meet disease thresholds (Supplementary Data 5).

We examined several different sets of potentially pathogenic
variants when making these comparisons: a curated set of variants
(Table 2 and Supplementary Data 2), ClinVar-weak/strong annotations
(see “Methods”), and VUSs with ESM1b scores exceeding the recom-
mended pathogenicity threshold of −7.5 (see “Methods”). For all traits
examined, the curated variants had the most extreme phenotypes
while carriers of ClinVar’s current set ofweak and strong variants often
had substantially more moderate phenotypes (Fig. 4A, C, D). ClinVar
variants for LDL did not distinguish between increasing or lowering
LDL effects and therefore were not included in Fig. 4D. We found that
ESM1b couldbe used to identify additional pathogenic variants: ESM1b
annotated pathogenic VUS missense variants had phenotypes
equivalent to or more severe than ClinVar variant carriers for some
genes (Fig. 4A, C).

Finally, we examined the independent effect of polygenic back-
ground in carriers of clinical variants for cardiometabolic disease.
Studies of other traits have reported correlations between PRS and
phenotypes amongst rare monogenic disease variant carriers8,52–54. In
monogenic forms of cardiometabolic disease, this association has not
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Fig. 4 | Comparison of phenotypic distributions amongst differential defini-
tions of carrier status and tails of noncarrier PRSs. Red indicates non-carriers
withmeanphenotype equivalent ormore extreme than curated pathogenic variant
carriers: monogenic obesity (A), high HDL (B), and high triglycerides (C). Only
MODY (D), LDL-lowering (E) and high LDL (F) curated pathogenic variant carriers
hadmoreextremephenotypes thannoncarriers in PRS tails. Error bars are basedon
95% confidence intervals. Additional carriers were identified by using ClinVar and

ESM1b. Pathogenic/likely pathogenic ClinVar variants in monogenic genes were
identified with different filtering stringency (”weak”—less stringent filtering,
“strong”—more stringent filtering), and potentially pathogenic missense variants
with unknown function were identified with ESM1b < −7.5. ClinVar variants are not
included in (E) and (F) because pathogenic variants were not denoted as high LDL
or low LDL effect.
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been established due to insufficient sample size4. Here, we found that
carrier phenotype was significantly associated (Bonferroni-corrected,
one-tail p value < 0.01) with carrier PRS while adjusting for carrier sex,
age, and first 10 genetic PCs in monogenic obesity (β = 1.68, p = 5.60E
−03), high HDL (β = 9.79, p = 1.57E−06), LDL-lowering (β = 9.87,
p = 3.18E−06), and high triglycerides (β = 62.46, p = 1.33E−05) carriers
(Fig. S4A–C, E). LDL PRS approached significance in high LDL carriers
(β = 6.76, p =0.028, Fig. S4D). For MODY carriers, we predicted T2D
status using a logistic regression including T2D PRS, age, sex, and the
first 10 genetic PCs as covariates; the T2D PRS covariate was not sig-
nificant (β = 0.44, p =0.15). The PRS covariate for all sets ofmonogenic
carriers is positive, indicating that the higher the carrier PRS is, the
larger the value of the carrier phenotype. Additionally, we adjusted for
PRS in unrelated, European individuals carrying missense variants in
monogenic genes to determine if this improved correlation results
(Supplementary Data 3); we found improvement in significance of the
correlation. Across all traits, our results support previous findings that
polygenic background is a source of incomplete penetrance and
variable disease severity and add well powered studies of cardiome-
tabolic phenotypes that demonstrate the effect of the additive effect
of PRS to phenotype expression in additional monogenic disorders.

Marginal epistasis between genetic background andmonogenic
genes alters phenotype
We next sought to evaluate the possibility that genetic background
magnifies or diminishes the effect size of the pathogenic variants
through marginal epistasis (Fig. 1D)10,55–57. This notion of interaction is
termedmarginal epistasis58. One of themajor challenges in identifying
marginal epistasis is the computational bottleneck of testing all
genetic interactions at scale within hundreds of thousands of samples
in a biobank. To do this, we employed a novel mixed model based
approach (FAME)23 that estimates the total contribution to phenotypic
variance from polygenic background (σG

2), carrier status (βC
2), their

interaction (σCxG
2), and environmental noise (σϵ

2). This allowed us to
conduct the first well-powered examination of the impact of marginal
epistasis on penetrance and disease severity. While others have tested
for gene-environment interactions25 and all pairwise genome-wide
interactions that influence phenotypes24 (whose estimators have large
standard errors and low power), we solely focus on identifying the
common genetic variation that is interacting with carrier status to
modify phenotype. We note that testing for PRS-carrier status inter-
action is an underpowered version of our approach with very limiting
assumptions; we applied this underpowered test and did not identify
novel interactions (Supplementary Data 6, Supplementary Methods).

In the FAME model, σG
2 is the phenotypic variance explained by

genetic background and represents the theoretical upper limit of
polygenic risk score accuracy for each trait. βC

2 is the variance
explained by carrier status and σCxG

2 is that variance explained by
marginal epistasis between carrier status and genetic background.
Here, we compute the epistatic improvement percentage,
EIP = 100*σCxG2/βC2, which is the ratio between marginal epistasis var-
iance and carrier status variance. It represents the upper bound of

improvement in phenotype prediction over carrier status that can be
achieved through modeling marginal epistasis. An EIP of 0% means
that epistasis is not present, while an EIP of 100% means that the
combined epistatic effects on the pathogenic variant are as large as the
direct pathogenic variant effect and marginal epistasis is a substantial
factor modifying phenotype amongst carriers.

Our analyses revealed widespread statistical evidence of marginal
epistasis with large effect sizes; EIP ranged from 48% to 170% amongst
the significant associations after Bonferroni corrections (Table 3 and
Supplementary Data 7). EIP was 170% (standard error: 33.35%) for LDL
cholesterol (interaction p = 1.2E−08), implying that an ideal model
including epistasis would be 2.7 times more accurate in predicting
cholesterol compared to using carrier status alone. The fact that EIPs
exceed 100% suggest that marginal epistasis is a substantial con-
tributor to variable penetrance and disease severity. These modifica-
tions could act through a variety of mechanisms including eQTLs
modifying the expression levels of the monogenic gene59, disruptions
to enhancer sequences that affect themonogenic gene transcription60,
and alternative splicing of proteins that interact with monogenic
genes57. Identifying the loci and pathways involved in these marginal
epistatic interactions could also reveal opportunities for treatment.
We caution that, like all tests of gene-gene and gene-environment
interaction, endogeneity and scale can induce biases in effect size
estimates.

Discussion
The question of why some monogenic variant carriers have extreme
phenotypes while others remain healthy is fundamental to clinical
genetics. In this study, we established at biobank scale three genetic
contributors to phenotypic heterogeneity of pathogenic variant car-
riers: differing effect sizes of missense variants in a monogenic gene,
genetic background independently affecting carrier phenotype, and
marginal genetic epistasis modifying phenotype through direct effect
on the variant. Our study provides clarity on how rare and common
genetic variants can have independent effects and interact to modify
the phenotype severity. Importantly, this work lays a foundation for
improved prognostic ability by incorporating complete genomic
information in clinical interpretation.

There remain a few limitations toour study.Most clinical pipelines
define the canonical isoform as the longest protein-coding transcript61

or use MANE-defined transcripts62. However, the cell-type specific
isoforms63, the importance of multiple clinically relevant isoforms64

and the ratios of these isoforms65 are understudied areas of variation
that can be probed using long-read sequencing technologies. Fur-
thermore, each gene and disease phenotype have different contribu-
tions from rare variants and genetic background to an individual’s
phenotype requiring large and well-curated data sets across diverse
populations to establish the contributors to phenotype disease
severity and penetrance.

The measured penetrance of pathogenic variants drifts over time
with revisions of screening guidelines, diagnostic thresholds and
improved therapies. Ourmeasures of penetrancemay also be affected

Table 3 | Marginal epistasis with monogenic genes results

Trait Monogenic genes tested σCxG
2 βC

2 EIP (%) EIP SE p

LDL High LDL (APOB, LDLR)* 2.92E−03 6.07E−03 48.02 10.66 2.88E−10

Triglycerides High triglycerides (APOA5, LPL)* 2.89E−03 1.68E-03 172.36 33.35 1.22E−08

HDL High HDL (CETP) 5.40E−04 8.74E−04 61.75 30.65 0.010

HbA1c MODY (GCK, HNF1A, HNF4A)* 9.21E−04 1.58E−03 58.17 21.82 3.60E−04

After adjusting for age, sex, and the first 20 genetic PCs, the interaction term between background variation and carrier status remained significant for High Triglycerides carriers, High LDL carriers,
and MODY carriers (significant monogenic genes after Bonferroni corrections marked with *, less than p = 0.05/6 =0.0083). We show the proportion of variance in phenotype across carriers and
noncarriersmodulatedbymarginal epistasis (σCxG

2), due to carrier status (βC
2), and the ratio betweenσCxG

2 andβC
2 (epistatic improvementpercentage,EIP).EIP represents thepotential improvement

in carrier phenotype prediction when modeling epistasis. Marginal epistatic interactions between common background variation and carrier status were tested using the FAME method.
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by our variant calling process. Because we did not verify variant calls
via inspection of CRAM files, some individuals identified may not
actually carry the variants of interest and are false positives that affect
our results. Like polygenic risk scores, results can vary based on
thresholds used to distinguish between healthy and disease states. For
cardiometabolic disorders, there are many medications that improve
lipid profiles, such as statins66, and our study adjusted for statin-usage
and predicted pre-medication LDL and triglyceride levels utilizing
coefficients that were previously calculated67,68. However, there are
many different statins and likely each of these have not only dosage-
but also genetically-driven responses to drug therapy69. Finally, newer
drugs for obesity and the rise of procedures such as gastric bypass
surgery, are artificially reducing BMI and improving lipid profiles70,71

and, over time,may significantly decrease estimates of penetrance and
disease severity of metabolic traits.

Within this study, we take advantage of quantitative traits asso-
ciated with pathogenic variants to study factors that affect disease
severity within carriers. This disease severity is a limited proxy for
expressivity. Clinical expressivity is often used with an alternate defi-
nition referring to different phenotypes that arise from individuals
carrying the same pathogenic variant. Studying this type of expres-
sivity is essential, but will require a priori knowledge of the full spec-
trum of the clinical phenotypes possible, a structured database for
these phenotypes within a biobank. Even the largest biobanks may be
underpowered, particularly when relying on EHRs, where absence of
the phenotype in records is not an indication of the patient being
unaffected.

Going forward, examination of our findings across global popu-
lations is essential, but will require diverse large-scale biobanks with
exome sequences linked with clinical phenotypes. While the effect of
the isolated pathogenic carrier variants is currently believed to be
consistent, we and others have observed that heterogeneity of clinical
expression is influencedby genetic background,whichdiffers between
populations. VUS are more common in non-European populations for
many disease genes72 and exome sequencing analysis that takes into
account diverse genetic backgrounds will remedy this problem72,73.
Finally, extension into other phenotypes will be most successful for
quantitative traits that are measured in the majority of a biobank’s
participants. These hurdles will differ between phenotypes assessed
and across biobanks.

In addition to providing a means of studying variable penetrance
and disease severity, the ESM1b analyses resulted in discoveries with
translational potential for the interpretation of clinically observed
genomic variants. Integration of precision genome medicine into
routine clinical care requires improved variant pathogenicity predic-
tion models. Early methods42,43 show diminished variant pathogenicity
prediction accuracy as they rely on an imperfect and underpowered
“gold-standard” truth set. Newer methods, such as ESM1b,
AlphaMissense46,and PrimateAI-3D33, are based on improved machine
learning methods and have increased pathogenicity prediction accu-
racy. ESM1b15,16 is a 650 million parameter protein language model
trained on 250 million protein sequences that can predict which var-
iants are pathogenic at higher accuracy than existing variant patho-
genicity prediction models, provide scores that correlate with a
continuous spectrum of clinical phenotypes, and is freely accessible
online15,16. Evaluating variant pathogenicity methods via large-scale
biobanks allows us to assess the accuracy of these predictors in clinical
environments, expanding beyond in vitro functional analysis, and
previously published cases that are biased towards the most severe
phenotypes. Our results show that ESM1b outperforms other variant
pathogenicity predictors in two clinically significant ways: first, it can
classify established pathogenic variants and variants across a con-
tinuous range of effect sizes, and second, it distinguishes betweenGOF
and LOF missense variants. A previous analysis of rare variation
pathogenicity using PrimateAI-3D33 shares some common findings

with this study. However, it focused on incorporation of scores to
quantify rare variant polygenic risk rather than understanding pene-
trance and disease severity74.

In summary, our study provided evidence of reduced penetrance
in a large population cohort and discovered how genetic background
can have outsized effects on modulating rare-variant clinical predic-
tion. It also established a contribution of both rare, monogenic effects
and the influence of a polygenicbackgroundon the clinical phenotype.
Our work highlights the critical importance of the integration of rare
and common variants and how these have the power to improve
clinical prognosis of genomic precision medicine.

Methods
Cohort information
All research completedwith approvedUK Biobank and BioMe Biobank
applications. A total of 200,632participantswith exomes inUKB12 were
included to identify the number of carriers and the penetrance of the
monogenic diseases in this study. We restricted PRS and genetic,
marginal epistasis analyses to individuals of similar genetic ancestry
who are unrelated. Field 22006 was used to identify individuals who
both self-identify as White British and have similar genetic ancestry
based on PCA. To identify unrelated individuals, common array SNPs
were extracted from individuals, KING26 kinship coefficients were
estimated, and individuals were pruned to the third degree of kinship.
All individuals with exomes available were included in the missense
variant analysis.

The BioMe biobank is an electronic health record-linked bior-
epository that has been enrolling participants from across the Mount
Sinai health system in NYC since 2007. There are currently over 50,000
participants enrolled in the BioMe biobank under an Institutional Review
Board (IRB)-approved study protocol and consent. Recruitment occurs
predominantly through ambulatory care practices, and participants
consent to provide whole blood-derived germline DNA and plasma
samples which are banked for future research. Participants also com-
plete a questionnaire providing personal and family history as well as
demographic and lifestyle information as has been previously
described75,76. BioMe participants represent the broad diversity of the
New York metropolitan area, and more than 65% of participants repre-
sent minority populations in the US. All participants provided informed
consent, and the studywas approved by the Icahn School ofMedicine at
Mount Sinai’s IRB (#07-0529).

Cardiometabolic phenotype ascertainment
Direct LDL, HDL, and triglycerides (respectively, fields 30780, 30760,
30870; mmol/L) for each participant were obtained and converted to
mg/dL from mmol/L (LDL & HDL: multiplied by 38.67; triglycerides
multiplied by 88.57)77. The mean of these measurements taken across
multiple visits were used to represent each individual. LDL and tri-
glycerides measures were adjusted to account for patient statin use;
for LDL, patient’smeasurementwas dividedby0.7 and triglyceridewas
divided by 0.8567,78.

Maximum body mass index (BMI, kg/m2, field 21001) recorded
was used to represent each individual. A BMI between 25 kg/m2 and
30 kg/m2 was considered overweight; a BMI greater than or equal to
30 kg/m2 defined obese participants.

Glycated hemoglobin or HbA1c (field 30750; mml/mol) and
the “Diabetes diagnosed by doctor” field were used to identify
participants with Type 2 diabetes (T2D). HbA1c was converted
frommmol/mol to percentage, and themaximumHbA1c measured
across all instances was used to represent each individual. Parti-
cipants were identified as having T2D if they fulfilled at least one of
the following criteria: (1) HbA1c greater than or equal to 6.5%, (2) at
least one instance of “Diabetes diagnosed by doctor” marked
TRUE. Participants were identified as being pre-diabetic if their
HbA1c was between 5.7% and 6.5%.
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Gene and variant list curation
There are several terms used interchangeably to describe variants
that have high effect and are associated with monogenic disease
(e.g., “pathogenic”, “monogenic”, “clinical”). We focus on pathogenic
variants as defined by ACMG/AMP criteria68. We examined patho-
genic variants for monogenic forms of low LDL-lowering or familial
hypobetalipoproteinemia (PCSK9, APOB), high LDL or familial
hypercholesterolemia (LDLR, APOB), high HDL or familial hyper-
alphalipoproteinemia (CETP), high triglycerides or familial hyper-
triglyceridemia (APOA5, LPL), monogenic obesity (MC4R), MODY
(GCK, HNF1A, HNF4A) curated in Goodrich et al.4 and Mirshahi et al.61

(Table 2 and Supplementary Data 2). Any person carrying at least one
allele of these pathogenic variants will be referred to throughout this
text as a “carrier”. We consider several classes of variants to identify
monogenic variant carriers: “curated”, where variants undergo
stringent review to be considered pathogenic; “ClinVar-weak”, where
variants have at least one submission of likely pathogenic or patho-
genic, but may also contain conflicting reviews in the ClinVar
database17; and “ClinVar-strong”, where variants have only likely
pathogenic or pathogenic submissions. Variants that did not fall
under “ClinVar-strong” or “curated” categories were considered to be
variants of uncertain significance (VUS). Supplementary Methods
Table 1 summarizes these definitions.

“Curated”monogenic variants were identified by applying ACMG/
AMP criteria and blinded testing by reviewers for variant curation by
Goodrich et al.4 and Mirshahi et al.61. Rare protein-truncating variants
in HNF1A, HNF4A, and GCK outside of the last exon of each gene were
classified as pathogenic due to haploinsufficiency of these genes is
sufficient to cause disease. Missense variants within these genes were
also identified as pathogenic for MODY if the missense variants were
classified as likely pathogenic/pathogenic by ACMG/AMP guideline,
were rare (minor allele frequency, MAF < 1.4E−05), and were also
subjected to blinded manual review. ClinVar variants were identified
based on the “CLIN_SIG” field from the Variant Effect Predictor (VEP)34.

Exome sequencing quality control and variant filtering
UKB exome-sequencing and analysis protocols were published in
Szustakowski et al.79 and are also displayed at https://biobank.ctsu.ox.
ac.uk/showcase/label.cgi?id=170. Exome variants were called in
monogenic disease genes by using PLINK version 1.9 function extract
on UKB exome PLINK files80. Anyone carrying at least one pathogenic
variant was identified as a “carrier”; otherwise, those not carrying
pathogenic variants were labeled as “non-carriers”. All variants were
annotated using Variant Effect Predictor (VEP) version 10734 in
GRCh38.

Penetrance calculations
We define penetrance as the proportion of carriers that meet certain
disease or phenotype thresholds based on previous studies. In MODY
carriers, penetrancewas based on howmany carriers had diabetes. For
the other monogenic disorders, the following cutoffs were used to
calculate penetrance: high LDL or familial hypercholesterolemia—
direct LDL greater or equal to 190mg/dl81, LDL-lowering or familial
hypobetalipoproteinemia—direct LDL less than or equal to 80mg/dl82,
high HDL or familial hyperalphalipoproteinemia—direct HDL greater
than or equal to 70mg/dl36, high triglycerides or familial hyper-
triglyceridemia—direct triglycerides greater than or equal to 200mg/
dl81, and monogenic obesity—obese BMI (BMI greater or equal to
30 kg/m2.)

Missense variant pathogenicity prediction scores
ESM1b is a 650 million parameter protein language model that was
previously trained on all 250million protein amino acid sequences15 in
UniProt83. This unsupervised model is not trained on any genetic
information or any other protein information outside of amino acid

sequence. Themodel can predict the likelihood of any potential single
amino acid change (missense variants) by calculating a score for the
missense variant as the log likelihood ratio in comparison to the
wildtype variant16. The ESM1b model was used to calculate the scores
for any single amino acid change for the protein resulting from the
canonical transcript of the monogenic disease genes included in this
study. Here, we define the canonical transcript as the MANE-defined
transcript84. Using the predicted protein change of the genetic variant
effect generated by VEP, we compared the ESM1b scores for every
potential missense variant of established cardiometabolic disease
genes to the phenotypes of carriers for those missense variants.

We tested if ESM1b predicts mean phenotype of carriers of the
same missense variants for all genes included in this study, restricting
this analysis to single missense variant carriers from any ancestry. We
define singlemissense variant carriers as individuals with onemissense
variant in the gene, and any other gene variation is restricted to
intronic, synonymous, or untranslated region effects. Single missense
variant carriers were grouped by the missense variant carried, mean
phenotype of this group was measured and associated with the mis-
sense variant’s ESM1b score. We then identified significant Pearson
correlations between mean phenotype and ESM1b score via correla-
tion testing; to account for covariates, we regressed age, sex, and the
first 10 genetic PCs from the phenotype and then used the remaining
residuals to test for correlation with ESM1b values. These correlations
were replicated in the UKB 500k exomes release14 by analyzing indi-
viduals within the new release only and excluding individuals in the
200k release (Fig. S3).

Polygenic risk scores (PRS)
PRS weights for BMI were previously generated using LDpred62 and
were downloaded from Cardiovascular Disease KP Datasets on Feb 10,
2022. PRS weights for LDL were previously generated using PRS-CS85

and were downloaded Feb 22, 2022 from the Global Lipids Genetics
Consortium Results. PRS weights for HDL and triglycerides were pre-
viously generated using PRS-CS86 and downloaded from the PRS
Catalog87 on May 6, 2022. PRS weights for T2D were previously gen-
erated using LDpred88 and were downloaded from the PRS Catalog on
May 29, 2023. PRSs were then calculated for every UKB participant of
European ancestry within UKB using PLINK version 2.0 function score.
Scores were then centered and scaled to have a mean of 0 and stan-
dard deviation of 1. All PRS weights chosen excluded UKB participants
in generation of GWAS training data.

Marginal epistasis to identify interaction between genetic
background with monogenic gene variants
Testing for genetic epistasis, or gene-by-gene interactions, is a chal-
lenging task that is computationally expensive to scale in large data-
sets like biobanks. FAst Marginal Epistasis Estimation (FAME) is a
scalable method that tests for marginal epistasis: how an individual’s
genetic background measured across hundreds of thousands of
common genetic variants interacts with their carrier status to ulti-
mately influence the trait23. Rather than a linear-regression model
which measures the independent and additive effect of genetic back-
ground, in the form of PRS, FAME jointly estimates the variance
explained by the additive component (σG

2) and by the marginal epis-
tasis component (σCxG

2), where the marginal epistasis is defined as the
pairwise interaction between the target feature, and all other SNPs of
interest. The algorithm for fitting these variance components in FAME
is based on a streaming randomized method-of-moments estimator
that has a runtime that has a linear scalingwith the number of SNPs and
individuals89,90. FAME also efficiently estimates asymptotic standard
errors for the variance component estimates. While the original
implementation of FAMEwasdesigned for testingmarginal epistasis at
common variants, wemodified the FAME software to take as input the
carrier status at the target gene (t) of interest (Ct), and genotypes that
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potentially interact with the target feature (Gt). We partition the set of
common SNPs into those that are proximal to the target gene of
interest and those that are distal leading to corresponding genotype
matrices, G1 and G2 respectively. We aim to test for interactions
between carrier status and SNPs that aredistal to the target gene (while
controlling for additive effects across all common SNPs, additive
effects of the carrier status, and relevant covariates).

When we estimatedmarginal epistasis for the pathogenic variants
at a target gene, we first excluded the additive effect of carrier status
together with the other covariates (top 20 PCs, sex, and age). Then we
applied FAME to jointly estimate the additive SNP effect and the
marginal epistasis effect on 119,523 unrelatedWhite-British individuals
with genotyping arrays and exome-sequencing available in the UKB.
We have included more detailed FAME information in the Supple-
mentary Methods and verified that linkage disequilibrium (LD) has
little to no effect on our results in Fig. S6.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Both the UK Biobank and the BioMe Biobanks are restricted due to
patient privacy and are only available under an application process. UK
Biobank accesswas obtained via https://www.ukbiobank.ac.uk/enable-
your-research. BioMe access was obtained via requests submitted to
BioMe Biobank andMount Sinai Data Warehouse. Databases also used
in this work include: ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/),
gnomAD exomes v2.1 (https://gnomad.broadinstitute.org/), Cardio-
vascular Disease KP genetic association datasets (https://cvd.
hugeamp.org/datasets.html), Global Lipids Genetics Consortium
Results (https://csg.sph.umich.edu/willer/public/glgc-lipids2021/),
PubMed (https://pubmed.ncbi.nlm.nih.gov/), and GoogleScholar
(https://scholar.google.com/).

Code availability
Softwareused is cited in the “Methods” section and all areopen source:
Plink v1.9 & 2.0, R v4.1.1, Ensembl Variant Effect Predictor v107, FAME
v1.0. Code available in GitHub at https://github.com/angela-wei/
penetrance_expressivity91.
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