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Mode coupling is a fundamental aspect of wave propagation and is therefore

intrinsic to many branches of physics. We consider the resonant coupling,
typically caused by weak perturbations, between solitons—high-intensity

nonlinear pulses—and low-amplitude linear waves. These resonances, which
are quite common in nature, enable the two modes to exchange energy,
contradicting the usual perception of solitons as pulses that propagate with-
out changing shape. The mathematical analysis required to characterize this
effect is challenging and was completed only relatively recently, even though
its roots date back to the work of G. G. Stokes in the mid-19"" century. This
analysis predicts that the phenomenon is universal, occurring for many dif-
ferent types of waves irrespective of the nature of the soliton, the linear mode,
or the coupling mechanism. However, despite its broad significance, these
predictions were never systematically verified experimentally. Here, we vali-
date these predictions in an optics context using a mode-locked fibre laser. We
confirm that the coupling is universal and approximately satisfies a general
scaling law. By validating long-standing theoretical predictions, we confirm the
physical and mathematical relationships of previous experimental observa-
tions across a wide variety of perturbed nonlinear waves.

Solitons—or solitary waves—are generally understood to be wave
packets that propagate without changing shape by balancing the
effects of dispersion and nonlinearity. Nonlinear wave dynamics in the
presence of dispersion is ubiquitous, and as such, solitons are a general
phenomenon that can be found in water waves", planetary
atmospheres’, plasmas*, Bose-Einstein condensates’, field theory®, and
in optics’. Optical geometries are particularly well-suited for studying
solitons since losses and other undesirable perturbations are weak®.
However, the description above is an idealization in that the
influence of phenomena other than the dominant nonlinear and dis-
persive effects are neglected. As Boyd remarked’, “the classical solitary
wave is a fairy tale written in the symbols of calculus;” since nature is

rarely ideal, the ideal soliton can only approximate reality. Solitons, for
example, may be coupled to linear waves by weak perturbations,
causing them to radiate energy. Well-known examples of such nonlocal
solitary waves include tidal flows'®", isolated long-lived vortices in
fluids such as the Gulf Stream rings'>™, solitons in optical fibers™**,
and the Morning Glory cloud structure® ?—which are all known to
radiate. The Morning Glory, specifically, occurs predominantly in
Australia and can be modeled as a solitary wave balancing nonlinearity
and dispersion as it propagates over several 100’s of km**%, It is also
known to lose energy through radiation to upper sections of the
atmosphere. The energy is, in turn, replenished by the sea breeze in the
lower atmosphere, allowing the structure to continue propagating®.
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These radiative losses are as universal as the solitons from which
they originate: the radiation arises from a resonance between weak
linear waves and the soliton which has a larger amplitude®’. At the
resonant frequencies, energy is shared between the two modes, and a
soliton therefore inevitably radiates, losing energy.

The resonant radiation is generally weak, however, in many cases,
neither the soliton’s radiative decay rate nor the radiation amplitude
can be calculated by standard perturbation approaches’. They neces-
sitate specialized mathematical techniques which began with the work
of G. G. Stokes in the mid-19th century in his study of what is now
known as the Stokes phenomenon. The development was finalized
only towards the end of the 20th century, with contributions from
Berry, Grimshaw, Joshi, and many others"*°,

Their work, much of which was based on a perturbed
Korteweg-de Vries equation’, has led to firm predictions of the
radiation amplitude® . Crucially, they show that the radiative losses
are a universal phenomenon, in that they occur in a wide variety of
physical systems, are caused by similar underlying effects, and can be
mathematically described in a way that is agnostic to the particular
embodiment. Under very general conditions—essentially when the
energy leakage is associated with the soliton’s spectral tails—the
amplitude A of the radiation follows the scaling relation

A e, 6))

apart from a prefactor with magnitude of order unity. Here, x is a
positive real number representing the physical system, and € is a
dimensionless measure of the perturbation magnitude. We note as an
aside that since the amplitude is exponentially small in €, this result
could not have been derived using standard perturbative treatments
like a Taylor series expansion®.

Even though naturally occurring phenomena such as the Morning
Glory and Gulf Stream rings are well-studied, they do not lend them-
selves to systematic changes in the parameters. Even in laboratory
experiments'®?**>¢, the universality has not been exploited or dis-
cussed in detail—the universal aspects of the Stokes phenomenon and
of Eq. (1) have thus escaped rigorous and systematic experimental
testing until now.

Here, we provide a thorough experimental analysis and verifica-
tion of the Stokes phenomenon in an optics context. We utilize a fiber
laser in which the effective dispersion can be freely adjusted and the
radiative losses are compensated by the gain inside the cavity®’. We
experimentally demonstrate the universality of the coupled radiation
in three ways: we show that (i) the output of the laser satisfies the
ubiquitous nonlinear Schrodinger equation and its generalizations; (ii)
the same physical phenomenon occurs for differing types of solitons
and perturbations; and (iii) that our results are approximately con-
sistent with Eq. (1). Thus, our aim is not to derive novel mathematical
results, but rather, it is to experimentally verify existing theory as
applied to the nonlinear Schrédinger equation, and, particularly, to its
high-order generalizations. Further, since the mode coupling of high-
order nonlinear Schrodinger equations has not previously been con-
sidered, we explicitly show how the universal results do apply to these
equations.

The objects we are studying here differ from dissipative solitons,
which not only require a balance between dispersion and nonlinearity,
but also between gain and loss*. Whereas for dissipative solitons the
loss is typically strong and broadband, our interest is in systems with a
sharp resonance in the spectral tails, leading to weak and spectrally
narrow features. The resulting solitons are sometimes referred to as
nanopterons’. For dissipative solitons, the gain and loss are sufficiently
strong to play an important role in determining the soliton shape and
amplitude. However, for nanopterons, the main pulse shape is deter-
mined by the balancing of dispersion and nonlinearity, with the losses
manifesting only as oscillations in the temporal tail(s).

Results

Resonant coupling

A conceptual illustration of the physical phenomena driving our
experiments—particularly the properties of the two relevant modes—is
given in Fig. 1. The orange curves in Fig. 1a show linear dispersion
relations in a frame that moves at the group velocity associated with a
reference frequency wo'. Dispersion relations give the propagation
constant (or wavenumber) S for each frequency w for low-intensity
waves. Their slope 0f/0w represents the inverse group velocity ugjl in
the moving frame. Ideal solitons require the dispersion relation to be
concave down, so low frequencies—which have a positive slope—travel
slower than the frame, whereas high frequencies—with a negative slope
—move faster. A parabola, shown by the dotted curve in Fig. 1a, is
merely the simplest realization of such a curve.

In contrast, the propagation of high-intensity waves—which
additionally are subject to nonlinear effects—is governed by the non-
linear Schrodinger equation, which has soliton solutions’. In Fig. 1a,
these are represented by the blue horizontal line S, which is offset
from the linear dispersion relation by an amount i > 0 due to the effect
of the nonlinearity. Since the line is horizontal, the pulse moves at the
speed of the frame'. The dotted curves in Fig. 1b, ¢ show the asso-
ciated soliton spectrum and temporal intensity envelope respectively.
The spectral peak of the soliton in Fig. 1b occurs at the frequency
nearest to the ideal dispersion relation as given by the gray vertical
dashed line'. The fact that the soliton line does not intersect the dis-
persion relation indicates that it does not lose energy to linear waves
and propagates unperturbed’. The electric field decays exponentially
to zero as the time ¢ > +eo, and is therefore temporally localized, as seen
by the dotted curve in Fig. 1c.
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Fig. 1| Schematic of a perturbed (solid) and unperturbed (dotted) optical
soliton. a Soliton (blue) and linear (orange) dispersion relations relate the propa-
gation constant (prop. const.) to frequency, centered at w,. The dispersion relation
perturbed by ;> O intersects the soliton line at w,, while the ideal one does not.
b Theoretical spectra. ¢ Theoretical electric field envelopes.
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Fig. 2 | Measured radiation for conventional solitons. Column 1, results for
B> =-1.0ps*m™, B3=4.5ps> m™.. a Applied linear (orange) dispersion relation with
measured output spectrum (blue). b Measured spectrogram. ¢ Retrieved real

Time (ps)
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electric field (teal) and temporal phase (yellow). Columns 2 (d-f) and 3 (g-i) are
similar, but for the opposite-signed odd-order 8;=-4.5 ps>m™, and an even-order
B4=22.8 ps* m™ perturbation respectively.

When a small positive cubic term is added to the dispersion
relation (see Fig. 1a), it intersects the soliton line at frequency w,,
marked by the black vertical dashed line in Figure 1a. This means that
the two modes—the soliton and the low-intensity linear waves—are
resonantly coupled at this frequency. As a consequence, the soliton
spectrum in Fig. 1b (solid curve) exhibits a novel feature at w, caused by
energy radiating away from the soliton in the form of linear waves. This
radiation manifests temporally as low-amplitude oscillations, so the
soliton is no longer localized in time. The radiation lags the main pulse,
as shown in Fig. 1c (solid curve). This is consistent with the positive
slope of the dispersion relation at w,, which indicates that the linear
waves travel slower than the soliton.

The existence of the oscillations in Fig. 1c and the underlying
concepts are universal and have been studied in various physical sys-
tems for over a century®*. In optics specifically, the emission of dis-
persive waves by optical solitons due to cubic dispersion has been
reported theoretically®"***? and experimentally’®**. However, the
dispersion was almost always determined by the waveguide material
and geometry, and could not be dynamically adjusted, limiting sys-
tematic explorations of these phenomena.

In our experiments, we can effectively generate arbitrary disper-
sion relations using a passively mode-locked fiber laser that incorpo-
rates an intracavity pulse shaper’***. Details can be found in
Supplementary Section 1. Much like how the energy of the Morning
Glory is replenished by wind in the lower atmosphere?, light propa-
gation here is dominated by nonlinearity and dispersion, while the
laser itself merely restores the energy lost upon propagation®”**., In this
section, we apply dispersion relations of the form

B

B@)="3 (@ — @) + &

3 &(w —wp)*, (2)

(@ —wo)*+ 1
with reference frequency wo chosen conveniently in the operating
spectrum of the laser around the wavelength A=1560 nm. For the
results below, we set the net quadratic dispersion 8, = -1.0 ps*m™ and
consider three combinations of 5 and S,. We retrieve the complete
temporal and spectral properties of the laser pulses using a frequency-
resolved electrical gating (FREG) technique®***°,

Our measurements are shown in Fig. 2. The left column corre-
sponds to the case discussed in Fig. 1 (85 >0 and S, =0). The applied
net linear dispersion (orange) and spectrum (blue) are shown in Fig. 2a.
The spectrum exhibits a sharp peak at w,=0.89 rad ps™ marked by the
vertical dashed line. The low-frequency feature corresponds to a Kelly
sideband, which can be ignored®”*. The associated spectrogram is
shown in Fig. 2b. The blue streak in the top right represents the
resonantly coupled linear waves, which, as argued above, trail the
soliton. Finally, Fig. 2c shows the retrieved real part of the electric field
(teal) and temporal phase @(¢) (yellow). Here, like in Fig. 1c, we observe
low-amplitude oscillations lagging the main pulse. The oscillation
period of 7.09 ps corresponds to a frequency of 0.89radps?, in
excellent agreement with the spectrum in Fig. 2a. Figure 2¢ also shows
that the associated phase decreases approximately linearly with time ¢.
Since w=-dgp/dt, this confirms that the radiation has a higher fre-
quency than the soliton, also consistent with Fig. 2a.

The middle column in Fig. 2 shows a similar set of measurements,
but instead for B3 < 0. This causes w, to shift to frequencies below that
of the soliton, as seen in Fig. 2d. At w,, the slope of the dispersion
relation is now negative, so the radiation leads the soliton. This is
confirmed by the measured spectrogram and retrieved electric field,
shown in Fig. 2e and 2f, respectively. The oscillation period of 7.18 ps
gives a frequency of 0.88 rad ps™, agreeing well with Fig. 2d in which
|w,]=0.86rad ps’. As expected from the signs of w, and ugl, these
results are mirrored compared to the case for 3> 0.

Finally, we choose 35=0 and instead take 3, >0 to be the leading
perturbation, as seen in Fig. 2g. Since the dispersion profile is now even,
it intersects the soliton line at two frequencies w,=+0.75rad ps™. The
measured spectrum correspondingly exhibits a feature at both fre-
quencies with equal and opposite group velocities. This manifests in the
spectrogram in Fig. 2h as two tails on diagonally opposite sides. Likewise,
the recovered temporal profiles in Fig. 2i shows that the soliton emits
two waves—one leading and the other trailing the main pulse. Their
periods of 8.45 and 8.22 ps, corresponding to 0.74 and 0.76 rad ps™
respectively, are once again consistent with the spectrum in Fig. 2g.

These results demonstrate our ability to control the dispersion
precisely, allowing us to generate solitons that are resonantly coupled
to linear waves in various ways. Figure 2c, f, i are reminiscent of
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measurements in other optical systems*?*, as well as in completely

different physical settings such as water waves", mechanical waves in
elastic woodpile structures®, and charge waves in electrical lattices®®.
This confirms the universal behavior that ensues when a nonlinear
excitation resonantly couples to linear waves. In the next section, we
exploit our unique ability to tune the nature and parameters of the
dispersion relation to explore this universal behavior in more detail.

Universality

If the radiative phenomena discussed in the “Resonant coupling” sec-
tion are truly universal, then they must generalize to many types of
solitons and many types of perturbations. To explore this claim, we
perturb pure-quartic solitons (PQSs). PQSs were experimentally
demonstrated only recently* 5, and differ significantly from the con-
ventional nonlinear Schrodinger solitons considered in the “Resonant
coupling” section. They satisfy different equations, have different
shapes, and obey different relations between energy and pulse
duration®. These pulses arise when B, =0 and B; =0, whereas 8, <0,
which leads to a concave down function, as required. In this section, we
consider perturbed dispersion relations of the form

= %(w —wo)t+ %(w —wy)", 3)

Bw)
for even integers n>6. Our choice of even-order perturbations
preserves spectral symmetry. The nonlinear Schrodinger equation
describes media with quadratic dispersion (as in “Resonant Coupling”).
This equation is integrable and its solutions are therefore referred to as
solitons. In contrast, in the presence of pure quartic dispersion,
represented by the first term on the right-hand side of Eq. (3), the
associated generalized nonlinear Schrodinger equation is not
integrable™. Its stationary solutions can therefore, strictly speaking,
not be referred to as solitons but are rather solitary waves. Below, we
nonetheless use the term soliton since this nomenclature is now
widespread in the physics literature.

Perturbation-agnostic behavior. We first provide qualitative evidence
supporting the universality in Fig. 3. We generate three PQSs and com-
pare the effects of postive sextic (n=6), octic (n=8) and decic (n=10)
dispersion, while g, is fixed to ensure the main pulses have similar
properties. The perturbation values were adjusted so that the corre-
sponding dispersion relations (orange; solid, dashed, dotted respec-
tively) intersect the soliton line (blue) at the same frequency in Fig. 3a.
These three scenarios are qualitatively the same, and correspond to the
same x and the same effective perturbation strength € in Eq. (1).

The associated measured spectra are shown in Fig. 3b. As pre-
dicted, all three nanopterons appear near-identical. These similarities
extend to the recovered temporal electric fields in Fig. 3c, which, as
expected, show oscillations with the same frequency on both sides of
the main pulse. We note in addition that the oscillations have the same
phase, and that the radiation amplitudes are approximately equal.
Both of these observations are key predictions of the mathematical
analysis leading to Eq. (1) when applied to systems with even disper-
sion relations™*, Indeed, since all three perturbations correspond to
the same ¢ with fixed , the radiation amplitudes differ at most by a
factor of order unity, as in Fig. 3c. Thus, these results demonstrate that
the mode coupling is agnostic to the particular perturbation that
causes it. The derivation of the result that the response of quartic
solitons does not depend on the details of the coupling is discussed in
Supplementary Section 4.

Systematic perturbation control. We now consider PQSs with fixed S,
as before, but perturbed by sextic dispersion B¢>0 of varying
strength. The perturbation strength € is unitless (see “Methods” for the
normalization scheme) and increases monotonically with S¢. Figure 4a
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Fig. 3 | Comparison of different perturbations with identical resonant fre-
quencies. a Soliton (blue) and linear dispersion relations (orange) with B4/
41=-20 ps*km™ perturbed by B¢/6! =10 ps°km™ (solid), Bs/8! =4.33 ps*km!
(dashed), and B,¢/10! = 1.88 ps'®km™ (dotted). b Measured spectra. ¢ Retrieved
electric field envelopes.

gives selected spectral measurements with ¢ increasing from top to
bottom. Again, since B, is unchanged, the main soliton spectrum does
not vary appreciably with Se. Instead, only the radiation changes sig-
nificantly, shifting inwards to w = wo and growing as the perturbation €
increases. While this is qualitatively consistent with Eq. (1) and the
resonance argument from the “Resonant coupling” section, we inves-
tigate the quantitative agreement here.

The radiation frequencies, as measured from the spectra and
appropriately normalized (see “Methods”), are plotted against 1/€ in
Fig. 4b (circles). The solid curve shows the theoretical prediction using
the resonance argument. In the asymptotic limit € > 0, the normalized
frequencies follow the dashed line 1/e (derived in Supplementary
Sections 3 and 4). The experiments and theory agree well as each point
deviates from the solid curve by under 5%.

Finally, we experimentally test Eq. (1). While the mathematical
derivation of this scaling law is challenging®*~, it is outlined in Sup-
plementary Section 4. Heuristically though, it expresses that the
radiation amplitude A is proportional to the soliton’s spectral ampli-
tude Ao at the resonant frequency w,*. Soliton spectral amplitudes
typically decay exponentially*’, so that, deep in the wings, the ampli-
tude is Ay, ox exp(—x|w — wy|), where x is the decay rate. Since from
Fig. 4b the normalized resonant frequency asymptotically traces 1/e,
we find that A, o« exp(—x/€), mirroring Eq. (1). For the PQS using our
normalization scheme, x = 2.75 (see Supplementary Sections 3 and 4).
Then, Eq. (1) predicts that In(A) versus 1/e is a straight line with
slope —x°*°. We estimate the radiation amplitudes from the shape and
the height of the resonant features in Fig. 4a; details are given in
Supplementary Section 5. The results for both the w, < wo (purple
triangles) and w, > wo (green triangles) resonances are shown in Fig. 4c,
confirming the straight line. We estimate the magnitude of the
respective slopes to be 1.73 and 1.75, differing somewhat from the
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expected y = 2.75. We obtained similar results for different values of 8,
further supporting the universality (see Supplementary Section 7).

The discrepancy of ~-35% between the measured and expected
slopes in Fig. 4c is consistent with numerical laser simulations (see
Supplementary Section 8)”. It is thus likely due to intrinsic constraints
of the experiment. We attribute this discrepancy to the relatively large
values of €, which are restricted to 0.36 $€<0.52 by the need for
stable laser operation. At these values, the perturbation is not suffi-
ciently small for quantitative agreement with the asymptotic limit (i.e.,
where Eq. (1) with y=2.75 strictly applies). This is illustrated by the
solid- and dashed-orange curves in Fig. 1a, which show that the pre-
sence of the perturbation can distort the dispersion relation sig-
nificantly. For w > wo, the dispersion relation initially flattens, so the
effective |,| is locally weaker. Heuristically, for the dispersion to then
remain balanced with the nonlinearity, the soliton spectrum needs to
broaden so as to capture a larger portion of the dispersion relation,
and thus the spectral decay rate drops. Since the x parameter effec-
tively corresponds to the asymptotic spectral decay rate of the soliton,
the measured value of y is smaller than that expected as € > 0, con-
sistent with the results in Fig. 4. For the relatively large values of ¢
where we operate, this effect is quite substantial. This argument is
corroborated by Fig. 4b, which demonstrates that the agreement
between theory and experiment improves as € decreases.

The variety of results in Figs. 3 and 4 and the overall good
agreement with theoretical predictions nonetheless provide concrete
experimental evidence for the universal behavior of soliton radiation.
Our ability to systematically vary the physical parameters finally

enables a confirmation of the associated mathematical formalism that
has been developed over decades.

Discussion

The results we have presented are only made possible by the exquisite
control over the net-cavity dispersion afforded by our fiber laser”.
Even though others have experimentally observed the low-amplitude
temporal oscillations of nanopterons, their systems lacked systematic
control over all relevant parameters?°?*, or they could not
demonstrate the universality of the radiative process®****, Some of
these studies consisted of discrete elements®>®, making it difficult to
establish the link to standard continuous nonlinear wave equations.

Our experiments required measurements of weak features in the
spectral tails of solitons. These results are therefore sensitive to noise
and other small undesired perturbations. Despite being based on a
conservative generalized nonlinear Schrodinger equation, our theo-
retical approach is sufficient in all cases we considered”*. It is in very
good agreement with experimental results, as seen in Fig. 4, and
numerical simulations of the laser cavity based on a realistic iterative
map model’’** (see Supplementary Section 8).

In light of this, the agreement between our results and the theo-
retical expectations in Fig. 4 is remarkable. The consistency with an
exponential scaling law Eq. (1) is particularly noteworthy.

We remark that our setup may also suit the study of micropterons.
These objects are similar to nanopterons in that they consist of a
nonlinear structure losing energy by coupling to a linear mode, but
different because the resonance occurs at low frequencies, close to the
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spectral peak of the soliton. In fact, the Morning Glory is an example of
a micropteron’. Such studies can form the subject of possible future
research.

Finally, we stress that while our experiments were carried out
using optical waves, our results are universal. Our findings pertain to
diverse branches of physics described generically by nonlinear wave
equations, irrespective of the exact details of both the soliton and the
perturbation. Furthermore, it validates the associated mathematical
framework that has matured over decades but was difficult to test
experimentally. Yet, despite its long history, novel applications of this
phenomenon continue to be developed®.

Methods

Normalized quantities

Our theoretical analysis was based on the one-dimensional generalized
nonlinear Schrodinger equation,

O
la—f+nzz BnO ¥\ g0, @)

A
— n! ot

where ¢ =y(¢, 2) is the electric field envelope, z is the (spatial) propa-
gation coordinate, ¢ is the (temporal) transverse coordinate comoving
with the pulse, i is the imaginary unit, and y>0 is the nonlinear
parameter.

From the “Universality” section, we were exclusively interested in
PQSs perturbed by higher even-order dispersion, which simplified
Eq. (4) in that the only non-zero dispersion coefficients were 4 and S
for k=6, 8, or 10. We used this alongside the standard ansatz for
fundamental stationary solitons ¢ = u(f)e* to reduce Eq. (4) to

ﬁ4d4u k/zﬁkdk” 2, _
—pu+ [?F +(=1) FW +ylulu=0. 5)

We then normalized Eq. (5) into the form

d*v | 4
—4v+ {W +e

d‘v
W] +luf=0, (6)

in which all quantities in Eq. (6) were nondimensionalized, and the
perturbation magnitude € is explicitly included. Additionally, Eq. (6)
was written such that in the limit where € > 0, the normalized resonant
frequency approaches 1/e asymptotically. The necessary transforma-
tions are

v=2

1/4 ka1l k=4
K u, T= (6_”> t, € =”1/4 4& (i) , (7)
i B4 k! \|B4l

which apply for all PQSs, perturbed by any positive even-order
dispersion (i.e., B¢ > 0, for even k > 6). This scheme and its importance
is fully contextualized in Supplementary Sections 3 and 4.

Radiation amplitude estimation

The square roots of the spectra in Fig. 4a were taken to obtain the
spectral amplitudes. The corresponding radiative features in the
spectral amplitude profiles were observed to be bell-shaped and fit
particularly well to a hyperbolic secant

flwy=hsech{w(w, — wy) } +mw+b, 8)

for fit parameters height h, width w, frequency offset w,, local slope m,
and vertical offset b. Note that the background solitons were
approximated locally by a straight line mw + b since the resonances
were SO Narrow.

The spectral amplitudes of the radiative features were taken to be h,
which effectively deducts the contribution from the spectral amplitude
of the main pulse. The values of h were normalized thereafter. The fea-
ture widths w were near-identical across all of our measurements, so we
assumed that the radiation’s temporal profile had approximately the
same shape for all the different perturbations which were tested for a
fixed B4. Therefore, the scaling results relevant for Eq. (1) could be mea-
sured from the spectra without converting to the time domain. A com-
plete justification of this method is outlined in Supplementary Section 5.

Data availability

The source data that support the plots within this paper and other
findings of this study including the supplementary material are avail-
able in the Zenodo database with the identifier https://doi.org/10.5281/
zenodo.15387928. Any additional data are available from the corre-
sponding author upon request.

Code availability

The code supporting the plots within this paper and other findings of
this study including the supplementary material are available from the
corresponding author upon request.
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